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PERTURBED OPTIMIZATION IN BANACH SPACES II:
A THEORY BASED ON A STRONG DIRECTIONAL
CONSTRAINT QUALIFICATION

OPTIMISATION AVEC PERTURBATION DANS LES ESPACES DE
BANACH II: UNE THEORIE BASEE SUR UNE CONDITION DE
QUALIFICATION DIRECTIONNELLE FORTE

J. FREDERIC BONNANS® AND ROBERTO COMINETTI!

Abstract. We study the sensitivity of the optimal value and optimal solutions of
perturbed optimization problems in two cases. The first one 1s when multipliers exist
but only the weak (and not the strong) second order sufficient optimality condition
is satisfied. The second case is when no Lagrange multipliers exist. We introduce
a directional constraint qualification stronger than in part I of this paper. We give
sharp upper estimates of the cost based on paths varying as the square root of the
perturbation parameter and, under a no gap condition, we obtain the first term of the
expansion for the cost, and also for exact and approximate solutions when multipliers
exist. We show in the appendix that the strong directional constraint qualification
is satisfied for a large class of problems, including regular problems in the sense of
Robinson.

Résumé. Nous étudions la sensibilité du cout optimal et des solutions de prob-
lemes d’optimisation dans deux cas. Le premier est quand des multiplicateurs existent
mais seule la condition suffisante d’optimalité faible est satisfaite. Le second cas est
lorsque ’ensemble des multiplicateurs est vide. Nous introduisons une condition de
qualification directionnelle plus forte que dans la premiére partie de 1’article. Nous
obtenons des estimations supérieures fortes pour le colit, basées sur des chemins vari-
ant comme la racine carrée du parameétre de perturbation et, sous une hypotheése
d’écart nul, nous obtenons le premier terme du développement du cout, et aussi des
solutions exactes et approchées quand I’ensemble des multiplicateurs n’est pas vide.
Nous montrons en annexe que la condition de qualification directionnelle forte est sat-
isfaite dans une classe de problémes assez grande, qui contient les probléemes réguliers
au sens de Robinson.

Key words. Sensitivity analysis, marginal function, square root expansion, approximate solu-
tions, directional constraint qualification, regularity and implicit function theorems, convex duality.

AMS subject classifications. 46N10, 47H19, 49K27, 49K 40, 58C15, 90C31

1. Introduction. This paper is the second in a trilogy devoted to the analysis
of parametric optimization problems of the form

(Py) mrin{f(;v, u) : G(z,u) € K}

with X and Y Banach spaces, K a closed convex subset of Y, and f(z,u), G(z,u)
mappings of class C? from X x IR into IR and Y respectively. We denote the feasible

* INRIA-Rocquencowrt, B.P. 105, 78153 Rocquencourt, France
! Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile. Partially supported by Fundacién
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2 J.F. BONNANS AND R. COMINETTI

set, value function, and set of solutions of (P, ) as

Fu) := {z€X : G(z,u) € K},

v(u) := inf{f(z,u) : z € F(u)},

Stw) = {z€F() : f(z,u) = v(w)}.
Similarly v(P), F(P), S(P) will denote the optimal value, feasible set, and solution
set of an optimization problem (P).

Our aim is to study the expansion of v(u) and possibly S(u) in the vicinity

of a local solution zo of (Py). Such sensitivity analysis usually rely (among other
assumptions) upon stability properties of the feasible set F'(u) which follow from so-

called constraint qualification conditions. In part I of this work [4] we considered the
following generalization of Gollan’s condition [10] (see also [1])

(DCQ) 0 € int[G(x0,0) + G'(x0,0)X x (0,00) — K],
which is a directional version of Robinson’s constraint qualification [14]
(CQ) 0€int[G(x0,0)+ Go(z0,0)X — K].
Under (DCQ) we obtained the following upper estimate of the optimal value:
(L1) v, (0) < (L)

where v/ (0) and v’ (0) denote the upper and lower Dini derivatives of the value
function:

v, (0) = limlsoupM,

v(u) — v(0)

v_(0)

lilg]li)nf
and (L) is the problem with linearized data:
(L) mdin{f'(xo, 0)(d,1): G'(z,0)(d,1) € Tk(G(zq,0))}.

Using duality theory we could prove that v(D) = v(L} < oo, where (D) is the problem
(D) max{L;,(z0,A,0): A € Ao},

with £ the Lagrangian and Ap the set of multipliers associated with zg, that is,
denoting by Nk (y) the cone of outward normals at a point y € K:

Lz, A u) = f(z,u) + (A, G(z,u)),
Ao :={A€Y": A€ Nk(G(z0,0)); L.(z0,A,0)=0}.

It follows that under (DCQ), v(L) is finite if and only if A is not empty.

Define a path as a mapping v — 2 from IRy to X, with 2, — 29 when u | 0. The
path is said to be feasible if G(xy, 1) € K for u small enougl. Under a strong second
order condition on the Lagrangian it can be checked [4] that any o(u)-optimal path &,
i.e. a feasible path z, such that f(zy,u) < v(u)+ o(u), satisfies also 2, = z¢ + O(u).
In this case v'(0) exists, being equal to v(L), and some estimates for the second-order
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variation of v(u) can be obtained. Under additional assumptions we could prove that
in fact

(1.2) o(u) = (0) + u u(L) + 30 (@) +o(u?),

where (Q) is a subproblem involving the expansion of order 1 and 2 of the data at
(20,0). A remarkable property in this case is that every weak limit of (zy — z0)/u,
with z, an o(u?)-optimal path, belongs to $(Q).

