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Sur lessemigroupesde matricesdans|’ algebre (max,+)

Résumé : Nous montrons que la réponse au probléme de Burnside est positive pour les semigroupes de
matrices a coefficients dans “I’ algébre (max, 4 )" (€ est-a&dire le semianneau (R U {—oo}, max, +)) ans
que pour les semigroupes d’ applicationslinéaires projectives a coefficients rationnel s dans la meme algebre.
Ondonneuneapplicational’ estimationdel’ exposant de Lyapunov de certains produits(max, + ) dematrices
aéatoires.

Mots-clé: Semigroupes, ProblemedeBurnside, algébre(max, + ), ExposantsdeLyapunov, Espace projectif.
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1 Introduction

In this paper, we give some results for semigroups of matrices with entries in the “(max, +)-algebra’,
that is, the semiring (R U {—o00}, max, +), denoted R,,., in the sequel. This is a particular example of
idempotent semiring (that isasemiring such that « & « = a), also known asdioid [18, 19, 2]. Thisalgebraic
structure has been popularized by its applicationsto Graph Theory and Operations Research [18, 9]. Linear
operatorsin this algebra are central in Hamilton-Jacobi theory and in the study of certain asymptotics (see
[29] for arecent overview). The study of automata and semigroups of matrices with entriesin the analogous
“tropical” semiring (N U {400}, min, +) has been motivated by some decidability problems in language
theory [28, 34, 26, 35, 36, 20, 21, 23, 24, 25]. From our point of view, the interest of the (max, 4 ) algebra
arose from the study of Discrete Event Dynamic Systems [2, 13], where sequences driven by R ,..-linear
equations represent synchronization and saturation phenomena. An account of the related (max, +)-linear
system theory can be found in [2, 8, 32]. Automata over the (max, +) algebra are a natural extension of
this formalism and have noticeable applications to Discrete Event Systems [15, 14]. In particular, certain
finitenessresultsfor semigroups of matrices can be used to compute some asymptotic performance measures
(mean-case and optimal-case Lyapunov exponents [15, 14], the latest being essentially equivalent to the
classical nondeterministic complexity [37]). We also mention that the theory of (max, +) rational seriesina
singlevariableiswell developed [13, 16, 25]. One basic theorem characterizes rational series by an ultimate
periodicity property. Thisisintimately related with the cyclicity theorem for powers of irreducible matrices
[2, 11], which states that such a matrix A satisfies A"t = A°A™ for somen > 0,¢ > 1 and where A is
the “Perron root” of A. Some finiteness results presented here can be seen as an attempt to generdize this
simple property to semigroups of matrices.

We first show that the answer to the Burnside problem for semigroups of matrices over R .., iSpositive,
which extends a theorem of Simon [34] for the tropical semiring. The main originality by comparison with
Simon’s proof consists in using the (max, 4 )-spectral theory. A different proof based on an adaptation
of a combinatorial argument of Straubing can be provided in another specia class of dioids. Later, we
consider semigroups of (max, +)-linear projective maps. In a previous paper [15], we showed that under
certain coarse irreducibility assumptions, finitely generated semigroups of linear projective maps with
rational entries are finite. Here, we extend this result, showing that the answer to the Burnside problem
is also positive for semigroups of linear projective maps with rational entries. The rationality assumption
is important: we provide a counter example which is based on a kind of system of addition of irrational
vectors. The decidability of the limitedness problem for rational series over R ., iS aso obtained as an
easy consequence of the decidability result of Hashiguchi [21, 20] for the same problem over the tropical
semiring. We conclude by giving an application where these finiteness results allow a simple computation
of the Lyapunov exponeint of some particular (max, +) automata.

2 Statement of the Results

Recall that asemigroup S istorsionif foral s € 5, thereexistsn € Nandc¢ € N\ {0} suchthat s”+° = s" .
Consider the two following properties

1. Sisfinite
2. Sisfinitely generated and torsion.

Obvioudly, (1) = (2). The well known “Burnside problem” consistsin finding some classes of semigroups
satisfying the converse implication. See [10] for asurvey. The answer is positivefor matrices with entriesin
commutativerings[30, 22, 38]. It isal so positivein somemore exotic semirings, such asthetropical semiring
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(NU {400}, min, +) (Simon [34]), the “dual” —but non isomorphic—semiring (N U {+oc}, max, +) and
the semiring of rational languagesin asingleletter (Rat(a*), U, .) (Mascle[28]). We show that this property
also holdsin the case of R ax:

2.0.1 Theorem Afinitely generated torsion semigroup S C R X" isfinite.

max

Moreover, this result admits an effective trand ation:

2.0.2 Theorem It isdecidableif afinitely generated semigroup .S C R2X" jstorsion.
Indeed, the proof provides an agorithm which after some reduction coincides with Simon’s algorithm for
the tropical semiring (whose complexity is essentially 37°).

The proof of Theorem 2.0.1 uses the spectra theory of R ., together with the linearity of the order. In
spite of certain generalizations of the spectral theory to othersdioids! [11, 16], the argument does not seem
to extend easily. However, we mention another class of dioidsfor which the answer to the Burnside problem
is also positive. We shall use the natural order of dioids, which can be defined by

a<b <<= apb=">.

2.0.3Theorem Let D be a commutative dioid such that
Ve, {yeD| y<a}isfinite . (1)
Then, afinitely generated torsion semigroup S C D> isfinite.

