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Résumé

Nous développons une méthode unifiée pour approcher un jeu de somme nulle par une suite
de jeux approximants. Nous discutons de la convergence des fonctions valeurs, ainsi que de la
convergence des stratégies optimaless(ou quasi-optimales). De plus, basées sur des politiques op-
timales pour le jeu limite, nous construisons des politiques qui sont quasi-optimales pour les jeux
approximants. Pulis, nous appliquons la théorie générale a "approximation de I’état dans les jeux
stochastiques, & la convergence des jeux a horizon fini vers le jeu a horizon inﬁhi, a la stabilité en

taux d’actualisation et en gain instentané.
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Abstract

We develop a unifying approach for approximating a “limit” zero-sum game by a sequence
of approximating games. We discuss both the convergence of the values and the convergence
of optimal (or “almost” optimal) strategies. Moreover, based on optimal policies for the limit
game, we construct policies which are almost optimal for the approximating games. We then
apply the general framework to state ‘approximations of stochastic games, to convergence of
finite horizon problems to infinite horizon problems, to convergence in the discount factor and

in the immediate reward.
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1 Introduction

In many cases, one encounters dynamic games for which time and space are continuous, and possibly
unbounded. In general, numerical solution of such games involve discretization both in time and
in space. In pursuit evasion games in particular (see Bardi et al. [6] and Pourtallier and Tidball
[21]), and in differential games in general (see Pourtallier and Tolwinsky, [22], Tidball and Gonzalez
[24]), the time and space discretization often lead to dynamic programming that has a stochastic

game interpretation. The numerical solution then typically requires a finite state approximation.



Approximations in dynamic games has therefore been an active area of research for several
decades. Several s:chemes for discretization of time and space and for approximations have been
developed for differential games (6, 7, 21, 22, 24]. In stochastic games, much attention was devoted
to approximations of infinite horizon problems by (long) finite horizon ones, e.g. (14, 20, 18, 26];
discretization of the action and state space have further been considered by Whitt {30, 31]. Except

for [30], all the above references consider approximation of the value function of the gaxﬁes.

The aim of this paper is to study in a systematic way approximations in games, not only of
the values but also for the policies. We begin by developing a general framework for establishing
the convergence of the upper and lower values of a sequence of games G,, n = 1,2, ..., to a value
R (which we assume that exists) of a limit game G,. We are further interested in the following
questions: (i) do (almost) optimal policies converge (in some sense)? (ii) Assume that u and v are
(almost) optimal for some approximating game G, (where n is large enough in some sense). Can
we construct from these almost optimal policies for the limit game? (iii) Assume that u and v are
(almost) optimal for the limit game. Can we use them to construct almost optimal policies for the

approximating game G, for n large enough?

Problem (ii) above arizes in the following situation. Suppose that two players use some approx-
imating numerical schemes to obtain “good” policies, e.g. time discretization. Each player might
be using a diﬁ'érent discretization scheme. Yet, each player would like to ensure that regardless
of the discretization scheme used by the other player, he or she can guarantee some value, which
would be “almost” the value of the non-discretized game. In fact, since the real game that is played
is the non-discretized one, the desired discretization should perform well even if the a.dvers.ary uses

an optimal policy for the non-discretized game.

Problem (iii), on the other hand, arizes in the opposite situation, and this serves as an additional
motivation for studying approximations in games. There are many example of dynamic games
where one can solve easier an infinite limiting game, where problems related to the boundaries are
avoided. Indeed, examples are given in Section 8 of stochastic games with (large) finite state space
for which the natural approach for constructing almost optimal policies is to solve a limit game

with a countable state space.

After establishing the general theory for approximations in Section 2, we apply it to several
approximation problems in discrete time stochastic games with discounted reward and denumerable
state space. Applications to other dynamic games are the subject of future research. The basic
model of the stochastic games is presented in Section 3. We then present three schemes for state
approximation in Section 4 for the case of infinite horizon. This generalizes many results on the

convergence of the optimal value in Markov Decision Processes (i.e. stochastic games with a single



player), e.g. [11, 15, 16, 28, 29]. Other related work on finite state approximations in Markov
Decision Processes are [1, 2, 25]. In Section 5 we extend the results on state approximations for
infinite horizon to the case of finite horizon, by a transformation of the state space. In Section 6 we
study the convergence of the finite horizon problem to the infinite horizon one, and we combine state
approximations with approximation of the horizon. In Section 7 we study the stability of stochastic
games in the discount factor and in the immediate reward. Applications of approximation methods
developed in this paper are presented in Section 8, and some generalizations are finally discussed

in Section 9.

2 Key Theorems for approximations

We consider the following seque‘nce Gn = (Sn,Un,Va) n = 1,2,...,00 of generic zero-sum games
where U, is the set of strategies of player one and V;, is the set of strategies of player two for the
nth game. We assume that both U, and V|, are endowed with some topology. S, : U, xV, = R
is a measurable function for all n. We define the upper (lower) value of the game:

Rﬁjﬁzﬁamw @fjﬁﬁﬁamw)

G=(S5UYV) def (Soosr Uso, Vo) Will be called the limit game. It will be assumed that it has a value

R¥ R...

An example where G, does not have a value but G does have it will be given in Subsection
6.3 for computing almost optimal stationary policies for stochastic games with long (but finite)

horizon.