The available perturbation theory for nonlinear programming shows that this is
not the end of the story. Under the directional qualification hypothesis of Gollan [10]
and the weak second order sufficient condition, it appears [9, Gauvin and Janin] that
v’(0) exists but may be strictly less than v(L). In that case, a path of o(u)-solutions
satisfies only z, = z¢+0O(3/u). One can still formulate [6, Bonnans, Ioffe and Shapiro]
a subproblem (M) such that v'(0) = v(M) and S(M) coincides with the limit points
of (zy — z0)//u where z, ranges over the set of all possible o(u)-optimal paths. For
this it is necessary to assume the existence of at least one multiplier. A similar theory
for the case when no multiplier exists has been developed in [3, Bonnans): here the
variation of the cost as well that of the solutions is of order O(\/u).

The aim of this paper is to extend these two theories to the Banach space setting,.
To this end we need a constraint qualification that is still directional, but stronger
than (DCQ). Specifically, in addition to (DCQ) we need the restorability property
below that, roughly speaking, asserts that to certain almost feasible square root paths
(i.e. paths satisfying 2, = zo + O(\/ut)), one can associate a sufficiently close feasible
path. In the case of nonlinear programming, that stronger hypothesis (SDCQ) below
still reduces to the condition of Gollan {10] used in [9, 3, 6] so we recover the main
results of these three references. Square root paths have already been used in a Banach
space setting, see [2, Barbet] and loffe [11],[12]. However our qualification condition
is weaker than those in the above references.

As in part I of this paper, in our extension to the Banach space setting, an
additional difficulty related to the possible curvature of the convex K appears. To be
more precise, let us recall the definition of first and second order tangent sets:

Tk(y) = {h €Y : there exists o(t) such that y + th + o(t) € K},
2 . 9 1 ,
Tie(y,h) = {k €Y : there exists o(t°) such that y +th + Etzk +o(t*) € K}.

The fact that in general 0 does not belong to the set TZ(y,h) may cause a gap
between our upper and lower estimates. Some cases when the curvature makes no
contribution to the second order variation of the cost were analyzed in part I, yielding
the expansion (1.2) under a condition of generalized polyhedricity. We state in this
paper some results of a similar nature. On the other hand, in part III [5] we will “fill
the gap” for semt-infinite programming problems, a case where the curvature term
may be handled (under some hypotheses) to yield sharper lower estimates.

The paper is organized as follows: in §2, we describe the strong directional con-
straint qualification (SDCQ). Then in §3 we develop a perturbation theory assuming
the set of multipliers Ag to be nonempty, whereas §4 deals with the case when Ag is
empty. In both cases we obtain sharp upper estimates as well as some lower estimates
of the cost. Under a no gap condition we obtain the first term in the expansion of
the cost and approximate solutions. Finally in the appendix we give somne sufficient

conditions for (SDCQ).
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2. The strong directional qualification condition. Our upper estimates are

based on paths that vary as the square root of the perturbation parameter. Specifi-
cally, we consider paths satisfying, for given d, w in X, the two conditions:

(2.3) Ty = o + Vud + uw + o(u),
(2.4) dist(G(zy, u), K) = o(u).

Note that we can express (2.4) using the concept of second order tangent set. Namely,
if z,, satisfies (2.3) then the expansion

G(zu, 1) = G(zo,0) + VaG'.(z0,0)d + u[G(xq, 0)(w, 1) + %G’x’(xo, 0)dd] + o),

shows that (2.4) is equivalent to

(2.5) Ve(w,d) e TE(d),
where we have set ) 1
T3 (d) = ;Tk(G(xo,0), Gx(20,0)d),
Yo(w,d) = G'(z0,0)(w, 1)+ >Gl(z0,0)dd,
1
Uy(w,d) = fx0,0)(w, 1)+ = f(20,0)dd.

REMARK. The set T (d) should not be confused with the set
Ti(d) := Ti(G(20,0), G'(20,0)(d, 1))

defined in part I of this paper and which will not be used here.

DEFINITION 1. We say that 2g is restorable (with respect to G and K') if, given
a path ¢, satisfying (2.3) and (2.4), then for each v € (0, 1) sufficiently close to 1 we
can find wy, € X and a feasible path

(2.6) z) = 2o + 7Vud + uw, + o(u)

with limy_.; wy, = w.
We say that the strong directional constraint qualification (SDCQ) holds at zg
if zo 1s restorable and the weak directional constraint qualification (DCQ) holds.

We discuss some sufficient conditions for (SDCQ) in the appendix. In particular
we show that for equality-inequality constrained problems (i.e. when Y = Y} x Y
with Y] and Y2 Banach spaces and &' = {0} x K> with int(/X2) nonempty) property
(SDCQ) is equivalent to (DCQ). The sufficient condition in the appendix includes
in fact a broader class of problems. For the sake of simplicity we prefer to postulate
the restoration property.

Before proceeding with the sensitivity analysis we summarize in the next lemma
four general properties (P1) — (P4) which will be of constant use throughout the
paper. Here o(A, TH (d)) := sup{(\, k) : k € T (d)} denotes the support function of
T (d).

LEMMA 2.1. For every d € X we have
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(P1) T (d) + Tk (G(x0,0)) — Ry Gy (z0,0)d C T (d).
(P2) If (DCQ) holds then 0.€ int[Tk(G(z0,0)) — G'(z0,0)X x {1}].
(P3) TK (vd) = v*TF (d) for ally > 0.
(P4) If TF(d) # ¢ then the following are equivalent
(a) o(A T3 (d)) < 0.
(b) o(X, TE(d)) is finite.
(¢) A € Nk (G(z9,0)) and (A, GL(z0,0)d) = 0.

Proof. Properties (P1) and (P2) are straightforward consequences of [8, Prop.
3.1] and [4, Lemma B.3] respectively, while (P3) is an easy exercise.

