N
N

N

HAL

open science

Average performance of Morris-Pratt-like algorithms

Mireille Regnier

» To cite this version:

Mireille Regnier. Average performance of Morris-Pratt-like algorithms. [Research Report] RR~2164,

INRIA. 1994. inria-00074508

HAL Id: inria-00074508
https://inria.hal.science/inria-00074508
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074508
https://hal.archives-ouvertes.fr

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Average Performance
of Morris-Pratt-like Algorithms

Mireille REGNIER

N° 2164
Janvier 1994

~——.—— PROGRAMME 2 —— - .——

Calcul symbolique,
programmation
et génie logiciel

apport
de recherc_'he

1994

Average Performance
of Morris-Pratt-like algorithms

Mireille Régnier

INRIA, 78153 Le Chesnay, France *

Abstract

We propose a general framework to derive average performance of string searching algorithms that pre-
process the pattern. It relies mainly on languages and combinatorics on words, joined to some probabilistic
tools. The approach is quite powerful: althongh we concentrate here on Morris-Pratt-like algorithms, 1t
applies to a large class of algorithms, notably to Boyer-Moore-like algorithms. A fairly general character
distribution is assumed, namely a Markovian one, suitable for applications such as natural languages or
biological databases seaiching. The average searching time, expressed as the number of text-pattern com-
parisons, Is proven to be asymptotically K'n when the character distribution in the text’admits a limit.
When the character distributions in the texts and the patterns are both Markovian, the linearity constant
1s given by a closed formula. In the uniform case, this linearity constant is expressed as a function of the
cardinality ¢ of the alphabet.

Analyse en moyenne des algorithmes de Morris-Pratt

Nous proposons un schéma général de calcul de la complexité moyenne des algorithmes de recherche de
motifs avec preprocessing dn motif. Nous nous appuyons principalement sur les langages et la combinatoire
des mots; nous utilisons aussi certains outils de base en probabilités. Cette approche se révéle trés puis-
sante: bien que nous nous concentrions ici sur les variantes de Morris-Pratt, elle est d’utilisation générale et
s’applique notamment aux algorithmes de la classe Boyer-Moore. Les distributions de caractéres sont aussi
générales. Nous considérons des distributions markoviennes, adaptées aux applications , comme le langage
naturel ou la recherche dans des bases de données biologiques. Nous prouvons que le temps de recherche
moyen, exprimé comme le nombre de comparaisons effectuées entre le texte et le motif, est asymptotiquement.
Kn et calculons la constante de linéarité. Quand les distributions des caractéres dans le texte et le motif sont
toutes deux markoviennes stationnaires, la constante de linéarité s’exprime par une formule algébrique close.
Quand les distributions sont uniformes, ces constantes ne dépendent que de la cardinalité ¢ de ’alphabet.

*This work was partially supported by the ESPRIT III Program No. 7141 ALCOM II

Average Performance
of Morris-Pratt-like algorithms

.Mireille Régnier

INRIA, 78153 Le Chesnay, France *

Abstract

We propose a general framework to derive average performance
of string searching algorithms that preprocess the pattern. It relies
mainly on languages and combinatorics on words, joined to some prob-
abilistic tools. The approach is quite powerful: although we concen-
trate here on Morris-Pratt-like algorithms, it applies to a large class
of algorithms, notably to Boyer-Moore-like algorithms. A fairly gen-
eral character distribution is assumed, namely a Markovian one, suit-
able for applications such as natural languages or biological databases
searching. The average searching time, expressed as the number of
text-pattern comparisons, is proven to be asymptotically Kn when
the character distribution in the text admits a limit. When the char-
acter distributions in the texts and the patterns are both Markovian,
the linearity constant. is given by a closed formula. In the uniform case,
this linearity constant is expressed as a function of the cardinality ¢ of
the alphabet.

Keywords: string searching, pattern matching, generating functions, anal-
’ 2 !
ysis of algorithms, autonata, complexity, combinatorics on words.

1 Introduction

This paper is devoted to the evaluation of average performance of string
searching algorithms under two probabilistic models: K-order Markov de-
pendencies and Bernoulli stationary distributions. String searching consists

*This work was partially supported by the ESPRIT III Program No. 7141 ALCOM
10).

in finding one or all occurrences of some pattern p in a text ¢, when the
pattern and the text both are strings over a same g-alphabet A. The com-
plexity is usually evaluated by the number of character comparisons between
the text and the pattern. The worst-case is well known for most algorithms
[Riv77, KMP77]. Nevertheless, the worst case is not sure and algorithms
are usually expected to behave much better “on the average” [Yao79]. We
support this expectation for the main class of algorithms: Morris-Pratt-like
[KMP77] and our two probabilistic models. We show in both cases that the
expected number of comparisons is asymptotically K.n, where n is the size
of the text. The linearity constants are also derived. The case of Boyer-
Moore-like algorithms, [BM77, BYGR90] is deferred to a companion paper.

So far, quite a few results were available. Attempts in [Sch88, BY89a,
BY89Db] used Markov chains and hence were limited by the exponential num-
ber of states. For a pattern length m greater than 3,4, only upper or lower
‘bound could be derived. First asymptotics came out recently. The naive
algorithm (respectively Morris-Pratt{KMP77] and Boyer-Moore-Horspool
[BM77, Hor80]) were analyzed, for uniform character distributions for text
and pattern, in [Bar85] (respectively [Rég89] and [BYGR90, BYR92]). Nev-
ertheless, assumptions of a uniform distribution of characters hardly holds
for numerous applications, notably the search in -a text written with some
natural language or biological applications. First results for biased station-
ary distributions are provided in [Sch88, BY89a, BY89D], that were based
on probability, namely Markov chains . Nevertheless, for pattern lengths m
greater than 3,4, only upper or lower bound could be derived. This is due
to a combinatorial explosion of the number of states when the size m of the
pattern increases. The algebraic approach of [Rég89], using combinatorics
on words, is extended to biased stationary distributions in [Rég91]. It allows
very precise asymptotic developments of the linearity constant. Some results
on Morris-Pratt can also be found in [Han91]. The combinatorial explosion
stucks them to small patterns or asymptotic order and ,a fortiori, prevents
from a generalization to Markovian dependencies. A first generalization to
such distributions is achieved in [Rég92h], for Morris-Pratt like algorithms
and Boyer-Moore-Horspool. It is based on a langnage approach. This paper
groups all these results.)