A strategy u* € U, is said to be e-optimal for player one in game n if
uic%.. Sa(u®,v) 2 uien‘tl'ﬂ Sn(u, v) -€¢ VYueU, (1)

which is equivalent to inf,ey, Sn(u*,v) > R, — €. It is said to be strongly e-optimal for player one

in game n if it satisfies *

viél‘i;” Sa(u*,v) > Rp ~ ¢
A strategy v* € V,, is said to be ¢-optimal for player two in game n if

sup Sp(u,v") € sup Sq(u,v)+e Yv eV, | (2)
u€Un u€Un



which is equivalent to sup,ey, Sa(u,v*) < Ra + €. It is said to be strongly e-optimal if

sup Sp(u,v*) < R, +¢

u€Un
Note that strongly e-optimality implies e-optimality. If a game has a value R, = R, then strongly
e-optimality is equivalent to ¢-optimality.

Assume that (S,, U,, V,) converge (in some sense) to (S,U, V). We are interested in the fol-
lowing questions:
(Q1) Cbnvergence of the values: does R, (or R,) converge to R?
(Q2) Convergence of policies: Fix some € > 0. Let ¢, be a sequence of positive real numbers such
that imp—oo €n < €. Assume that u, and v}, are €,-optimal policies for the nth game. Are u; and
v, “almost” optimal for the limit game, for all n large enough?
(Q3) Let @ € U (resp. € V) be some limit point of u;, (resp. v}), defined above. Is @ (resp. T)
e-optimal for the limit game?
(Q4) Robustness of the optimal policy: If u™ (resp. v*) is an e-optimal for the limit game, can we
derive of it an “almost” (strongly) optimal policy for the nth approximating game, for all n large

enough?

In most applications that we discuss in this paper U, = U, V, = V do not depend on n.
However, in several applications this is not the case, e.g. approximations in pursuit evasion games,
see Bernhard and Shinar (7]. Another example is given for a state approximation scheme for solving

stochastic games, see Subsection 4.3.

Theorem 2.1 Assume that there ezists a sequence of functions, ) : Uy, - U, x:V, =V,
o):U —= U, 02:V =V, n=1,2,.. such that

(A1) im, .o [Sn(u,02(v)) - S(7L(u),v)] £ 0 uniformly in u € Uy, for each v € V.

(A2)lim, . [Sa(0}(u),v) - S(u,72(v))] > 0 uniformly in v € V, for eachu € U.

Then

(1) im0 R, = lim,_.oo Rn = R. ,

(2) For any € > ¢, there ezists N such that x(up) (resp. x2(v:), see definitions in (Q.?))-is
€ -optimal for the limit game, for alln > N.

(3) Let u* (resp. v*) be e-optimal for the limit game. Then for all € > ¢, there ezists N(¢') such
that ol(u*) (resp. 02(v*)) is strongly ¢ -optimal for 'the nth approzimating game, for alln > N(€).

(4) Suppose
(A3) S(u,v) is a lower semicontinuous function in u,



(A4) S(u,v) is an upper semicontinuous function in v.
Suppose 4 € U (resp. © € V) is a limit point of x}(u2) (resp. x2(v:)). Then @ (resp. ©) is

e-optimal for the limit game.

Remark 2.1 Part (1) of Theorem 2.1 is a generalization of Lemma 1 in [14]

Proof. (1) Choose € > 0. Let u* € U and v* € V be e-optimal for the limit game S, and choose
some sequence ¢(n) such that lim, . €(n) = 0. Let un € U be an ¢(n)-best response to the policy
o%(v*)in game G, (i.e., Sn(un,02(v")) > Sn(u,02(v*))—€(n) for all u € U,). Similarly, let v, € V,,
be an €(n)-best response to the policy ol(u*) in game G,.

Choose some § > 0. By (Al), there exists N such that for all n > N and u € U,, Sn(u,03(v*)) —
S(xl(u),v*) < é. Thenforalin > N

R.-R = inf sup S,(un,vs)— inf sup S(u,v)

vEVa e, veV LeU
< sup Sp(u,0%(v")) — sup S(u,v*) +¢
u€ln uel
< Suln 02(1")) = S(xL(un), v7) + € + €(n)
< b+ete(n)

hence limp—oo R < R+ 6 +¢.

Similarly, by (A2), one shows that R < lim,_,, R, + 6 + €. Since B, < R,, this implies that
imy—oo |[R— R,] < 6+ ¢andlimp_o |R — Rp] < 6+ €. The result follows since ¢ and § can be
chosen arbitrérily small.

(2) Fix some é > 0. By (A1), as u}, is €(n)-optimal for G, and by part (1), there exists N(e,§)
such that for n > N(¢, ) we have

Ve € Vi Sp(uh,0i(v) - S(u;,mi(v)) <6, e(n)<e+s, |R,-R|<é (3)
and thus
. 1 - . P 2 — > H - - - - — —
Jg{/ S(ma(uy),v) > 32{, Sn(un,05(v))-62 ulél‘l;n Sa(up,v)~6> R, -6—-¢€n)>2 R~-36-c
" So ml(uy) is € -optimal for § with € =36 + .

