N

N
N

HAL

open science

Distributed array management for HPF compiler

Yves Mahéo, Jean-Louis Pazat

» To cite this version:

Yves Mahéo, Jean-Louis Pazat. Distributed array management for HPF compiler. [Research Report]

RR-2156, INRIA. 1993. inria-00074516

HAL 1d: inria-00074516
https://inria.hal.science/inria-00074516
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074516
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Distributed Array Management
for HPF Compilers

Yves Mahéo, Jean-Louis Pazat

N° 2156
Décembre 1993

PROGRAMME 1
Architectures paraléles,
bases de données,

réseaux et systémes distribués

apport
derecherche

Zd I N RIA

RENNES

Distributed Array Management
for HPF Compilers

Yves Mahéo, Jean-Louis Pazat*

Programme 1 — Architectures paralléles, bases de données, réseaux et systémes distribués
Projet Pampa

Rapport de recherche n° 2156 — Décembre 1993 — 14 pages

Abstract: This paper addresses the management of distributed arrays for HPF compilers.
We present an efficient method to allocate local blocks and temporaries for received values
and manage the associated access mechanisms. The performance of these access mechanisms
is measured and experimental results on the use of this array management within a compiler
are shown.

Key-words: Distributed memory parallel computers, compilation, HPF, runtime, paging,
memory management

(Résumé : tsvp)

*maheo@irisa.fr, pazat@irisa.fr

Unité derecherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : (33) 9984 71 00 — Té écopie: (33) 99 38 38 32

Gestion des tableaux distribués pour les compilateurs
HPF

Résumé : Ce rapport traite de la gestion des tableaux distribués pour les compilateurs
HPF. Nous présentons une méthode pour gérer efficacement ’allocation et les accés concer-
nant les blocs locaux et les temporaires de réception. L’efficacité du mécanisme d’acces est
mesurée et des résultats expérimentaux sur 'utilisation de cette gestion des tableaux dans
un compilateur sont donnés.

Mots-clé : Machines paralléles & mémoire distribuée, compilation, HPF| exécutif, pagina-

tion, gestion mémoire

Distributed Array Management for HPF Compilers 3

1 Introduction

In order to alleviate the task of programming Distributed Memory Parallel Computers,
new features have been added to sequential programming languages such as Fortran. In the
field of scientific programming, two main axes are currently followed. The first one uses
explicit parallel constructs (DOALL) and relies on a shared virtual memory [3]; the second
one is based on a user-defined data distribution which is used as a guideline to generate
communicating processes [8].

In recent years, many projects have focused on the data distribution approach and it has
been demonstrated that “aggressive” optimizing compilers and efficient runtime systems
are mandatory to achieve reasonable speedups. Most compilers allow the user to specify
a decomposition of arrays and use the owner write rule [5] to distribute the code. This
distribution can be done using the runtime resolution technique where each statement of the
source program is guarded and where communication is performed elementwise. This scheme
is always applicable but rather inefficient, so that many compilers integrate optimization
techniques for compiling loops. Roughly speaking, these techniques aim at reducing iteration
domains and performing vectorized communications [13, 11, 10].

However, runtime resolution as well as optimization techniques require a specific and effi-
cient runtime system to allocate local parts of arrays and perform efficient communications.

In this paper we present a method for efficiently managing distributed arrays (allocation
and access) in parallelizing compilers based on data distribution. This paper focuses on
the local management of blocks and temporary storage for distant values. Communication
optimizations such as message coalescing and vectorization are supported by this array
management but are not addressed here.

The paper is organized as follows: next section discusses the essential requirements for
the runtime system. Section 3 details the page-driven array management proposed. Sec-
tion 4 presents in more details the implementation of this array management whose overall
performance is presented in section 5. Future work is discussed in the conclusion.