Our approach is algebraic. As a matter of fact, the main problem for the
analysis is the huge number of states of the automaton defining each algo-
" rithm: ¢™ where m is the size of the searched pattern and ¢ the cardinality
of the alphabet. We propose a general framework hased on languages and
combinatorics of words, that drastically reduces the combinatorial explo-

sion of the problem. We propose a bootstrapping approach. We concentrate
first on the main contributions, defined by a partition of the states into a
few number of states, and refine later. Practically, the convergence to the
actual cost is very fast, and we provide a closed formula for the Morris-
Pratt algorithms. . Moreover, one can consider simultaneously all possible
lengths m. More precisely, performance show a simple dependancy on this
parameter and are simply obtained, for finite m, from the general result by
truncation of a Taylor development. We reduce the performance analysis
to word enumeration. We make use of algebra, mainly generating functions
and combinatorics on words, notably a canonical representation of periods.
Nevertheless, probabhility theory is still useful, notably for Boyer-Moore anal-
ysis. Qur scheme applies for a large class of algorithms, namely the ones
based on a preprocessing of the searched pattern, and fairly general distribu-
tions. More precisely, we assume 1-order Markovian dependencies hetween
the characters. This is suitable for applications to natural languages or
molecular biology. One interesting property of our approach is that the
computation cost for all variants steadily derives from the cost computation
of any one of them. Here, we chose Morris-Pratt variant as the initial algo-
rithm. Then, we provide a closed formula, valid for any m, for the difference
with the linearity constant of Knuth-Morris-Pratt variant. The scheme eas-
ily extends to Simon variant. We prove that the average searching time,
expressed as the number of text-pattern comparisons, is linear in the size
n of the text and compute the linearity constant. Some open problems are
also pointed out.

2 Morris-Pratt-like Algorithms

We can now define formally the “Morris-Pratt-like” algorithms [KMP77].
Remark at first that string searching algorithms are universally based on
a couple of variables (AP, PP) , namely the alignment position and the
pattern position, and they perform text-pattern comparisons: t{AP]?p[PP).
The only differences -that may be important!- rely in the way these variables
are updated.

Definition 1 A Morris- Pratt-like algorithm is a string searching algorithm
where the basic couple maintains property (P1):

Morris-Pratt property (P1)

(1) AP is increasing, with a difference upper bounded by the pattern size.

3

(2) Characters are read sequentially.

As a corollary, the only comparisons authorized satisfy:
PP = max{k;t[AP).. t{AP + k - 2] < p}

This definition is very closed to the definition of “Sequential algorithms”
given recently in [Han93]. Interestingly enough, [CGG90] algorithms satisfy
the last property in their first step.

Let us make this precise. The Morris-Pratt-like algorithms read the text
from left to right, by condition (2). This is an advantage over the naive
algorithm, as they never read backward. Condition (2) ismaintained in the
following way. After a match, both pointers move one step forward, except
when the pattern is found. After a mismatch, or when p is found, the new
alignement is determined by the largest side p” of the prefix p’ < p already
found, i.e. the largest subsequence p” such that p” is a strict prefix and
suffix of p’. This new alignment is determined from a pattern preprocessing.
A next function is defined, for any j: p’ being the prefix of length j of p, p”
its largest side, of length k& — 1, then next(j] = k. This means that the first
character of p is now aligned on the first character of the right border of p'.
Remark that whenever the value of PP is 1, PP remains equal to 1 after a
mismatch. For example, let

p = 01201201345

t = 0301201201101201201345

A first match occurs, PP and AP are shifted simultaneously to the right.
The mismatch between t[2] = 3 and p[2] = 1 implies to move PP back
to p[1] and the next mismatch: t[2] # p[l] implies that PP and AP shift
simultaneously: PP = p[l], AP = t[3]. Then, five matches occur, followed
by a mismatch, ¢[1] = p[9]. The largest side of p' = 01201201 is 01201,
hence PP becomes 6. As p[7] # t[11] and 01 is the largest side of 01201,
PP becomes 3. Finally, p[3] # t[L1] leads to PP = 1 and a mismatch. AP
shifts by 1, and the pattern is found.

It is worth noticing that this algorithm does not take into account any
information on the mismatching character. As a matter of fact, when next{j]
is k, the next comparison to be performed is t[AP]?p[k], whose result is
known to be false whenever p[j] = p[k]. This occurs in our example for

J = 6: next[6] = 3 and p[3] = p(6]. Hence, next[j] may be redefined as the
largest & such that p[1]---plk— 1} = plij + 1 —k]---p[j — 1) and p[j] # p[k],
that is precisely the Knuth-Morris-Pratt option.

3 Probabilistic Tools

3.1 Probabilistic models

We consider here three probabilistic models: stationary distributions, Bernoulli
stationary distributions and k-Markov dependencies and define them for-
mally. At first, let us remark that pattern and text both vary. Hence, one
must define two probability measures on A™: one, 1l is associated to the
text, the other, P, is associated to the pattern.

Stationary distributions

Definition 2 A tert string (X;)ien is said stationary iff it is a stationary
SCquence.

Stationary Bernoulli model Here, we assume independency between
the different positions in the text or the pattern.

Definition 3 We note {p,}eca (respectively {q.}aca) the character distri-
butions in the pattern (respectively the text). That is, for any position in the
pattern or the text, the probability that it is occupicd by a given character
a is: p, (respectively q,). When all p, (or q,) are equal, the model is said
uniform, otherwise it is biased. We note

Sii = LacaAlillas 1<i#j
T = Y aea(Patla) =8, 1<0

Remark:We assume notably that the probability of occurrence of a charac-
ter « at some position does not depend on the neighbours. Qur parameter
oy coincides, when p, = ¢,, with the parameter p.g.q considered in [BY89a]
that reduces to 5 for uniforn text and pattern distributions.

k-order Markov dependencies The model alove is too rough for many
applications. In natural languages or in DNA sequences, the frequency of a
character depends on the neighbours. For instance, in French language, a

u is almost certain after a ¢q. Let us present k-order Markov dependencies
for infinite sequences of random variables (X;)ieny. One assumes that the
distribution of values for random variable X; only depends on the values
taken by the k random variables X;_i,...,X;_1. For k = 1, this leads to
define, for any couple (a,b) € A%

Pap = Pr(Xi=b/Xicy = @) .

In our presentation, we will assume, for sake of clarity, that k¥ = 1. The
generalization to k > 1 is deferred to the Appendix. That is:

Definition 4 We assumne that the text and the pattern define two Markov
processes on A*, with transition matrices Q = ||q; ;|| and P = ||p; ;||. Let
Q and P be the probability measures so defined on A*. We assume both
processes admit a limiting process, and note (¢;)i=1..q end (p;)i=1.. 4 the sta-
tionary probabilities.

Then, w being a subword in the text (or the pattern), we have:
Eo(wlk + 1) = aj/wlk] = «;) = ¢ .

Moreover, if w is “far enough” to the right in the text: Eg(w[l] = ¢;) = ¢;.
If the size [m| of the pattern is “big enough” and w a subword starting “far
enough” to the right: Ep(w(l] = «;) = p,.