The proof is an adaptation to the dioid's case of a combinatorial argument of Straubing [38]. Thisyields
another proof of Mascl€e's finiteness result for matrices over the semiring (N U {£+o00}, max, +) (but not for
thetropical semiring, for which thealgebraic order < isthe oppositeof the standard one). L et usgive another
example of nontrivial dioid satisfying (1). Let (M, +) be acommutative monoid. Then, thedioid P; (M) of
finite subsets of M, equipped with U (as addition) and sum of subsets (as product) satisfies the condition of
Theorem 2.0.3.

We next consider linear projective semigroups. We define the matrix projective space as the quotient of
R"*" by the parallelism relation

M>~M < 3X€Ru\{e}, M=AM

(weusethenotatione for thezero element of semirings, inparticular, inR ., ¢ = —o0). WewritePR” X" for
the quotient semigroup (of “linear projectivemaps”), and p denotes the canonical morphism of multiplicative
semigroups

p : Rn Xn s ]P)RTLXTL

max max °

Let us introduce the subsemiring of 2. Qo = (QU {—oc}, max, +). We set QX" = pQ7PX2 (this

is the semigroup of linear projective maps with rationa entries).
2.0.4 Theorem Afinitely generated torsion semigroup 5 C PQ2x” isfinite.

Finally, we extend to IR,,., a theorem of Hashiguchi [21] for rationa series over the semiring (N U
{400}, min, +). See also [20], Simon [36] and Krob [24, 23] for afirst extensionto (Z U {+oc}, min, +).

! Recall that a dioid is a semiring whose addition is idempotent: a @ a = a.
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2.0.5Theorem Itisdecidableif arational series s with coefficientsin R ., islimited, that is, if the set of
the values of the coefficients of s,
§={(s|w)| wex}

isfinite.

3 Preliminary Results

3.1 SomeResultsfrom the (max, +) Matrix Theory

We next recall the definition and basic properties of the (max, +) spectral radius [17, 7, 2, 9]. First, the
“norm” of amatrix is defined by

4]l = P Ay = sup Ay
ij K

3.11Lemma Let A € R™*" Thefollowing quantitiesare equal:

max "

1. sup{r € Rpax | Ju € R?_ \{c}, Au > ru}

max

2. sup{r € Ry | Ju € R?_\{c}, Au=ru}

3. @1gk§n(t""4k)% = ®1§k§n®i1...ik(‘4i1iz . 'Aikil)%
4. lim sup, HA’“H%

This common value will be denoted by p( A).

Of course, a* with the semiring notation of the (max, +)-algebra means £ in the usua agebra In the
following, it should be clear from the context whichever algebrais used. However, we shall sometimeswrite
a®* to avoid ambiguities.

We begin with aLemma which is almost obvious.
312Lemma Forall A c R " andk > 1:
p(A%) = (p(A4)" . o)

Proof p(A*) < (p(A))F followsimmediately from Lemma 3.1.1,3. The converse inequality follows from
3.1.1,2. For if Au = ru, then A*u = r*u, hence p(A*) > (p(A))~. [

The most useful result of the (max, +)-matrix theory is perhaps the following cyclicity theorem which
isthe exact (max, +) counterpart of awell known asymptotic property for usual nonnegative matrices. Let
us recall that the matrix M isirreducibleif Vi, 5,3k > 1, ij # €.

3.1.3Theorem ([7, 2, 11]) If M € REX? isirreducible, then

IN,¢, ¥Yn > N, M = (p(M))°’M"™ . 3)

where p( M ) denotes the spectral radius of M.
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It is very natural to look for generalizations of this cyclicity property to finitely generated semigroups of
matrices. To thisend, we observe that (3) rewrites as followsin the projective linear semigroup PRE*P:

(pM)™ = (pM )"t .

That is, anirreduciblelinear projectivemap istorsion. This suggeststo consider finitely generated projective
linear semigroups. We just recall here a first result taken from [15, 14], that we shall use and generaize
hereafter. Let ¥ = {a,, ..., q,} beanalphabet of p letters, 4 : ¥+ — R72 %7 amorphism (X+ denotesthefree
semigroup on ¥, that is, the set of nonempty words equipped with the concatenation product). We consider
thefinitely generated semigroup S = p(X1). Alternatively, if u(a;) = A;, weshal write S = (A,,..., 4,)
for the semigroup generated by the matrices A, ..., A,. Obviously, each finitely generated semigroup .5
can be written u(31) for some alphabet 32 and morphism u.. We say that the semigroup S is primitive? if

thereisan integer N such that for al word w,
|’U)| >N = V’L,] ,u(w)” >, (4)

where |w| denotesthe length of theword w. That is, we require every sufficiently long product of matricesto
be without ¢ entries. When .S admits a unique generator, this reduces to the notion of primitivity well known
in the theory of nonnegative matrices. We say that aset 5 of matrices is projectively finiteif p.S isfinite.

314 Theorem Let A;,..., A4, € Qi If (Ay,...,A,) isa primitive sesmigroup, then it is projectively
finite.

Contrarily to the cyclicity theorem 3.1.3 whichisessentially relativeto thecase p = 1, werequiretheentries
to berational (or equal to ¢). Thisrestriction isimportant, asit will be shownin §7.1.