2 Requirements of Distributed Array Managements

2.1 Memory Management

Most compilation systems for HPF-like languages used to —or still- adopt more or less
the same method for representing distributed arrays and, as a consequence, for accessing
elements of these arrays. Processors are allocated minimal space for local partitions (i.e. local
blocks), reflecting or not the multidimensionality of the original array [13, 9, 4]. Typically,
the declaration of an array A[N][N] distributed in every dimension will be translated into a
local declaration A[N/P][N/P] where P is the number of processors. The memory overhead
induced by this layout remains small. Proposals have also been made to allow for alignment
while keeping memory use at a minimum [6]. To complement the management of local
partitions, several ad hoc techniques (temporary scalars [2], buffers [11], hash tables [7],
extension of local partition [12]) are used for handling received data. The additional memory
space required varies according to the chosen technique but must remain acceptable.

RR n" 2156

4 Yves Mahéo, Jean-Louis Pazat

2.2 Global to Local Index Conversion

In order to take into account a large class of programs, compilers must be able to produce
code where indices remain global. Thus accesses to local elements are performed thanks to
index transformation functions that convert global indices of the source program into indices
adapted to the local layout of the partition. These functions take into account the decompo-
sition of the array into blocks and possibly its alignment with a template and its mapping
onto the processors. Some compilers can sometimes avoid global to local index conversion at
runtime, but it should be hightlighted that this is only possible for some particular distribu-
tions (essentially block distributions) and for some particular loops and access patterns. The
computation of conversion functions is costly because it generally involves several operations
such as modulo and integer division; it may induce a ratio of 10 as compared with an access
without conversion. For accessing nonlocal elements, as for accessing local elements, some
kind of index conversion is likely to be needed at runtime. Its cost depends on the technique
used but may also be rather high.

2.3 Uniform Representations and Accesses

The distributed array managements described above not only bring about possibly costly
index transformations, but they may also pose a problem of uniformity if they store and
access local and received data differently.

To illustrate how this problem arises, let us consider the example of an earlier version
of the PANDORE environment. For each distributed array, local partitions were composed of
linearized local blocks, so that global to local index conversions had to be performed. The
application of an optimized compilation scheme for parallel loops permitted the separation
of the SPMD code produced into a communication phase and a computation phase [10].
Elements received during the communication phase were stored in hash tables. For the
computation phase, no difference was made by the compiler between accesses to local and
received elements. Thus an ownership computation, comprising an evaluation of the block
number, was performed for each access in order to choose the appropriate global to lo-
cal index conversion function. Consequently, the benefit of the optimizations made by the
compiler was reduced due to the non-uniform accesses to data.

In other words, a non-uniform management induces a loss of performances if the compiler
cannot separate local accesses from accesses to received elements. Besides, even if compile-
time separation can be achieved, it may yield an unacceptable code fragmentation in the
case of multiple right-hand-side references.

Several uniform managements are yet known. The first one consists in the replication of
the array: it allocates the entire array on each processor in order to access elements the same
way as in the sequential program. It is obvious that the price to pay for uniformity in terms
of memory use is not acceptable: this technique is of interest only for very small arrays. The
overlap technique [12] offers uniform representation and access mechanism as well. It assumes
that, for each processor, the location of received elements is close to the local partition
and thus extends the allocation of the local array so that it can “house” nonlocal received
data. Although it provides uniformity, the overlap technique, as an optimized compilation
technique, shows some limitations: it can be efficiently applied to a restricted number of
distributions and access patterns and may lead to the replication of the whole array.

Inria

Distributed Array Management for HPF Compilers 5

2.4 Independence from Program Transformations

A distributed array management independent from the compilation scheme facilitates the
coexistence of different compilation techniques. On the contrary, if the choice of a represen-
tation is guided by the analysis of a program fragment (typically a loop), it may happen
that several layouts (and associated access methods) are used within the scope of one dis-
tribution, possibly necessitating data rearrangement or additional computation. The work
presented by Chatterjee et al. in [6] illustrates this problem. The access mechanism proposed
for local elements is based on a finite state machine (FSM) that has to be computed not only
from the distribution parameters but also from the local iteration domain associated with
the loop considered. If more than one loop nest is to be analyzed and compiled, although
the array layout remains identical, the computation of the table coding the FSM must be
performed for each loop nest even if the same distribution applies.

