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Une Méthode Inductive pour le Calcul du Trellis des Faces
d’un Polyedre

Résumé : Cet article décrit deux algorithmes qui engendrent le treillis des faces d’un polyedre.

Une procédure de Motzkin qui calcule le dual d’un polyédre est décrite et étendue afin de calculer

le treillis des faces d’un polyédre. Ce nouvel algorithme engendre récursivement le treillis. On décrit
aussl un autre algorithme, non récursive, du & Seidel pour résoudre le méme probléme.

Mots-clé : Treillis des Faces, Polyédres, Dualité, Géometrie
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1 Introduction

In this paper, a new algorithm to recursively construct the full face lattice of a polyhedron is
presented. This is an extension of the work done in [Wil93]. In section 2, the basic definitions and
properties relating to polyhedra are reviewed. This lays a foundation for the rest of the paper. In
section 3, the fundamentals for the face lattice and duality are reviewed. In section 4, the Motzkin
algorithm for computing the dual of a polyhedron is described in detail. Section 5 describes the
algorithm of Seidel for computing the face lattice. In section 6, we extend the algorithm of Motzkin
given in section 4 to produce a new algorithm to compute the face lattice. Section 7 shows an
example and section 8 is a short summary.

2 Polyhedra and Faces of Polyhedra

This section is a review of fundamental definitions relating to polyhedra and cones. I have taken
the majority of this summary from the works of Grunbaum, “Convex Polytopes” [Gru67], and of
Schrijver, “Theory of Linear and Integer Programming” [Sch86], and of Edelsbrunner, “Algorithms
in Combinatorial Geometry” [Ede87].

2.1 Notation and Prerequisites

In this presentation, polyhedra are restricted to being in the n-dimensional rational Cartesian
space, represented by the symbol Q™. All matrices, vectors, and scalars are thus assumed to be
rational unless otherwise specified.

Definition 1 The scalar product a o b is defined as aob = aTh = Z?ﬂ a;b;
ay b1
where a = and b =

an b,

2.2 The dual representations of polyhedra

Definition 2 A polyhedron, P is a subspace of Q™ bounded by a finite number of hyperplanes.
Alternate definition:

P is the intersection of a finite family of closed linear halfspaces of the form {x | ax > ¢} where a

is a non-zero row vector and c is a scalar constant.

A polyhedron P has a dual representation, an implicit and a parametric representation. The set
of solution points which satisfy a mixed system of constraints form a polyhedron P and serve as
the tmplicit definition of the polyhedron

P={z : Az =b, Cz > d} (1)

given in terms of equations (rows of A, b) and inequalities (rows of C', d), where A, C' are matrices,
and b, d and z are vectors. This form corresponds to definition 2 above, where the set of closed
halfspaces are defined by the inequalities: Ax > b, Ax < b, and Cz > d.

P has an equivalent dual parametric representation (also called the Minkowski characterisation
after Minkowski— 1896 [Sch86, Page 87]) :

P={z : e=LA+Ru+Vv, puv>0, Zl/:l} (2)

RR n " 2158
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in terms of a linear combination of lines (columns of matrix L), a convex combination of vertices!
(columns of matrix V'), and a positive combination of extreme rays (columns of matrix R). The
parametric representation shows that a polyhedron can be generated from a set of lines, rays, and
vertices.

Procedures exist to compute the dual representations of P, that is, given A, b, C,d, compute
L,V, R, and visa versa. Such a procedure will be described later in section 4 of this paper.

2.3 The Polyhedral Cone

Polyhedral cones are a special case of polyhedra which have only a single vertex. (Without loss of
generality, the vertex is at the origin.) A cone C is defined parametrically as :

C={z : =LA+ Ry, u>0} (3)

where L and R are matrices whose columns are the lines and extreme rays, respectively. If L is
empty, then the cone is pointed.
Since the origin is always a solution point in Eq. 1, the implicit description of a cone has the
following form
C={z : Az =0, Cz >0} (4)

the solution of a mixed system of homogeneous inequalities and equations.

2.4 Mapping from Inhomogeneous to Homogeneous Form

Ex
3
homogenous system C of dimension n + 1. The original polyhedron P is in fact the intersection of
the cone C with the hyperplane defined by the equality ¢ = 1. Goldman showed that the mapping

r — {o is one to one and inclusion preserving [Gol56] and thus this transformation does not

§

change the face lattice.
Given any P as defined in equation 1, an unique homogeneous cone form exists defined as
follows:

The transformation x — < ) , & > 0 changes an inhomogeneous system P of dimension n into a

¢c = {&|Az=0, Ci>0}

= homogoneous.cone P,

where & = <£§>,A:(A| _b),é:<(0j _1d> (5)

2.5 Decomposition of the Cone

Following equation 3, a cone may be decomposed into ? :
C=L+R (6)

the combination of the lineality space £ (the linear combination of the lines of C), and the ray
space R (the positive combination of the extreme rays of C). During the transformation process
from a polyhedron to a cone, polyhedral vertices get transformed into rays in the cone. Rays in
the polyhedron are also transformed to rays in the cone. Thus the ray space of the cone contains
all of the vertices and rays of the original polyhedron.