In the same way, by assumption (A2) and considering an ¢(n)-optimal policy v for G,,, we obtain

that 72(v?) is € -optimal for S for all large enough n. The proof follows from the fact that § was



chosen arbitrarily.
(3) Fix some é > 0. As u® is an e-optimal strategy in the limit game G and by (A1), for all n large

enough, we have

. 1 - . » 2 — 3 - — —_— -— —
u?&,. Sn(o,(u),v) > ulen‘t/'nS(u yma(v))—6 2 32{,5(11 W) —62R-6-€¢>R,—-20~¢

The proof for v* is obtained in the same way.
(4) Let ¥ € V be such that inf,ev S(@,v) > S(4,9)-6. By (A1), (A3) and part (1) of the Theorem,
for all § > 0, there exists N(§) such that n > N(§) implies ¢(n) < € + §, and

inf S(2,v) 2 5(3,8)~8 2 S(ri(u}), ) - 28

> Sa(uh,0%()) - 36
> Ba-36-¢n)
> R-46-¢(n)

and hence, @ is ¢-optimal with € = € + 56. In the same way, by (A2) and (A4) we prove that o is

€ -optimal for S. The prdof follows from the fact that § was chosen arbitrarily. g

Remark 2.2 (i) In the rest of the paper, whenever U, = U and V, =V do not depend on n, 7w,
and o, will be chosen as the indentity maps.

(i) It follows from the proof of part (1) in the above Theorem that if for all G,, n = 1,2,...,00
there ezist optimal policies for both players and if U, = U and V,, = V do not depend on n, then

|Rn — R| < sup|Sa(u,v) - S(u,v)l,  |Rn — R| < sup|Sa(u,v) - S(u,v)|

3 Stochastic games: the model

We are going to use the results from the previous section to study approximations of zero sum

stochastic games.

¢ Let I be a denumerable set of states
¢ A; (B;) a compact set of actions for players I (resp. II) at state i. Let K = {4, A;,VB,-}.E,.
e r: K — IR a bounded immediate reward function (the boundedness condition can be relaxed,

see Section 9). Let M def sup; 4. 1r(3, a, b))



o P(a,b) = [p(i,a,b, E))i.E, a € A;, b € B, is a (sub) probability transition (from state i to a

set E C I) when the players use actions a and b.

¢ (3 the discount factor satisfying 0 < 8 < 1

We. shall use the following standard assumption (see e.g. Nowak [19]):

(Mj) : r(i,e,e)and p(i,e,e, E) are continuous in both actions for any £ C I.

The game is played in stages t = 0,1,2,.... If at some stage t the state is ¢, then the players
independently choose actions a € A;, b € B;. Player Il then pays player I the amount r(i,a,b)
and at stage t + 1 the new state is chosen according to the transition probabilities p(i,a,"b, o). The

game continues at this new state. ‘
Let U and V be the set of behavioral strategies for both players. A strategy u € U is a sequence

u = (ug, uy,...) where u, is a probability measure over the available actions, given the whole history

of previous states and of previous actions of both players as well as the current state.

A Markov policy ¢ = {go, g1, ---} is a policy (for either player one or two) where ¢, is allowed to

depend only on ¢ and on the state at time ¢.

A stationary (mized) policy g for player one is characterized by a conditional distribution

p(e | j)¢ over Aj, so that pgA’b. = 1, which is interpreted as the distribution over the actions

available at state j which player I uses when it is in state j. With some abuse of notation, we shall
set g(e | j) = p(e | j)? for stationary g. Let S# be the set of stationary policies for player 1, and

define similarly the stationary policies SZ for player 2. If both players use stationary policies, say

u and v, then {X} becomes a Markov chain with stationary transition probabilities, given by

p(is 1, 0, k) = /A /B p(j»a, b, k)u(dal5)v(db];). (4)

We are concerned in the following section with the infinite horizon discounted problem. It
is known that under (M;), optimal stationary policies exist for both players; i.e., if ¥ and v are
optimal policies for both players when both of them restrict to stationary policies, then each one
of these policies is also optimal against an arbitrary policy of his/her opponent. We shall therefore

restrict to stationary mixed policies, without loss of generality (see [12, 17}).

Next, we introduce a topology on the sets of stationary policies. For any set T', let M(T)
denote the set of probability measures on I' endowed with the weak topology £(T') (see [19]). The
class of stationary policies for player 1 (and similarly for player 2) can be identified with the set



[laM (A.‘.) x M(B;); moreover it is compact with respect to the product topology
[Tier §(AL) x §(B;).

Let (u,v) be a pair of strategies and let ¢+ € I be a fixed initial state. Let Iy, A;, B;,t =0, ...
be the resulting stochastic process of the states and actions of the players. Let E"* denote the

expectation with respect to the measure defined by u, v, 3. Define the 3-discounted game payoff

S(i,u,v) = E Y B'r(Iy, A, By) (5)
t=0

Let R(i) denote the value of the stochastic game for initial state i. For stationary policies u and v,

let the expected current payoff be defined by:
- r(f,u,v) = r(j, a, b)u(dali)v(db|i 6
(i,u,v) /,‘/B,(J Ju(dali)v(dbli) . (6)

Consider the following (contracting) map:

(Tuo§) () = r(i,u,0) + 83 pli, u,0,5)f(5) (7)

sel
Then S(i,u,v)is known to be the unique solution of (7). The value R(¢) is the unique solution of
R(i) = val [r(i,a,b) + B _ p(i,a,b,5)R(j) (8)
jel
Moreover, any stationary policies v* and v* that chooses at any state j the mixed strategies that
are optimal for the matrix game [r(i, a,b)+ B3 je1p(i,a, b,j)R(j)L g 2Te known to be optimal for

the stochastic game S (see [19] for these statements).

Remark 3.1 §(i,e,0): 54 x S8 — R are continuous for all states i. This follows from Corollary

2.2 in Borkar [10]. It will thus follow below that assumptions (A3) and (A4) hold.