3 Page-driven Array Management

We present here a uniform management for distributed arrays based on paging. This mana-
gement is designed in order to achieve efficient accesses while avoiding unacceptable memory
overhead. It is build only from the decomposition parameters of arrays and can be applied
to HPF distributed arrays. Nevertheless, this work is part of the PANDORE II project so we
will use the PANDORE syntax to describe it. Ownership computation associated with this
management is also explained.

3.1 Principle

The page-driven data management of PANDORE 11 follows the main addressing scheme of
classic paging systems for memory management. In such systems, logical memory space is
broken into groups of contiguous elements (pages). Pages have a fixed predetermined size.
A hardware support divides a logical address in two parts: a page number and a page offset.
The page number is used as an index into a page table that contains the base address of
each page in physical memory. This base address is combined with the page offset to define
the physical memory address. If the page size is S, a logical address a produces a page
number PG and an offset OF by PG = a div S and OF = a mod S. If the logical address
space is larger than the physical address space, virtual memory management features may
be added. In this case, accessed pages may not be present all the time in physical memory
but temporarily loaded from a swapping device.

As for our concern, we manage variables —i.e. distributed arrays— and not memory; our
aim is not to build a shared virtual memory. Moreover, we stay at the software level rather
than relying on hardware components. This leads to the following consequences:

e The notion of page fault is here irrelevant because all distant accesses are solved by
prior communications. Besides, data are not necessarily communicated page-wise.

e We can define a specific access mechanism for each distributed array, in particular the
page size may be different for each array.

e The original address space is multidimensional; therefore we apply a multi to one-
dimensional transformation before splitting the resulting space into pages.

RR n" 2156

6 Yves Mahéo, Jean-Louis Pazat

3.2 Paging Distributed Arrays

We define a representation and its access mechanism for each distributed array. The multidi-
mensional index space of a given array is linearized by a function £. The linear address space
obtained is split into pages of fixed size S. A processor stores only those pages that contain
at least one element assigned to it by the distribution or one received element. Depending on
the distribution of the array, £ and S, a page may be possessed by one or several processors.

Accesses to local and received elements are performed the same way. Indeed, as far
as accesses are concerned, a processor acts as if the entire array was directly visible, no
matter if the element it needs to access is local or has been received from another processor.
The difference between pages containing local elements and pages containing only received
elements lies in the way they are allocated and filled, not in the way they are accessed. A
tuple (PG,OF) is computed from the initial index vector (ig,. .., i,—1) with the linearization
function £ and the page size S:

PG = L(io, ... in_1) div S
OF = L(ig, . ..,in_1) mod S

The table of pages TP is stored on each processor. It indicates the base address of each
page present in local memory. The offset is added to this base address to obtain the exact
location of the element.

The page partitioning is also used for computing owners of elements. A table similar to
TP stores, for each page, the numbers of the processors that own this page. This table is
present in the local memory of each processor.

3.3 Tuning Parameters

For a given distributed array, the parameters we can tune for paging are the page size S
and the linearization function £. The value of these parameters should be defined in order
to achieve good performance in terms of time and memory space.

As speed of access is our prior motivation, time consuming operations (division, modulo
and multiplication) should be avoided in the computation of the tuple (PG,OF) but also in
the application of the function £. This is achieved by introducing powers of two, turning
integer division, modulo and multiplication into simple logical operations. Moreover, the
array decomposition can be taken into account when fixing the actual value of S and L.
Intuitively, we choose S and £ so that pages “follow” the blocks, and are owned by as few
processors as possible.