1T am taking liberty with the term vertices. Here I use the term to mean the vertices of P less its lineality space.

2The symbol ‘+’ in the equation is called the Minkowski sum, and is defined: R+ S ={r+4+s : r € R, s € S}.

Inria
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The dimensions of the lineality space and ray space are unique and separable since no irredun-
dant ray is equal to a linear combination of lines (else the ray is redundant) and no line is a linear
combination of rays (else the basis of ray space is redundant). Thus, the lineality space and ray
space of a polyhedron are dimensionally distinct and the sum of their dimensions is the dimension
of the polyhedron.

The structure of the face lattice is exclusively contained in the ray space of the cone. The
lineality space has no effect on the lattice structure other than a ‘dimensional displacement’ of the
entire lattice. Thus for computing the face lattice, the lineality space can be ignored.

2.6 Supporting Hyperplanes

Definition 3 A hyperplane ‘H cuts a set K provided both open halfspaces determined by H
contain points of K, that is H = {« | x o u = a} cuts K iff there exists x1,22 € K | (z10u <
«) and (z20u > «)

Definition 4 A supporting hyperplane is a plane which intersects the hull of a polyhedron,
but does not cut P, or in other words, does not intersect the interior of P.

Alternatively:
If ¢ is a nonzero vector, and if § = max{co z | Az < b} exists, then the affine hyperplane
H={z|cox =4} is asupporting hyperplane of P.

The supporting hyperplane is a plane which just touches the surface of the polyhedron. The
intersection of a supporting hyperplane and a polyhedron can be a point, edge, plane, or so forth.

2.7 Faces

Definition 5 A subset F of P is called a face of P if either:
(i) F is the intersection of P with a supporting hyperplane, or
(ii) F =P, or

(iii) F = lineality .space(P).

Case (iii), called the empty face, is added to force closure of the set of faces under intersection.
Faces defined by cases (iii) and (ii) are called improper faces while faces defined by case (i) are
called proper faces.

Every face of P is also a polyhedron and is called a k-face if it is a k-polyhedron. 0-faces are
vertices. 1-faces are edges. The number of faces of a polyhedron is finite.

Definition 6 The (n—1)-faces of a n-polyhedron are called facets and the 0-faces of a polyhedron
are called vertices and rays. A facet of P is a maximal face distinct from P (maximal relative to
inclusion). A minimal face of P is a nonempty face not containing any other nonempty face.

Property 1 Each minimal face of P is a translate of the lineality space of P, and has the same
dimension.

Property 2 The set of faces of a polyhedron form a lattice with respect to inclusion which is
called the face lattice.

Definition 7 f;(P) is defined as the number of k-faces of polyhedron P.

Given a polyhedron P = {z | Az > 0, Bz = 0}, there is a one-to-one correspondance between
each nonredundant inequality a;z > 0 that bounds the polyhedron and the corresponding facet F;
which is formed by intersecting the hyperplane H; = {z | a;# = 0} and P as stated in the following
theorem:

RR n " 2158
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Theorem 1 (relating non redundant inequalities and facets)

There 1s a one to one correspondance between the facets of a polyhedron P and the irredundant
inequalities of P. Given P = {x | Az > 0, Bz = 0}, facet F; = {x € P | a;z = 0} (where a; is the
i™® row of A) is in one-to-one correspondance with the inequality a;x > 0. The constraint a;z > 0
defines or determines facet F;.

Proof: Given a a;, row i of matrix A, define hyperplane H; = {z | a;z = 0}. H; does not cut
P since no z € P exists such that ;2 < 0 (definition 3). Since a; is a non-redundant row,
some point in H is also in P, thus H; is a supporting hyperplane (definition 4) and P NH;
is a face of P (definition 5). Calling that face F; we have:

Fi = PnNH;
{z e P}n{z | a;z =0}
= {z€P|az=0} -

Since F; is the result of the intersection of P with a non-redundant equality, the face is a
polyhedron of dimension one less than P and is thus a facet of P (definition 6).

O
Assuming A does not contain any redundant constraints (rows), the number of facets is equal to
the number of rows in A since each facet of P is defined or determined by a unique row of A.

In general, any face F of polyhedron P can be determined by a unique subset of rows of A. For
each face F, there exists a row submatrix A’ of A, such that F can be described as:

f:{;l‘EP|A'1‘:0} .

3 The Face-Lattice

The relation fF g, “f is a subface of ¢”, is transitive and anti-symmetric and hence can be used
to define a partial order among the faces of a polyhedron.

Property 3 (Transitive Property of the F relation)
If f-g and gt h then f+ h.

Property 4 (Anti-symmetry property of the + relation)
Ifftgand f#g thengFf.

The F relation, along with the partially ordered set of all of the faces of a polyhedron (definition 5),
form a lattice called the face lattice with the n-dimensional polyhedron at the top, and the empty
face (called the —1-face) at the bottom (figure 1).