For the sake of completeness, we include the proof, which exploits some bounding arguments and some
norm properties which will be more intensively used hereafter in the study of the Burnside problem for
projective linear semigroups.

Proof Let ¢ bethe lcm of the denominators of the entries of the matrices. Since z +— ¢ (z? = z X ¢ with
classical notations) is an automorphism of Q ., Which maps al the entriesto integers, we shall assume that
ar,...,a, € Z2x1. We have dready defined the norm || A|| = sup,; A;;. We shall also need the following
dual bound:

|m|, = inf my; (5)
my; £€

(recal that inf ) = +00). Obviously,
A @ B[ = [All & [|Bl],

VA,B € R i

s € max ? { |A@B|/\Z |A|A/\ |B|/\ ()
AB| < ||A[|[|B]

VA, B € R2X", | 7 !

max { |AB|n > |A|a|Bla - (7)

The proof relies on the following Lemma.

3.15Lemma Let K € N. Theset .S of matricesm € Z™*" such that

max

[l

<K

| A

is projectively finite.

2We leave it to the reader to check that this notion is independent of the choice of ¥ and p.
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Indeed, after normalization, we may assumethat Vim € S, |m|, = e. Sincethereisat most (K + 2)*" — 1
matricesm € Z%" suchthate = |m|, and ||| < K, the Lemmais proven.

Let

= mln( |a1|/\77"'7 |ap|/\ )7

= max(laf];.. . [layl] ) -

ST

The primitivity assumption implies that for w € ¥* long enough, we have a factorization w = sur with
Is|, |r] < N and pu(s), u(r), p(u) > ¢ (N isthe“primitivity index” satisfying (4)). Then

[[(w)| [[(sur)[] < [lu(s)IIpCu)l[[[ ()]
(e @ @)*" p(u)i; (8)

for some indices; belonging to the argmax in || u(u)|| = sup,; p(u);;. Moreover

IN

plsur)in > p(s)espu(w)sgp(r)je > (a A e)* p(u)y;
Thisimpliesthat
le(w)l (e@a)” |
[(w)la — \eAa
It remains to apply Lemma 3.1.5 to conclude. [ ]

3.2 Preparation

We first recall or prove some lemmas of genera interest. Thefirst oneisawell known combinatorial result
due to Brown[5]. We say that a semigroup .5' islocally finiteif any finitely generated subsemigroup of 5 is
finite.

3.2.1Lemma (Brown) Let ¢ : S — T beamorphismfroma semigroup .5 to a locally finite semigroup 7.
Then S islocally finiteiff for all idempotent £ € T', ¢~'( E) islocally finite.

We now give some lemma specific to thedioid or (max, + ) case. We first define anotion of reducibility
of semigroups of matrices over dioids.

3.2.2 Definition Let D beadioid and .S’ a subsemigroup of D™*™. We say that S isreducibleif there exists
aproper partition{1,...,n} = I U J such that

Vse S, Viel, VjeJ, s;=c¢.

Let © be a morphism ©+ — D" and § = u(X*). It is easily checked that .S is reducible iff there
exists a constant permutation matrix P, two morphisms p; : Xt — DPXP py, @ N+ — D¢ gnd a map
¢: Xt — Drx¢ (with1 < p < n), such that

Vw e N, Pu(w)P~! = [“18") IZ((Z))] . ©)

Moreover, thisisclearly equivalent to sayingthat the matrix M = @, u(a) isreducible (inthe usua sense
of the Perron-Frobenius theory). The interest of irreducible semigroups arises from the following Lemma,
which shows that, with respect to the Burnside problem, we may only consider irreducible semigroups.®

?Lemma 3.2.3 holds in a dioid (and not in an arbitrary semiring) because of the following property: “in a dioid, the set of all
possible sums of the elements of a finite set is finite”
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3.23Lemma Let S = u(X*) be a reducible semigroup satisfying (9). Then S istorsion (resp. finite) iff
pi (1) and po(X+) aretorsion (resp. finite).

It is clear that the condition is necessary. Conversely, an easy induction shows that

dw)= D mlu)e(a)ps(v) (10)

a€X uav=w

hence ¢(w) is a finite sum of elements of the finite set x; (X7)(X)p.(X*) and the condition is aso
sufficient. [

We now prove some specific (max, +) lemma

324 Lemma Let A € R2X". Thefollowing assertions are equivalent:

max

1. Aistorsion
2. For all irreduciblebloc B of A, p(B) = eor¢.

3.25Corollary Let A € R*". The following assertions are equivalent:

1. Aisprojectively torsion
2. Thereexists A € R,,., such that for all irreduciblebloc B of A, p(B) = Aor e.

Corollary 3.2.5 if obtained from Lemma 3.2.4 by noticing that A is projectively torsion iff A”*tc = A\°A”"
for some n, ¢ > 0, that isiff A= A istorsion.

Proof of Lemma 3.2.4. From Lemma 3.2.3, we may assume that A is irreducible. If p(A) = ¢, then A
is nilpotent, hence it is torsion. Otherwise, it follows from the cyclicity property (3) that A is torsion iff
p(A) =e. [

Consider the following characterization of the (max, 4 ) spectral radius (cf. Lemma3.1.1):
p(A) = P (trAh)* . (12)
E>1

We next generalize this property to semigroups of matrices.