3.2 Parameters of evaluation

It is generally admitted to estimate the complexity of string searching al-
gorithms as the number of text-pattern comparisons. Definition 5 below
formalizes the intuitive computational approach followed in previous works.
As two parameters range simultaneously -the text and the pattern-, one
must be careful to the way they simultaneously tend to infinity.

Definition 5 Given two words p and t and an alyorithm A, we note CA(t, p)
the number of comparisons performed when pattern p is searched in texrt t
using algorithm A. Let C,(p) be the average value, over the set of texts of
size n, with a given character distribution U, of C(t,p)/n. We also define,
when it erists:

C(p)= uliu;o Cu(p) -

6

C(p) is called the p-linearity constant. Then, the average value of C(p),
when p ranges over all patterns of length m, is well defined:

Con = Ep[C(p)/Ipl = m] .

Finally, let
C= lim C,,
m—+0cO

when this limit exists. The algorithm is said asymptotically linear and C s
called the linearity constant of the algorithm.

The existence of such limits are not ensured and depends on the algo-
rithm and the text and pattern distributions. Also, the definitions of C(p)
(respectively C') are meaningful only for text (respectively pattern) distribu-
tions that admit a limit, e.g. stationary processes: these are the minimal as-
sumptions. With a finite alphabet, C,,(p) is a finite sum, hence well defined.
The existence of the limits C(p) and C are not guaranteed. Nevertheless,
when C(p) exists, C,, is a finite sum, hence exists. Our derivation of the
expectations above will imply, for these specific algorithms:

Vp Cﬁ(p) “n—oo C(]‘)

And we will formally prove the convergence of C,, to a constant C.

The justification of this computation order is that the algorithms consid-
ered are based on a preprocessing of the pattern, and not of the text. Then
the m characters of the pattern are compared in turn to some characters in
the text and, when a mismatch or an equality occurs, algorithmic decisions
depend on the pattern. Remark that the dual approach is also possible:
compute first the performances for a given text and a random pattern, and
then average over the texts. Final results of these two specific orders are

t

. . . c4 .
equivalent. An interesting case occurs when converges a.s. and in

, It
expectation to some random variable CA. Then, the ezistence of the lin-
earity constant can be proven, that is still computed by the method above.

This will be considered in a companion paper [RS94].

One expects the linearity constants to depend on the cardinality q of the
alphabet, and, if the distribution is not uniform, on the data distributions.
For an intricate function, one may give approximations. In works dealing
with uniform distributions [BY89a, Rég89, BY GR90], one provides a Taylor
development in 1. We formalize below the approximation we used in our

preliminary work [Rég91]:

Definition 6 A k-approzimation of the linearity constant of an algorithm
ts a formula:

Cm = 0m(L,P) + O(")

where ¢,, and € are two functions of the text and pattern distributions, as-
sumed to be Bernoulli stationary, and ¢ is independent of m.

Let us remark it is necessary that the approximation term be smaller
than the equivalent function ¢, To guarantee it (when possible), we need to
have precise knowledge on the constant. We will return to that point in the
last section.

4 Methods

4.1 State of the Art

We describe various attempts. The first difficulty is the definition of the
meaningful parameter. In the first work on average performance, [Bar85],
where Knuth-Morris-Pratt is considered, one searches the first occurrence of
the pattern. A full match is then an absorbing state and the parameter
of interest, the number of comparisons to be performed, is claimed to be
equal to the expectation of the absorbing state, defined as the num-
ber of steps the process makes from a start until absorption. This led to a
paradoxal result, where the naive algorithm appeared asymptotically better
than Knuth-Morris-Pratt, while Knuth-Morris-Pratt, by construction, al-
ways outperforms the naive algorithm for any pattern and text...The reason
is that the claim is true for the naive algorithm, false for Knuth-Morris-
Pratt. Details of the refutation may be found in [Rég89].

All other analyses consider the average number of comparisons to find
all occurrences of a given pattern. Remark that we consider algorithms
that are based on a preprocessing of the pattern and not of the text, as for
instance the one in [KR87]. Such algorithms are currently seen as a set
of automata {A,} [HU79, Tho68]: automaton A, recognizes in a text ¢,
the input, all the occurrences of pattern p. Each text-pattern comparison
leads to a state change, that also determines the next comparison to be
performed. Hence, the complexity is measured by the number of transitions.
One approach has heen to use Markov chain. One writes down for every p
the associated automaton [Bargh, BY89a, Han91] and compute its steady
state, hence C,(Aly). Let us consider the problems that occur. A crucial
parameter, for Knuth-Morris-Pratt, is the number s of characters read since

8

the last mismatch. One out of these Is compared twice to the pattern which
means that s + 1 comparisons are necessary to “get rid” of s characters.
Hence, the contribution to the cost is: (s 4 1)/s which leads to the average

cost:]
14+ E ()
s

This parameter is also called the shift. It is also crucial for many string
searching algorithms, as discussed below. The first problem cis that 1/s
is not a natural parameter. Second, Markov chains, when exact, are not
homogenous in space. L.e. different patterns define different automata and
Markov chains. It is possible to study the steady states for each subchain but,
when the length m of the pattern increases, the number of possible chains
increase rapidly. The model quickly becomes untractable. As a matter of
fact, an attempt by this method is derived in [Han89] that is stopped by
the complexity of comnputation at m = 5. In a more recent work [Han91],
one gets to m = 10 for uniform distributions, but only to m = 4 for biased
ones. In hoth cases, the linearity constant is known to order 4 at most.
This combinatorial limitation would he even more severe for more intricate
distributions, such as k-Markov dependencies. Approximations have also
been tried. [BY&9a] describes an embedding in a homogenous Markov
chain weighted by probabilities. Such an approximation is mathematically
illegal: the steady state is usually an inexact approximation of the steady
states of non homogenous Markov chains. Notably, the author in [BY89a] is
unable to prove his approximation by a linear number of states. As a matter
of fact, as seen in Section 8, our results coincide only up to order 1.

4.2 Languages and automata

We now briefly introduce onr approach. As extensively discussed in [Rég89,
Rég91], the combinatorial explosion of the number of states quickly makes
the approach via Markov chains untractable. We advocate in this paper
that string searching performance evaluation reduces to word enumeration
and should rely on combinatorics on words. To avoid the combinatorial
explosion, our aim is a simultaneous computation of the contribution of
several states of the automaton. We will classify the possible states by
a bootstrapping approach in such a way that the first classes provide the
main contribution. In the specific case of Morris-Pratt-like algorithms, the
computational process converges nicely and yields a closed formula. To make
the computation easier, we use the powerful tools on langunages: we follow

[Eil74] and associate a word w to each state of the automaton A,. Hence a
language [:,(,') is associated to each class. Also, we define a cost function ¢
for each occurrence of w € UE;') in the text. Le. the sum

Z Eo(w)¢(w) (1)

welp

where Eg(w) is the probability for w to occur in the text yields C'(p), while
the sum

Y Er(p) Y Eo(w)e(w) (2)

pEA™ we€Llp
yields the linearity constant C'. Qur main constraint on languages £}, is the
easiness of computation of (1) and (2). They will be defined from]);mc lan-
guages via word constrjictors such as concatenation, exponentiation,...Also,
our language choices will rely on the following fundamental remark. Any
backward edge to any but the initial state is associated to a self-overlapping
prefix p’ of p. Le. a prefix that factorizes p’ = wa = bu. u is called a border.
This equation has been extensively studied in [Lot83], and defines periodic
words p'. We recall in the appendix some basic results in combinatorics on
words. Also, we define the generating functions as well as the now classical
computational tools [VF90].

