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Sur les semigroupes de matrices dans l’algèbre (max,+)

Résumé : Nous montrons que la réponse au problème de Burnside est positive pour les semigroupes de
matrices à coefficients dans “l’algèbre

����������

�
” (c’est-à-dire le semianneau

��� � ��������� ��������

�
) ainsi

que pour les semigroupes d’applications linéaires projectives à coefficients rationnels dans la même algèbre.
On donne une application à l’estimation de l’exposant de Lyapunov de certains produits

��� ������

�
de matrices

aléatoires.

Mots-clé : Semigroupes, Problème de Burnside, algèbre
����������

�

, Exposants de Lyapunov, Espace projectif.
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1 Introduction

In this paper, we give some results for semigroups of matrices with entries in the “
����������

�

-algebra”,
that is, the semiring

��� ��������������������

�
, denoted

� ����� in the sequel. This is a particular example of
idempotent semiring (that is a semiring such that �����
	�� ), also known as dioid [18, 19, 2]. This algebraic
structure has been popularized by its applications to Graph Theory and Operations Research [18, 9]. Linear
operators in this algebra are central in Hamilton-Jacobi theory and in the study of certain asymptotics (see
[29] for a recent overview). The study of automata and semigroups of matrices with entries in the analogous
“tropical” semiring

�
� ��� 

����� �
��� ��

�
has been motivated by some decidability problems in language

theory [28, 34, 26, 35, 36, 20, 21, 23, 24, 25]. From our point of view, the interest of the
������� ��

�

algebra
arose from the study of Discrete Event Dynamic Systems [2, 13], where sequences driven by

� ����� -linear
equations represent synchronization and saturation phenomena. An account of the related

����������

�
-linear

system theory can be found in [2, 8, 32]. Automata over the
�������	��

�

algebra are a natural extension of
this formalism and have noticeable applications to Discrete Event Systems [15, 14]. In particular, certain
finiteness results for semigroups of matrices can be used to compute some asymptotic performance measures
(mean-case and optimal-case Lyapunov exponents [15, 14], the latest being essentially equivalent to the
classical nondeterministic complexity [37]). We also mention that the theory of

��� ������

�
rational series in a

single variable is well developed [13, 16, 25]. One basic theorem characterizes rational series by an ultimate
periodicity property. This is intimately related with the cyclicity theorem for powers of irreducible matrices
[2, 11], which states that such a matrix � satisfies ������� 	�� ����� for some ��� � �"! ��# and where � is
the “Perron root” of � . Some finiteness results presented here can be seen as an attempt to generalize this
simple property to semigroups of matrices.

We first show that the answer to the Burnside problem for semigroups of matrices over
� �$��� is positive,

which extends a theorem of Simon [34] for the tropical semiring. The main originality by comparison with
Simon’s proof consists in using the

����������

�
-spectral theory. A different proof based on an adaptation

of a combinatorial argument of Straubing can be provided in another special class of dioids. Later, we
consider semigroups of

������� ��

�
-linear projective maps. In a previous paper [15], we showed that under

certain coarse irreducibility assumptions, finitely generated semigroups of linear projective maps with
rational entries are finite. Here, we extend this result, showing that the answer to the Burnside problem
is also positive for semigroups of linear projective maps with rational entries. The rationality assumption
is important: we provide a counter example which is based on a kind of system of addition of irrational
vectors. The decidability of the limitedness problem for rational series over

� ����� is also obtained as an
easy consequence of the decidability result of Hashiguchi [21, 20] for the same problem over the tropical
semiring. We conclude by giving an application where these finiteness results allow a simple computation
of the Lyapunov exponeint of some particular

��� ������

�
automata.

2 Statement of the Results

Recall that a semigroup % is torsion if for all &(')% , there exists �*' � and
! ' �,+ � � � such that &-�.��� 	 &/�10

Consider the two following properties

1. % is finite

2. % is finitely generated and torsion.

Obviously, (1) 2 (2). The well known “Burnside problem” consists in finding some classes of semigroups
satisfying the converse implication. See [10] for a survey. The answer is positive for matrices with entries in
commutative rings [30, 22, 38]. It is also positive in some more exotic semirings, such as the tropical semiring
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� � � � 

����� �
��� ��

�
(Simon [34]), the “dual” –but non isomorphic– semiring

�
� � � � �����������	��

�
and

the semiring of rational languages in a single letter
��� ��� � ��� � ��� � 0 � (Mascle [28]). We show that this property

also holds in the case of
� ����� :

2.0.1 Theorem A finitely generated torsion semigroup %	� � ��
 ������ is finite.

Moreover, this result admits an effective translation:

2.0.2 Theorem It is decidable if a finitely generated semigroup %�� � ��
 ������ is torsion.

Indeed, the proof provides an algorithm which after some reduction coincides with Simon’s algorithm for
the tropical semiring (whose complexity is essentially 
 � � ).

The proof of Theorem 2.0.1 uses the spectral theory of
� ���
� together with the linearity of the order. In

spite of certain generalizations of the spectral theory to others dioids � [11, 16], the argument does not seem
to extend easily. However, we mention another class of dioids for which the answer to the Burnside problem
is also positive. We shall use the natural order of dioids, which can be defined by

������� 2 � ����	�� 0
2.0.3 Theorem Let � be a commutative dioid such that

��� � ��� '�� � � � � � is finite 0 (1)

Then, a finitely generated torsion semigroup %��!� ��
.� is finite.

The proof is an adaptation to the dioid’s case of a combinatorial argument of Straubing [38]. This yields
another proof of Mascle’s finiteness result for matrices over the semiring

�
� � � � ������� ������

�
(but not for

the tropical semiring, for which the algebraic order � is the opposite of the standard one). Let us give another
example of nontrivial dioid satisfying (1). Let

�#" ��

�
be a commutative monoid. Then, the dioid $&% ��" �

of
finite subsets of

"
, equipped with

�
(as addition) and sum of subsets (as product) satisfies the condition of

Theorem 2.0.3.