3.2.6 Proposition Let ¥ = {a;,...,q,}, and 5 = p(XTt) for some morphism p @ Xt — RIX?. Let
M = p(a)) @ ...8 p(a,). Then

1

p(M)= @ (tru(w))™ = @ (plu(w))™

wex+ wex+

Moreover, the sup is attained in both summations®.

Proof of Proposition 3.2.6. Since Vi, pu(a;) < M, wehave
Yw € F, p(w) < MM

then

1 1

P (trp(w))™ < EBH'ZW )E = p(M) (12)

welt

*recall that @1 «a; = sup; a;.
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by (11). Smilarly, )
D (pp(w))™ < P (p(M™)" = p(M) (13)

wen+t n>1

by Lemma 3.1.2. We now prove the converse inequalities. Let i, ...,4; € {1,...,n} suchthat

p(M)F = M, ... M, .
Since M = @, u(a,), each entry of M corresponds to some entry of one of the u(a,). Precisely, for each
le{l,... k}, takes, € {1,...,p} suchthat M, ,, = p(as, )i, (Withtheconventionk + 1 = 1). Let

w = a, ...a;. Then

p(p(w)) > trp(w) > p(w)i;,
> pas)igiy - M@ )igi, = p(M)F
which showsthat the conversesinequalitiesin (13) and (12) hold. [ ]

The boolean semiring, B = {¢, e}, which can be seen as a subsemiring of R .., (Withe = 0,e = —0),
will play an important rolein the sequel.

3.2.7Lemma Let A € B**" beanidempotent matrix. Then, theirreducibleblocsof A areeither ¢ or equal
to some matrix .J,, where J;, denotesthe & x k-matrix whose entriesare all equal to e.

Proof Let B beanirreduciblek x k-bloc. Since A isidempotent, wehave B = B*.If p(B) = ¢,then B is
reduced to asinglec element. Otherwise, BT = J;. [ |

Thefollowing Lemma is reminiscent of the theory of (classical) spectra radii of Hadamard products of
nonnegative matrices (see Elsner, Johnson, Dias da Silva[12], Theorem 7).

3.2.8Lemma Let M € R2X" beirreducible. Then

max

p(M) = min [DM D™ (14)

where D rangesthe set of diagonal matrix with non ¢ diagonal entries.

Proof of Lemma 3.2.8. We get from 3.1.1,2 that p(M ) = p(DM D~*) < ||DMD~!|| for al D. Assume
by homogeneity that p(M) = e, and let « be an associated eigenvector, i.e Mu = u. Set D~! =
diag(uy, ..., u,). Then, [ DM D~ = @, uy  Miju; = @, ui 'u; = e. Hence, theinf in (14) is equal to
e=p(M). [

4  Finiteness Resultsfor (max, +)-Semigroups

4.1 It IsDecidableif a Finitely Generated (max,+) Semigroup of Matrices|s Torsion

We now prove Theorem 2.0.2, which is an extension of Simon’s decidability result [34]. Let 5 =
(Ay,...,A,)andset M = Pi_, A;.

4.1.1Lemma For S to betorsion, itisnecessary that p(M ) = e.
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Proof From Proposition 3.2.6, we get

1

p(M) = (plp(w)])™1

for somew € X*. If S istorsion, then x(w) istorsion, hence, p(p(w)) = e. [
Thisallows considering only the following case.

4.1.2 (Canonical form) We shall assume that

Vi, A < |IM]| =€ . (15)

Indeed, provided p(M) = e, condition (15) becomes satisfied if we replace each A, by DA, D', with
D;; = M7, asinLemma3.2.8.

Thus, we are reduced to a semigroup of matricesof (R ..)"*" (R_.., isthesubdioidof R ., comprising

the elements < 0). We next introduce some morphisms from k.., and R . to simpler structures.
Let oo
e ITzx I3
T: R — B, @(x)= .
) { ¢ ife=c.
We naturally extend = to R?*" (componentwise). In the case on nonpositive reals, there is another useful
morphism
_ ife—e
h+ R B, ¥(z)= € .
v max = B 0(2) { e ifz<e

that we also extend to (R, )" *" in asimilar way. The product morphism is given by

max

T x (R

o) — B X B .

Finally, weintroduce the following map

e ife —e
kiR — N7, kz)=¢ -1 ife<az<e
€ ifz =e¢.
It should be noted that in the case of the dioid (N U {4 o0}, min, +), the map analogousto « is the key of
Simon’s proof [34].  is not a morphism, but we have
K(A® B) = 5(A) @ r(B), 16
K(K(A) ® 5(B)) = K(A @ B)

Hence, x isamorphismfrom R . tothethree elementsdioid x(R,,.) = {¢, —1, e} equipped with the two
followinglaws @, and ®,:
def

aP. b= adb, a®ﬁbd§f kla®b) .
We naturally extend x to R2 %2,
We claim that:

4.1.3 Proposition Let A € (R, )"*". Let « denote the injection® x((R,,.)"*") — (R,)"*". The

max max max

following assertions are equivalent.

®1t should be noted that = is not a morphism. In particular, stating that z0x({A) istorsion (in (IR 1., )™*"™) has nothing to do with
stating that x(A) istorsionin thedioid k(IR ..,)"*"), whichis alwaysthe case since k(R .,,)™ *™) isfinite.
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1. Aistorsion

2. 1k(A)istorsion

3. for each non ¢ strongly connected component of A, there exists a circuit® of A composed only of arcs
of weight e,

4. each non ¢ strongly connected component of 7( A) contains at least a circuit of ( A).

