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Abstract: We consider the class of C2, piecewise C?, planar paths joining two
given configurations (position, orientation, and curvature) X, and Xy, and
along which the derivative of the curvature (with respect to the arc length)
remains bounded. We admit an infinite (countable) number of pieces, as long
as the switching points do not accumulate more than a finite number of times.
For generic Xy and Xy, we prove that the path of minimal length satisfying
the constraint is such that : either it contains no line segment, or it contains
infinitely many arcs of clothoid. As a consequence, the number of C?® arcs
involved in a shortest path may not be uniformly bounded with respect to Xy

and Xj.
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Note sur les plus courts chemins dans le plan
soumis a une contrainte sur la dérivée de la
courbure

Résumé : On considere la classe des chemins C? dans le plan, C*® par mor-
ceaux, joignant deux configurations données (position, tangente et courbure)
Xo et Xy, le long desquels la dérivée de la courbure (par rapport a I'abs-
cisse curviligne) reste bornée. On admet un nombre infini (dénombrable) de
morceaux, mais seulement un nombre fini de points d’accumulations pour les
points de commutations. Pour des X et Xy génériques, on prouve que le plus
court chemin satisfaisant la contrainte est tel que : soit il ne contient pas de
segment de droite, soit il contient aussi un nombre infini d’arcs de clothoide.
En conséquence, le nombre de morceaux de classe C® constituant un plus court
chemin n’est pas uniformément borné par rapport a Xy et Xj.

Mots-clé : planification de trajectoires, commande optimale, plus courts
chemins contraints dans le plan.
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1 Introduction

Dubins [3] gave a characterization of the C*' shortest paths of bounded cur-
vature joining two given points in the plane with prescribed tangents. Reeds
and Shepp [5] have solved an extended version of Dubins’ problem where a
rear gear is added, thus allowing cusps along the path. Both problems can
be seen as rough models for the optimization of the motion of a car with or
without rear gear. Looking at both Dubins’ and Reeds and Shepp’ problems
from the point of view of optimal control theory gives much shorter proofs
of their results, as was remarked by the authors in [1] and also by Sussman
and Tang [6]. In this paper, we study here a natural generalization of Dubin’s
problem and look for the shortest C? path between two given points in the
plane with prescribed tangents and curvature, with a bound on the derivative
of the curvature (speed of the turning wheel). We will also make use of some
results from optimal control theory.

We consider a class C of C? paths (in some oriented euclidean plane) joining
two given configurations Xo = (Mo, Iy, ko) and Xy = (My, I5, k), where M,
(My) is a point of the plane, Iy (I5) the unit tangent vector and kg (ky) the
oriented curvature at point Mg (My).

Definition 1 A path belongs to class C if it satisfies the following two condi-
tions.

Regularity : the path is a C? concatenation of an at most countable num-
ber of open C® arcs of finite length, and the set of endpoints of these
ares, also called the switching points, admits at most a finite number of
accumulation points.

Constraint : the absolute value of the derivative of the curvature along the
path, with respect to the arc length, is bounded from above by a given
constant B > 0, at every point where it is defined.

We look at such a path as being the trajectory of a point M(¢) moving from
My to My at constant speed 1, so that time and arc length coincide.

In some fixed orthonormal system of coordinates, the function X (¢) = (z(¢),
y(t), a(t), k(1)) € R? x ST x IR is thus well-defined and continuous everywhere
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4 J.D. Boissonnat, A. Cerezo, €& J. Leblond

along a path of class C. Here, (x(t),y(t)) are the coordinates of M(¢) in the
plane, a(t) is the polar angle of the oriented tangent, and (%) is the signed
curvature of the path, x(¢) > 0, meaning that the car is turning left.
Between given initial and final configurations Xo = (o, yo, @, ko) and X5 =
(zs,yf, a5, K7), a path in class C, if it exists, is entirely determined by the func-
tion v(t) = k(t), defined and continuous everywhere, except at the switching
points, by the following differential system :

;v(t) = cos a(t)
X(t) _ y(t) = sin (1) (1)

If we add the boundary conditions X (0) = Xo, X(f) = Xy, and the constraint :
Vi€ 0.7), In(t)] < B, )

and if we search for a path of minimum length in class C, we have turned the
geometric problem into a classical question of optimal control theory where
the functional :

J(o)=T = /OT dt (3)

is to be minimized among the set of control functions v satisfying (2).