Let us prove (P4). Since T4 (d) # ¢ the implication (a) = (b) is straightforward.
Also, the nonemptyness of T4 (d) implies G (zq,0)d € Tk (G(20,0)) and then (b) =
(¢) follows from property (P1). To prove (¢) = (a) let us pick y € T (d) and choose
v — y with 2, := G(z9,0) + tG.(20,0)d + t?y, € K. Using (c) we deduce

0> (X 2, — G(20,0)) = (M tGL(z0,0)d + t2y.) = t2(A, e),

so that (A, y) = lim{A, y;) <0 proving (). D

3. Perturbation analysis assuming the existence of multipliers. In this
section we study the case when Ag # ¢. First we give an upper-estimate of v/ (0),
which we can express as a supremum of a certain function over Ag. We then rely
on second-order conditions to obtain lower estimates for v/_(0) and to investigate the
coincidence of both estimates.

3.1. Sharp first-order upper estimates of the cost. Let Cy denote the cone
of critical directions at zg, t.e.

Co:={de X: fi(z,0)d < 0; GL(xo,0)d € Tk (G(z0,0))}.

When Ag # ¢ one has in fact f_(x9,0)d = 0 for all d € Cy. To a path satisfying (2.3)
and (2.4) is associated the constraint (2.5), whereas ¥ (w, d) is the first term of the
expansion of the cost. This leads to the problem

(L% inf {¥(w,d): Yo(w,d) € TE(d)},

and its dual:

(D% sup {LL(20,1,0) + = L/(0, 3, 0)dd — (A, TX (d))},
A€Ap 4

as well as

(L) ix;f{v(L“) :d € Co)

THEOREM 3.1. Assume Ag to be nonempty and (SDCQ). Then

v, (0) < o(L) (D?) < w(L) < oo.

= mf v
deCo

In particular, if v(L) is fintte, then

v(u) < v(0) + wv(L) + o(u).
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The theorem is an immediate consequence of the next two lemmas. The first one
gives the primal upper-estimate of v/, (0).

LEMMA 3.2. Assuming (SDCQ) we have

v} (0) < v(L) < v(L) < oo.

Proof. Let d € Cy and take a feasible w € F(L?). Using the restorability property
we may find wy, — w and feasible paths of the form

zY = 2o + 7Vud + uw, + o(u).
Expanding f(z),u) and using the fact that d is critical, it follows
v(u) < f(z,u) < f(zo0,0) + uly(wy,7d) + o(u)

so that v (0) < ¥;(wy,7yd). Passing to the limit when 7y T 1 we deduce v4(0) <
¥;(w,d), and taking the infimum over w € F(L?) and d € Cp we get

v (0) < (D).

We conclude by noting that for d = 0 problem (L?) reduces to problem (L), and that
v(L) < oo by [4, Prop. 2.2]. O )

Let us prove next the dual expression for v(L).

LEMMA 3.3. Assume Ay to be nonemply and (SDCQ). For each d € Cp we have

(i) o(D?) < v(L4).

(i) if (L%) is feasible then, for all v € (0,1), v(D?) = v(L7%) € IR and S(D%)

is nonemply and bounded.

(iii) if (L%) is infeasible then v(D7®) = oo for all ¥ > 1.

(iv) limsup, v(D74) < v(D?).
As a consequence we obtain

(8.7) o(L) = diEan:o o(D?).

Proof. Let us begin by showing that (3.7) is a consequence of (i) — (iv). The
inequality v(L) > infzec, v(D?) is obvious from (7). To show the converse inequality
it suffices to check that v(D?%) > v(L) for those d € Co such that v(D?) < co. By (i)
this implies (L7¢) is feasible for each vy € (0, 1) and then (ii) gives v(D7¢) = v(L7¢) >
v(L) for all v € (0,1). We conclude by letting v 1 1 and using (iv).

We now prove properties (2)—(iv).

(i) It suffices to show that if w and ) are feasible for (L?) and (D?) respectively,
then the dual cost is not greater than the primal one. From the primal constraint it
follows

o(A, Ty (d)) 2 (A, ¥6(w,d)),
which implies
Vy(w,d) > Yy(w,d)+ (A Ve(w,d)) = o(A, T (d))
= Ll(20,A,0) + 2L(30, 1, 0)dd — o(3, T (d)),
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as was to be proved.
(if) We first claim that v(L?) and v(D?) are finite and equal with S(D¢) nonempty
and bounded, whenever

(3.8) Y = Ry [TX(d) - G'(20,0)X x {1} — %G;’(xo, 0)dd].

In order to motivate this relation, let us consider the family of problems obtained by
perturbing additively the constraint of (L%), that is miny e x ¢(w, y) with

Vy(w,d) if Yg(w,d)+y € TE(d),
00 otherwise.

p(w,y) = {

Property (3.8) amounts to ¥ = IRy, dom ¢(w, ) so we may apply the convex
duality theorem of part I [4, Thm. A.2] to deduce

dy _ _ . -
(3.9) o(Lf) = inf o(w.0) = — min ©"(0,})

as well as the boundedness and nonemptyness of the set of dual solutions. Now we
compute

P7(0.4) = sup {{Ay) - ¥y(wd): Vo(w.d)+y€ Ty (d)},
weEXN yeY

. 1
= sup {a(/\,TQI‘ (d)) — L' (20, A, 0)(w, 1) — ;L;’(xo, X, 0)dd}.
weXx 2

Maximizing over w we deduce that ¢*(0,4) = oo if L (20, A,0) # 0, and then using
(P4) we get

o(A, T (d)) = Ll (0, X, 0) — $L(x0,A,0)dd if A € Ao,
(o ]

otherwise.

o0 =

This and (3.9) imply the equality v(L?) = v(D?). Moreover, since the dual is attained,
property (P4) shows that this common value is finite. This proves our claim.