Proof of the Proposition. (4) < (3) isobvious.

(1) <= (3): Thisfollows from Lemma 3.2.4 and the fact that since al the entries of A are < e, acircuit
with weight e has all itsentries equal to e.

(3) < (2). Thisisclear from Lemma 3.2.4, sincetheirreducibleblocs and the entriesequal to e are exactly
the same for A and w0k (A). [ |

Thisyieldsthe following extensionto IR ,,.,, of Simon’s algorithm [34].

4.1.4 Algorithm Compute thefinite semigroup «(.5') and for each ¢t € x(.5'), check that the matrix A = i(t)
satisfies property 4.1.3,3.

Thereis an equivaent version which usesthe maps 7 and :
4.1.5 Algorithm Computethefinite semigroup 7 x (.5') and check property 4.1.3,4 for each ¢ € 7 x ¥(.5)

The Theoremis proved. [ |
When the semigroup S is primitive, we obtain a particularly simple result:

4.1.6 Theorem A primitive semigroup S = p(X+) C (R.,,)" ™" istorsion iff there is no nilpotent matrix
inyu(S*).

Proof Obviousfrom 4.1.5 sincefor al w € ¥+, 7(u(w)) admits a single strongly connected component:
thereisacircuit in ¥ u(w) iff p(¢¥u(w)) = e, which isequivalent to ¢ x.(w) being non nilpotent. [ |

4.1.7 Example Let usconsider the matrices

o[ 4

-1 -1 00

and define

e _ -1 _ _ 0 1

A _p(A)A_A_l_1 4],

s e | 1

B = p(B) B<_[ B
We claim that § = (A, B) istorsion. In order to show that, we reduce $ to the canonical form 4.1.2. We
have

M=Aa®B=

01
-1 0|’

A path of length k isafamily of k + 1 indices (i1, . .., ix+1)- A circuitisapath suchthat 5,41 = 1. Anarcisapath of length
1. The weight of the path (31, . . ., ix4+1) isequal to A; s, .. Aiyiyy,
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p(M)=e=0and M* = M.Let D = diag(M;,, M;,) = diag(0, 1) and set

P 0 0 ~ -1 0
r_ -1 _ I -1 _
A" = DAD _lo _1], B' = DBD _[ 0 _1]
S istorsion iff (A, B') is torsion. According to theorem 4.1.6, we have to check that ¥ (A’, B’) has no
nilpotent elements. But
€

m

P(A) =

€

zzb(B’):le e]

hence we may bound from below a product of £ matrices ¢»( A’) and ¢»( B') by ¥( B’)*. Since ¢»(B’) is not

nilpotent, this showsthat »( A’, B’) contains no nilpotent elements, hence 5 istorsion.

4.1.8 Remark We conclude this section with a brief indication of complexity. Because (s) < w(s), only
three cases are possible: (i) ¢(s) = m(s) = ¢, then k(s) = ¢, (ii) ¢(s) = e and 7(s) = e, then k(s) = —1,
(iii) ¢(s) = m(s) = e, thenk(s) = e.

Hence, thecardinality of 7 x 1( S) and (.S ) are equal and bounded aboveby 3", and thetwo algorithms
are essentially equivalent.

4.2 A Finitely Generated Torsion Subsemigroup of R?*" isFinite

max

Wenow prove Theorem 2.0.1. Sincethe condition (15) must be satisfied, wemay assumethat S C (R, )"*".

4.2.1 Proposition Let 5 C (R.,..)"*" be afinitely generated semigroup. .S isfiniteiff the non ¢ entries of

max

the matrices of S are bounded.

In other words, the finiteness of .5' is equivalent to the following property

dK e R™, Vs € S, Vi, j,
Sij ;é e=> K < Sij - (17)

Proof Condition (17) isclearly necessary. Conversely, assumethat (17) holds.Let A4,, . .., A, be generators
of 5, and let
A=sup{(Ap)i; | 1<k<p, 1<4,5<n, e < (Ap)y <e} .

Letw = A,, ... A,, €Y. Wehave

p(w)ig = (As iy -+ (A )in_j (18)

for some indices i,,...,%. We set ¢; = i,¢, = j. Let N(w) denote the maxima number of indices
[:1<1<ksuchthat (4,,);;,, < einafactorization of type (18). Then p(w);; < AN™). Thisimplies
that AN(») > K, which showsthat N (w) isbounded. Since the factors of (18) are either equal to e or less
than e, this showsthat ;.(w);; can only take afinite number of values. The Propositionis proved. [ |

To show that afinitely generated torsion semigroup S € (IR ,.)"*" isfinite, it remains to check that the

non ¢ entries of the matrices of S are bounded. Due to Brown's Lemma, we may assume that = (.5) = {£}
for some idempotent matrix £. According to Lemma 3.2.7, we shall assumethat F has the following form

_ Jk *
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(the general case is obtained by an immediate induction). Thus, we have a decomposition of the form (9)
with py (X%) = J and po(X+) = J;. Moreover, for al w, We have necessarily

(W)l = llpa(w)]| = e (19)

(otherwise p(pi(w)) < ||pi(w)|| < e contradictsthe fact that p(w) istorsion). The proof of 3.1.4 showsthat
there existsafinitereal K such that

Vi € {1,2}, Vw € B+, Mg[( )
1,2} ()]s

It followsfrom (19) that |u;(w)|» > K~'. Moreover, Formula (10) showsthat |¢(w)|, isbounded below.
Thisimpliesthat |p(w)]|, isbounded below and concludes the proof of Theorem 2.0.1.