5 Bootstrapping computation of the Morris-Pratt
language

Our approach is based on the memoryless property of Knuth-Morris- Pratt.
I.e. given a position in the text, the number of comparisons performed at
that position only depends on a few left neighbours, at most |p|. Hence, we
will characterize the subsets of preceding words inducing extra-comparisons,
in order to get a fast convergence of the expression in (1). We first introduce
the basic notion of quasi-mismatch.

Definition 7 Given p, a quasi-mismatch is a word p'b such that:
"eA*Y be Aand p < p,pb A p .

A false-mismatch is ¢ quasi-mismatch that is a proper suffir of a p-prefiz.
Such a prefir is called « cover. A ('ovm ie said minima.l if it is the smallest

1 .
cover of a quasi-mismatch. Let C() £® and /\/, be the languages associ-
ated to quasi-mismatches, false- mz.smatchcs and covers.

10

These notions are of particular interest, as each Morris-Pratt-like algo-
rithm defines a unique surjection from the set of extra-comparisons into the
set of quasi-mismatches that are not false-mismatches. More precisely, any
extra-comparison implies a mismatch, that implies itself a quasi-mismatch.
Le. for all variants, an alignment of the text with a proper suffix p' of p, fol-
lowed by one character b such that p’b £ p occurs. Also, a quasi-mismatch
is not a mismatch iff it belongs to a (greater) matching sequence. That
is a false quasi-mismatch according to Definition 7. For example, with
p = 012012013, let ¢ = * * 012012013 * *, two quasi-mismatches 013 and
012013 are counted for 3, which belongs to a matching sequence. Both are
suffixes of a p-prefix. Minimality property plays a role in enumeration, which -
leads to define our language A'(®). We now may characterize the language
of covers and quasi-mismatches.

Theorem 5.1 Given a pattern p, the subset of quasi-mismatches is the set

ﬁ;l) =(A+--+ A")N {p-prefires} - A= (A* + - - - + A™) N {p-prefizes} .
The set of false-mismatches 1is d}z) defined by:

LOb,b) = {u(vu)b;b < vu,u # €}

L3 = Upea LA(b)
C,(D2) = L@ n {p-prefires} .

Proof:The expression of C;,l) is a straightforward consequence of the def-
inition. Now, a quasi-mismatch is associated to a prefix p”b such that p”
is selfoverlapping: 7 is simultaneously prefix and suffix. Applying classical
results on selfoverlapping or periodic words [Lot83], we get p” = uwvu that

rewrites u(wvu)!,l > 1. This yields L;,z).
Theorem 5.2 Let us define

L®®,b) = {u(vu)vgu(ve)b;b < vgu(vu),b < ve,u # €}
L, b) = {a(wa)[(wa)"va(wa)+™2b; ¢ # €,wa € P,b < va,b < wa} .

Also, we denote for i € {3,4}, and a given pattern p:

LO = U, ;e LO(0)
L;:) = LU 0 {p-prcfizes} .

Given a pattern p, a cover is non-minwmal iff it belongs to £§,) 9) E,(:).

11

Proof:Given a quasi-misimatch u embedded into two greater false-mismatches
fi and f;, we have [Lot83] fi = u(vu)!. Assume that f, # fivf;. Then
u(vu)! self-overlaps and the k-overlapping lemma in [Rég92b] implies that
f2 = f1.p}, where p; is either vu or some canonical border of u. Recip-
rocally, assume u is a non-bordered word a(wa)””‘,m > 1 and denote
vu = va(wa)*™. Then e(wa)'[(we)™va(wa)+™]2.b qualifies to be a greater
false mismatch. O

All this formalizes in language terms the reasoning of [Rég89, Rég91].
We are now ready to state (1) for Morris-Pratt algorithm.

Theorem 5.3 With the notation above:

CYP(p)=1+ Y Eq(w)~ Y Fo(w)+ Y Eo(w)+ Y. Eq(w) -

we Cg,l) me[,ﬁ,z)) 1UGE$,3) wEC&,‘)

Example:Let us show on one example how this allows quick evaluation of
the cost for a given p. Let, say, p be 01020. We denote S the set of its
prefixes, i.e. we have § = {0,01,010,0102}. Now, we get:

£M = {0,01,010,0102}.4 — {01,010,0102,01020} .

Now, [:;2) is the subset {0102} of S where u; = 0,vu; = 10,a = 2. Finally,
among the set of strict prefixes {0,01,010,0102} we obtain, no word has
several periods, i.e. no word bhelongs to E,(,a), that is: C,(,s) = (. Applying
formula 5.3, , we get: CMP(p) =1+ Zwecﬁ,‘) Eq(w) — Eg(0102). For

uniform distributions, this leads to: 1 + (% - ;}5—) - ql,. Remark that the
simplification of Zuec(’) Eq(w) is general. This will be detailed below in
'S 5p

6.1.

Proof:To state this expression, analogous to (1), we need define ¢ functions.
Note first that every character is read at least once by condition (3), which
yields the first term. Additionnally, for Morris-Pratt variant, all mismatches
imply extra-comparisons, except for the ones occurring on the first character.
I.e. we may chose ¢(w) = 1 if we only count actual mismatches. Such-
mismatches can be derived from our hasic languages Lg,'). As a mismatch
implies a quasi-mismatch, L'g,l) provides an upper bound. We now enumerate
false mismatches. We consider the primitive word = associated to v, and
rewrite p’ = zz*,r* = zx', with z < x. The condition b £ vu still holds (i.e.
we have b £), and it prevents z.#/*! to be a prefix and a false mismatch.

12

Hence ¢ should be | when we consider this unique decomposition based
on primitive words. Nevertheless, we can derive from it an other unique
decomposition, easier to compute. Consider k£ € [1...l]. By division, we
get: I = nk + r,r < k. Then, we may rewrite:

w(ve)' = ((wo) w)((vu)*)" = ((wo) u).(w.((uv) w))* = o' . (20") .