We next consider linear projective semigroups. We define the matrix projective space as the quotient of� �'
.��$��� by the parallelism relation

" (�"*)�+-, � ' � ����� + �/. ���0" 	1� "1)

(we use the notation
.

for the zero element of semirings, in particular, in
� ����� , . 	 ���

). We write 2 � ��
.��$��� for
the quotient semigroup (of “linear projective maps”), and 3 denotes the canonical morphism of multiplicative
semigroups

354 � ��
-��$���76 2 � ��
.��$��� 0
Let us introduce the subsemiring of

� �$��� : 8 �����:9#; %	 � 8 � ����������� ������

�
. We set 2<8 �'
.��$� � 9�; %	 3=8 ��
 ������ (this

is the semigroup of linear projective maps with rational entries).

2.0.4 Theorem A finitely generated torsion semigroup %	�!2<8 �'
 ������ is finite.

Finally, we extend to
� ����� a theorem of Hashiguchi [21] for rational series over the semiring

�
� �
� 

�������
��� ��

�

. See also [20], Simon [36] and Krob [24, 23] for a first extension to
�?> � � 

�������
��� ��

�

.
@
Recall that a dioid is a semiring whose addition is idempotent: ACB�AED�A .
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2.0.5 Theorem It is decidable if a rational series & with coefficients in
� ����� is limited, that is, if the set of

the values of the coefficients of & ,
% 	 � � &'��� � ��� ' � � �

is finite.

3 Preliminary Results

3.1 Some Results from the �����
	���
�� Matrix Theory

We next recall the definition and basic properties of the
��� ������

�

spectral radius [17, 7, 2, 9]. First, the
“norm” of a matrix is defined by �

�
� 	���� � � ��� 	��������� � ��� 0

3.1.1 Lemma Let � ' � ��
-������ . The following quantities are equal:

1. ����� ��� ' � ����� � ,�� ' � ������ + �/. ��� � � � � �	�
2. ����� ��� ' � ����� � ,�� ' � ������ + �/. ��� � � 	 � �	�
3. ! �#"�$%" � � � � � $ ��&' 	 ! ��"�$%" � !

� &)(�(�( � ' � �
� & � � 0 0 0�� � ' � & ��&'

4. * � � ����� $
�
� $ � &' .

This common value will be denoted by + � � � .
Of course, � &' with the semiring notation of the

����������

�
-algebra means ,$ in the usual algebra. In the

following, it should be clear from the context whichever algebra is used. However, we shall sometimes write�.- &' to avoid ambiguities.

We begin with a Lemma which is almost obvious.

3.1.2 Lemma For all � ' � ��
 ������ and /,�1# :
+ � � $ � 	 � + � � ��� $ 0 (2)

Proof + � �0$ � � � + � � ��� $ follows immediately from Lemma 3.1.1,3. The converse inequality follows from
3.1.1,2. For if � � 	 � �

, then � $ � 	 � $ � , hence + � � $ � � � + � � ��� $ . 1
The most useful result of the

�������	��

�
-matrix theory is perhaps the following cyclicity theorem which

is the exact
��� ������

�

counterpart of a well known asymptotic property for usual nonnegative matrices. Let
us recall that the matrix

"
is irreducible if

�32 �)4�� , / �1# � " $����5	 . .
3.1.3 Theorem ([7, 2, 11]) If

" ' �76 
 6����� is irreducible, then

,�8 �"! � � �)� 8 � " �
� � 	 � + ��" � � � " � 0 (3)

where + ��" �
denotes the spectral radius of

"
.
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It is very natural to look for generalizations of this cyclicity property to finitely generated semigroups of
matrices. To this end, we observe that (3) rewrites as follows in the projective linear semigroup 2 � 6 
 6����� :

� 3 " � � 	 � 3 " � ����� 0
That is, an irreducible linear projective map is torsion. This suggests to consider finitely generated projective
linear semigroups. We just recall here a first result taken from [15, 14], that we shall use and generalize
hereafter. Let

� 	 � � �
� 0 0 0 � � 6 � be an alphabet of � letters, � 4 � � 6 � ��
.������ a morphism (

� � denotes the free
semigroup on

�
, that is, the set of nonempty words equipped with the concatenation product). We consider

the finitely generated semigroup % 	 � � � � � . Alternatively, if � � � � � 	 � � , we shall write % 	�� � � � 0-0 0 � � 6��
for the semigroup generated by the matrices � �

� 0 0-0 � � 6 . Obviously, each finitely generated semigroup %
can be written � � � � � for some alphabet

�
and morphism � . We say that the semigroup % is primitive � if

there is an integer
8

such that for all word � ,

��� � � 8 2 �32 �)4 � � � � ���	� . �
(4)

where ��� � denotes the length of the word � . That is, we require every sufficiently long product of matrices to
be without

.
entries. When % admits a unique generator, this reduces to the notion of primitivity well known

in the theory of nonnegative matrices. We say that a set % of matrices is projectively finite if 3 % is finite.

3.1.4 Theorem Let � �
� 0 0 0 � � 6 ' 8 ��
.��$��� . If � � � � 0 0-0 � � 6
� is a primitive semigroup, then it is projectively

finite.

Contrarily to the cyclicity theorem 3.1.3 which is essentially relative to the case � 	 # , we require the entries
to be rational (or equal to

.
). This restriction is important, as it will be shown in §7.1.

For the sake of completeness, we include the proof, which exploits some bounding arguments and some
norm properties which will be more intensively used hereafter in the study of the Burnside problem for
projective linear semigroups.