2 Existence of an optimal solution
System (1) may be written as :
X = F(X,v) = f(X) +vg(X),

where the analytic vector fields f and ¢ are given by :

Cos 0

sin o 0

fX)=1 " | 9X)=1,
0 1

Inria



Shortest paths in the plane with constrained derivative of the curvature 5

2.1 Complete controllability of the system

We first observe that the Lie algebra L(f,g) generated by f and g is, at each
point, of dimension 4. Indeed, VX € IR*,

0 —sina
0 . Ccos o
W) =g = | V| i == | 0|
0 0
and
cosa 0 0 —sina
sina 0 0 cosa
det B 01 0 =—1.
0 1 0 0

Moreover, the solutions of the associated autonomous system X = f(X) are
circles (of radius 1/k), thus periodic. Hence, Bonnard’s theorem [4, thm.II1.4]
applies, to establish complete controllability of (1) under the constraint (2).
This means that any Xo and X; can always be joined by a path satisfying (1)
and (2).

2.2 Existence of an optimal control

The existence of an optimal control for the problem (1), (2), (3), with given Xj
and Xy, is ensured by Fillipov’s existence theorem (see [2, 5.1.ii] for example).
Indeed, the hypotheses of the theorem are satisfied. The dynamic F(X,v) and
the cost J(v) are smooth enough, the set [— B, +B] of control is convex, and
the initial and final configurations Xy and Xy are fixed. Finally, one can easily
check the existence of a constant C' such that ‘X F(X,v) < C (|X|* 4+ 1) for
allt €10,7T], X € R* x S* xR, v € [-B,+B].

Fillipov’s theorem then asserts the existence of some 7" > 0 and of an optimal
control v*(¢) which is a measurable (thus locally integrable) function which
satisfies (2) on [0, T%]. The solution of (1) for v = v* is a path from X; to X;
which minimizes cost (3) under constraint (2).

RR n 2160



6 J.D. Boissonnat, A. Cerezo, €& J. Leblond

3 Necessary conditions for a solution to be
optimal

3.1 Pontryagin’s Maximum Principle

We are going to apply Pontryagin’s Maximum Principle as stated in [2, 5.1.i]
in order to obtain necessary conditions for a solution (i.e. a measurable control
v and a trajectory X) to minimize cost (3).

Let us denote by W, "W = (p, ¢, 8, r), the adjoint state associated to X. For a
minimum time problem, the Hamiltonian H is defined for every ¢t € [0, 7] by

H(t) =" W(t) F(X(t),v(t)) + eo,
for some real constant eq. This yields in the case of system (1) :
H(t) = p(t) cos at) + q(t) sina(t) + B(t) k() + r(t) v(t) + e . (4)

The adjomt state W is defined on [0,7] as a solution to the adjoint system
\I} =

22 which is here :

pEt; =0

) (1) =0

YO=9 50 - p(0) sinalt) = (1) coset) = pilt) ~ g (1) ?
(1) = —B(1).

In particular p and ¢ are constant on [0,7] and there exists A > 0 and ¢ €
[0, 27 such that, Vt € [0,T] :

p(t)=p=Xcos¢

q(t)Eq:A81nq§ (6)
3(t) = A sin(a(?) - 6)

() = —pB(t)

The Hamiltonian (4) can now be written as :

H(t,X,v,¥) =X cos(a—¢)+ B +rv+ep. (7)

Inria
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Let us define, for ¢ € [0,T],

M(t)= M(t, X(t),¥(t)) = ue[EnéEkB]H(t7X(t)7 v, U(t)).
Maximum Principle of Pontryagin : if v(t) is a control which minimizes
the cost and if X(t) is the associated solution of (1) then there exists a non-
zero corresponding solution W(t) of (6), and they satisfy the four conditions (i)
to (iv) :

(1) W(t) is an absolutely continuous solution of (6), eg > 0, and (V(t),eq) #
(0,0) for any t € [0,7],
(it) for almost every t € [0,T],

H{(t) = M(t),
(t11) M is absolutely continuous in [0,T] and, for almost every t € [0,7] :

dM  9H
= o (LX(0),0(8), U(1))

(iv) H(T, X(T),v(T),¥(T)) = 0.

0,

A trajectory which satisfies (¢), (¢2), (¢42), and (:v) above will be called ex-
tremal. In the sequel, we study extremal trajectories belonging to class C,
assuming that they exist.