4 State approximations: infinite horizon case

We introduce below several approximating schemes. All of them involve some sequence I, C I of

sets of states, which are naturally chosen to be increasing. We shall assume

(Bl) I.ClIhy, ULa=1I



The following property will imply conditions (A1)-(A2) in the various schemes that we consider

below:

(B2)  €(r,n) = supicr, o { g1, P(5,0,b,7)} = 0 as n — o0 Vr.

Remark 4.1 Condition (M,) as well as the compactness of A; and B, imply (B2). Indeed, assume
that (B2) does not hold. Then, there exists some a > 0 such that for some i,

[Dim_ max (Zp(i,a, b,j)1{j ¢ In}) =a 9)
** \jel

Let a, and b, be some actions achieving the maz (the fact that the maz is achieved follows from
the compactness and continuity assumption (M,)). Choose a subsequence n({),{ = 1,2,... along
which the limsup is obtained and along which a, and b, converge to some actions a* and b*. Then
P(i, (0, bn(e), ®) converges (pointwize) to the probability p(i,a*,b%, ) as £ — oo (by (M,)). But
then it follows from a dominant convergence Theorem ([23] Ch. 11 Sec. {) and from (B1) that

ll_l;ngoZP(i,an(z)»bn(z),J')l{j ¢ L) =D p(i,a%,6%5)-0=0
J€l jel

which contradicts (.9) Hence (B2) is established.

For the case of a single player, (B2) was introduced as an assumption for several approximating
schemes by Cavazos-Cadena [11]. Note, however, that in [11], (M;) as well as the compactness of the
action spaces are not assumed. In order to obtain conditions (A1) and (A2) for the approximating
schemes below, (and hence obtain statements (1), (2) and (3) in Theorem 2.1j one could relax the
compactness assumption as well as (M)); in that case one would indeed need to impose (B2) as
an assumption. The compactness and (M,;) (or other similar assumptions, such as (M3) or (M3)
from [19]) are required however for establishing the continuity conditions (A3) and (A4) required
for establishing statement (4) in Theorem 2.1).

Other typical assumptions that imply (B2) have often been used in the literature, see White [28]
and Herndndez-Lerma [15], as well as ( B3) introduced in Altman [2] which will be used occasionally

below:
(B3) From any state k, only a finite set of states X can be reached.

In all approximations in this section, the approximating games G, have a value, i.e. R.(i) =

R..(i) = R,(i). Moreover, they will have a saddle point among the stationary policies.



4.1 Approximation Scheme I

We define:

(H:,uf) ) déf{ S(i,u,v)-f-ﬂZjeIuP(i,u,v,i)f(j) :t{:::: (10)

For this approximating problem we define S}(:, u,v) to be the solution of
(HL.f)()=f(), Viel (11)

Sl is thus the total discounted payoff (defined in (5)) for the stochastic game whose transition
probabilities are p instead of p, where p(i, u,v, j) = p(i, u, v,7)if {i,j € I}, otherwise 0. The value

- of the game G is the unique solution of

o _ ) val r(i,a,b)+ﬂz- 1, P(i,8,b,7)R.(j)| ifiel,
R"(')_{ 0 [ * ] ifigl, (12)

Moreover, optimal stationary policies u% and v for the game G are obtained by chosing at any

state j € I,, the mixed strategies that are optimal for the matrix game

[r(i,a’b)+ﬂ 3" pli,a,b,7)R(j)

jela ab

The proof of the following Theorem will enable us to evaluate the precision of the approximation.
More precisely, it will enable us to get a bound on |R,(¢) — R(e)| which will be uniform in : € J

where J is an arbitrary fixed subset of I.

Theorem 4.1 All statements of Theorem 2.1 hold for approzimating scheme I, where the reward
S for the limit game G is defined in (5) and for approzimating game GJ it is S}.

Proof. The proof uses an idea by Cavazos-Cadena [11]. We first need to introduce some definitions.
Let € > 0 we define:
e, r) =1, g5 (e,r) = g(e, 95 Y(e, 7)), k=1,2,..

where
g(e,r) = min {m : e(r,m) < €}

L3
and ¢(r,m) is defined in property (B2). To understand the meaning of ¢°(¢,r), we consider first

€ = 0. Then I .41(o,) is the set of neighbors of I,,(o ;) in the sense that states that are not contained

10



in Ig.410,,) are not reachable from any statein Ige(o,r). Fore > 0, I 41, is the set of “e-neighbors”
of I s,y in the sense that for any state i in Igu(, ), the states that are not contained in Igs+1((,y)

are reachable from ¢ with probability smaller than or equal to ¢. Note that for any r > 0,

Yo pliuvi)<e Vi€ Lygp) V120, Yu,v. (13)
jelgl+l(¢_,)

Note also that g'(¢,r) need not be increasing in {.