As we have | such decompositions, this allows to take rid of the condition
vu € P while changing ¢(w) = ! into ¢(w) = 1. Finally, in order to sub-
stract false-mismatches only once, we must consider only minimal covers,
or, equivalently, add non-minimal covers. O

Remark also that the definition of our languages totally relies on the
periodicities of p-prefixes. One knows how to derive all prefixes in linear
time. As all periods of each prefix can be derived simultaneously, one can
trivially compute the cost for Morris-Pratt algorithms in quadratic time, for
any given pattern, and any distribution. Remark this is closely related to
superprimitivity testing [Bre93]. Nevertheless, one is usually more interested
by the average cost, when p ranges. This derivation of the linearity constant
is presented in the next section.

6 Morris-Pratt linearity constant

We detail the performance of Morris-Pratt algorithm, from which perfor-
mance of Knuth-Morris-Pratt variant follow. Linearity constant derives from
a computation of L) languages expectations. Le. Theorem 5.3 translates
into:

Theorem 6.1 Aweraging over all patterns p of size m, we get:

CMP = | + L(l)({pq("’la}) - L(2)({Pq”"1a}) + L(a)({pq""la}) + L(4)({pqaqa})

from which CMF

‘m

derves by a truncation at order m.

6.1 Computing language expectations

Lemma 6.1 Let £ be the language U{a(va)¥;a € A* — {€},v € A*,c < va}
where ¢ is a given character in A and k an integer. The generating function

of L is:

2 F{zgDF({z,)) + 287 F({23%1)) - 28 F({2;))

13

Proof:One considers in turn v = € and » # ¢ and the result steadily follows
from our basic rules. Remark that £ contains all words in A* with all
their prefixes (respectively all their prefixes and extensions) when k is 1
(respectively k ranges over N).

a

Main contribution: L{(}) Our first result is a general formula for Cg,l). It
was derived in [Rég89, Rég91] and generalized to Markovian dependencies
in [Rég92a]:

Proposition 6.1 For Bernoulli stationary distributions:

Y Eq(w) = Eq(p(l]) - Eq(p)
weﬂg,’)

Proof:One has 34 Eo(b) = 1. Also, A7 N {p — prefixes} reduces to the
unique prefix of p of size j. This yields the first equation by elimination
of the median terms. Notice that for uniform distributions, this leads to:
1 _ 1

q qrn .

First correcting term: L(?) From now, we only consider the station-
ary case and use generating functions. Equivalent results for Markovian
dependencies will be considered in 9.

Proposition 6.2 Given « stationary distribution, one has:

5 W t2(hh 2 —t2) bty — -t
L)({Z,}) T (L= ty)(1 = t3) g;(l—f»z)U-:m)

For uniform stationary distributions, this sunplifics into

2

L (W(z)-1).
-z

L(z) = (g4~ 1)
Proof:Applying 6.1 yields the generating functions:

Y [T (tier) = UT(0) (0t = tigr) + D T(tigpr)-(titigr — tiga)
1>1 1>1

14

that rewrite 3,5, T(ti41)-T(t1)-(tits — tig1) — T(t1)(t1% — t2). Remark that
the convergence of the infinite sum is ensured, as t; = O(g~(3-1)). This
expression greatly simplifies in the uniform case, as:

I
{ bt — tiy = (¢* — q)2'*!
1+1 1 1 .z g4 S
SRR PRl par A z—1(1—qz‘+1 l—qz‘)

2

and we get (¢ — 1).7=.[W(2) — 1], which is G. Finally, truncation at order

m yields the desired contribution. O
Last refinement: L?) and L(®)

Proposition 6.3 Assume a Bernoulli stationary distribution for the text
and the pattern. Denote L(3)({z,~}) the multivariate generating function as- .
sociated to L), We have:

LOEz}Y) = Y (tguenyte = taea)T(0) + 3 (taqenytar — tar2)T(t2r)

I>1 1>1
+) (T(t2041)) — D(t2041yt2 — to41)) T80T (t21) + (bap41)t2 — t2042))T(81) + (
I>1 , :

In the uniform case, this simplifies into:

q(q—l)[z z2l+4W(z)+z41+3W(221)+E(W(221+2)—1)[221+4W(z)+z41+7W(zzl)+z2l+2W(z)W(z
>1 1>1

Proof: ;
Let b be some given character in A. Denote b any character in A — {b}.

Let [be fixed. Applying our translation rules yields, when »,v; # € the

general term (W(z%+2) — 1)2521W(221).sz(z).zb. Nowv=€¢=2>bAu=>

v # € while v = ¢ == b < v = v # €. These disjoint cases provide

the two terms zf'”W(z”“)zEW(z) and z2"PEW(22142)22'W (2%')2, which

appear to be the main contribution. Sumining yields the two expressions

above. Notice, that for any integers k and [, we have Egp(bl.b%) = tt) —tyy.

8]

Proposition 6.4 Assumc « Bernoulli stationary distribution for the text
and the pattern. Denote L({z:}) the multivariate generating function as-
sociated to L), We have:

’ tety — ¢ 1 tatsysk — tr43k
LO(z)) = — 2 —tr 2543 ‘
({ }) (1—t4)(1—t2) 1-1 k>0(1_t4+3k)(1_t7+3k)

15

In the uniform case, this simplifies into:

27

1—23

LO(z) = (g - Dy (W(o4) - 1).W(?) .

Proof:We now extend the proof of 6.2. We rewrite a(wa)' = a(wa)"(wa)*™,
with » < m. Hence, (wa)™, which may be any non-empty word in A*
is associated to any of its prefixes or extensions. In the uniform case, all
extensions contribute by 3 #7 = {£-. As (wa)™ (respectively a(wa)!) occurs

3 . .
1. Then b is determined

4 times (respectively 3 times), we get [W(z*)—1].
and ¢ — 1 choices remain for b. A~

n the hiased case, we consider the set of configurations U{u v4+3k.b}k>o'u¢(‘bf,,u.
We use again 6.1. The sum of the last two terms simplifies into —z} F({z3}), -
which yields, combined with zZF({2z3}) our first term. We derive the main

term from the first term. O

443k+3

7 Knuth-Morris-Pratt variant performance

We only need to correct slightly our languages £(*). To change Morris-Pratt
into Knuth-Morris-Pratt, one deletes from £} the words w such that the
associated quasi-mismatch wb is a skipped mismatch. Le. the largest border
p’ of w is followed by b. Hence, if character b is found in the text, comparison
2'? will not he performed. We consider in turn the two disjoint cases:

pP=¢ & weS b=<w
P#e & w= u('nu)k, w#e,b<vu

The reasoning in Section & applies to provide the expressions of the cor-
recting sets M), They will depend on the set of non-hordered words.