For a more formal definition, let us consider the following PANDORE II array distribution
on P processors. It should be noticed that the block() distribution of PANDORE II is similar
to the CYCLIC(M) directive of HPF, see [1] for a more detailed semantics of PANDORE 11
distribution specifications.

reqular

int V[ho] - [hn-1] by block (so, .. .,sn-1) map wrapped

‘ (do, ..., dn-1)

Inria

Distributed Array Management for HPF Compilers 7

n number of dimensions of the distributed array n >0

hi size of the array in the k*® dimension hy >0
sy k' parameter of the decomposition function 1 < sp < hy
dy k'™ parameter of the mapping function (dk)g_l = permut(0,...,n—1)

We consider the access to an element of V noted Vig] - [in—1]. To introduce powers of
two, we define the function 8,4p(n) (resp. fi,5(n)) for extending an integer to the smallest
(resp. largest) power of two greater (resp. less) than or equal to:

Osup(n) = 2° with 2/ < n < 2°%!
ing(n) = 27 with 27l wn<2r

Prior to the definition of S and £, we choose a particular dimension ¢, the dimension in
which the block size is the largest. If there are several such dimensions, the one corresponding
to a non-distributed array dimension or a block size equal to a power of two is chosen, if
possible:

Ay = {2/Vk€e€O0,....n—1 s, > s}
Ay = {x/h; = s, or s, =27}
LESIAN]
§EAy if AiNA,#0D
The page size S is then given by:
if s5 = hsor ss = 2°
then S = 0up(ss)
else S =0ins(ss)
L is the C linearization function for multidimensional arrays applied to a permutation

of the index vector. This permutation puts the index corresponding to dimension § in last
position. Moreover, the array dimensions (coefficients of £) are extended to the next power

of two. £ is defined by
n—1 n—1
Llio, ... ino1) = Y (i; 11 h;)

k=0 I=k+1
where 7}, is the k™ access index after permutation, i.e:
i;_l =15
Vkeo,...,6—1 i, =iy
VkEs, ..., n—2 i} = ipyq

and hj, is the extended size of the array in the k™ dimension, i.e:

e () -

if n>1
hy = ho if 6 >0, else hy
Vkel,...,6—1 hj, =0(hy)
Vkeé,...,n—2 hj, = 0(hpy1)

RR n" 2156

8 Yves Mahéo, Jean-Louis Pazat

For example, the distribution (with one non-distributed dimension)
A[200][100][50] by block(5, 100, 10)

will lead to the following definitions:
S = 128
L(i,j, k) = (64 x 128)i + 128k + j

and the distribution (with every dimension distributed)
B[500][200] by block(100, 10)

will give:

S = 64
L(i,j) = 5125+

3.4 Optimizing the Computation of (PG,OF)

Unlike with a classic paging mechanism, the explicit computation of the linear address
L(ig,...,in—1) before its splitting into (PG,OF) is not mandatory because we do not rely
on a hardware support that needs a memory address. Besides, this intermediate result may
lead to unnecessary operations as in the following example:

A[100][200] by block(10,200)
S = 256
L(i,j) = 256i+j

The page number and the offset will be obtained by

PG = (256i + j) div 256
OF = (256i + j) mod 256

These expressions could obviously be simplified in PG = ¢ and OF = j. To make the
simplifications clearly visible, we express directly PG and OF as a function of the index

vector.
page(io, ..., in—1) = (PG, OF)

with
n—2 n—1
PG = (ig II npg) + 4, divS
k=0 I=k+1
OF =14/, _;mod S

where np}, is the number of pages in the k™ dimension after permutation:

!
/ _»hn—l
npp_1 =

S
Vk €0,...,n—2 np}, = h},

Inria

Distributed Array Management for HPF Compilers 9

When dimension § is not distributed, that is to say when hs = ss, index i, ; (i.e i5) is
always less than or equal to S, div and mod can be removed:

n—2 n—1
PG = Z (zf,c H np?)
k I=k+1
OF =i _,

Here is the result of these optimizations for the two examples presented in the previous

section:
A[200][100][50] by block(5, 100, 10)
PG = (8192i 4 128k +j) div 128 = 64i+k
OF = (8192i+ 128k + j) mod 128 = j