3.2 Characterization of the arcs of the extremal solu-
tions

From (¢:2), M is constant on [0,7] and so is H from (¢¢). Thus, it follows from
(tv) that
H(t)=0, Vi e [0,T]. (8)

From (u2) and (7), we deduce that :
r(t)v(t) <0 for almost every t € [0,7]. (9)

As X belongs to class C, on each open C? portion of the trajectory, (77) implies
that v(t) = £ B with the sign of —r if r(¢) # 0 or, otherwise, that % =r(t) =

RR n 2160



8 J.D. Boissonnat, A. Cerezo, €& J. Leblond

0. If »(2) = 0 on some interval [t1,%,] C [0,77], (6) implies that 3(¢) = 0 nd
B(t) = 0. As « is continuous and A # 0 (otherwise p = ¢ = =0 a
also g = 0 since H = 0, which is forbiden by (2)), it follows that «(t) =

(mod ). Of course then, Kk = v = 0 on [¢y, t3]. Hence, on each open C? portlon
of the path, v(t) € {—B,+B,0}, and since v has to be continuous on such a
portion, it is of one of the three kinds :

L. Clt:v(t)= B, r(t) <0
2. Cl7:v(t)=—-B, r(t) >0
3.5:v(t)=0, r(t) =0

Arcs CIF are finite portions of clothoids. A clothoid, also known as a “Cornu
spiral”, is a curve along which the curvature x depends linearly on the arc
length (here equal to t) and varies continuously from —oo to +o0o. Hence, all
clothoids C1* (where v(t) = B) are translated and rotated copies of a unique
clothoid I' while all clothoids Cl~ (where v(t) = —B) are translated, rotated
and reflected copies of T'. Clothoids CIT will be called direct clothoids and
clothoids Cl= will be called indirect clothoids. The canonical clothoid T' is
chosen as the one defined by the following equations :

x(t) = /Ot cos(f’rQ)dT

y(t) = /()t31n(572)d7.

Arcs S are line segments, all with the same orientation ¢ (mod =).
From the above discussion, we have :

Proposition 1 Any extremal path in class C is the C? concatenation of line
segments (with the same orientation) and of arcs of clothoids (with k = +B),
all of finite length. The control function v is constant on each piece : v = B
on a direct clothoid Cl*, —B on an indirect one Cl=, and 0 on a line segment

S.

In the sequel, we denote by “Cl” an arc of clothoid, by “S” an open line seg-
ment, and by “.” a switching point. “Cl,” will further specify, when necessary,
the length p of the arc.

Inria
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Y

Figure 1: half of the clothoid I

In order to characterize the extremal paths, and, among them, the shortest
ones, we consider the following problem : how are these arcs Cl and S arranged
together along an extremal trajectory of class C 7

We provide in the next section a partial answer to this question.

3.3 Concatenation of arcs

Lemma 1 r =0 at any switching point (CL.Cl, CL.S or S.CI).

Proof : that » = 0 at a switching point C1.S or S.Cl follows from the fact that
r =0 on S and that r is continuous. At a switching point CI.Cl, the sign of v
changes and, by (9), also the sign of r. ]

Lemma 2 If A = 0, the extremal path consists of one or two arcs and is of

type Cl or CIL.CL

Proof :if A =0, 8 is constant on [0,7] by (6).

If 5 =0, ris constant on [0, 7] by (6). Moreover, r cannot be identically 0,
since, otherwise, (U, eq) = (0,0), which is forbiden by the Maximum Principle
(i). Hence, it follows from Lemma 1 that the extremal path cannot contain a
line segment nor a switching point and thus reduces to a single arc CI.

RR n 2160



10 J.D. Boissonnat, A. Cerezo, €& J. Leblond

If 3+#0, r(t) is a linear function of ¢ by (6) and then vanishes at most once.
Hence the extremal path is of type Cl or Cl.Cl, by Lemma 1. ]

Note that such paths are not generic : from any given initial configuration Xy
in IR?* x S* x IR, the set of final configurations {X;} one can reach through
such paths is only 1 or 2-dimensional.

Lemma 3 If an extremal path contains a line segment S, A = e¢g > 0.

Proof : along a line segment r = f = 0 and @ = ¢ (mod 7). Hence,
H=e+ech =0, withe = £1. As eg > 0 and A > 0 (from Lemma 2),
we must have ¢ = —1 and eg = A. [ |
From the proof of the previous lemma, ¢ = cos(aw — ¢) = —1 on S, and we
have :

Corollary 1 Along a line segment S, a« = ¢+ 7 (mod 27).

Lemma 4 3 —py+ qx is constant along any extremal path. If X > 0, for any
given ¢ € IR, all the points of an extremal path where 3 = ¢ lie on the same
straight line D., of direction ¢ (mod 7).

Proof : ﬂ = py — q& from (5), and p and ¢ are constant. Thus there exists
a constant ¢y such that py — gx = 3 + ¢, which proves the first part of the
lemma. If A # 0, p and ¢ cannot be both equal to 0 and py — gz = ¢ 4 ¢ is
the equation of a line of direction @« = ¢ (mod «). [ |

As a consequence, we have :

Corollary 2 Any line segment S of an extremal path is contained in Dy and
is run with o« = ¢+ ©  (mod 2 7).