Lemma 7.1 We define, for i € {1,2,3}, the set of languages:

MOB) = {wsb = u,u€ S} + Usi{u(vu)k;u # €,b < vu,vu € P}

NOY(D) = Up{u(ve)Fogu(ou)el;u # €,b < vu, ngu(vn) # (ve)'}

MO, D) = {wywowb;wy € Mﬁ(l),l_) < waun } + Uks2 {u(vu)*b;u # €,b < vu € P}
NO(b,b) = Ugs1,j>2{uf(ve) vpu(vu)kb; b < vu, vpu(vu) # (vu)'}

M(3)(b, b) = Um,beM(z)(b,E)—N('z)(b,E){"’2-“’3“’2-b§ b < wi3wq}

We denote MU = Ub',;M(i)(l;,l—))'ltrzrl M) = g MO(D). Also, we set
d(w) = [%J for the second subsct of M@ and ¢(w) = 1 otherwisc.

16

LY

We can now express the language associated to-Knuth-Morris-Pratt vari-
ant:

Theorem 7.1 The lincarity constant of the Knuth-Morris- Pratt algorithm,

CfrfMP satisfies;
—CMP + CEMP = - > Z Ego(wb)Ep(wh) + Z z Ego(wb)Ep(wb)
: WGM%I) b 1U€N}(’l)
| + X Eer(w)p(w)— > Eop(w)- > Eop(w) .
weM(2) weN(2) e (3)

Proof:From tlhe two disjoint cases defined above, MV contains all skipped
mismatches. Whenever « is a non-hordered word or vu is a non-degenerated
period (i.e. k > 2),p' = €orp’ = u(vu)*~1 is the largest horder. A contrario,
if ¢ is multiperiodic, e.g. ¢ = w(vu)* = w'(v'u’) with |u’| < |ul, the smallest
one is not to he counted. By ?7, u = a(fa)™ = u'(fa)*. Using 5 yields
N0 and we have the correcting set for L{V).

We now correct L(2). Let py be a false mismatch associated to an (un-
skipped) quasi-mismatch py. py is a border of py. If it does not self-overlap
in p,, we rewrite p; = pywp;. Remark this occurs notably when p; is in
S. Otherwise, we have: p; = u(vu)f with p; = u(vu)l,1 < 1 < k. This
leads to M. Also, if u('nu)kb < p, all u(vu)lb,l < 1 < k are skipped
mismatches, except when pb = w(vu)b lies in NI We only count those
that do not lie in the previous set, i.e. those that satisfy I > k — I. This
leads to ¢ and N(). Remark that M(? is a multiset. One may have:
w(vu)ugu(vu) = u(vu)[whu(vu)]? that rewrites u'(v'u’)2. Nevertheless, the
associated quasi-mismatches are different; hence this word is to be counted
twice.

We now proceed with the correction of L and L(®. The expression
for M) steadily derives from L(3). Finally, the correcting set L™ is built
on quasi-mismatches a(wa)!(wa)™ with I,m > 1 and b < wa. Such quasi-
mismatches are not skipped. Hence, M) = @.

Lemma 7.2 Dcfine 5(2) and P(z) as the gencrating functions of non-empty
non-bordered words and primitive words. The generating function M(1) sat-

isfies, in the uniform case:

M(z) = 5(z) + If—zp(z) .

17

Additionnally,

4 gz 4 qlg— 1) S (=124 [[W) (5)

1=0 1=0

2 A W(zt) - 1) (6)
d

5(2)

P(2)

Bwhere is the Mébius function.

Proof:Given vu in P, u(vu)*~1is an extension whose characters and length
are known. Le. each extension contributes by z!. We get: ¥, pn2™(z +
z2 +...) = £ P(z). The closed formula for P(z) is classical and the one
for §(z) is derived in [Rég92h]. Deriving a closed formula for other gen-
erating functions appear non trivial. Notably, the contribution to M(?) of
words wyw; depends on properties of primitive words. As the results above
prove the feasability of the approach, we leave this open and rather provide

dominating terms for small m.

8 Bernoulli stationary distributions

We now summarize the results of the previous sections, when a general
({pa}, {¢a}) data distribution is assumed. Most of these results have been
presented in [Rég89], for uniform distributions, and [Rég91] for biased dis-
tributions.

Morris-Pratt variant To get the exact results for a fixed m, we perform a
Taylor expansion of our generating functions (see appendix). By truncation,
we get the exact values for smaller m. We group our results for the uniform
case in the table below. Values 2,3,6 and 10 are associated to the first
contributions of L), L(2) [3) and W,

MP

14+¢ 1 —¢2

1 + q—l _ {1—3 _ (1—4 + q—ﬁ

I+q g i-2¢5+49+4 10

1+ q—l _ (1—4 _ (1—(5 _ ’1—8 _ (I—lU + (1_12 + ,1—13 + q—14 + q—15 _ (1—16 + q—18 _ q—19

SlSle| w8

T4+ g g B g Uy Byl oy B 10 -7 T8 9~

18

Due to the rapidly growing size of the results in the biased case, that
hardly fit in a table, we stop our example at 1 = 6. This result can be used
to derive an approximation of CMP when m — oo. This means notably
that m is large enough in order to drop o**'. Also, the terms of the same
order must be dropped. The approximation is valid if ¢ is not too small. The
validity domain clearly depends on the distribution: when some characters

are very rare, the ¥ sequences may decrease very slowly. Finally:

Corollary 8.1 For large m, we have:

‘MP MP |, 6 2
C ~Cq " +ay — (03 — 0105 + 0204)

‘mn
and
MP | 2 3
‘6 = 1l4+0y-01004 03— 01202 + 05 — 0,02 — 0103+ 04 —~ 0104 + 0203 + 05
6 : k
—a," = 0‘1‘02 + og — ;0003 + 03 — 0105 + 0204 (7)

For uniform distributions, this development can be expressed as ¢ function
of cardinality q:

1 1

i)

1,1
14 = —(=
T (q“+f1’ q

Remark that here the results for smaller n derive by truncation of this
final result. For instance, C¥P =1+ a0y - 0y% — 010, + 73.

Knuth-Morris-Pratt variant We provide costs up to m = 6. In the
uniform case, the first contributing terms of M), M3 and N () are:

MP(z) = (¢-DAMD(E):W(2) + (¢2* + (%))
+4(2* +2* +22%) + g(g - 1)z ‘ (8) \
MP () = q(g-1)° (9)
NO=) =0 (10)
N = g(q-1)%° (11)

We get the formula

+ (-q9"2-q°5+2%q"3-q+q"4)*2"54+(-2+q'2+q°3-q'6+q°4+q°5

-

Cé‘-MP(z) = (—q”2+q)*z“2+(—q"3+2*q'2—q)*z'3+(—q“4+2=0-=q“2-.+-q“3—2*q)\

from which the constants for m < derive by truncation and substitution.
And, we get asymptotics on the constant for greater m. Also, in the biased
case, M5 = z +0(2#) which yields the first contributing term: Y- gzpg(1—
P5) = —S2,1. Finally:

Corollary 8.2 For large m, we have:

C',I,‘;MP ~1 + a1 — 821
For uniform distributions, this development can be expressed as a function
of cardinality q:

1+l 1 1+L 1
¢ ¢ ¢ ¢ ¢

It is worth noticing that the development at the first order, 1 + ay, is
an upper bound for all variants, as the existence of a quasi-mismatch is
a necessary condition for any extra-comparison. This proves notably that
Morris-Pratt-like algorithms outperform the naive algorithm, despite the
(false) paradox in [Bar85). Remark that the result for Knuth-Morris-Pratt
running under biased distributions, coincides, at the first order 1 + 0;, with
the conjecture given in [BY89a] on the basis of an approximation of the
Markov chain when p, = ¢q,. Hence, it is supported by the simulations pre-
sented there. Since our first submission to this journal [Rég91], some results
were found by [Han91]. Exact results are given for biased distributions and
m < 4. For uniform distributions, the exact costs are given up to m = 10
- that imply for greater m the asymptotic developments at order 4 given in
our table above. We are grateful to the author for pointing out an error at

order m = 6 in our asymptotic development.