B[500][200] by block(100, 10)
PG = (512j + i) div 64 = 8j + (i div 64)
OF = (512§ +1i) mod 64 = i mod 64

3.5 Page Ownership

Each processor stores the table of owners 7O which indicates, for each page, the number of
the processor that owns this page. This table can be filled using the function owner(PG,OF)
that returns the owner of an element.

owner(PG, OF) = map o page™ ' (PG, OF)

Function page™!, the reverse function of page, returns the index vector corresponding to a
page number and an offset.

page (PG, OF) = (ig,...,in_1)
with
is = S x (PGmod npl,_,) + OF

VkeO0,...,6—1 i =1
Vked+1,...,n—1 ip =i},
n—1 n—1
Vkeo,...,n-2 1 = (PGmod (H np?) div (H np?))
=k I=k+1

Function map associates a processor number with an index vector; it depends on the mapping
function used in the distribution specification:

e regular mapping:
. . n-1/,. . . H::_Dl nb;
map(ig, ..., In—1) = (Ek:o ((zk div sp) Hdl<dk nb,z)) div | —==—
e wrapped mapping :

map(ig, ..., In—1) = (E:;é ((zk div sp) Hdl<dk nbl)) mod P

RR n" 2156

10 Yves Mahéo, Jean-Louis Pazat

where nby is the number of blocks in the k"™ dimension: nb; = H—ﬂ

The definitions adopted for S and £ allow the number of owners of a page to be less than
or equal to two. If the owner of a page is always unique, any valid value of OF can be used
for determining the owner of a page. In the case the owner of a page is not unique, we can
compute OFy,, the offset from which the owner changes. In this case, the table of owners
stores for each page, the two processor numbers plus the limit OFy,,.

VOF€O,...,0F, —1 owner(PG, OF) = owner(PG,0)
VYOF € OFyy,...,S—1 owner(PG, OF) = owner(PG, OFy,)

with

OF 1, = if ¢ < S then pelse 0
© = ((PGmod np),_;) X (ss — S)) mod ss

4 Implementation

A full implementation of the data management mechanisms described above has been reali-
zed within the PANDORE II environment. Management of tables, pages and accesses to array
elements are shared out among the compiler and the runtime library. As all the tables and
pages are needed only during the execution of a distributed phase (no inter-phase analysis is
performed at this time), the entire memory space allocated is freed at the end of the phase.

4.1 Tables and Pages

All the information needed to fill the tables of owners and the tables of offset-limits is known
at compile-time; these tables could therefore be statically defined and declared as constants
in the generated code. However, in order not to lengthen the size of the generated code, the
compiler produces functions that allocate and fill the tables at runtime, at the beginning of
each distributed phase. For each distributed array V', a table of owners TO_V is defined. If a
page may be possessed by two processors, three tables are needed: the table of the owners
of the first part of pages T01.V, the table of the owners of the second part of pages T02_V
and the table containing the offset-limits TL_V.

The runtime library is also in charge of allocating and filling the tables of pages and
pages themselves. The tables of pages and pages that contain local elements are allocated
at the beginning of the distributed phase. Since we use a host-node model, local elements
are received from the host and sent back to it at the beginning and at the end of the
phase if necessary. The management of pages containing received elements depends on the
compilation scheme. Basic operations provided by the runtime library are the page allocation
and the placement of elements (single elements or segments) into pages.