In view of the previous discussion, to prove (i) 1t suffices to check that for each
v € (0,1) property (3.8) holds with d replaced by d, := yd. To see this let us choose
a feasible w € F(Ld), that 1s,

G'(z0,0)(w, 1) + %G;’(xo, 0)dd € TX (d).
Multiplying by v2 and using (P3) we deduce
G'(z0,0)(7*w,v?) + %GZ(J;O, 0)d,d, € TK(d,).
From this and (P1) we get
Tk (G(20,0)) = G'(z0,0)X x {1=7*} C TH(dy) = G'(20,0)X x {1} = G(z0,0)ds s,

which multiplied by R4 and using (P2) yields (3.8) for d, as required.

_(417) Let v > 1 and set dy := vd as before. If TH(d) is empty, by (P3) so is
T#(dy) and then o(A, T4 (dy)) = —o0, hence v(D7?) = co.
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Let us then assume T (d) to be nonempty. Since (L9) is infeasible, the convex
set TH(d) — G'(20,0)X x {1} does not contain %G,’x’(:ro,O)dd. But (P1) and (P2)
show that this convex set has a nonempty interior, so that the Hahn-Banach theorem
gives a nonzero p € Y that separates the set and the point, that is,

1
(310) (1, G'(z0,0)(w, 1) + 5 G{(20,0)dd) > o, TE(d)) forallwe X.
This inequality and property (P4) imply u € Nx(G(z0,0)). Also, taking the infimum
over w € X we deduce p o G(zg,0) = 0 (that is to say, p is a singular multiplier, as
defined in the next section) so that for each A € Ag and t > 0 we have X 4+ tu € A,.
Since S(D) is bounded (see [4, Prop. 3.1]) it follows that
</‘v G:‘(:lto, 0)) < 0.

With these observations property (3.10) reduces to
—_— 4 l 1
=(u, d) = (4, Giy(20,0) + 3 G20, 0)dd) — o, TS () > 0,

which multiplied by 4 and using (P3) gives
(3.11) Sty dy) > (1= 7)1, Gl(30,0)) > 0.

Let us fix A € Aq. Since =(-,d,) is positively homogeneous and concave, and since
A+ tu € Ay, it follows that

,U(D7d)

v

Vo -
Ji(20,0) + = (20, 0)ddy + (A + tp, dy)

v

/ 1 - —_
fu(xo) 0) + Ef.n (I07 O)d‘7d7 + ‘:(’\! d'Y) + t:'(/" d‘Y)

To conclude we observe that (P4) implies the finiteness of Z(A, dy), so that letting
t T oo and using (3.11) we get v(D7%) = co.

(iv) Using (P3) we obtain

w(D™) = sup {Li(z0,},0)+ T-Lelz0, 1, 0)dd - v*o(\, T (d)},
A€EAQ
< sup {(1=9%)L4 (20,2, 0) + 77 0( DY)
A€A,

= (L=7")v(L) + 7*u(D%).
As v(L) < oo, passing to the limit with v T 1 we get the desired inequality. O

REMARK. If (CQ) holds then (L?) is feasible for all d € Cy, so that v(D?) = v(L?).
Otherwise the previous lemma shows that v(D¥) = v(L7%) except for at most an
exceptional value v9. The optimal values are finite for ¥ < o and equal to +oo for
¥ > vo. The following lemma shows that vp = 0 iff 7K (d) is empty. It will be useful
in §4 as well.

LEMMA 3.4. Assume (DCQ) and suppose T4 (d) is not empty. Then, letting
dy := vd we have F(L%) # ¢ for all v > 0 sufficiently small.
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Proof. Taking k € T (d) and using (P2) we get
7—220;{(350, 0)dd — vk € Tk (G(x0,0)) — G'(20,0)X x {1}
for all ¥ > 0 sufficiently small. Then, using (P1) and (P3) we deduce
%G’I’(xo, 0)dydy € TH (dy) — G'(20,0)X x {1}.

so we may find w € X with ¥g(w,dy) € TK(d,). O

We end this section by giving a condition under which the upper estimate of
Theorem 3.1 coincides with v(L). Using (P4), it is easy to see that this condition is
satisfied in particular if (Po) is convex in the sense that for all y € K and A € Nk (y),
the mapping £(-,A,0) is convex. In that case the right-derivative v'(0) is actually
equal to v(L) (see [4, Prop. 3.2]). :

ProprosiTION 3.5. Assume (SDCQ). Then v(L) = v(L) whenever

inl sup {=L"(z0, A 0)dd — o(A, T (d))} > 0.
d€Co rgs(D) 2

Proof. By Lemma 3.3, and using the equality v(L) = v(D) we get
- d
v(L) = dlencf:CI v(D%)
> il sup {Ll(z0,3,0)+ >Ll(z0,A,0)dd — o(A, TH (d))}
d€Co AeS(D) 2

> o(L)+ inf sup {2LY(zo,)0)dd~o(X, T (d))}

deCy res(D) 2
> v(l),
and we conclude with Lemma 3.2. 0

3.2. Lower estimates and expansion of solutions. We derive next some
lower estimates for v/_(0). As v’ (0) < v/, (0) < v(L) whenever (SDCQ) holds, this is
only of interest if v(L) > —oo. We give conditions which imply v’ (0) > —o0, based
on a result of part I (Prop. 6.1) that we recall for the convenience of the reader.

For each set Q C Ay we consider the second order condition

SOC(§2) There exist a,¢ > 0 s.t. Teaécﬁ'z'(xo, X,0)dd > al|d||? YdeC,,

where
Ce:={d€ X : fi(20,0)d < elldll, Gi(zo,0)d € Tk (G(z0,0)) + lld]| By }.