9 Markov dependency

We group our results in Theorem 9.2, where an asymptotic development of
the linearity constant is given. They only depend of the initial and stationary
distributions, of the fundamental matrix of F and of length m. The order
of approximation is a simple function of the distribution.

9.1 Extended formalism

Matrices formalism For k-Markovian distributions, multivariate gener-
ating functions are not so meaningful. All occurrences of a given character

20

are not equivalent, due to the correlation to the £ previous characters. A
matrix model appears more powerful. More precisely:

Definition 8 Let £ be a language on alphabet A, with probability measure
Pand L;; = LNa;. A" N A%.a;. Let Lg,l) be the dingonal matriz:

L%” = ||pi-lcna; aezolli=1.q (14)
Let Lg’) be a matrir satisfying the equation:

IER(Li)l = LY o L. (15)
Then (Lg), Lg:')) is a matricial crpectation couple for L.

Remark that when P changes to Q, Lg) is derived from Lg) by the set
()

of substitutions: p;; — ¢i;,pi — ¢i. Similarly, one notes Ly the matrix
derived from Lg) by the substitutions: q; ; — pi i, ¢i = Piti.
Example:Assume a 1-Markov dependency characterized by (]|4ll, @ = {l¢:i ;1]
Then, the expectation couple associated to A** is: (||¢]l, (I = Q)71).

To express our results, we also define a set of opcrators:

Definition 9 Given M = ||m; ;|| « matriz and a a character from the al-
phabct A, we define the operators:

¥ Line, = |lmyj.la=all and Col, = ||m;;.1, =l . -
* Lineg(M) = M — Lines(M) and Colo(M) = M — Coloy(M)
FS(M) = Y may

Finally, assume g ; = ¢ j(e1, ..., 0k). We note My, = ||¢i;(27, .., 2P

Remark: Linc,(MoN) = Linc,(M)oN and Col,(NoM) = NoCol,(M); No
Line,(M) = Col,(N)o M, and N o Line, (M) = Col,(N)o M. Practically,

M, will be nsed with variables ry ranging on (4;;), (pi;), (¢:) and (p;).

Theorem 9.1 Lct L, M and N be three languages on a q-alphabet A. We
note (L), L("")), (MO MOy and (N NOY their crpectation couples when
P is a k-order Markov dependency, and assume then the size of all words
in L, M,N is greater than or cqual to k. Then:

21

(1) If L= MUN and if LOM =0: (L, L2 = (MO N0 p(2)).
(2) If L = M - N and if the decomposition of L onto M - N is unique:
(LM, 1y = (MW, M@)o (PRIK) . N IOy o N(2))

C(8) IfL=MleN: (LW, L®Y = (MW . plal,_, MO

9.2 Performance

Previous results do not easily generalize to Markovian distributions. A
-derivation similar to the derivation of L(?) is possible, using operators Line
and Col. But the tedious computations are left to the interested reader. An
example of such a computation can be found in [Rég92h]. We will rather
prove a set of general upper bounds.

Lemma 9.1 For k-order Markov dependencies:

Z Ef(l') Z Eg(w) = Egp(Diag(A x A)) — Egp(Diag(A™ x A™)) ,

|p|=m “’GCE;I)

Proof:Now, we rewrite the expectation as: Egp(Diag(A+---+A™"1)2).Eg(A)~
Egp(Diag((A%+---+A™)?)). The first term rewrites: Z;":_ll Eqp(Diag(A’x
A%)), and the second is the same sum where j is shifted by 1. By elimination

again, we get: Egp(Diag(A x A) — Egp(Diag(A™ x A™).

Theorem 9.2 Assume Markovian distributions for the text and the pattern.
The average number of comparisons performed by Morris-Pratt algorithm is
linear and the lincarity constant satisfics:

c =1+ anp,, —8(81,1 0 Diag(F) o (I — Diag(F)) %0 F) 4+ 0(a®) .

where a = ¢.max(3 pealen, 2 Pelle)-

Proof:We first derive the dominating term. From the definition, the expec-
tation couple for A7 is (Sp.1;Q’~!). Hence, the second term in Egp(LM)) is
O(a™). Here, 1-order dependencies increase the complexity of the compu-
tation as one must consider small words independently of the general case.
Namely, to compute Zmed?) Eg(w), let £ = {¢!*',c € A,1 > 1}. Repeat-

edly applying rule (2) yields the expectation couple (Cot(So.1); Col(Q)) for

22

a given ¢. Concatenation with ¢ # ¢ yields a multiplication by Q — Col.(Q)
or () — Diug(Q). Applying now our translation rules, we get:

Z 1[Sy 10 Diag(F)'o(F—Diag(F))] = S 0Diag(F)o(I-Diag(F))~%o(F-Diag(F)).
1>1

We have neglected words of size greater than 1. The smallest neglected
sequence is b.cb.a,a # ¢ whose expectation is upper bounded by:

S(S1.1 0 [Diag(F?) — Diag(F)?*|o F) = O(a®) .

Notice that, to get an upper bound on the contribution of a neglected lan-
guage, i.e. on its expectation, it is enough to forget some restrictive condi-
tion. Here,a rough approximation is to forget conditions on words u; and
v;1 and consider only the number of repetitions. Hence, our approximation
order.

Further terms in the development can be obtained in a similar manner,
e.g. by construction of the smaller words in sets £(*). This will be interesting
for very biased distributions. Notice that the choices and the expressions
ofthese subsets have a great influence on the convergence rate of the asymp-
totic development of the linearity constant as well as the efficiency of its
computation (notably it must not be exponential!). Finally, Knuth-Morris-
Pratt performance are easily derived from above, by a slight modification of

C;z), as detailed for stationary distributions above.