This lattice induces a directed graph called the facial graph in which the nodes are the faces
of P and a directed edge exists between nodes f and g if and only if ¢ is a facet of f. The size of the
facial graph of P is the number of nodes and arcs and is denoted by L(P). The number of vertices
and extremal rays of a polyhedron (the 0-faces) is written as fo(P). Furthermore, since there is
a one to one correspondance between the non-redundant constraints in the implicit description
of a polyhedron and the facets of that polyhedron (theorem 1), the number of non-redundant
constraints which is the number of facets can be written as fg_1(P). It has been shown that for
a d-polyhedron P that both L(P) and the number of vertices and rays fo(P) are O(kL%J) where
k = f4—1(P), the number of constraints [Ede87].

Inria
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ray (1,0)

C
Polyhedron P

A vertex (3,3)

B

“Vertex (0,0)

4 2-face (P itself)

Facial Graph A B C 1-faces (facets)
ver(0,0) ray(l,O) ver(3,3) O-faces (vertices/rays)
Ji_ —1-face (empty face)

Figure 1: Example of a Facial Graph

3.1 Lattices of dual polyhedra

Definition 8 Two d-polytopes, P and Px are said to be dual to each other provided there exists
a 1-1 mapping between the set F' of all faces of P, and the set F'x of all faces of P, such that the
mapping is inclusion-reversing. in other words, Iy is a face of Fy iff map(F2) is a face of map(F1).

Definition 9 (Polar)
Given a closed convex set P containing the point 0, then the polar Px is defined as
Px={y|VzeP : zoy >0}

Property 5 (duality of polars)
If Px is the polar of P, then P and Px are duals of each other.

We can show the duality of a system of constraints with its corresponding system of lines
and rays. Let C be a cone and Cx be another cone created by reinterpreting the inequalities and
equalities of C as the lines and rays, respectively, of Cx. Then the two cones are defined as:

C = {z|e=LX+Ru, u>0} = {2 | Az =0, Cz > 0}
Cx = {yly=A4Ta+C"y, v>0} = {y|LTy=0, R"y>0}
The inner product of a point € C and a point y € C* can be shown to be z oy > 0 [Wil93] from

which follows
Cx={y|Veel : zoy>0}

and thus C and Cx are duals by property 5.

The definition of dual polyhedra (definition 8) states that two polyhedra are dual to each other
when there is a 1-1 mapping from faces of one to the faces of the other which is inclusion reversing.
Let M be such a mapping between polyhedra P and Q, then

(i) for each face f in P, M(f) is a face of Q.

RR n " 2158
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Figure 2: Face Lattice of Dual Polyhedra

(ii) for each incidence fF g in P, M(g) F M(f) is an incidence in Q.

This implies that the face lattice of P and Q are exact inversions of each other. Figure 2 shows two
such polyhedra. The face graph interpreted from top to bottom represents the face lattice of the
polyhedron on the top. The face graph interpreted from bottom to top represents the polyhedron
on the bottom. There is a 1-1 correspondance between facets of one polyhedron and vertices of the
other, and visa versa. The reason that duality is important is that (for instance) everything proven
for facets, by duality, is proven for rays. Duality can be looked at from the point of view of two
dual polyhedra, or from the point of view of the dual representation (constraint representation vs.
ray representation) of a single polyhedron. We make the most advantage of the second point of
view.

Inria
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4 Computation of Dual Forms

An important problem in computing with polyhedral domains is being able to convert from a do-
main described implicitly in terms of linear equalities and inequalities (equation 1), to a parametric
description (equation 2) given in terms of the geometric features of the polyhedron (lines, rays,
and vertices). Inequalities and equalities are referred to collectively as constraints. An equivalent
problem is called the convez hull problem which computes the facets of the convex hull surrounding
given a set of points.

McMullen [McM70, MS71] showed that for any d-polytope with n vertices, the number of k-
faces, fi is upper bounded by the number of k-faces of a cyclic d-polytope with the same number
of vertices. One of the implications of this is that the number of facets, fs_1 = O(nL%J ).

The algorithms to solve this problem are categorized into one of two general classes of algo-
rithms, the pivoting and non-pivoting methods [MR80]. The pivoting methods are derivatives of
the simplex method which finds new vertices located adjacent to known vertices using simplex
pivot operations.

The nonpivoting methods find the dual by first setting up a tableau in which an initial poly-
hedron (such as the universe or the positive orthant) is simultaneously represented in both forms.
The algorithm then iterates by adding one new inequality or equality at a time and computing the
new polyhedron at each step by modifying the polyhedron from the previous step. The order in
which constraints are selected does not change the final solution, but may have an effect on the
run time of the procedure as a whole. The complexity of this problem is known to be O(nL%J),
where n is the number of constraints and d is the dimension. This is the best that can be done,
since the size of the output (i.e. the number of rays) is of the same order.