Let J C I,e(J) =min{m:J C In}, and suppose €(J) < +oo (this is the case if J is chosen to
be finite). We define

mi(e, (7)) = max {e(J), g€, €(J)), - M6, ()} Kk =0,1,2,... (14)

We show that ®assumptions (A1)-(A4) hold for S1(i,u,v) and S(¢, u,v) defined above.
Below, € and J are held fixed, so that for simplicity of notation we shall write g’ instead of g/(e, €(J)).
Let n > my(e,€(J)), then for all 1 € J,

1823, u,0) = S(i,u,0)| < B> pli,u,v,5) |52, u,v) - S(j, u, )]
jEI,1

+ B Z p(i,u,v,j)lS,l,(j,u,v)—S(j,u,v)l (15)
i¢ln

Note that for any state j, |S1(j,u,v)| < M/(1 - B), and |S(j, u,v)] < M/(1 — ). Hence by
(13), (15) and (B2) we obtain:

|S2(,u,v) - S(i, u,v)]

2Mp
1-8

< B Z p(i,u,v,j)ls,l‘(j, u,v) = 5(j,u,v)| +¢€
j€lp

MpB
1-8

IA

B max |Srl|(jvu’ v) — S(J, u,v)|+€
161,1 '

IA

ﬂma-x {ﬂ Z p(j,u,v,l)IS},(l,u,v)—S(l,u,v)l

Jelgl teI,:

IMB
1-p5

+8 Y (i, u, v, ) |Sa(8,u,v) = S(6,u,v)] § + ¢
l¢I’2

11



2MpB* 2MpB

< g 1 _
< B lrgla.'): 1Sa (¢, u,v) S((,u,v)|+el_ﬂ +€l—ﬂ (16)
MB *!
< B* max |S,l‘(l, u,v)— S(L,u,v)| + 2¢ Bt
tel 1-83

The first inequality follows by (13) since n > m; > g' and since i € J C Io. Similarly, (16) follows

by (13) since n > my > ¢* and since £ € I;1. So we have:

1517, 8,0) - 5(i,u,0)] < 2 2L= "k’l‘/_(‘ﬂ' A+ (17)
Hence, (A1) and (A2) hold true, (where as (A3)-(A4) are established in Remark 3.1). g
Combining (17) with Remark 2.2 yields:
Corollary 4.1 For any i€ J, if n is chosen such that n > m(¢,€(J)), then
O Ru(i) — R()| < o PAZ BRI = B) + 8+ (18)

1-4

In the previous Theorem, the sets {I,} where given a priory. Next we consider a special choice
of {I,}, that will be especially useful under assumption (B3), for a finite set J. This construction
will enable us to express in a simple way the set I, needed in (10) in order to approximate R by
R, with a given error. This is especially desirable when it is not easy to compute mg (e, €(J)) (and

thus Corollary 4.1 can not be used).

Let J be a given set (for which we would like to get a computable uniform bound on the error
of the approximation), and set Y (i) = {j : p(i,u,v,j) > 0 for some u,v}. Then we define I, in the

following way:

Io = J, L= J Y(HUI (19)

i€l,

Remark 4.2 Note that if J is finite and if (B3) holds, then all sets I,, are finite. This construction
might be especially useful if the number of states reachable from any given state is small. In that

case I, do not grow too quickly.

We now consider S,(i,u,v) as the solution of (11) with I, defined in (19). We have that the
following theorem (the analogous of (4.1)) holds:
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Theorem 4.2 (i) Fiz a state i € J. Then all statements of Theorem 2.1 hold for approrimating
scheme I, where the reward S of limit game G is defined in (5) and the reward S,, for the approzi-
maling game Gy, is the solution of (11) with 1, defined in (19).

(ii) For anyi € J and n = 0,1, ..., |[Ra(3) — R(i)] < 2MB"/(1 - B).

Proof. It suffices to prove that (A1) and (A2) are satisfied. Let i € J, then:

|Sn(is u,0) = S(E,u,0)] < B Y pli,u,v,5)|Sa(4, u,v) = S(j, u, v)|
JEY (1)

IA

.Bma‘x ISn(Jy u, ‘U) - S(Ja u, v)'
Jjel .

< BPmax Y p(j,u,v,k)|Su(k,u,v) - S(k,u,v)|
sely kEY (5)

B max [Su(j, u,v) - S(, u,v)| < 245
jGIn 1- ﬂ

IA

(ii) then follows from Remark 2.2. g

As suggested in Remark 4.2, the above method is useful especially when the approximating
games have finite states (i.e. I, are finite) and the typical number of states (neighbors) reachable
from a state is not too high. If, however, the typical number of néighbors is high, then the sets
I, become large very rapidly, which suggests that obtaining good estimates of optimal value and
policies might require an unexceptably high complexity of computations. We thus present an
alternative more general way of constructing finite sets I, (even when (B3) does not hold), which
will result in a simple expression for mx(¢, €(J)), and will thus enable to make use of Corollary 4.1

to obtain uniform computable error bound for the approximation for any i € J.

We define a parametrized family {I,(¢)}, where € is a positive real number. Define Io(e) = J.

{I.(€)} are then chosen to be an arbitrary sequence increasing to I that satisfies the following. If

for some ! > 0,say | = I

sup Y. pli,a,b,j)<e
abi€li(e) ;41,()

then I,(¢) =1 for all n > [. Otherwize, L4, is chosen such that

sup > pli,ab,j)<e

a,b.i€li(c) ithigale)

13



It follows that €(J) = 0, g° = 0, and hence g* = k and my(¢,€(J)) = ¢* = k for k < I. (The above
quantities were defined in the proof of Theorem 4.1). If J is finite then it follows from the same
arguments as in Remark 4.1 that I,(¢) can be chosen to be finite for n < { and hence in particular

I;(¢), which is the truncated state space that should be used to perform Approximation Scheme I

in order to obtain a precision as in Corollary 4.1.

In this setting, Theorem 4.2 (ii) becomes a special case of Corollary 4.1 with € = 0.