Note that for ¢ = 0 the extended critical cone C, reduces to the critical cone Cjy.

PropPOSITION 3.6. Assume (DCQ), and suppose SOC(§2) holds for some bounded
Q C Ao. Then, for each O(u)-optimal path 2, we have z, = 29 + O(V/ u).

Consider now the function

[(d) := sup {£,(z0,4,0) + 5 L2(zo, A, 0)dd},
A€EAo ~



10 J.F. BONNANS AND R. COMINETTI

and the subproblems

(D) min{Il(d) : d € Cp},

(D,) min{II(d) : fi(z0,0)d < ¢, G%(z0,0)d € Tk (G(x0,0))}.

Note that v(D) is a decreasing function of ¢; in particular limov(D) < v(D).
Moreover, from (P4) we get I1(d) < v(D?) and with Theorem 3.1 we deduce

(3.12) l(ilrgw(D() < v(D) < v(L).

ProPosITION 3.7. Assume (DCQ), the ezistence of an o(u)-optimal path, and
SOC(Q) for some bounded Q@ C Ag. Then v (0) > —oo and
(2) If (CQ) holds, then for each ¢ > 0 we have

(3.13) v’ (0) > v(D,).

(31) If any of the following conditions hold:

(a) the path may be expanded as z, = 2o + Vudo + o(\/u),

(b) X is reflezive and d — L(zo, A, 0)dd is weakly L.s.c. at each d € Cy,
then the previous lower bound may be strengthened to

(3.14) v’ (0) > v(D).

Proof. Let z, be an o(u)-optimal path. By Proposition 3.6 d,, := (zy — z0)//u
stays bounded as u | 0 and then for each A € Ay we have

(3.15) v(u) f(zy,u) + o(u),
> v(0) + L(zy, A, u) — L(z0, A, 0),

1
> v(0) + u[L] (20, ,0)+ EE;'(Q:O, A, 0)dud,] + o0x(u),

with ||ox(u)||/v — O uniformly when A varies over bounded sets. From this and the
boundedness of dy, it follows that v’ (0) > —co.

To prove (i) we apply Robinson’s theorem [14] to the mapping_é'(:c) = G(z9,0)+
G (z0,0)(z — zo) in order to find &, = z, + o(y/u) such that G(Z,) € K. Then,
by suitably modifying the small term o,(u), in (3.15) we can replace d, by dy :=
(4 — z0)//u. Moreover, under {CQ) we know that Ao is bounded so that taking
supremum over A we get

v(u) > v(0) + ull(dy) + o(u),

from which (3.13) follows.

To show (i3), let us choose u; | 0 realizing the lower limit v/ (0). When (a) holds
we have d,, — do, while in case (b) we may assume that d,, — do. In both cases,
do € Cy and using (3.15) we get

1
U/_(O) Z ACL(.L'O, /\;0) + ;‘C;{(J’()l /\10)d0d07
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where in case (b) we use the weak Ls.c. of £L{x0o, A, 0)dd. Taking the supremum over
A € Ag we conclude (3.14). O

We now analyze under which conditions the gap between the estimate of Theorem
3.1 and (3.14) is null. We start with sufficient conditions for the equality between the
optimal values of the subproblems giving the upper and lower estimates. We define
extended polyhedricity of the second kind (for problem (Pg), at point z) as

0 € TK(d) for all d in a dense subset of Cy.

We note that in the definition of ertended polyhedricily given in part I, the set S(L)
was considered instead of Cy. If the constraints are unperturbed, then S{(L) = Cy
and both definitions coincide.

PROPOSITION 3.8. Assume Ag non empty and (SDCQ). If one of the two
following conditions hold:

(a) 0 € TF(d) for alld in Co,

(b) (CQ) and extended polyhedricily hold,
then v(L) = v(D) and S(L) C S(D).

Proof. From (P4) it follows that when 0 € T (d ) we have o(A, T (d)) = 0 for all
A € Ao, and then I(d) = v(D?). Consider now a minimizing sequence {d*} for (D)
satisfying o (A, T (d‘)) = 0. The existence of such a sequence is obvious in case (a),
while in case (b) 1t is a consequence of the fact that, due to (CQ) H(d) is continuous.
Along this sequence we have, by Theorem 3.1, n(d*) = v(Dd ) > v(L). 1t follows that
v(L) < v(D). Reminding (3.12), we get v(L) = v(D). The inclusion S(L) C S(D)
follows easily from this. O

The final result of this section gives a formula for the marginal value v'(0), and
analyzes the behaviour of paths of approximate solutions.

THEOREM 3.9. Assume X reflexive, the exisience of an o(u)-optimal path,
LY(zo, A, 0)dd weakly l.s.c., and one of the lwo hypotheses below:
(i) (CQ), SOC(Ao) and extended polyhedricity,
(ii) (SDCQ), SOC(R) for some bounded Q C Ao, and 0 € TX(d) for alld in Cy.
Then
(a) There exists v'(0) = v(L) = v(D), and S(L) C S(D).
(b) For every o(u)-optimal path z,, the weak accumulation points of (zy —zq)/\/u
belong to S(D).
(c) If do € S(L) and wy € S(L%), then there ezists an o(u)-optimal path of the
form zy = 2g + Vudo + o(V/u).
Proof. (a) This follows combining Theorem 3.1 and Propositions 3.7 and 3.8.
(b) Let dg be a weak limit point of (2, — z¢)//u. Expanding the Lagrangian as
in (3.15) we get v(D) = v'(0) > II(do). As dp is feasible for v(D), do is a solution of
v(D).
(c) Using (SDCQ) let us select wy, — wp and feasible paths of the form =] =
zo + vv/udo + uwy + o4 (u), with (for each v) ||oy(u)]|/u — 0 when u — 0. Take v T 1
and choose a strictly decreasing sequence u; | 0 such that

llow, ()l < Vu € [0, ui]

e

from which we construct the feasible path

2, =2kt Yu € [uk41, te)-
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Then we have
u
llzu = 20 = Vudoll € Vu(l = yi)lldoll + ullwy, [l + £, Vet € [urgr, we)

from which we get z, = 2o + /udp + o(1/u). Also, a second order expansion implies
that for u € [ug4+1, ux) we have