The nonpivoting methods are based on an algorithm called the double description method inven-
ted by Motzkin et al. in 1953 [MRTT53]. Motzkin described a general algorithm which iteratively
solves the dual-computation problem for a cone. (Since polyhedra may be converted to cones, it
works for all polyhedra.) In each iteration, a new constraint is added to the current cone in the
tableau. Rays in the cone are divided into three groups, Rt the rays which verify the constraint,
R° the rays which saturate the constraint, and R~ the rays which do not verify the constraint. A
new cone is then constructed from the ray sets R, R®, plus the convex combinations of pairs of
rays, one each from sets 2t and R~. The main problem with the nonpivoting methods is that they
can generate a non-minimal set of rays by creating non-extreme or redundant rays. If allowed to
stay, the number of rays would grow exponentially and would seriously test the memory capacity
of the hardware as well as degrade the performance of the procedure. Motzkin proposed a simple
and rather elegant test to solve this problem. He showed that a convex combination of a pair of
rays (r~ € R, rt € R*) will result in an extreme ray in the new cone if and only if the minimum
face which contains them both: 1) is dimension one greater than r~ and r*, and 2) only contains
the two rays = and r*. This test inhibits the production of unwanted rays and keeps the solution
in a minimal form.

Seidel described an algorithm for the equivalent convex hull problem [Sei91] which executes in
O(nL%J) expected running time where n is the number of points and d is the dimension. This is
provably the best one can do, since the output of the procedure is of the same order. He solves
the adjacent ray problem (the adjacent facet problem in his case) by creating and maintaining a
facet graph in which facets are vertices and adjacent facets are connected by edges. It takes a little
extra code to maintain the graph, but then he does not need to do the Motzkin adjacency test on
all pairs of vertices (facets).

4.1 The Motzkin algorithm

The nonpivoting solvers successively refine their solution by adding one constraint at a time and
modifying the solution polyhedron from the previous step to reflect the new constraint. An inequa-
lity a”x > 0 is co-represented by the closed halfspace H* which is the set of points {z : a’z > 0}.

RR n " 2158
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Likewise the equality a”2 = 0 is co-represented by the hyperplane H which is the set of points
{z : a¥z = 0}. At each step of the algorithm, a new inequality or equality (represented by either
H* or H, respectively) is introduced into the system. The polyhedron P = £+R (the combination
of its lineality space and ray space) is constrained by the new constraint by intersecting P with
either Ht or H to produce a modified polyhedron P’ = £’ + R/,

The algorithm Dual in figure 3 gives the algorithm given by Motzkin to find the dual of a
set of constraints A. In Dual, there are three procedures which alter the polyhedron. They are
ConstrainL which constrains the lineality space, AugmentR which augments the dimension
of the ray space, and finally ConstrainR which constrains the ray space. These procedures are
discussed below in greater detail.

The ConstrainL procedure shown in figure 5 constrains the lineality space L by slicing it with
a new constraint, and if the new constraint cuts I, then L’s dimension is reduced by one and a
NEW TaY Tpey 18 generated which is added to the ray space. It is fairly straightforward and runs in
O(n) time where n is the dimension of the lineality space.

There are two procedures which perform transformations on the ray space. The first one is
AugmentR shown in figure 6 which adds a new ray r,., created by ConstrainL to the ray
space. When 7, 1s added to the ray space R, it increases the dimension of R by one. It is of
complexity O(r) time, where r is the number of rays.

The second operation ConstrainR. shown in figure 7 constrains the ray space by slicing it with
the hyperplane H and discarding the part of the ray space which lies outside of constraint. For
inequalities, the part of the polyhedron which lies outside of the halfspace H7T is removed. For
equalities, the part of the polyhedron which lies outside of the hyperplane H is removed. In either
case, the new face lying on the cutting hyperplane surface is computed. ConstrainR computes
a new pointed cone by adding a new constraint. Rays which verify and saturate the constraint
are added. Rays which do not verify the constraint are combined with adjacent rays which verify
the constraint to create new rays which saturate the constraint. Motzkins adjacency test is used
to find adjacent pairs of rays. The Motzkin adjacency test is used to test every pair of rays to
determine if that pair will combine to produce an extreme ray or not. This is done by computing
what constraints the pair of rays have in common and making sure that no other ray also saturates
that same set of constraints. Thus the list of rays produced by ConstrainR. is always extreme
(non-redundant). The entire ConstrainR procedure has an O(n®k) complexity where n is the
number of rays and £ is the number of constraints. Much of this time is spent in performing the
adjacency tests.

The procedure Combine shown in figure 4 is where all of the actual computation takes place.
It uses as input two rays, r¥ and r~, as well as a constraint a. It then computes the ray = which
firstly is a linear combination of 7+ and r~ (r= = A;r* + X277 ), and secondly, saturates constraint
a, (a¥'r==0).

Inria
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Procedure Dual(A), returns L, R

L := basis for d-dimensional lineality space.
R := point at the origin.
For each constraint a € A Do
Pnew := ConstrainL(L, a)
If rpew # 0 Then AugmentR(R, a, rpey) Else ConstrainR (R, a)
End
Return L and R.