Proof Let � be the � !�
 of the denominators of the entries of the matrices. Since
���6 ��� (

��� 	 ��� � with
classical notations) is an automorphism of 8 ����� which maps all the entries to integers, we shall assume that� �
� 0 0-0 � � 6 ' > �'
.��$��� . We have already defined the norm

�
�
� 	 ����� ��� � ��� . We shall also need the following

dual bound:
� 
 ��� 	 � ������ ��� �! 
 ���

(5)

(recall that
�����#" 	 

�

). Obviously,

� � �%$ ' � �'
 ������ �'& �
� � $ � 	 �

�
� � � $ � �

� � � $ �(�,�0� �7�(�*) � $ �(� (6)

� � �%$ ' � ��
.������ �'& �
� $ � � �

�
� � $ � �

� � $ �(� � � �7�(� � $ �(� 0 (7)

The proof relies on the following Lemma.

3.1.5 Lemma Let + ' � . The set % of matrices

 ' > �'
.��$� � such that� 
 �
� 
 �(� � +

is projectively finite.,
We leave it to the reader to check that this notion is independent of the choice of - and . .
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Indeed, after normalization, we may assume that
� 
 ' % � � 
 � � 	�� . Since there is at most

� + 
���� � � � #
matrices


 ' > �'
.����
� such that � 	 � 
 �(� and
� 
 � � + , the Lemma is proven.

Let

� 	 � � � � � � � �(� � � 0-0 0 � � � 6 �(� � �� 	 � ��� � � � �
� � 0 0-0 � � � 6 � � 0

The primitivity assumption implies that for � ' � � long enough, we have a factorization � 	 & � � with
� & � � � � � � 8

and � � & � � � ��� � � � �#�	���!. (
8

is the “primitivity index” satisfying (4)). Then� � � � � � 	 � � � & � � � � � � � � & � � � � �#�	� � � � �#� � �
� � � � � � ��� � ���	� ��� (8)

for some indices
2 4

belonging to the argmax in
� � �#�	� � 	������ � � � �#� � ��� . Moreover� � & � � � $	� � � � & � $ � � ���	� ��� � �#� � � � � � � ) � � ��� � ���	� ��� 0

This implies that � � � � � �
� � � � � �(� � 
 � � �� ) � � ��� 0

It remains to apply Lemma 3.1.5 to conclude. 1
3.2 Preparation

We first recall or prove some lemmas of general interest. The first one is a well known combinatorial result
due to Brown[5]. We say that a semigroup % is locally finite if any finitely generated subsemigroup of % is
finite.

3.2.1 Lemma (Brown) Let � 4 % 6�
 be a morphism from a semigroup % to a locally finite semigroup 
 .
Then % is locally finite iff for all idempotent � ' 
 , ��� � � � � is locally finite.

We now give some lemma specific to the dioid or
����������

�

case. We first define a notion of reducibility
of semigroups of matrices over dioids.

3.2.2 Definition Let � be a dioid and % a subsemigroup of � ��
.� . We say that % is reducible if there exists
a proper partition

� # � 0-0 0 � � � 	�� ��� such that
� &
' % � �32 ' � � � 4 ' � � & ��� 	 . 0

Let � be a morphism
� � 6 � ��
 � , and % 	 � � � � � . It is easily checked that % is reducible iff there

exists a constant permutation matrix � , two morphisms � � 4 � � 6 � 6 
 6 � � � 4 � � 6 � � 
 � and a map� 4 � � 6 � 6 
 � , (with #�� � � � ), such that

� � ' � � � �	� � � � � � � 	�� � � � � � � � � �. � � � � ��� 0 (9)

Moreover, this is clearly equivalent to saying that the matrix
" 	 ! ,	��� � � � � is reducible (in the usual sense

of the Perron-Frobenius theory). The interest of irreducible semigroups arises from the following Lemma,
which shows that, with respect to the Burnside problem, we may only consider irreducible semigroups.  !

Lemma 3.2.3 holds in a dioid (and not in an arbitrary semiring) because of the following property: “in a dioid, the set of all
possible sums of the elements of a finite set is finite”
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3.2.3 Lemma Let % 	 � � � � � be a reducible semigroup satisfying (9). Then % is torsion (resp. finite) iff� � � � � � and � � � � � � are torsion (resp. finite).

It is clear that the condition is necessary. Conversely, an easy induction shows that� � � � 	 �
,	����� � , �  �� � � �#� � � � � � � � ��� � (10)

hence � � � � is a finite sum of elements of the finite set � � � � � � � � � � � � � � � � and the condition is also
sufficient. 1

We now prove some specific
������� ��

�

lemma.

3.2.4 Lemma Let � ' � �'
.������ . The following assertions are equivalent:

1. � is torsion

2. For all irreducible bloc
$

of � , + � $ � 	 � or
.
.

3.2.5 Corollary Let � ' � �'
.����
� . The following assertions are equivalent:

1. � is projectively torsion

2. There exists � ' � ����� , such that for all irreducible bloc
$

of � , + � $ � 	1� or
.
.

Corollary 3.2.5 if obtained from Lemma 3.2.4 by noticing that � is projectively torsion iff � ����� 	 � � � �
for some � � !

�
� , that is iff � � � � is torsion.

Proof of Lemma 3.2.4. From Lemma 3.2.3, we may assume that � is irreducible. If + � � � 	 . , then �
is nilpotent, hence it is torsion. Otherwise, it follows from the cyclicity property (3) that � is torsion iff+ � � � 	�� . 1

Consider the following characterization of the
�������	��

�

spectral radius (cf. Lemma 3.1.1):

+ � � � 	��
$ � �

	 � � � $�
 &' 0 (11)

We next generalize this property to semigroups of matrices.