4.2 Approximation Scheme II

In the previous approximation scheme, the dynamics are seen to be a result of transition proba-
bilities that need not sum to one, even if in the limit game they do sum to one. Indeed, (10) can
be considered as a stochastic game where we set p(i,u,v,j) = 0 for j ¢ I,. In many applications
this may be undesirable, and one would like p(3,u,v,e) to remain a probability measure. This is
especially the case when we want to learn about the optimal value and (almost) optimal policies
for specific given stochastic games with large finite state space, by approximating them through an
infinite state game. Indeed, there are cases where one can solve easier an infinite game since some

boundary problems are avoided. Examples are given in Section 8.

We assume that 3~ ;. p(i,a,b,j) = 1 forall a € A;,b € B,. We define the following sequence of

games. We let I, C I be an increasing sequence of sets, converging to I, as in the previous Section.

Define

r(i, 3 tLu,v,j)f(7) ifiel, :
( )()_{ (i u,v)+ 33 jer, P(3, u, v, 7) f(J) é:;:,, (20)
where:
p‘(i,u,v,j)={ Pis s 02 ) 4 4alis 8 27) g:::"ojri ; I, (@)

gn(i,u,v,) is some non negative measure satisfying 3y, p(i,4,v,5) + ¢a(i, 4, v,5) = 1. Hence,

Z q'n(iauavvj) = E p(iv u, vvj) . (22)
jeln . J¢I'l

We define 52 to be the solution of

(H2,f) G) = £() (23)

52 is thus the total discounted payoff (defined in (5)) for the stochastic game whose transition

probabilities are p* instead of p.
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All the results of Subsection 4.1 still hold. We demonstrate this with the proof of the analogue
of Theorem 4.1. It suffices to show that (A1)-(A2) hold. With the same notation as in Subsection

4.1 we obtain:
|572;(19 u, v) - S(i, u, v)'

< BY pli,u,v, )82, u,v) - SGLu o)+ B8 Y q(i,u,,5) 1534, u,0) = S(G, u,v)|
iGI,x j€I,1

+8 S p(i,u,v,5)1S3(5, u,0) — S(, u,v)|
i€l '

and by (22)

|5,2,(i,u,v) - S(3,u,v)]
< B Y pli,u,0,5)|53(5, u,0) - S, u,0)| + 28 D p(i,u,v,5)153(j, 4, 9) — S(j, u,v)|

j€ly i¢l,
. . . . 2M
S B Bl 0.9)1820,8,0) - SGy w0l + 2650
jely

So continuing as in the proof of theorem 4.1 we have:

28(1 — B*)e(N)/(1 - B) + B*
1-8

1S3(7,4,v) = S, w,v)| < 2M (24)

for n > my(e,e(J)).

4.3 Approximation Scheme III

The basic idea of the approximation scheme is to fix some stationary policies for both players, and
use them in all states except for a subset I,. The problem is then of determining the optimal
mixed strategies for both players in the remaining set of states I,. We are interested in studying
the asymptotic behavior of this approach as I, — I. Similar approaches were used in a framework
of Markov decision processes (e.g. [1]), where I, were assumed finite. We first fix some arbitrary

policies 2 € U, b € V. We shall now use the framework of Theorem 2.1. Define
Up={ueU:u(i)= (i), Vi¢ L.}, Va = {veV:u(i)= (), Vig I}
Fix some ¢ € I. The limit game is defined as S(u,v) = S(¢,u,v), where S(i, u,v) is given in (5).

For any u € Un,v € V,, define S,(u,v) = S(u,v) We set 7} and 72 to be the identity mappings

15



and
u(¢) ifiel,, v(i) ifiel,,

an(u)(i) = { aa(v)(i) =
ai) ifigly o(i) ifi ¢ 1.

Theorem 4.3 Fir a state i. Then
(i) All statements of Theorem 2.1 hold for approzimating scheme III.

(33) R, tis the unique fized point of the equation

{ val [r(k,8,0) + B erp(k, 0,b,))Rali)] k€1,
Ra(k) = (28)

r(k, @, 0) + BE je1p(k, &, 0, 7)Rn(j) k¢l

(is1) Optimal stationary policies u, and v, for both players are obtained by using at any state k € 1,

mized strategies that achieve the value in (25).

The proof of this theorem is similar to the proof of theorem 4.1.

5 State approximations for the case of finite horizon

Consider the model in Section 3 with, however, a finite horizon reward criterion instead of (5):
m
Stml = EFY[Y° B'r(Iy, Ar, By)) (26)
t=0
It is well known that there exist optimal policies for both players within the class of Markov policies.

The value R of SI™ is obtained by the recursion:
gm+1 ¥ g ‘ (27)
RYG) & vaz‘[r(i,u,v)+ﬂZp(i,u,v,j)R"“(j)], k=0,...m
sel
R ¥ g
Define U[m] = (U°[m],U'[m],...,U™[m]), V[m] = (V°[m],V[m], .., V™[m]) where U*[m], V¥[m]

are the set of mixed strategies which are optimal for the matrix game

[r(i.a,b) +8> pli,a, b,j)R"'”(j)] , k=0,...,m. (28)
Jel a,b
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for all ¢ € I. Then, any Markov policies (u,v) such that u; € U*, v, € V', t = 0,..., m, are optimal
for the stochastic game §(™).
In order to apply the results from Section 4 to the finite horizon case we make the following

observation. The finite horizon model is equivalent to the following infinite horizon model with

enlarged state space:

o I=1Ix{0,..,m};
o Agiy = Ai, By = Bi;
o #((i,k),a,b) = r(i,a,b);

p(i,a,b,j) ifk+1=1$m

o p((1,k),a,b,(y,1)) =
0 . otherwize

o =3
Define

o0
$(i,,9) = B2 B'r(hy, Ay, By)
t=0

There is a one to one correspondence between stationary policies in the new model and Markov
policies in the original one; if @, © are stationary in the new model, then the corresponding Markov

policies in the original model are given by
u(olz) = i(e|(z,1)), ve(o]z) = d(o(z,1)). (29)
and vice versa. Moreover, we have
Stml(u, v) = S(a, 9)
Consequently, the state approximation schemes from the previous section‘ also hold for the case of

finite horizon model. The computation of the (approximating) values and (almost) optimal policies

can be done by using the above infinite horizon model with enlarged state space, and then applying

(29). 1, may be chosen, for example, as I, = I, x {0, ...,m}.