Figure 3: Procedure to compute Dual(A)

Procedure Combine(r;, 72, a), returns rs

D = GCD(ary,alrs)
)\1 = ClTT’Q/D

)\2 = —aTrl/D

r3 = AT+ Aoro

Figure 4: Procedure to compute Combine(ry, r2, a)

Procedure ConstrainL(L, a), modifies L, returns ryey

Find an {4 € L such that aTl; # 0, ({1 does not saturate constraint a)
If {1 does not exist Then (LN H is L itself and 7y, is empty) Return 0.
L' := empty.
For each line ls € L such that I # 11 Do
L' := L' 4+ Combine(ly, [z, a)
End
If a”ly >0, (l; verifies constraint a) Then Create ray rpe, equal to [
Else (aTl; < 0) Create ray 7., equal to —Iy
L.=1r
Return 7,00

Figure 5: Procedure to compute ConstrainL(L, a)

Procedure AugmentR(R, a, rpey), modifies R

Set R/ := empty.

For each ray » € R do
If a¥r =0 Then R := R +r
If X'y > 0 Then R := R' + Combine(r, —Tnew, a)
If a’r < 0 Then R’ := R’ + Combine(r, 7y, a)

End
If @ is an inequality Then R’ := R' + rpcq
R=R

Figure 6: Procedure to compute AugmentR(R, a, ryeq)

RR n " 2158
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Procedure ConstrainR(R, a), modifies R

Partition R = Rt + R® + R~.
RY:={r : r € R,a”r = 0}, the rays which saturate constraint a.
Rt :={r : r € R,a”r > 0}, the rays which verify constraint a.

R~ :={r : r€ R, aTr < 0}, the rays which do not verify constraint a.

If constraint @ is an inequality, Then set R’ := Rt + R°.
Else (constraint a is an equality) set R’ := R°.
For each ray rt € Rt do
For each ray r— € R~ do
Adjacency test on (rt,r7)
¢ := set of common constraints saturated by both (r*,r™)
Foreachrayr € R : r#rt, r#r~ Do
If r also saturates all of the contraints in set ¢ Then
(r* and r~ are not adjacent.) Continue to next ray r~.
End
(7T and r~ are adjacent.) R’ := R’ + Combine(r*, r~, a)
End
End
R=R

Figure 7: Procedure to compute ConstrainR(R, a)

Inria
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5 Previous Art in Lattice Construction

Grunbaum stated the basic theorem which, given a set of vertices, generates all faces of the minimal
polytope containing those vertices. He did this in an iterative fashion, adding one vertex at a time
to an existing polyhedron P, and computing the faces of the new polyhedron Px given the new
point and the faces of the old polyhedron P. This generates the faces of the facial graph but not
the arcs (incidences) between the faces.

Before giving the theorem, three definitions are needed. Letting P be a n-polytope, H be a
hyperplane such that H does not cut P, and V be a point, then the following definitions are given:

Definition 10 V is beneath H (with respect to P) provided V belongs to the open halfspace
determined by H which contains internal P. [inside]

Definition 11 V is beyond H (with respect to P) provided V belongs to the open halfspace
determined by H which does not meet P. [outside]

Definition 12 V is on H provided V belongs to the hyperplane H. [on]

The relation between the set of faces of a polytope P and that of the convex hull of P plus one
additional point V is given by the following theorem:

Theorem 2 (Theorem by Grunbaum)
Let P and Px be two n-polytopes in Q", and let V be a vertex of Px but not of P, such that
Px = convex.hull(P U {V'}). Then,

(i) aface F of P is also a face of Px iff there exists a facet F' of P such that F' in F' and V is
beneath F';

(ii) If F is a face of P then F'x = conv(F U{V}) is a face of Px iff either

(a) V isin affine.hull F, or

(b) among the facets of P containing F', there is at least one such that V is beneath it
and at least one such that V is beyond it.

(iii)  each face of P* is generated by either rule (i) or (ii) above.

5.1 Seidel’s method

Seidel added the generation of incidences to the procedure of Grunbaum, and thus was able to
generate the full face lattice (faces and incidences) of a polytope surrounding a given set of points.
Like the Grunbaum procedure, the Seidel procedure adds one point p at a time to P to get P/,
iteratively building up the lattice. The procedure AddPoint which updates a list of faces and
incidences, given a new point, is presented on the next page.

When adding a new point to an existing polytope, the algorithm differentiates two cases:
(1) the point is not in the affine hull of P, and
(2) the point is in the affine hull of P.
In the first case, the polytope will grow a dimension. In the second case, the dimension of the
polytope stays the same.
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Procedure AddPoint(P, p), Returns P’ = convex.hull(P U p)

If p not in affine.hull(P) Then
(P’ is created in which dim(P’) = dim(P)+1).
For every face f of P Do
(Find faces of P’ when p is not in affine.hull(P))
f' = f is a face of P’
" = convex.hull(f U {p}) is a face of P’
For pairs of faces f and ¢ of P Do
(Find incidences of P’ when p is not in affine.hull(P))
Let f/,f".g',g" be faces of P’ induced by faces f and g in P
f'rg¢ in P iff ftgin P.
f"Fg¢"in Piff fgin P.
f'Ef"in P'iff fin P.
Else (p is in affine.hull(P))
(P’ is created in which dim(P’) = dim(P)).
Classification of facets of P
For each facet f of P Do
Let hyperplane h = affine.hull(f).
f is [out] if p is beyond h.
f is [on] if p is contained in h.
f is [in] if p is beneath h.
End
Classification of other faces of P
For each k-face e of P which is not a facet (k <dim(P)— 1) Do
e is [out,on] if e is bounded by [out] and [on] faces.
e is [in,on] if e is bounded by [in] and [on] faces.
e is [in,out] if e is bounded by [in] and [out] faces.
e is [in,on,out] if e is bounded by [in], [on], and [out] faces.
End
For every face f of P Do
(Find faces of P’ when p is in affine.hull(P))
' = fis a face of P’ if f has a [in] component.