3.2.6 Proposition Let
� 	 � � �

� 0 0-0 � � 6 � , and % 	 � � � � � for some morphism � 4 � � 6 � �'
 ������ . Let" 	 � � � � � � 0 0-0 � � � � 6 � . Then

+ ��" � 	 �
� � ���

� � � � � � � � &
 ��
 	 �
� � ���

� +��(� � � ����� &
 ��
 0
Moreover, the ����� is attained in both summations � .
Proof of Proposition 3.2.6. Since

�32 � � � � � � � " , we have

� �1' � � � � � � � � "�� � � �

then �
� �����

� � � � � � ��� &
 ��
 � �
$ � �

	 � �=" $�
 &' 	 + ��" �
(12)

�
recall that !���� � D����! � � � .
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by (11). Similarly, �
� �����

� +�� � � ��� &
 � 
 � �
� � �

� + ��" � ��� &� 	 + ��" �
(13)

by Lemma 3.1.2. We now prove the converse inequalities. Let
2
�
� 0 0-0 � 2 $ ' � # � 0 0 0 � � � such that

+ ��" � $ 	 " � & � � 0 0-0 " � ' � & 0
Since

" 	 !�� � � � � � , each entry of
"

corresponds to some entry of one of the � � � � � . Precisely, for each� ' � # � 0 0-0 � / � , take & $ ' � # � 0 0-0 � � � such that
" �
�
�
� � & 	 � � � � � � � � � � � & (with the convention / 
 # 	 # ). Let� 	�� � & 0 0-0 � � ' . Then

+ � � � � ��� � � � � � � � � � � � � � & � &
� � � � � & � � & � � 0 0 0 � � � � ' � � ' � & 	 + ��" � $

which shows that the converses inequalities in (13) and (12) hold. 1
The boolean semiring,

� 	 �/.�� � � , which can be seen as a subsemiring of
� ����� (with � 	 � � . 	 ���

),
will play an important role in the sequel.

3.2.7 Lemma Let � ' � ��
.� be an idempotent matrix. Then, the irreducible blocs of � are either
.

or equal
to some matrix

� $ , where
� $ denotes the / � / -matrix whose entries are all equal to � .

Proof Let
$

be an irreducible / � / -bloc. Since � is idempotent, we have
$ 	 $ � . If + � $ � 	 . , then

$
is

reduced to a single
.

element. Otherwise,
$ � 	 � $ . 1

The following Lemma is reminiscent of the theory of (classical) spectral radii of Hadamard products of
nonnegative matrices (see Elsner, Johnson, Dias da Silva [12], Theorem 7).

3.2.8 Lemma Let
" ' � ��
-������ be irreducible. Then

+ ��" � 	 �
����
��� " � � � � (14)

where
�

ranges the set of diagonal matrix with non
.

diagonal entries.

Proof of Lemma 3.2.8. We get from 3.1.1,2 that + ��" � 	 + � � " � � � � � ��� " � � � � for all
�

. Assume
by homogeneity that + ��" � 	 � , and let

�
be an associated eigenvector, i.e.

" � 	 �
. Set

� � � 		.2 ��
 �#� � � 0 0-0 � � � � . Then,
��� " � � � � 	 ! ��� � � �� " � � � � 	 ! � � � �� � � 	 � . Hence, the inf in (14) is equal to� 	 + �#" �

. 1
4 Finiteness Results for

��
����������
-Semigroups

4.1 It Is Decidable if a Finitely Generated (max,+) Semigroup of Matrices Is Torsion

We now prove Theorem 2.0.2, which is an extension of Simon’s decidability result [34]. Let % 	� � � � 0-0 0 � � 6 � and set
" 	 ! 6 �  � � � .

4.1.1 Lemma For % to be torsion, it is necessary that + ��" � 	 � .
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Proof From Proposition 3.2.6, we get

+ ��" � 	 � +���� � � ��� � &
 ��

for some �1' � � . If % is torsion, then � � � � is torsion, hence, + � � � � ��� 	 � . 1

This allows considering only the following case.

4.1.2 (Canonical form) We shall assume that

�32 � �
�
� � � � " � 	 � 0 (15)

Indeed, provided + ��" � 	 � , condition (15) becomes satisfied if we replace each � $ by
�
� $
� � � , with� � �

	 " �
�
�

as in Lemma 3.2.8.

Thus, we are reduced to a semigroup of matrices of
��� ���� � � ��
.� (

� ������ is the subdioid of
� ����� comprising

the elements � � ). We next introduce some morphisms from
� ����� and

� ������ to simpler structures.

Let �
4 � ����� 6 � � � � � � 	 � � if

� 5	 ..
if
� 	 . .

We naturally extend

�
to
� ��
 ������ (componentwise). In the case on nonpositive reals, there is another useful

morphism �
4 � ������E6 � � �

� � � 	 � � if
� 	 �.

if
� � �

that we also extend to
��� ��$��� � ��
.� in a similar way. The product morphism is given by� � � 4 � � ������ � ��
 �76 � ��
.� � � ��
 � 0

Finally, we introduce the following map

� 4 � ��$��� 6 � � � � � � � 	��� � � if
� 	��

� # if
. � � � �.

if
� 	 . .

It should be noted that in the case of the dioid
�
� � � 

�������
��� ��

�

, the map analogous to � is the key of
Simon’s proof [34]. � is not a morphism, but we have� � � � $ � 	�� � � � �	� � $ � �� � � � � ��
 � � $ ��� 	�� � � 
 $ � 0 (16)

Hence, � is a morphism from
� ������ to the three elements dioid � ��� ������ � 	 �/.���� # � � � equipped with the two

following laws �
� and

 � :

� ��� � 9#; %	 � ��� � � 
 � � 9#; %	�� � � 
 � � 0
We naturally extend � to

� �'
.����
� .
We claim that:

4.1.3 Proposition Let � ' ��� ������ � ��
.� . Let � denote the injection � � � ��� ��$��� � ��
.� � 6 ��� ������ � ��
.� . The
following assertions are equivalent.�

It should be noted that � is not a morphism. In particular, stating that ����������� is torsion (in � ��� "!�# ��$�%&$ ) has nothing to do with
stating that �'����� is torsion in the dioid �'��� �(� "!�# ��$'%)$*� , which is always the case since �'��� �+� "!�# ��$'%)$,� is finite.
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1. � is torsion

2. ��� � � � � is torsion

3. for each non
.

strongly connected component of � , there exists a circuit
�

of � composed only of arcs
of weight � ,

4. each non
.

strongly connected component of

� � � � contains at least a circuit of

�
� � � .