F(asw) = £(20,0) + Ul (z0,0)(wys, 1) + 5 f2 (20, 0)dodo] + ofu)

so that

I

f(z0,0) + u¥y(wo, do) + o(u)
v(0) + uv(L) + o(u) = v(u) + o(u).

f(zu,u)

i

The conclusion follows. 0
4. Perturbation analysis assuming nonexistence of multipliers.

4.1. Preliminaries. In this section we analyze the situation when the set of
multipliers A is empty, extending the theory of perturbed singular nonlinear programs
of [3]. The qualitative behaviour is radically different from the case studied in §3, so
that we are led to introduce some new objects. Indeed, if Ag is empty we have
v(L) = —oco and by part I it follows that v(0) = —co.

We will check that, under suitable second order assumptions, the variation of the
cost is of order O(\/u). This leads us to define, analogously to the Dini derivatives,
the following quantities:

# T v(u) — v(0)
v"(0) = thsouP——\/ﬂ )
vg(0) = 1i2113)nfﬁ“—)%0—).

We define the singular Lagrangian, the set of singular multipliers (at zo, for
problem (P;)) and the set of normalized singular multipliers as:

L(z,\u) = () G(z,u)), :
A = {Ae YT\ {0}: )€ Nk(G(xo,0)), Li(z0,A,0) =0},
Ay = {de N :IAl <L)

The next proposition shows that Ag and A® are both empty only in some very special
situations.

ProprosiTION 4.1. If both Ay and A® are empty, then the sel
A =Ry [K - G(z0,0)] — Go(zp,0)X

s dense in Y but nol equal to Y.

Proof. If A = Y we know that Ag # ¢ [13, 14]. Suppose next that 4 is not
dense in Y and select y € Y not belonging to the closure of A. By the Hahn-Banach
theorem there exists A € Y~ \ {0} such that

(A y) > (A t[k ~ G(20,0)) — Go(20,0)w) forallwe X, ke K, t >0.

Taking the supremum over w € X, we get A o G (20,0) = 0, and letting t T oo we
deduce (A, k — G(zo,0)) < 0forall k € K so that A € N (G(z0,0)) and then A® £ 6.
]
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4.2. Upper estimate of the cost. In order to obtain upper estimates for v¥#(0)
we counsider the following optimization problems:

(L) ;nm {f,(zo, 0)d : —G’,’(zo,O)dd € TK(d) = G'(z0,0)X x {1}} ,
and
(D) min {f,(:co,O)d —G”(zo,O)dde TE(d) — G'(20,0)X x {1}}.

Problem (L) gives in a natural way a primal upper-estimate of the value function (if we
have in mind paths satisfying (2.3) and (2.4)), whereas (D) will provide a comparison
with the estimate of v4(0). We remark that, when A® is not empty, problem (D) is
equivalent to

. . 1 -
(D) min {f;(xo,O)d : Ly(20,1,0) + 5 £4(x0, 1, 0dd < o(A, TH(d)), V A € A’} .

To prove this equivalence it suffices to check that the constraints in (D) and (D)
coincide, which follows from the next result applied with y = G/ (2o, O)+%va’(xo, 0)dd.

PROPOSITION 4.2. If A* # ¢ then the following are equivalent

(a) v € TK(d) - Gy (0,0)X

() (\y) <o(XNTE(D)) for all X € A°.

Proof. Both (a) and (b) are false if T4 (d) is empty so we may assume the contrary.
The implication (a) = (b) is straightforward and the converse follows by a separation
argument: indeed, if (a) fails we may find a strictly separating hyperplane, that is,
A €Y~ \ {0} and o € IR such that

("73/) >« Z (’\7 k— G;‘(l‘ol O)w)

for all k € TH (d), w € X. Taking supremum over w € X it follows that AoG’(z,0) =
0 and then taking supremum over k£ we deduce

(4.16) Ay >a>o)TED).

Using this and (P4) we get A € Ng(G(zo,0)) so that A € A* and (4.16) contradicts
(). 0

We now state the upper-estimate.
THEOREM 4.3. If (SDCQ) holds then

v#(0) < w(L) = v(D) <
so that when v(L) is finite we have
v(n) < v(0) + Vuv(L) + o(Vu).

In addition, v(L) < O iff there exists a direction d such that fi{z0,0)d < 0 and

Ty (d) # ¢.
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Proof. We begin by showing v#(0) < v(L) < 0. Let d € F(L) and select w € X
such that G'(z0,0)(w, 1) + %G;’(xo,O)dd € TX(d). Using the restorability property
we may find feasible paths of the form z) = z¢ + vy/ud + uw,, + o(u) with wy, — w
as v T 1. Expanding f it follows that

v(u) < f(x],u) = f(x0,0) + yVufi(z0,0)d + o(v/u)
from which we deduce
v*(0) < /1 (20, 0)d.

Letting ¥ 1 1 and then taking the infimum over d € F(L) we get v#(0) < v(L).
Morcover, (P2) implies 0 € F(L) so that v(L) < 0.