" =convex.hull(f U {p}) is a face of P'if fis [on] orif f =P
For all pairs of faces f and g of P Do
(Find incidences of P’ when p is in affine.hull(P))
Let f, f", ", ¢', 4", ¢""" be faces induced in P’ by faces f and g in P
S g
frrg"iftf=g
JE g g
JUE g g
f" E g'" iff there exists subface x of ¢ where fFz b g
1R g fl g
End
End

" =convex.hull(f U {p}) is a face of P’ if f has [in] and [out] components.

Figure 8: Seidel’s algorithm
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Figure 9: Facial Graphs for a Face and its Facets

6 The Inductive Face Lattice Algorithm

A modification of Motzkin’s Dual algorithm (presented in section 4.1) can be used to produce the
entire face lattice of a polyhedron using an inductive constructive method.

The algorithm presented here constructs the face lattice of a polyhedron from a list of cons-
traints. A polyhedron P is stored as a homogenous cone represented by the union of the lineality
space L and the ray space R with an added data structure to represent the lattice. The lattice is
represented by a hierarchy of faces with incident faces connected with pointers. The top of the face
lattice is the whole polyhedron and at the bottom are the extreme rays of R. (The empty face is
not represented.) Each face in the lattice has a dimension corresponding to its level in the lattice.
Thus, a lattice for a d-dimensional ray space would have d + 1 levels, the levels having dimensions
d,d—1,---,0, from top to bottom.

6.1 Data structure for face lattice

A k-face is composed of a set of (k — 1)-facets (subfaces of dimension k£ — 1) as shown in figure 9.
F‘k:{f(])c_1 f_la"'ufr’:_l} )

A facial graph, a piece of which is shown in figure 9, consists of nodes representing faces and
edges representing incidences from a face to its facets. Each face is a node in the face lattice and
is represented by a data structure with the following fields :

dimension The dimension of this face.

flags A set of face attributes in the context of the current constraint. Attributes defined are:
in: set when this face verifies the constraint,
on: set when this face saturates the constraint,
out: set when this face does not verify the constraint.
A face can have any non-empty combination of these attributes in its flag set.

facets The set of facets (of dimension one less than the dimension of this face) that are incident
to this face. This field is the head of a linked list of pointers to subface nodes in the face
lattice (figure 9).

ray (Only used for dimension 0 faces). The extreme ray in R corresponding to this face.

Using a standard “dot notation”, these fields will be referred to as F.dim, F.flags, F .facets,
F'.ray in the remainder of this paper.

6.2 Modifications to the Dual procedure

The main procedure for creating the face lattice of a polyhedron is the same as the procedure
Dual described in section 4.1 and shown in figure 3. Dual calls three procedures: ConstrainL,
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Figure 10: Facial Graphs for AugmentR Algorithm

AugmentR and ConstrainR. The procedure ConstrainL, which is used to constrain the linea-
lity space and is shown in figure 5, does not need to change from the one previously described
in section 4.1 to compute the face lattice since the lineality space does not directly affect the
face lattice. The differences in between finding the dual of a polyhedron and finding the lattice
of are polyhedron are found in the computation on the ray space R by procedures AugmentR
and ConstrainR. These two subprocedures, which determine the way that the ray space R is
constrained and augmented, have been rewritten in order to generate the entire lattice. The pro-
cedures AugmentR and ConstrainF (which is called by ConstrainR) recursively construct the
lattice are the primary contributions of this paper. The procedure AugmentR adds a new basis
ray Tpew wWhich is not in the affine hull of R to the lattice— increasing the dimension of the lattice
by one. The procedure ConstrainF recursively constrains the lattice by slicing it with a new
constraint. The resulting lattice is of the same dimension, however parts of the lattice outside the
new constraint are removed and replaced with the new face created by the cut.

6.3 AugmentR

The procedure AugmentR shown if figure 11 adds a ray 7, which is not in the affine hull of
R to the lattice F'¢ representing a face of dimension d, and returns an augmented face F'4*! of
dimension d + 1. It is computed recursively as follows:
Given Fe={ fi=! f7 o fi71)
then  F4+l = convex.hull(FYU {r,.o }) = {F%, f, £4, -, %}
where  f = convex.hull( fl_l U Tnew)
f4 = convex.hull( fl_l U Tnew)

f4 = convex.hull( fl_l U Pnew)-
Figure 10a. shows a piece of the Hasse diagram of the lattice '¢. Figure 10b. shows the same piece of
the diagram after it has been augmented by adding a new basis ray using this procedure. A new face
Fa*1 is created and assigned the following subfaces: (1) F'¢ (the original face) and (2) the new faces
4+ ¢ which are computed by recursively calling this procedure on ffl_l, 51—1’ S fEL
respectively ( the facets of the original face F'?).