Proof of the Proposition. (4)
+

(3) is obvious.

(1) � 2 (3): This follows from Lemma 3.2.4 and the fact that since all the entries of � are � � , a circuit
with weight � has all its entries equal to � .
(3) � 2 (2). This is clear from Lemma 3.2.4, since the irreducible blocs and the entries equal to � are exactly
the same for � and ��� � � � � . 1

This yields the following extension to
� ����� of Simon’s algorithm [34].

4.1.4 Algorithm Compute the finite semigroup � � % � and for each � ' � � % � , check that the matrix � 	 2 � � �
satisfies property 4.1.3,3.

There is an equivalent version which uses the maps

�
and

�
:

4.1.5 Algorithm Compute the finite semigroup

� � � � % � and check property 4.1.3,4 for each � '
� � � � % �

The Theorem is proved. 1
When the semigroup % is primitive, we obtain a particularly simple result:

4.1.6 Theorem A primitive semigroup % 	 � � � � � � � � ������ � ��
 � is torsion iff there is no nilpotent matrix
in

� � � � � � .
Proof Obvious from 4.1.5 since for all � ' � � , � � � � � ��� admits a single strongly connected component:
there is a circuit in

� � � � � iff + �
� � � � ��� 	 � , which is equivalent to

� � � � � being non nilpotent. 1
4.1.7 Example Let us consider the matrices

� 	 � � #� # � # � � � 	 $ 	 � � �
� � �

and define

�
� 	 + � � � � � � 	 � 	 � � #� # � # � �
�$ 	 + � $ � � � $ 	 � � # #� # � # � 0

We claim that
�
% 9�; %	 � �� � �$ � is torsion. In order to show that, we reduce

�
% to the canonical form 4.1.2. We

have " 	 �
� �

�$ 	�� � #� # � � �

�
A path of length

�
is a family of

���	�
indices ��
 @
��������� 
���� @ � . A circuit is a path such that 
���� @ D�
 @ . An arc is a path of length

1. The weight of the path ��
 @ ��������� 
 ��� @ � is equal to � � & � � ����� � � ' � ' � &
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+ ��" � 	�� 	 � and
" � 	 " . Let

� 	 	.2 ��
 ��" ��#� � " �� � � 	 	.2 ��
 � � � # � and set

� ) 	
� �
�
� � � 	�� � �

� � # � � $ ) 	 � �$ � � � 	�� � # �
� � # � 0

�
% is torsion iff � � ) ��$ ) � is torsion. According to theorem 4.1.6, we have to check that

� � � ) �%$ ) � has no
nilpotent elements. But �

� � ) � 	�� � �� .�� � � � $ ) � 	�� . �� . � �
hence we may bound from below a product of / matrices

�
� � ) � and

�
� $ ) �

by

�
� $ ) � $ . Since

�
� $ ) �

is not
nilpotent, this shows that

� � � ) �%$ ) � contains no nilpotent elements, hence
�
% is torsion.

4.1.8 Remark We conclude this section with a brief indication of complexity. Because

�
� & � �

� � & � , only
three cases are possible: (i) � � & � 	 � � & � 	 . , then � � & � 	 . , (ii) � � & � 	 . and

� � & � 	 � , then � � & � 	 � # ,
(iii) � � & � 	 � � & � 	�� , then � � & � 	 � .

Hence, the cardinality of

� � � � % � and � � % � are equal and bounded above by 
 � � , and the two algorithms
are essentially equivalent.

4.2 A Finitely Generated Torsion Subsemigroup of
�������
���	� is Finite

We now prove Theorem 2.0.1. Since the condition (15) must be satisfied, we may assume that % � ��� ��$� � � ��
 � .
4.2.1 Proposition Let %�� ��� ������ � ��
.� be a finitely generated semigroup. % is finite iff the non

.
entries of

the matrices of % are bounded.

In other words, the finiteness of % is equivalent to the following property

, + ' � � � � & ')% � �32 ��4��
&
� � 5	 . 2 + � & ��� 0 (17)

Proof Condition (17) is clearly necessary. Conversely, assume that (17) holds. Let � �
� 0-0 0 � � 6 be generators

of % , and let � 	������ � � � $ �
���
�
# � / � � � # � 2 �)4 � � � . � � � $ �

��� � � � 0
Let � 	 � � & 0-0 0�� � ' ' � $ . We have

� � � � � � 	 � � � & � � � � 0-0 0 � � � ' � � '	
 & � (18)

for some indices
2 � � 0-0 0 � 2 $ . We set

2
� 	

2 � 2 $ 	 4
. Let

8 � � � denote the maximal number of indices� 4�# � � � / such that
� � � � �

�
�
�
� � & � � in a factorization of type (18). Then � � � � ��� � � � � �
� . This implies

that � � � �
� � + , which shows that
8 � � � is bounded. Since the factors of (18) are either equal to � or less

than � , this shows that � � � � ��� can only take a finite number of values. The Proposition is proved. 1
To show that a finitely generated torsion semigroup % ' ��� ����
� � ��
.� is finite, it remains to check that the

non
.

entries of the matrices of % are bounded. Due to Brown’s Lemma, we may assume that

� � % � 	 � � �
for some idempotent matrix � . According to Lemma 3.2.7, we shall assume that � has the following form

� 	�� � $ �. � � �
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(the general case is obtained by an immediate induction). Thus, we have a decomposition of the form (9)
with � � � � � � 	 � $ and � � � � � � 	 � � . Moreover, for all � , We have necessarily� � � � � � � 	 � � � � � � � 	 � (19)

(otherwise + � � � � � � � � � � � � � � � � � contradicts the fact that � � � � is torsion). The proof of 3.1.4 shows that
there exists a finite real + such that

�32 ' � # �	����� � � ' � � �
� � � � � � �� � � � � � �(� � + 0

It follows from (19) that � � � � � � � � � + � � . Moreover, Formula (10) shows that � � � � � � � is bounded below.
This implies that � � � � � ��� is bounded below and concludes the proof of Theorem 2.0.1.