4.3 Proof of Theorem 2.0.3

The proof relies on two lemmas. Thefirst one givesasymmetrized version of aclassical polynomial identity

(validinrings). Let X, ..., X, denote p non commuting indeterminates and define
Sro= P Xogy--Xogy
5 = D Xowy - Xog
o odd

where the sums are taken over the even and odd permutations of {1,...,p}. The well known Amitsur-
Levitski theorem (see e.g. [6]) states that the polynomial identity S5, = S5, holdsin the matrix ring R™*"
(where R denotes a commutativering). Such combinatorial identities extend to semirings:

4.3.1Lemma Let A bea commutative semiring. Then, theidentity S, = S5, holdsin A™*",

This can be easily deduced from the classical Amitsur-Levitski theorem by a technique of Reutenauer and
Straubing ([33], proof of Lemma 1,2), see aso [13], Chapter 1, Proposition 2.1.5 and [16], Proposition2.2.1.

The proof of the theorem simply consists in adapting the argument of Straubing [38] (which shows
that a finitely generated torsion semigroup of matrices over a commutative ring isfinite) that we reproduce
completely here. Recall that aword w isr-divided if it admitsafactorization w = w, ... w, suchthat for all
permutation o # Id,

Wo(1) o Wo(r) < W

(< denotes the lexicographic order). Then, Shirshov's Lemma states that if ¢ > 2r, there exists an integer
N(|%],q,r) such that, for al word w € ¥* such that |w| > N(|X], ¢, r), either w admits a factorization
w = wviswith1 < |v| < r, either w containsa r-divided factor (i.e. w = uvs where v is r-divided).

Setr = 2n,p = max{#(u(w))+1| |w| < r} (#(p(w))istheorder of thesemigroup { u(w), p(w?),. .., }
which isfinite since the theorem assumesthat for al w, p(w) istorsion), and ¢ = max(p, 2r). We claim that

vwest, pw)< P p) . (20)

lo]<N(I%],9,7)

We show this assertion by induction on w (with respect to the military order, i.e. “length first, lexicographic
second”). Let w such that |w| > N(|X|,q,r). If w = uv’s, then p(v?) = p(v*) for somet < s, hence
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p(w) = p(w') with w’ = uwev's < w, and by the induction hypothesis, we are done. Otherwise, we have
w = uvs, wherev = vy ... v, isr-divided. The symmetrized polynomial identity (4.3.1) impliesthat

w(v) < P w(voy - Vo)

o odd

therefore

p(w) < @D p(w')
where the v’ are strictly less than w. This concludes the proof of (20). Since (X %) is bounded above, the
assumption (1) impliesthat it isfinite. [ ]

5 TheBurnside Problem for ProjectiveLinear Semigroups

The proof of Theorem 3.1.4 suggeststhat the following quantity will play an important role.

5.0.2 Definition The projective width” of aset S C R™X" is by definition

max

A(S) = sup M

ses |8[a '

(21)

If 5 = p(X*) for some morphism g, we shall write A(y) instead of A(.S). Arguing as in the proof of
Theorem 3.1.4, we can state:

5.0.3Lemma Asemigroup S C QX2 isprojectively finiteiff its projective width A(.5) isfinite.

max

Thus, we have to show that A( ) isfinite. The key pointin the proof of the Theorem is the following.

5.04Lemma Let S = u(X*) be areducible projectively torsion semigroup, and take 1, f2, ¢ asin (9).
Then the following assertions are equivalent:

1. A(p)isfinite
2. A(py)and A(pu,) arefinite.

Let us assume that the Lemma 5.0.4 is proved. Then, using Brown's Lemma, with 77 = B**" and 7 the
canonical morphism, we may assumethat 7(x(X%)) = { £} for some boolean idempotent matrix £ € B**"
having the form of Lemma 3.2.7. Therefore, by Lemma 3.1.5, the projective width of al the irreducible
components of u(X*) is finite, hence by 5.0.4, A(x) < 400, which together with Lemma 5.0.3, gives
Theorem 2.0.4.

It remains to show Lemma 5.0.4. (1) = (2) being obvious, we only prove the converse implication. We
have to bound the differents terms of the form s,; /s,; which appear in ||s||/ |s| in (21).