6.4 ConstrainR

The ConstrainR procedure is detailed in figure 13. First of all, the recursive procedure Evaluate
(shown in figure 14) is called which evaluates constraint a on each of the faces of polyhedron R and
marks status flags in each face, saying whether each face verifies, saturates, or does not verify the
constraint, or a combination of the three for non trivial faces. After evaluating the faces in light of
the constraint, ConstrainR either returns an empty lattice if none of the polyhedron verifies or
saturates the constraint, or returns the saturating faces if only a part of the polyhedron saturates
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AugmentR(F, a, 7mey), Modifies F', returns Fl, e, =convex.hull(F U ry,qq)

If Fhew =AugmentR(F, a, rpey) has already been computed
Then return Fj .o
Flew = null
If F4im == 0 Then (face F' is a ray)
If aTF.ray # 0 Then (constraint not saturated)
Allocate a new face rq
If aTF.ray > 0 71.ray =Combine(F 1oy, —Tnew ray, @)
Else (aTF,ray < 0) 71.ray =Combine(F 1y, Pnew ray, @)
If constraint a is an inequality Then Create F,,.,, with subfaces {F', r1}
Else ( Fgim > 0)
For each facet f of face F' Do
g=AugmentR(f, a, rpey)  (recursive call)
If ¢ 1s not null
If F, e 1s null
Create new face Fyey (with no facets)
Add F as a facet to augmented face Fi, ey
Add face g as a facet to augmented face Fj, .y
End

Return augmented face Fj, .y

Figure 11: Procedure to compute AugmentR(F, a, 7pey)

the constraint, or returns the constrained lattice if the polyhedron partially verifies and partially
does not verify the constraint. The last two cases are done by calling the SelectF and ConstrainF
procedures respectively.

6.4.1 Evaluate

The procedure Evaluate (shown in figure 14) to evalute a constraint a on a face lattice F' is also
a recursive procedure, setting the flags of a face F' as follows:

U! (fi) flags Faim >0, F={fi, [, Jn}

o =) i} Faim = 0 and a” Flray > 0
flags = Y fon} Faim =0 and a” Fray =0
{Out} F 4im = 0 and aTF.ray <0

The procedure performs a depth first traversal of the face lattice.

6.4.2 SelectF

The procedure SelectF is simply a breadth first search of the face lattice looking for the highest
dimensioned face in the lattice which entirely saturates the constraint a, or in other words, the
highest dimensioned face with Fags ={on}. This procedure is straightforward and its details are
not presented here.
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a. b.
Figure 12: Facial Graphs for ConstrainF Algorithm

6.4.3 ConstrainF

The procedure ConstrainF (shown in figure 15 constrains the lattice F' by cutting it with the
constraint a represented by the halfspace H* = {x | a”x > 0}. The the resulting lattice will be
of the same dimension, however the parts of the lattice outside of the slicing hyperplane will be
removed and a new face created by the cut plane will be added. The procedure builds the new face
Jnew which consists of the new facets of dimension (d — 2) created by cutting each of the original
facets of F'¢: f_l, 51—1’ -+, f9=1 and which lies on the cutting hyperplane. The procedure then
links fhew as a new subface to F', and then returns the new face f,., to the caller. When procedure
ConstrainF is called, face F'¢ is modified to be F¢ N H+, which is computed as follows:
Given Fe={fi~ £~ - fi~1}
HY ={z|a’z >0}, H°={z|a'z=0}
then FINHY ={fi"'nut it nHt, . fi-tnHt, fiol
where T‘f;j:FdﬁHO:{ff_z, 5_2,-~~,fff_2}
Fi% = pa-1 o
5_2 = g_l N H°

L
Figure 12a. shows a piece of the Hasse diagram of the lattice #'¢. Figure 12b. shows the same piece
of the diagram after it has been constrained by this procedure.

ConstrainR(R,a) Modifies R

Call Evaluate(R, a)

If Rflags ={ in, on } or { in } or { on } then no change.

Else if R fags = { out } then set R := null ray space.

Else if R fags = { on, out } then set R := SelectF(R, a)

Else (R flags = { in, out } or { in, out, on }) set R := ConstrainF(R, a)

Figure 13: Procedure for computing ConstrainR.(R,a)
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Evaluate(F', a) Modifies the flags in F’

If F 4im = 0 then
r = aTF.ray
If = 0 then Faage := {on}.
Else if > 0 then Fgag := {in}.
Else (z < 0) F fags := {out}.
Else (F 4im > 0)
F.ﬂags = {}
For each subface f of F', do
Call Evaluate(f, a); (recursive call)
F.ﬂags = F.ﬂags u f.ﬂags
End

Figure 14: Procedure for computing Evaluate(F, a)

ConstrainF(F', a) Modifies F, returns facet fne, = F'[)H°
Invariant: F qagq is either {in,out}, {in,on,out}, or {in,on}.