We prove next v(L) = v(D). Since clearly v(D) < v(L) it suffices to show
that v(L) < fi(xo,0)d for each d € F(D). Let d € F(D) and select sequences
k, € TzK(d),w,, € X such that %G’I’(xo,O)dd = lim, [k, — G'(20,0)(wn, 1)]. Using
(P2) we find that given any ¢t > 0 we will have for all n large enough

-;-tG;’(xo, 0)dd — thn + tG' (20, 0)(wn, 1) € Tk (G(z0,0)) — G'(z0,0)X x {1}

which rearranged gives

1t " t . ; v -
(4.17) gmGz(zo,O)dd S mkn + Tk (G(:l:o,O)) G'(29,0) X x {]}

Letting d; := \/t/(1 + t)d and using (P1) and (P3) we deduce
1 .
5G2(20,0)d:d, € TS (di) — G'(%0,0)X x {1}.

Hence d; € F(L) and then
(L) < f1(z0,0)ds.

Letting ¢ tend to +oo we conclude v(L) < f.(z0,0)d as required.

We conclude by proving the sufficient condition for v(L) < 0 (the necessity is
evident). If d € X is such that f.(zo,0)d < 0 and T (d) # ¢, from Lemma 3.4 we
get ad € F(L) for all a > 0 sufficiently small, so that v(L) < af.(20,0)d < 0. 0

REMARK. From the estimate (1.1) we already know that vg(0) < 0. Henceforth
Theorem 4.3 improves the upper-estimate of the cost only if (L) < 0.

4.3. Lower estimates and expansion of solutions. As in the case when
Ao # ¢, we will give a lower estimate of the cost which is sharp when the contribution
of the curvature of K happens to be null.

We consider the singular second order conditions

(SSOC) there exist a,e > 0s.t. sup [:;'(3;0, A,0)dd > a||d||2 vVdeC..
SYINY

ProPoOSITION 4.4, If (SSOC) holds, then for each O(\/u)-optimal path z, we
have z, = 20 + O(/u).
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Proof. Let z,, be an O(y/u)-optimal path and let B, := ||z — %o, dy := (2u —
z0)/Bu. For each A € A}, we have

L(zy, A u) — L(z0, A, 0),

2 -~
"_;cg(zo, A, 0)dydy + o(u) + o(52).

0

v

= ull(zq,),0)+

The small terms o(u) and o(32) may be chosen independent of A € A}, so we may
take supremum to deduce

(4.18) B2 max L(zo, A, 0)dudy < O(x) + o(B2).
AEAY,

If for some sequence u, | 0 one has Bﬁn/un 1 oo, then for n large enough d,_ is in
Cc. With (SSOC) and (4.18), we obtain a contradiction. O
To obtain the desired lower estimate for v4(0) we consider a relazed version of

problem (D), namely

(B)  min {f;(xo, 0)d : 1G2(z0,0)dd € T (G0, 0)) = C'(z0, OIX % {1}} .

As for problem (D), when A°® is not empty one may use Proposition 4.2 (with d = 0)
to derive the following equivalent formulation for (R):

(R") min {f;(xo, 0)d : £! (20, ),0)+ %ﬁg(xo,A,O)dd <Oforall Xe A’} .

deCo

Comparing with (D') and using (P4), we see that F(D') C F(R'). As these two

problems have the same cost, it follows that

(4.19) v(R) = v(R') < v(D') = v(D).

PROPOSITION 4.5. Assume there ezists an o(\/u)-optimal path z,. If (SSOC) is
satisfied then vx(0) > —oco. Moreover, if any of the two following properties hold
(a) the path may be expanded as 2, = zo + Judo + o(\/u),
(6) X 1s reflezive and for each A € A* the mapping d — L2(29, A, 0)dd is weakly
l.s.c. at every dg € Cy,
then

(4.20) v4(0) > v(R).

Proof. By Proposition 4.4 we have z, = 2o + O(\/¢) and then
v(u) = f(zu,u) + O(Vu) = f(20,0) + O(Vu)

so that v (0) > —oo.

Now let us choose u, | 0 realizing the lower limit v4(0) and let d, := (24, —
20)//tUn. When (a) holds we have d,, — dp, while in case (b) we may assume that
d, — dg for some dy € X. In both cases, dg € Cy and we have

vg(0) = fz(z0,0)do.
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On the other hand for all XA € A?®

L(2y, M u) — L(zo,A,0),
= ul!(zo,},0)+ gég(zo,A,O)dudu + o(u),

0

Y

so that, using in case (b) the Ls.c. of £2(zo, A,0)dd we get
0> £i(20,%,0) + 5 L2(z0, 1, 0)dodo.

It follows that dy € F(R'). Combining with (4.19) we get
v(R) = v(R') < fu(0,0)do = v4(0)

as was to be proved. O

REMARK. Let us put together the different relations between optimal values. If
(SDCQ) holds, and the conclusion of Proposition 4.5 is true, then

v(R) = v(R') < vu(0) < v*(0) < (D) = v(D) = v(L) 0.

In our next statement, we give a condition under which the above optimal values are
equal. This gives the first term of the expansion of the optimal value v(u).

THEOREM 4.6. Assume the ezistence of an O(\/u)-optimal path z,,, (SSOC), X
reflexive, the Ls.c. of d — LY(zo,A,0)dd for each A € A®, (SDCQ) and finally

0 € TK(d), Vd € Cy.
Then v(R) = v(D), S(R) = S(D) and
(4.21) v(1) = v(0) + Vau v(D) + o( V).