First, we claim that

41 (w)|
Y, (), Ap)A(p2) - (22)

It might seem simpler to speak of “diameter” instead of “width”. We do not use the term “diameter” becausethere is anatural
metric on the projective space, namely the “Hilbert's projective metric” [4] 6 definedby §( A, B) = sup{A/p | pA < B < AA}.
When A and B aretwo matrices with the same booleanimage, the distance§( A, B) coincideswith the projectivewidth A({ A, B}).
In other words, A coincideswith the diameter associated with the metric é, but only for a subclass of two-elements sets.
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Indeed, we have

()l o lpa ()]l 1pa(w)ln [[a(w)]]
|a(w)ln = [ua(w)la [lpa(w)]] |pa(w)
Moreover, since p(w) istorsion, by Corollary 3.2.5,

A

[ (w)|a < p(pa(w)) = p(pa(w)) < [[pa(w)]

which shows (22).
We next give a second bound. Let
K — sup 10
aex |pa(@)[n
We claim that
Vw € X%, letw)ll < K A(m)*Alps) - (23)
[a(w)[n

Indeed, from formula (10) together with (6) we have ||¢(w)|| = ||p1(w)P(a)u2(v)|| for some factorization
w = uav (Witha € X)), hence

[[¢(w)l] [l ([l @(a)[[[] 2 (o)
lua(w)la -~ IR

[l (W[l () [[] 2 (o)
[a(w)a [pa (@) [ (0)]a
(by (7))
A1) K1 A(pn) A pz)

A

IN

A dua argument shows that

vwext, MO gy a(u) (24)

where

K — sup 1@

a€gXx |¢((1)|/\ ‘
It remains to show that ||¢(w)||/ |¢(w)|4 isaso bounded. We have, by (10),(6) and (7):

[e(w)ll . [m(w)gla)pa(v)]]
[o(w)ln = |pa(@)d(b)pa(y)ln

for some factorizationsw = wav = zby (a,b € X). We may assume a factorization of theform u = zbz or
u = z (if itis not the case, we factorize » in adua way instead of u).

1/ If u = zbz, we have

[l (@)1 () Il 2 ()T SCa) [ 22 ()]
|11(2)[n [@(0) |n [2(2)|n [2(@)|a [12(0)]

I RO O]
K= S0P 1600 Lol
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We get from (22):

2/ When u = z, we set 6@l
. o(a
K =
ves |6(a)]s

and obtain by asimilar and simpler argument

|p(w)|A < KA(u)A(ps) -

Let usdefine K, K7, K7 inaway similar to K,K,K . Putting together the above bounds, we obtain

Ap) < A(p)A(p2)[ K @ (K @ K))A()A(pa)®
G DK)A() B (K20 K5)A(ps)]

The Lemmais proved. [ |

6 Decidability of the Limitedness Problem

We now prove Theorem 2.0.5.

6.0.5Lemma Let s betherational serieswithtrim linear representation (o, i, 3) andlet M = @, ., p(a).
If s islimited, then p(M) = e or e.

Proof 1/ Assumethate < p(M) < e. It followsfrom
(slw) < [lalllla™]]]13]

and from Lemma 3.1.1,(4) that there exists some constant K such that (s|w) < Kp(M)*l — — as
|w| — oo. Since the representationis trim, thisimpliesthat (s|w) takes arbitrary small (i.e. near ¢ = —o0)
non ¢ values. Hence s is not limited.
2/ Assume that p(M) > e. From 3.1.1,3, there exists ¢ and % such that M > e. Moreover, we have
M} = p(w);; for someword w. Sincethe linear representation istrim, there existssome £, j and two words
u, v such that
a;p(w)jip(w)ip(0)ix B # €
Hence, foral p > 1,
(s|luwPv) > K(ME)?

for some K # . Sincelim,_.,(M})? = +oo, s isnot limited. [

Due to Lemma 6.0.5, we may perform the same reduction as in the decision algorithm for the torsion
property (see 4.1.2). Therefore, we may assume that

W(EH) C (B (25)

max

(but « and 3 can have positive entries).
The conclusion is an immediate consequence of the following Lemma.
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6.0.6 Lemma Assumethat (25) holds, then s islimited iff the non ¢ values of (s|w) are bounded below.

That is, we require that
dK #e, (slw)#e=(s|lw)> K . (26)

Proof of Lemma6.0.6. Thisisastraightforward variant of the proof of Proposition 4.2.1. [ ]
It remains to show that the boundedness property (26) is decidable.

6.0.7 Lemma Under theassumption (25), the boundednessproperty (26) holdsfor s iffit holdsfor theseries
s’ given by the linear representation (o, ku, T3).

Proof Some routine calculus show that there exists two non ¢ constants £ and & such that
K(slw) < (s'|w) < K'(s|w) .

Since the limitedness problem for the series s’ is decidable (since the representation of s’ lives in
(N~ U{—-00}, max, +), whichisisomorphictothetropical semiring, thisfollowsfrom Hashiguchi’stheorem
[21], see ds0 [20, 35, 36, 24, 26]), Theorem 2.0.5 is proved.

7 Related Remarks

7.1 Counter Example

We show that thetheorem of finiteness of primitive semigroupsof projectivelinear mapswithrational entries
does not extend to the irrational case. Let

noe n 1
where 7 is a small parameter to be fixed soon and v/2 = 1.414.... We claim that p(A, B) is infinite. In

order to show that, we recall that linear projective maps can be identified to homographic functions—asin
the conventional algebra—. More precisaly, we set for z € R,

u(x)défp[sc e]

We have
w()A = u(ha(z))

where the homographic map associated with A is

e V22 B
ha(z) Z :
A(x) nr e
Similarly, we have
def TDHN _
hg(z) = PR uw(z)B = u(hg(z)) .