If frew =ConstrainF(F ,a) has already been computed Then return fp ey
If Fgim = 1 Then (F is an edge with endpoints f; and fa)
Let I" == subfaces{f1, f2} s.t. fi flags ={in} and f5 fags ={out} or {on}
If Ffiags = {in,on} Then Return fo
Else (F flags = {in,out})
Allocate a new face fyey (of dimension 0)
fnew.ray :Combine(a: fl.ray: f2.ray)
Remove f; from subfaces of F
Add f,ew to subfaces of F'
Else (F4im > 1)
If Ffags ={in,out}, or {in,on,out} Then
Allocate a new face f, e
For each facet f of face F' Do
If ffags={in} Then (do nothing— f continues to be a subface)
Else if fqags={out} or {on,out} Then Remove f from subfaces of F'
Else ( ffiags ={in,on} {in,out} or {in,on,out})
g = ConstrainF(f, a) (recursive call)
If ¢ # null Then Add g to subfaces of f, .y
End
Add f,ew to subfaces of F'
Else ( Ffags ={in,on})
For each facet f of face F' Do
If ffiags ={in} or {in,on} Then (do nothing— f continues to be a subface)

Else if ffags ={on} Then f,., = f (f continues to be a subface)
End

Return f,ew

Figure 15: Procedure for computing ConstrainF (F, a)
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7 Example

This algorithm has been implemented in C and an example is shown here. The lattice shown in
figure 2 was generated from the system of constraints
{6,7,k|0<i<1; 0<35<1; 0<k<1}. The following is a printed representation of the data
structure which was created by the algorithm.

face(3) ed30

+-— face(2) ebb0

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+__
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+__
I
I
I
I
I
I
I
I
I

+—

I
I
I
I
+__
I
I
I
I
I
+__
I
I
I
I
I
+__

face(1) ebi10

+—— face(0) ca90
I—— face(0) eeb0d
face(1) eb70

I—— face(0) ca90
I—— face(0) ebf0
face(1) ee90

I—— face(0) eeb0l
I—— face(0) eell

face(1) ed00
+-— face(0) ebf0

|
+-— face(0) eell

Tace(2) ecal

+—

+—

face(1) eb10 (LINK)

face(1) ec60
I—— face(0) ca90
I—— face(0) £010
face(1) ef00
+—— face(0) eeb0
I—— face(0) £040
face(1) eff0
I—— face(0) £010

|
+-— face(0) 040

face(2) ed70

+-— face(1) eb70 (LINK)
+-— face(1) ec60 (LINK)

+—

Tace(l) ef60

+-— face(0) ebf0
|

point [0]

point [4]

point [0]

point[1]

point [4]

point[5]

point[1]

point[5]

point [0]

point[2]

point [4]

point[6]

point[2]

point[6]

point[1]

[0,0,0]

[1,0,0]

[0,0,0]

[0,1,0]

[1,0,0]

[1,1,0]

[0,1,0]

[1,1,0]

[0,0,0]

[0,0,1]

[1,0,0]

[1,0,1]

[0,0,1]

[1,0,1]

[0,1,0]

(LINK)

(LINK)

(LINK)

(LINK)

(LINK)

(LINK)

(LINK)

(LINK)

(LINK)
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| +-— face(0) £0cO

|
+-— face(l) £090

point[7] [0,1,1]

+-— face(0) £010 = point[2] [0,0,1] (LINK)

|
+-— face(0) f0cO

point[7] [0,1,1] (LINK)
- face(2) ee70

T—— face(1) ee90 (LINK)
T—— face(1) ef00 (LINK)
T—— face(1) efbo

+-— face(0) eell

|
+-— face(0) 140

point[5] [1,1,0] (LINK)

point[8] [1,1,1]

|
|
|
|
+-— face(1) 110

+-— face(0) £040 = point[6] [1,0,1] (LINK)

|
+-— face(0) f140

point[8] [1,1,1] (LINK)
- face(2)ece0

+-— face(1) ed00 (LINK)
l—— face(1) ef60 (LINK)
l—— face(1) efb0 (LINK)
l—— face(1) £180

+-— face(0) f0cO

point[7] [0,1,1] (LINK)

|
+-— face(0) £140 = point[8] [1,1,1] (LINK)

|
|
|
|
|
|
|
+
|
|
|
|
|
|
I
|
|
|
|
I
|
|
|
+
|
|
|
|
|
|
|
|
I
|
|
|
+-— face(2) edcO

+-— face(1) eff0 (LINK)

+—— face(1) f090 (LINK)

T—— face(1) f110 (LINK)

+-— face(1) £180 (LINK)

8 Summary

The inductive method for constructing the face lattice which has been presented in this paper
differs from the Seidel method in its inductive approach but shares the same order of execution
time. The inductive approach is a natural consequence of the recursive structure of the face lattice.
This method can be viewed as an extension of the Motzkin algorithm to compute the dual of a
polyhedron. The procedure starts with a mixed system of constraints and produces an interlinked
data structure representing the lattice. Execution time for this algorithm is lower bounded by the

size of the output, which is O(kL%J) where £ is the number of inequalities and d is the dimension.
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