10 Conclusion

We have presented an average analysis of Morris-Pratt-like string searching
algorithms, assuming various probabilistic models: 1-order Markov depen-
dency between characters, stationary models. We provide an answer to con-
jectures over the expected behavior. The expected number of comparisons
was proved to be asymptotica.lly}zqt, and linearity constants were derived.
A closed formula was proved. An approach via word enumeration was pro-
posed that proved to be powerful, as it “sticks” to the intrinseque nature of
the algorithms. Also, it allows for using the powerful toolkit of generating
functions. Boyer-Moore-like algorithms can be analysed in the same manner:
it will be considered in a companion paper. A challenging problem is now to
.determine different range domains for mn, ¢ and the data distributions so as
the best algorithm may be chosen in any case, and notably the pathological

23

distributions. The scheme should also apply to other algorithms that pre-
process the pattern, such as the one in [CGG90] or multidimensional search
[BYR93]. It is also worth extending that work to string prefix-matching
[BCT93] or to string searching with ¥ mismatches.

References

[Bar85]

[BCT93]

[(BM77]

[Bre93]
(BY89a]

[BYS9b]

[BYGR90]

[BYR92]

[BYR93]

G. Barth. An analytical comparison of two string matching al-
gorithms. IPL, 30:249-256, 1985.

D. Breslauver, L. Colussi, and L. Toniolo. Tight Comparison
Bounds for the String Prefix-Matching Problem. In CPM’93,
volume 684 of Lecture Notes in Computer Science, pages 11-19.
Springer-Verlag, 1993. In Proc. 4-th Symposium on Combinato-
rial Pattern Matching, Padova, Italy.

R. Boyer and S. Moore. A fast string searching algorithm.
CACM, 20, 1977.

D. Breslauer. Testing superprimitivity. IPL, 44:345-347, 1993.

R. Baeza-Yates. Efficient text searching. PhD Thesis CS-89-17,
Univ. Waterloo, Canada, 1989. :

R.A. Baeza-Yates. String Searching Algorithms Revisited. In
WADS’89, volume 382 of Lecture Notes in Computer Science,
pages 75-96. Springer-Verlag, 1989. Proc. WADS’89, Ottawa.

R. Baeza-Yates, G. Gonnet, and M. Régnier. Analysis of Boyer-
Moore-type string searching algorithms. In SODA’90, pages
328-343. SIAM, 1990. Proc. Siam-ACM Symp. on Discrete Al-

gorithms, San Francisco, USA.

R. Baeza-Yates and M. Régnier. Average running time of
Boyer-Moore-Horspool algorithm. Theorctical Computer Sci-
ence, 92:19-31, 1992, special issue.

R. Baeza-Yates and M. Régnier. Fast algorithms for two dimen-
sional and multiple pattern matching. IPL, 45(1):51-57, 1993.
Preliminary draft in Proc. Swedish Workshop on Algorithm The-
ory, Bergen, Norway, 1990.

24

i)

[CGGY0]

[Eil74]
[Hang9)]

[Han91]

[Han93)

[Hor80]
[HU79]
[KMP77]
[KR87)
[Lot83]

[Rég89]

[Rég91]

L. Colussi, Z. Galil, and R. Giancarlo. -On the exact Complexity
of string matching. In FOCS’90, pages 135-143. IEEE, 1990.
Proc. 31-st Annual IEEE Symposium on the Foundations of
Computer Science.

Samuel Eilenberg. Automata, Languages, and Machines, Vol-

ume A. Academic Press, 1974.

Ch. Hancart. Sur le cas moyen des algorithmes de recherche d’un
mot dans un texte. DEA, Université de Paris VII, 1989.

Ch. Hauncart. Algorithme de Morris et Pratt et ses raffinements:
une analyse en moyenne. Research report 91.56, Université de

Paris VII, October, 1991.

Ch. Hancart. Analyse Eracte ¢t en Moyenne d’Algorithmes de
Recherche d’un Motif dans un Texte. Univ. Paris-VI, Paris,
France, 1993. These de 3eme cycle, to appear.

R. N. Horspool. Practical fast searching in strings. Software-
Practice and Erperience, 10:501-506, 1980.

J. E. Hopcroft and 1.D. Ullman. Introduction to Automata The-
ory. Addison Wesley, Reading, Mass, 1979.

D.E. Knuth, J. Morris, and V. Pratt. Fast pattern matching in
strings. SIAM J. on Computing, 6:323-350, 1977.

R. Karp and M. Rabin. Efficient randomized pattern-matching
algorithms. IBM J. Res. Dcvelopment, 31:249-260, 1987.

Lothaire. Combinatorics on Waords. Addison-Wesley, Reading,
Mass., 1983.

M. Régnier. Knuth-Morris-Pratt algorithm: an analysis. In
MF(CS’89, volume 379 of Lecture Notes in Computer Science,
pages 431-444. Springer-Verlag, 1989. Proc. Mathematical
Foundations for Computer Science 89, Porubka, Poland.

M. Régnier. Performance of String Searching Algorithms under
Various Probabilistic Models, 1991. INRIA Research Report
1565.

[Rég92a]

[Rég92bh]

[Riv77]
[RS94]

[Sch8)]
[Thot8)]

[VF90]

[Yao79]

M. Régnier. Ennmeration of bordered words. RAIRO Theoreti-
cal Informatics and Applications, 26,4:303-317, 1992.

M. Régnier. A language approach to string searching evaluation.
In CPM’92, volume 644 of Lecture Notes in Computer Science,
pages 15-26. Springer-Verlag, 1992. Proc. 3-rd Symposium on
Combinatorial Pattern Matching, Tucson, Arizona.

R. L. Rivest. On the Worst-Case Behavior of String-Searching
Algorithms. S.LA.M. J. on Comp., 6:669-674, 1977.

M. Régnier and W. Szpankowski. Exact Complexity of Sequen- .
tial Pattern Matching Algorithins, 1994. in preparation.

R. Schaback. On the Expected Sublinearity of the Boyer-Moore
Algorithm. SIAM J. on Computing, 17:548-558, 1988.

K. Thompson. Regular expression search algorithm. CACM,
11:419-422, 1968.

Jeffrey Scott Vitter and Philippe Flajolet. Analysis of algorithms
and data structures. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume A: Algorithins and Com-
plexity, chapter 9, pages 431-524. North Holland, 1990.

A. C. Yao. The complexity of pattern matching for a random
string. SIAM J on Computing ., 8:368-387, 1979.

26

Unité de Recherche INRIA Rocquencourt
Domaine de Voluccau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

Unité de Recherche INRIA Lorraine Technopole de Nancy-Brabois - Campus Scientifique
6135, rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)
Unité de Recherche INRIA Rennes [RISA. Campus Universitaire de Beaulieu 35042 RENNES Cedex (France)
Unité de Recherche INREA Rhone-Alpes 46, avenue Félix Viallet - 38031 GRENOBLE Cedex (France)
Unité de Recherche INRIA Sophia Antipolis 2004, route des Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Cedex (France)

EDITEUR
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

T RAEN R

N