Clearly, itisenough to show that thesemigroup (4 4, ks ) (equipped with the composition product) isinfinite.
We assumethat n < 0, and note that

n<a<-n=>ha(e)=V2+z, hg(z)=2-1 .
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Let us further assume that 2 x n < —v/2 — 1 (for instance, take 7 = —(v/2 + 1)/2. Then, the diameter of
[, —n] is greater than /2 + 1, hence, for al = € [, —7], either = 4+ /2 € [, —n], either = — 1 € [, —7].
Let us define a sequence z,, € [, —n] by 2o = e and z,, = ha(z,_1) OF hp(z,_1) (We choose h, of hg
so that z,, € [n, —n],if both ha(z,_1), he(z,._1) € [, —n], then, the choiceis arbitrary). This“walk” in
[, —n] isvisualized on Figure 1. Starting from z,, we may choose z; = x4 + V2 or z; = 2, — 1. Onthe
picture, z; = h,(z) = xo + /2. Similarly, we have set z, = h,(z;). Then, because hy(z,) > —7, the
only possiblechoiceisz; = hp(z,) = 5 — 1. Let p( A, k) (resp. p( B, k)) denote the number of choices of

V3
N -n
MW

- I PR

xq Ty z3 g max

TS
<

Figure 1: The z,, sequence
ha (resp. hg) up to step k (e.g., for thewalk of the picture, p(A4,3) = 2, p(B, 3) = 1). We have
VE> 0, 2, = p(A k) x V2 — p(B, k) x 1 .

Moreover, p(A, k) 4+ p(B, k) = k and p(A, k) and p( B, k) are nondecreasing functions of k. Since v/2 and
1 arelinearly independent over Q, dl thez,, k = 1,2, ... aredistinct. Sincethe z;, areimagesof z, by some
elementsof (h 4, hg), thisshowsthat (h4, hg) (hence (A, B)) isinfinite.

7.2 An Upper Bound for the Lyapunov Exponent

We consider a random walk w, € X*. That is, the word w, = a;...a; (With a; € X) occurs with the
probability p(wy) = p(a;) .. .p(ar) wherethe p(a;) are given nonnegativenumberssuchthat 3°. p(a;) = 1.
Let i : ¥* — REXP be amorphism. The maximal Lyapunov exponent of . is defined asthe limit

max

(= limE(w,)|)F

lim [[a(w)[F as.

(see [2],[15]). We just notice here that there is a subclass of matrices for which the Lyapunov exponent if
immediately obtained due to the characterization of finite semigroups.

7.21Theorem Letp : ¥t — R2*" such that Va, p(u(a)) # ¢ and define the mor phism:

fi: Yaex, ji(a) 2 p(u(a))™ ua)

with the associated “ wor st case matrix”

M = Pi(e)
Then
(< p(M)Ep(u(w1)) = p(M) (Z p(p(a)) % p<a>) : (27)

Moreover, if (%) istorsion, then the equality holdsin (27).
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It should be noted that we have by construction

Va, p(M) > p(ji(a)) = e
hence, we can decideif i(X*) istorsion by checking the non trivial inequality p(M ) < e and by using the
algorithms4.1.5,4.1.4.

7.2.2 Example The Lyapunov exponent of the semigroup (A, B) of Example 4.1.7 can be obtained almost
without computation. Since the normalized semigroup (X +) istorsion, we have

(= p(p(a)) x pla) + p(u(b)) x p(b) = 1 x p(b) = p(b) .

7.2.3 Example Inthesamevein, wecan build many semigroupswhoseLyapunov exponentsareimmediately
obtained. Let

1 * = 2 # #
pla)y= | * x * |, pb)=|# # #

where * stands for arbitrary finite real numbers < 1 (we alow different values) and # stands for arbitrary
finiterea numbers < 2. Let £y € RXE - (Eqq);; = 6;=1 ;=1 (Kronecker’s é). Then, ¢¥fi(a), i(b) > Eiy,
and since £, = E;y, ¥i(w) isnon nilpotent for all w. Hence the condition of Theorem 4.1.6 is satisfied,
and we have

(=1xp(a)+2xpb) .

Proof of Theorem 7.2.1. For simplicity we shall assume that the a phabet has only two letters (X = {a, b}),
the extension to the general case being straightforward. We have

p(w) = p(p(a) ! p(u(b)i(w) (28)
hence

(@)™ = p(u(a)) ™ p(u(b)) T [|a(w)|| ™ . (29)
We have

lim p(p(a)) T p(p(0) T = p(u(a) P @p(u(b)™ a.s.

|w|—oo

Setting M = @, fi(a), we obtain

Then, it followsfrom (29) that
i [|u(w)[|™T < p(u(a)" @ p(p(b) D p(M) a.s. (30)

|w]|—oo
Moreover, if (X7) isfinite, then p(M) = e = 0, Hﬂ(w)”l_il — 0 as|w| — oo, hence, the equdity holds
in (30). |

7.24 Remark A different upper bound for the Lyapunov exponent has been given previously by Baccelli
and Konstantopoulos [3, 2] using large deviation estimates. The upper bound (27) is less general since
it isonly given for probability measures with finite support (it can be easily extended to measures with
bounded support, but says nothing about the unbounded case). However, the equality cases for (27) (when
the underlying normalized semigroup if finite) differ from the equality or accuracy cases for the large
deviation bound.

Acknowledgement The authorswould like to thank Jean Mairesse for many useful discussions, particularly
on the probabilistic application.
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