6 Successive approximations

We study in this section several new aspects of successive approximations. The convergence of the

value of successive approximation is already well known, [20, 18, 26]. By applying Theorem 2.1, we
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establish in the following subsection, the convergence of (almost) optimal policies. We then study
the application of both state approximation and finite horizon approximation. Finally we discuss

the restriction of games with finite horizon to stationary policies.

6.1 Convergence of policies for successive approximations °

An interesting application of the results in the previous subsections, is the observation that succes-
sive approximations (or value iteration) can be viewed as a special case of state approximations.
One can define game G, such that S, = "), where § (") is given in (26), and consider S as defined
in (5) Let u}, and v; be a pair of optimal (or €,-optimal, where lim,_.., €, = 0) Markov policies
for G,. Let u* and v* be any ¢-optimal stationary (or Markov) policies for the infinite horizon
game S. If we use for both G, and G the equivalent infinite horizon model with the enlarged state
space defined in Section 5, then u}, v}, " and v* all have an equivalent representation as stationary
policies. The problem becomes one of approximating the state space I' = (I x IN) by the subsets

I’ = (Ix{0,1,....n}). Using then Theorems 2.1 and 4.1, we conclude:

Theorem 6.1 (i) lim,_., R, = R. ‘

(2) For any € > ¢, there erists N such that u, (resp. v;) is € -optimal for the infinite horizon
game, for alln > N. |
(3) Let u € U (resp. v € V) be a limit point of u;, (resp. v;). Then @ (resp. v) is e-optimal for
the limit game.

(4) For all € > ¢, there exists N(¢') such that u* is € -optimal for the nth approzimatiﬁg game, for
alln > N(¢).

6.2 Successive approximation and finite state approximation

We use the above approach to combine state approximations with finite horizon reward criterion.
Such a combination may be especially useful for computational purposes, where I, can be chosen
to be finite. We can now compute R, and (Markov) policies which are optimal for G,, using
approximating schemes introduced in the previous Sections, in order to approximate the optimal
value R and an almost optimal strategy for the original limit game G. Let again I, C I be an

increasing sequence of sets of states, converging to I. One can repeat the construction of a model

with enlarged state space (that includes, both the original state space and the time), so that,
the state space for the nth game G, is I, = (In x {0,1,...,n}), and for the limit game G, it is

I= (I x IN). This would establish the correctness of approximations based on value iteration for a
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problem with truncated state space. For example, if we adapt the first approach in Section 4, we

get the approximating values R, and Markov policies by performing the following iterations:
Rn+l(j) déf 0
n

Rh) {gaz[r(i,a,b)+ﬂzjanp(i.a,b,j)ﬂ“‘(j)] iifi'eglf koo
L4 n

.

R, ¥ RO
Define U, = (US,U},...,UR), Va[m] = (V2,V}},..., VD) where U%, V¥ are the set of mixed strategies

which are optimal for the matrix game

val [r(i,a,b) +0 Z p(i,a,b,j)Rf,“(j) k=0,...m (30)
Jeln d.b
for any i € I,. Then, any Markov policies (u,v) such that u¢ € U, ve € V¥, t = 0,...,m, are

optimal for the stochastic game G,.

6.3 Finite horizon and stationary policies

For simplicity of implementation, one may be interested to restrict to the class of stationary policies
in a stochastic game, rather than use Markovian policies (or others). It is well known, however,
that finite horizon games do not have a value within the class of stationary policies. However, it
is immediate to see that the conditions (A1)-(A4) hold when restricting to stationary policies, and
thus we conclude from Theorem 2.1 that the optimal stationary policies for both players converge
(in the sense of Theorem 2.1 (3)) to the strongly-optimal policy of the infinite horizon game, as the
horizon goes to infinity. Moreover, the lower and upper values converge to the value of the infinite

horizon game.

7 Convergence of the discount factor and immediate reward

We establish in this section the robustness of values and optimal policies with respect to the discount
factor and immediate reward. This may be of importance in case that these parameters are not
known precisely. One can similarly establish robustness for random time-varying discount factor

and immediate reward. We consider a horizon m which may be either infinite or finite.

We consider a sequence of stochastic games G, n = 0,1,2,... where the quantities deﬁxﬁng

each one of them are as in Section 3, except for the immediate reward and discount factor which
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are replaced by 8, = 8 + é,, ry = r + p,, where 6, and p, converge to zero as n — oo, uniformly
in the states and actions. Denote by S,(¢,u,v) the reward for game G, (as defined either in (5) or

in (26)). Then

[S(1, u,v) = Sa(4, u, v)]

m

S E:"UZ (ﬂ"pn(lh Aiv Bht)‘ + l[ﬂt - (ﬁ + 6n)t”M + l(ﬂ + 6,;)‘;),,([,, At» Bt)‘)

t=0
and we obtain convergence to zero uniformly over all Markovian policies 4 and v (to which we
may restrict, without loss of generality, as in Section 5). This implies conditions (A1) and (A2)
and hence, by Remark 3.1, we see that all statements of Theorem 2.1 hold. This establishes
the continuity of the value of the stochastic game as a function of the discount factor  in the
open interval 8 € (0,1), and as a function of the immediate reward. Moreover, it establishes the

convergence of (almost) optimal policies (in the sense of Theorem 2.1).