Proof. The equivalence between (1:’.) and (D) follows by noticing that when 0 €
TX(d) then (see {8, Prop. 3.1])

TK(d) = Tk (G(z0,0)) — RLGL(z0,0)d,

from which we deduce

TK(d) = G'(20,0)X x {1} = Tk (G(20,0)) — G'(z0,0) X x {1}.
The expansion of v(u) then follows from Theorem 4.3 and Proposition 4.5. O

5. Appendix: Checking the strong directional constraint qualification.
We give some sufficient conditions allowing to check (SDCQ) in the case of decomposed
constraints of the form: Y := Y; x Y5 with ¥} and Y, Banach spaces, X 1= K; x K
with K; and K, closed convex subsets of ¥; and Y,. We denote G = (G, G3) the
components of G and we consider the decomposed directional constraint qualification:

(1) 0 € int[Gi(xo,0) + G (20,0)X x {0} — K1),
(DDCQ) (1) There exists w € X such that G|(zg,0)(w, 1) € Rec(A;) and
Ga(20,0) + aG5(z0,0)(w, 1) € int Ky for some o > 0.
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where Rec(K) denotes the recession cone of K|, that is

. K
Rec(K,) :=limsup =L
t— 00 t

In order to illustrate this condition, let us mention two particular cases. The first
one is when K2 = Y> so that the constraint is only with K. Then (DDCQ) reduces
to Robinson’s condition [14]. The second case is when K, = {0}. Then (DDCQ)
() amounts to the surjectivity of Gi,(zo,0), and (DDCQ) appears as a natural
generalization of Gollan’s condition {10] used in the afore mentioned literature devoted
to nonlinear programming.

THEOREM 8.1. (DDCQ) implies (SDCQ).
Proof. We first prove that z is restorable. Let z, be a path satisfying (2.3) and
(2.4). Choose wy := y2w + (1 — ¥*)w and consider

(5.22) Yu i= 2o + YV ud + uw,.
Expanding in series we get

Glyu,u) = G(20,0) +1VuGy(20,0)d + ulg(wy, vd) + o(u),
= G(20,0) + 1VuGy(z0,0)d + Y’ u¥g(w,d) +
+ (1= 7*)uG'(20,0)(w, 1) + o(u),
= Gz(v*u),v*u) + (1 = v*)ulG' (20, 0)(@, 1) + o(w).

Using (DDCQ) (77) and (2.4) we deduce d(G1(yu,u), K1) = o(u). Then (DDCQ) (7)
allows us to use Robinson’s theorem to find a small correction 2 of y,,

(5.23) z] = 2o + 7/ ud + vwy + o(u),

such that G,(z],u) € N;.
Expanding G2(z],u) as above, we get

(5.24) Ga(z),u) = Ga(z(v*u), v2u) + (1 — ¥*)uGh(z0, 0)(w, 1) + o(u)
so that letting z := G%(xo,0)(w, 1) and using (2.4) we have
Go(z),u) =ty + (1 — v*)uz + o(u)

for some t, € Ka,t, — Ga(z0,0). Moreover, letting o, := (1 — ¥?)u/a we may write
Gao(z),u) = (1 — ay)ly + ayr, with

o =ty + az + ao(u)/(1 — ¥ )u =ty + az + of1).

By (DDCQ) (i) we have r, € K> for u small, and since also t, € K2 and ¢, € (0,1),
it follows that Ga(2},u) € K2. Hence z] is a feasible path and z is restorable.

We now check that (DCQ) is satisfied. By (DDCQ) (%) (see [14]) there exist
€ > 0 and §# > 0 such that, whenever y; € Y} satisfies ||y1|| < ¢, there exists de X
and &k, € Ky such that ||d|| < S|y || and

G1(x0,0) + G’y (z0,0)(d,0) — ky = v:.
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Now take d of the form d = d + aw. then
G1(x0,0) + G} (20,0)(d, a) = [k1 + aG'(0,0)(@, 1)) = ys
and
Ga(z0,0) + Gh(z0,0)(d, @) — y2 = Ga(20,0) + aGh(zo, 0)(w, 1) + G5(z0,0)(d, 0) — y2.

We may choose € small so that for all ||| < e, ||y2]] < € we have ||G(z0, 0)(d, 0) — y2||
small enough to deduce, using (DDCQ) (i%), that the left hand-side above is in K.
From this (DCQ) follows easily. O

We note that we do not know (even for nonlinear programming problems) if the
property d(G(zo + ud + uw, u), K) = o(u) together with (DCQ) suffices or not to
construct a feasible path of the form z, = z¢ + udo + uw + o(u) (without v and
Wy ).

ProposITION 5.2. If K := {0} x K; with int(K,) nonemply, then (DCQ),
(SDCQ), (DDCQ) are equivalent and are satisfied iff the condition below (EDCQ)
holds:

(7)) Gi(z0,0)X x {0} = Y1,
(EDCQ) (i7) There exists w € X such that G{(zo,0)(w,1) =0 and
G2(z0,0) + aG4(x0,0)(w, 1) € int K2 for some a > 0.

Proof. Obviously each of the conditions (DCQ), (SDCQ), (DDCQ), (EDCQ)
is a consequence of the one that follows. Therefore it suffices to prove that (DCQ)
implies (EDCQ). From (DCQ), Gi(20,0)X x (0,00) contains a neighborhood of 0.
Being a cone, this set is equal to Y. In particular there exist dg € X, ag > 0 such
that G{{zo,0)(do,g) = 0, i.e. G(20,0) € G{(z0,0)X x {0}. We deduce

Y) = G} (20,0)X x (0,00) = G (20,0)X x {0},

i.e. (EDCQ) (Z) holds. Now pick a € int(K3), close enough to Ga(zo,0) so that there
exist d € X and & > 0 such that (0,a — G2(z0,0)) € G(z4,0) + G'(x0,0)(d, &) — K.
It is easily checked that (EDCQ) (7%) is satisfied with w := d/&, o := &/2. O
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