4.3 Proof of Theorem 2.0.3

The proof relies on two lemmas. The first one gives a symmetrized version of a classical polynomial identity
(valid in rings). Let � �

� 0 0-0 � � 6 denote � non commuting indeterminates and define

% �6 	 �
� ; � ; �

� � � � � 0 0-0�� � � 6 �
% �6 	 �

��� 9�9
� � � � � 0 0-0�� � � 6 �

where the sums are taken over the even and odd permutations of
� # � 0 0-0 � � � . The well known Amitsur-

Levitski theorem (see e.g. [6]) states that the polynomial identity % �� � 	 % �� � holds in the matrix ring
� ��
 �

(where
�

denotes a commutative ring). Such combinatorial identities extend to semirings:

4.3.1 Lemma Let � be a commutative semiring. Then, the identity % �� � 	 % �� � holds in � ��
.� .
This can be easily deduced from the classical Amitsur-Levitski theorem by a technique of Reutenauer and
Straubing ([33], proof of Lemma 1,2), see also [13], Chapter 1, Proposition 2.1.5 and [16], Proposition 2.2.1.

The proof of the theorem simply consists in adapting the argument of Straubing [38] (which shows
that a finitely generated torsion semigroup of matrices over a commutative ring is finite) that we reproduce
completely here. Recall that a word � is

�
-divided if it admits a factorization � 	 � � 0-0 0)��� such that for all

permutation �
5	�� 	 , � � � � � 0 0-0#� � � � � � �

( � denotes the lexicographic order). Then, Shirshov’s Lemma states that if � � �
� , there exists an integer8 � � � � � � � � � such that, for all word � ' � � such that ���7� � 8 � � � � � � � � � , either � admits a factorization� 	 � � � & with # � � � � � �
, either � contains a

�
-divided factor (i.e. � 	 � � & where

�
is
�
-divided).

Set
� 	 � � , � 	 ����� �
	 � � � � � � 
 # � ��� � � � �

(
	 � � � � � � is the order of the semigroup

� � � � � � � � � � � � 0 0-0 ���
which is finite since the theorem assumes that for all � , � � � � is torsion), and � 	 ����� � � � � � � . We claim that

� �1' � � � � � � � � �
� � ��� � � � � � � � � � � �

��� � 0 (20)

We show this assertion by induction on � (with respect to the military order, i.e. “length first, lexicographic
second”). Let � such that ��� � � 8 � � � � � � � � � . If � 	 � � � & , then � ��� � � 	 � ����
�� for some � � & , hence
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� � � � 	 � � � ) � with � ) 	 � ��
 & � � , and by the induction hypothesis, we are done. Otherwise, we have� 	 � � & , where
� 	 �

� 0 0 0
� � is

�
-divided. The symmetrized polynomial identity (4.3.1) implies that

� � � � � �
� � 9#9

� � � � � � � 0 0 0 � � � � � � �

therefore � � � � � �
� � � � � ) �

where the � ) are strictly less than � . This concludes the proof of (20). Since � � � � � is bounded above, the
assumption (1) implies that it is finite. 1
5 The Burnside Problem for Projective Linear Semigroups

The proof of Theorem 3.1.4 suggests that the following quantity will play an important role.

5.0.2 Definition The projective width
�

of a set %	� � �'
 ������ is by definition

� � % � 	 ������ ���
�
&
�
� & � � 0 (21)

If % 	 � � � � � for some morphism � , we shall write
� � � � instead of

� � % � . Arguing as in the proof of
Theorem 3.1.4, we can state:

5.0.3 Lemma A semigroup %��!8 ��
-������ is projectively finite iff its projective width
� � % � is finite.

Thus, we have to show that
� � � � is finite. The key point in the proof of the Theorem is the following.

5.0.4 Lemma Let % 	 � � � � � be a reducible projectively torsion semigroup, and take � � � � � � � as in (9).
Then the following assertions are equivalent:

1.
� � � � is finite

2.
� � � � � and

� � � � � are finite.

Let us assume that the Lemma 5.0.4 is proved. Then, using Brown’s Lemma, with 
 	 � ��
.� and

�
the

canonical morphism, we may assume that

� � � � � � ��� 	 � � � for some boolean idempotent matrix � ' � ��
 �
having the form of Lemma 3.2.7. Therefore, by Lemma 3.1.5, the projective width of all the irreducible
components of � � � � � is finite, hence by 5.0.4,

� � � � � 

�
, which together with Lemma 5.0.3, gives

Theorem 2.0.4.

It remains to show Lemma 5.0.4. (1) 2 (2) being obvious, we only prove the converse implication. We
have to bound the differents terms of the form &

�����
& $ � which appear in

�
&
� �
� &'��� in (21).

First, we claim that � � �
� � � � � � �� � � � � � � � � � � � � � � � � � � 0 (22)

�
It might seem simpler to speak of “diameter” instead of “width”. We do not use the term “diameter” because there is a natural

metric on the projective space, namely the “Hilbert’s projective metric” [4] 	 defined by 	)��� ��
 � D ���  
������.�� .,��� 
 ���*��� .
When � and 
 are two matrices with the same boolean image, the distance 	 ��� ��
 � coincides with the projective width � ��� � ��
 � � .
In other words, � coincides with the diameter associated with the metric 	 , but only for a subclass of two-elements sets.
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Indeed, we have � � � � � � �� � � � � � �(� �
� � � � � � �� � � � � � �(� � � �

� � � � �� � � � � � �
� � � � � � �� � � � � � �(� 0

Moreover, since � � � � is torsion, by Corollary 3.2.5,

� � � � � � � � � + � � � � � ��� 	 + � � � � � ��� � � � � � � � � �

which shows (22).