A specially interesting case is the asymptotics of stochastic games as 8 — 1. We restrict for
simplicity to the case of finite state and action spaces. The asymptotic behavior of the value of the
game was studied by Bewley and Kohlberg (8]. In fact they establish the convergence of (1~ 3)Rs(3)

to the value R;ycrqge Of the expected long run time-average game (where Rg(t) is the value of the

game with discount factor 8 and initial state ¢).

When trying to apply the approximating theorem 2.1 to the limit as 8 — 1, we are faced with
the following problems:
(1) The limit game does not have a value among the stationary (nor even the Markov) policies (see
the “big match” by Blackwell and Ferguson [9}).
(ii) The value of the limit game (wit‘h the expected average reward) is in general not continuous in
the policies (and thus assumptions (A3) and (A4) do not hold in general). This is the case even for

a single controller, for which it is known that the value may exhibit discontinuity in the parameters

(see Gaitsgory and Pervozvanskii (13] p. 407).

However, both problems are avoided in case that we restrict to either games with perfect infor-
mation or to irreducible games (see Gillette [14]). Games with perfect information (resp. irreducible
games) have a saddle point within the class of stationary deterministic policies (stationary mixed
policies, respectively), and (A1) and (A2) hold, see [14]. Within these classes of policies, (A3) and
(A4) also hold; indeed, for the perfect information case this follows from the fact that there is only

a finite number of stationary deterministic policies. For the irreducible case, this follows e.g. from

(2)-
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8 Applications

We present in this Section a few problems that motivated our research on approximations in stochas-
tic games. As mentioned in the introduction, many discretization schemes of differential games yield
dynamic programming that can be interpreted as representing some stochastic game. In some pur-
suit evasion games, such as the game of the two cars [22], an additional finite-state approximation
is then required. The calculations in [22] was done following scheme I (introduced in Subsection
4.1). The state transition in the discretized model satisfied property (B3), and, in fact, each state
had at most four neighbors (i.e. four states reachable in one transition). This feature motivates
the use of Theorem 4.2 for such applications, which not only establishes the convergence, but also
gives the rate of convergence (or, more precisely, enables to compute n for obtaining any required

precision).

Another application of the theory we developed in previous sections are stochastic games ap-
pearing in queueing systems. Such problems may serve as model for situations of conflicts between
users in telecommunication systems, or for worst-case control situation in presence of some unknown
disturbance (in production systems, or again in telecommunications applications). An interesting
feature in the control of queueing networks is that often, infinite queues are easier to handle than
finite queues, as some boundary problems are avoided. Moreover, the optimal policies for infinite
horizon problems, being stationary, are easier to implement than those for finite horizon problems.
In real applications, however, queues are always finite; moreover, one is often interested in finite
horizon problems (e.g., controlling manufacturing during working hours, etc). Our results may thus
be applied to obtain almost optimal policies for these cases. Here are some examples:

(i) Altman considered in [3] a stochastic game with an infinite state space in order to solve a flow
control problem with an infinite buffer. The solution of the problem with a finite buffer [4] seems
more involved, and was only obtained under an important restriction on the actions of the flow
controller (namely, it had to contain an action that corresponds to rejection of arriving customers).
(ii) Altman and Koole [5] solved a game where one or more servers have to be assigned to customers
of different classes. In a telecommunication context, the different classes may represent different
traffic types, such as voice, video and data, and the servers may represent a channel, through which

the traffic has to be transmitted. A controller has to decide a customer of which class will be served
next (which traffic will have access to the channel). The input traffic was assumed to be controlled

as well, e.g. it may have been the output of some dynamic routing mechanism or dynamic flow
control. The problem was posed as a zero-sum stochastic game between the service controller and
“nature” which represented the unknown input control mechanism. Simple structural results were

obtained for the case of infinite queues. In the case of finite queues, the structure of optimal policies
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" is unknown, even in the case of uncontrolled input. By applying our second state approximation
scheme, it follows that the policies obtained for the problem of infinite queues are almost optimal

for the case of finite queues which are large enough.

9 Further Generalizations

Although we considered in this paper bounded reward, it is well known that different sets of
conditions exist for which problems with unbounded reward can be transformed into ones with
bounded reward. Such transformations have been used in the past for finite state approximations

of Markov Decision Processes, see White [29]. The generalization of such conditions to games are

straightforward (see e.g. Wessels [27]).

There are many other useful directions where the general approximation Theorems are appli-
cable, on which we continue our investigation. Among these are

(i) Differential games, in which a standard problem is to discretize both space and time. Several
works have been done in this direction, see [6, 7, 21, 22, 24], where the convergence (and rate of
convergence, see [21]) of the values of the approximating games have been established. However,
little is known about the convergence of policies. Theorem 2.1 seems to be a suitable tool for

approaching these issues.
(ii) Discretization of stochastic games with general state and action spaces. Some results were
obtained in the case of a single controller, see Sec. 6 of Hernandez-Lerma and references therein.

Further results for stochastic games on the convergence of the value and some results on convergence .

of policies were obtained by Whitt [30], and then generalized to N person games in [31].
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