Proof : since f = 0 on S, it follows from Lemma 4 that S is contained in the
line Dy of direction ¢. By Corollary 1, a = ¢+ 7 (mod 2 7). ]

Lemma 5 If A > 0, each open arc of clothoid Cl, with ¢ > 0 of an extremal
path, except possibly the initial and the final ones, intersects Dy at least once.

Inria
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Proof :let Cl, be an arc of length g of an extremal path which is not the ini-
tial nor the final arc. Both endpoints of such an intermediate arc are switching
points. Let |¢1, 5] denote the time interval during which this intermediate arc
Cl, is run. By Lemma 1, r(t;) = r(t2) = 0. As t3 — t; = p > 0, there exists at
least one t €]ty, 3], say ts, such that #(¢3) = 0 and thus, from (6), 8(t3) = 0.
Finally, it follows from Lemma 4 that M(¢3) belongs to Dy. [ |

Observe that the hypothesis A > 0 along an extremal path is true as soon as

it contains either a line segment (Lemma 3) or more than only two arcs of
clothoid (Lemma 2).

Lemma 6 An extremal path contains no portion of type S.Cl,.Cl or of sym-
metric type CIL.Cl,.S with p > 0.

Proof : assume that there exists such a portion S.Cl,.Cl and let |1, ¢5] denote
the time interval during which Cl, is run, with {; —¢; = ¢ > 0. From Lemma
2, S C Dy, and since the variables (z,y, a, k) are continuous on [t1, 5], Cl, is
tangent to Dy at M(¢1) and x(?1) = 0. Hence, M(¢;) is the inflexion point of
the clothoid supporting Cl, and Dy is the tangent to the clothoid at M(t,).
This implies that Cl, \ {M(¢1)} is entirely contained in an open half-plane
delimited by Dy, see figure 1, which contradicts Lemma 5. ]

The last lemma is in fact superseded by the following, due to H.J. Sussmann.

Lemma 7 An extremal path contains no portion of type S.Cl, with >0 (or
Cl,.S).

Proof : assume that there is a portion of type 5.Cl,, with g > 0, in an extremal
trajectory and let t; be the switching time between S and Cl,. From (6), (7),
and (8), we obtain the following expressions of the four first derivatives of r
(valid on S as well as on Cl,) :

P o= —Xsin(a—¢)
o= —Ak cos(a— @)

T = Ar*sinfa—¢)+ (Br+rvteg)uv.

RR n 2160
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Hence, the adjoint variable r is of class C® in the neighborbood of ¢;. Moreover,
on S, r=7r=0,a=¢+7 (mod2r), 3 =0, x = 0. From the above
equations, we also have ¥ =7= 0 on S, and, by continuity, at ¢;. Moreover,
T (t1) = egv. Thus, there exists an ¢, 0 < e < g, such that for ¢t € [t1,t1 + €]

we have : A
t—1
r(t) = egv(t) % +o((t —1)).
Now, from Lemma 3, ¢y > 0, so that r and v have the same sign on [t1,t; + €|
which contradicts (9). ]

A consequence of Lemmas 6 and 7 is the :

Proposition 2 If an extremal path of class C contains but is not reduced to a
line segment, then it contains an infinite number of concatenated clothoid arcs
which accumulate towards each endpoint of the segment which is a switching
point.

Proposition 2 together with the fact that a clothoid Cl is contained in a ball of
bounded diameter D¢; (depending on the parameter B) implies the following :

Proposition 3 The number n of C? pieces contained in a generic extremal
path cannot be uniformly bounded from above (with respect to Xo, Xys). Howe-
ver, if d(Mo, M) denotes the euclidean distance in the plane between My and

My, we have that :
d(M07 Mf)

n>———-.

- D¢y

Proof : either the shortest path contains (and is generically not reduced to) a
line segment, and Proposition 2 implies that there are infinitely many arcs of
clothoid, or it is made only with arcs of clothoid, the number of which clearly
depends on (and increases with) the distance between Xy and X;. The bound
from below is obvious. |

Inria
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4 Conclusion

Note that it is not clear whether or not extremal trajectories described in Pro-
position 2, and, among them, the optimal ones, belongs to class C : indeed, the
set of switching points on an optimal trajectory (points where the control v
is undefined) might even be uncountable. Moreover, we don’t know yet if the
statement of this proposition remains true whithout the assumption that the
path contains a line segment. These points are under study.

However, Propositions 2 and 3 already indicate that the optimal control asso-
ciated to problem (1), (2), (3) has a complex behaviour. Contrarily to what
occurs for Dubins or Reeds and Shepp problems, for which every optimal tra-
jectory contains at most a prescribed (finite) number of line segment and arcs
of circles, the number of switching points is unbounded here and might be
infinite.
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