We next give a second bound. Let + � 	������
,	���

� � � � � �
� � � � � � �(�

We claim that � � ' � � �
� � � � � �
� � � � � � �(� � + � � � � � � � � � � � � 0 (23)

Indeed, from formula (10) together with (6) we have
� � � � � � 	 � � � �#� � � � � � � � � � � � for some factorization� 	 � � � (with � ' �

), hence � � � � � �
� � � � � � � � �

� � � �#� � � � � � � � ��� � � ��� � �� � � � � � � �
�

� � � �#�	� ��� � � � � � � � � ��� � �� � � �#�	� � � � � � � � � � � � � � ��� � � �
(by (7))

� � � � � � + � � � � � � � � � � �
A dual argument shows that

� � ' � � �
� � � � � � �� � � � � �(� � + )� � � � � � � � � � � � (24)

where + )� 	������
, � �

� � � � � � �� � � � � �(� 0
It remains to show that

� � � � � � � � � � � � � � is also bounded. We have, by (10),(6) and (7):� � � � � �
� � � � � �(� �

� � � �#� � � � � � � � ��� � �� � � � � � � � � � � � �#� � ���
for some factorizations � 	 � � � 	 � � � ( � � � ' �

). We may assume a factorization of the form
� 	 � ��� or� 	 � (if it is not the case, we factorize

�
in a dual way instead of

�
).

1/ If
� 	 � ��� , we have � � � � � �

� � � � � �(� �� � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � �� � � � � � �(� � � � � � �(� � � � � � � ��� � � � � � � �(� � � � � � � ���
Set + ) )� 	 �����

,�� � ���
� � � � � � � � � � � � �� � � � � �(� � � � � � � �(�



14 Stéphane GAUBERT

We get from (22): � � � � � �
� � � � � � � � + ) )� � � � � � � � � � � � �

2/ When
� 	 � , we set + 	������

,	���
� � � � � �
� � � � � �(�

and obtain by a similar and simpler argument� � � � � �
� � � � � � � � + � � � � � � � � � � 0

Let us define + � , + )� , + ) )� in a way similar to + � , + )� , + ) )� . Putting together the above bounds, we obtain

� � � � � � � � � � � � � � � � + � � + ) )� � + ) )� � � � � � � � � � � � �� � + � � + )� � � � � � � � � + � � + )� � � � � � � � 0
The Lemma is proved. 1
6 Decidability of the Limitedness Problem

We now prove Theorem 2.0.5.

6.0.5 Lemma Let & be the rational series with trim linear representation
��� � � ��� � and let

" 	 ! ,	��� � � � � .
If & is limited, then + ��" � 	 � or

.
.

Proof 1/ Assume that
. � + ��" � � � . It follows from

� & ��� � � � � � � " � � � � � � �
and from Lemma 3.1.1,(4) that there exists some constant + such that

� &'��� � � + + ��" � � � � 6 ���
as

� � � 6 �
. Since the representation is trim, this implies that

� & ��� � takes arbitrary small (i.e. near
. 	 ���

)
non
.

values. Hence & is not limited.
2/ Assume that + ��" � � � . From 3.1.1,3, there exists

2
and / such that

" $� � � � . Moreover, we have" $� � 	 � � � � � � for some word � . Since the linear representation is trim, there exists some / �)4 and two words� � �
such that � � � ���	� � � � � � � � � � � � � � $ � $ 5	 . 0

Hence, for all � �1# , � &'� � � 6 � � � + ��" $� � � 6
for some + 5	 . . Since * � � 6���� ��" $� � � 6 	 

�

, & is not limited. 1
Due to Lemma 6.0.5, we may perform the same reduction as in the decision algorithm for the torsion

property (see 4.1.2). Therefore, we may assume that

� � � � � � ��� ������ � ��
.� (25)

(but
�

and
�

can have positive entries).

The conclusion is an immediate consequence of the following Lemma.
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6.0.6 Lemma Assume that (25) holds, then & is limited iff the non
.

values of
� &'��� � are bounded below.

That is, we require that , + 5	 .�� � &'��� � 5	 . 2 � &'��� � � + 0 (26)

Proof of Lemma 6.0.6. This is a straightforward variant of the proof of Proposition 4.2.1. 1
It remains to show that the boundedness property (26) is decidable.

6.0.7 Lemma Under the assumption (25), the boundedness property (26) holds for & iff it holds for the series
& ) given by the linear representation

� � � � � � � � � � .
Proof Some routine calculus show that there exists two non

.
constants + and + ) such that+ � &'��� � � � & ) ��� � � + ) � & ��� � 0

1
Since the limitedness problem for the series & ) is decidable (since the representation of & ) lives in�
� � � ��������� ����� ��

�

, which is isomorphic to the tropical semiring, this follows from Hashiguchi’s theorem
[21], see also [20, 35, 36, 24, 26]), Theorem 2.0.5 is proved.

7 Related Remarks

7.1 Counter Example

We show that the theorem of finiteness of primitive semigroups of projective linear maps with rational entries
does not extend to the irrational case. Let

� 	���� � �� � � � $ 	�� � �� # �
where

�
is a small parameter to be fixed soon and � � 	 # 0�� #�� 0-0 0 . We claim that 3 � � �%$ � is infinite. In

order to show that, we recall that linear projective maps can be identified to homographic functions –as in
the conventional algebra–. More precisely, we set for

� ' � ,

� � � � 9#; %	 3�� � �	� 0
We have �	� � � � 	 �	��

� � � ���
where the homographic map associated with � is


�� � � � 9#; %	 � � � � �� � � � 0
Similarly, we have 

� � � � 9#; %	 � � �� � � # � � � � � $ 	 �	��
�� � � ��� 0
Clearly, it is enough to show that the semigroup � 
�� ��
�� � (equipped with the composition product) is infinite.
We assume that

� � � , and note that� � � � ��� 2 

� � � � 	 � � 
 � ��

� � � � 	 � � # 0
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Let us further assume that
� � � � � � �
� # (for instance, take

� 	 ��� � ��
 # � � � . Then, the diameter of
� �	� ����� is greater than � � 
 # , hence, for all

� ' � �	������� , either
� 
 � � ' � �	� ����� , either

� � # ' � �	������� .
Let us define a sequence

�
� '�� �	� ����� by

��� 	 � and
�
�
	 
�� � �

� � � � or


� � �
� � � � (we choose



�
of


��
so that

�
� '�� �	� ����� , if both



� � �
� � � � ��

� � � � � � � ' � �	������� , then, the choice is arbitrary). This “walk” in

� �	� ����� is visualized on Figure 1. Starting from
���

, we may choose
�
� 	
��� 
 � � or

�
� 	
��� � # . On the

picture,
�
� 	


�� � ��� � 	 ��� 
 � � . Similarly, we have set
� � 	 
�� � �

�
�
. Then, because



� � � � � � ���
, the

only possible choice is
�  	 
�� � � � � 	 � � � # . Let � � � � / � (resp. � � $ � / � ) denote the number of choices of

� � �
 &
���� & � �

� 
 ���� 2 � �	�

�
Figure 1: The

�
� sequence

�

(resp.


�

) up to step / (e.g., for the walk of the picture, � � � � 
 � 	 � � � � $ � 
 � 	 # ). We have

� /,� � � � $ 	 � � � � / � � � ��� � � $ � / � � # 0
Moreover, � � � � / � 
 � � $ � / � 	 / and � � � � / � and � � $ � / � are nondecreasing functions of / . Since � � and
# are linearly independent over 8 , all the

� $ � / 	 # �	� � 0-0/0 are distinct. Since the
� $ are images of

���
by some

elements of � 

� ��
�� � , this shows that � 

� ��

� � (hence � � �%$ � ) is infinite.

7.2 An Upper Bound for the Lyapunov Exponent

We consider a random walk � $ ' � $ . That is, the word � $ 	 � � 0-0 0 � $ (with �
�
' �

) occurs with the
probability � � � $ � 	 � � � � � 0-0 0 � � � $ � where the � � � � � are given nonnegative numbers such that

� � � � � � � 	 # .
Let � 4 � � 6 � 6 
 6�$��� be a morphism. The maximal Lyapunov exponent of � is defined as the limit� 	 * � �$

� � � � � $ � � &'
	 * � �$

� � � � $ � � &' � 0 & 0
(see [2],[15]). We just notice here that there is a subclass of matrices for which the Lyapunov exponent if
immediately obtained due to the characterization of finite semigroups.

7.2.1 Theorem Let � 4 � � 6 � �'
 ���� � such that
� � � + � � � � ��� 5	 . and define the morphism:

�� 4 � � ' � � �� � � � 9�; %	 + � � � � ��� � � � � � �
with the associated “worst case matrix”

" 	 �
,	��� �� � � � 0

Then � � + ��" � � + � � � � � � � 	 + �#" �����
, � � +

� � � � ��� � � � � ��� 0 (27)

Moreover, if
�� � � � � is torsion, then the equality holds in (27).
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It should be noted that we have by construction
� � � + ��" � � + � �� � � ��� 	 �

hence, we can decide if
�� � � � � is torsion by checking the non trivial inequality + ��" � ��� and by using the

algorithms 4.1.5,4.1.4.

7.2.2 Example The Lyapunov exponent of the semigroup � � ��$ � of Example 4.1.7 can be obtained almost
without computation. Since the normalized semigroup

�� � � � � is torsion, we have� 	 + � � � � � � � � � � �	
 + � � � � � � � � � � � 	 # � � � � � 	 � � � � 0
7.2.3 Example In the same vein, we can build many semigroups whose Lyapunov exponents are immediately
obtained. Let

� � � � 	���� # � �
� � �
� � �

���� � � � � � 	���� � 	 	
	 	 	
	 	 	

����
where * stands for arbitrary finite real numbers � # (we allow different values) and

	
stands for arbitrary

finite real numbers � � . Let � �#� ' � �'
.������ 4 � � ��� � ��� 		� �  � � �  � (Kronecker’s � ). Then,

�
�� � � � � � �� � � � � � �#� ,

and since � ���� 	 � �#� ,
�
�� � � � is non nilpotent for all � . Hence the condition of Theorem 4.1.6 is satisfied,

and we have � 	 # � � � � � 
 � � � � � � 0
Proof of Theorem 7.2.1. For simplicity we shall assume that the alphabet has only two letters (

� 	 � � � � � ),
the extension to the general case being straightforward. We have� � � � 	 + � � � � ��� � � � 
 + � � � � ��� � � � � �� � � � �

(28)

hence � � � � � � &
 ��
 	 + � � � � ��� 
 ��
 

 ��
 + � � � � ��� 
 ��
 �
 ��
 � �� � � � � &
 ��
 0 (29)

We have * � �� � � ��� + � � � � � � 
 ��
 

 ��
 + � � � � ��� 
 ��
 �
 ��
 	 + � � � � ��� 6 � , � + � � � � ��� 6 � � � � 0 & 0
Setting

" 	 ! , � � �� � � � , we obtain
�� � � � � "�� � � ( + �#" � � � � 0

Then, it follows from (29) that

* � �� � � ���
� � � � � � &
 ��
 � + � � � � ��� 6 � , � + � � � � � � 6 � � � + ��" � � 0 & 0 (30)

Moreover, if
�� � � � � is finite, then + ��" � 	 �
	 � , � �� � � � � &
 ��
 6 � as � � � 6 �

, hence, the equality holds
in (30). 1
7.2.4 Remark A different upper bound for the Lyapunov exponent has been given previously by Baccelli
and Konstantopoulos [3, 2] using large deviation estimates. The upper bound (27) is less general since
it is only given for probability measures with finite support (it can be easily extended to measures with
bounded support, but says nothing about the unbounded case). However, the equality cases for (27) (when
the underlying normalized semigroup if finite) differ from the equality or accuracy cases for the large
deviation bound.

Acknowledgement The authors would like to thank Jean Mairesse for many useful discussions, particularly
on the probabilistic application.
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Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
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