4.2 Accesses

It is clear that the part of the access process that is done at compile-time must be as large
as possible. The compiler translates a reference to an array element V[I], where I is an
index vector, into a call to a runtime macro access(descV, PG, OF) where PG and OF

Inria

Distributed Array Management for HPF Compilers 11

are expressions of I. All constant subexpressions have been computed and the optimization
described in section 3.4 has been performed. As expected, these expressions contain only
additions and constant logical shifts and maskings. The work that remains at runtime is
therefore to evaluate the expressions and use the table of pages associated with V' to produce
the right reference. This can be noted by the C expression *(TP_V[PG]+0F). The runtime
library is developed with cpp macros that prevent from the computation of the address of
the page table corresponding to V', so we can actually generate this code.

4.3 Owner

Determining the owner of an element V[I] is carried out a similar way. The compiler generates
a call to a runtime macro owner (desc_V, PG, OF). An access to a table TO_V[PG] is sufficient
at runtime to find the processor number in the case the owner of a page is unique. If a page
may be possessed by two processors, a call to a slightly different macro is produced. The
execution of this macro will issue a comparison between OF and the offset-limit corresponding
to page PG:

if (OF < TL_V[PG])
then TO1_V[PG]
else T02_V[PG]

5 Performances

5.1 Performances of the Distributed Array Management

It is difficult to precisely compare the speed of accesses to distributed array elements with
the one of sequential accesses because they both depend on the type of processor and on the
optimizations the target compiler can perform. However, it can be seen that the executed
code for distributed accesses involves only few basic operations that generate a very small
overhead and may even be more efficient thanks to better optimizations.

The following tables give the results of a preliminary experiment. We considered the
assignment to a scalar and measured the time taken by this assignment for several right-

hand-sides:
e t. : rhsis a literal constant;
e t, : rhsis a reference to an element as it may appear in a sequential program;
e 1, : rhsis a call to the macro that uses the paged access mechanism;

e {; : rhsis a call to a macro that uses a block-oriented access mechanism. This mecha-
nism was used in a previous version of PANDORE II; it performs at runtime a modulo
and an integer division to find the block number and the offset in the block.

The array is a two-dimensional array of floats. Reported times (in us) are the differences
ty — ., noted sequential; t, —t., noted page and t; — t., noted block. Best and worst cases
have been considered, depending on whether sizes of the array were powers of two or not.
Experiments have been carried out on a SparcStation 2 and on a node of the iPSC/2. Native
compilers have been used with no optimization option.

RR n" 2156

12 Yves Mahéo, Jean-Louis Pazat

Sparcstation
| sequential || page || block |

best | worst || best | worst || best | worst
0.30 0.42 0.34 0.38 0.48 1.58

iPSC/2 node
| sequential || page || block |

best | worst || best | worst || best | worst
0.94 2.05 2.14 2.26 3.52 9.86

Likewise, the determination of the owner of an array element requires only a few simple
operations, so its cost remains very low. As shown in the previous table, it is preferable to ex-
ploit the page decomposition, although it seems to be more natural to base the computation
of the owner of an element on the computation of the corresponding block number.

The price to pay for speed of access and speed of ownership computation is the need for
a larger amount of memory. Overhead is only due to tables because no additional space is
required for pages. When a page contains elements that will never be accessed because of
the extension of array dimensions, or because the page is shared by two processors, only the
potentially accessed part of the page is actually allocated. A translation of the corresponding
pointer in the table of pages is performed if the end of the page is allocated.

The memory overhead due to tables is directly linked to the number of pages, which is in
general at least of an order of magnitude less than the size of the array. The following table
gives memory requirements for a few common distributions of arrays on 32 processors. For
each distribution, we indicate the total number of pages, the theoretical minimal memory
space required on each processor, the actual space allocated for tables on each processor and
finally the overhead as compared with the minimal partition. Memory needs are expressed in
bytes. It can be noticed that replacing some block sizes (or array dimensions) by powers of
two notably decreases the memory overhead. We believe that overall memory requirements
remain acceptable when considering most commonly used distributions.

Array Number | Minimal | Local Space Local

Distribution of Pages | Partition | for Tables Overhead
double A[100000] by block(1000) 196 25000 1960 x1.08
double A[100000] by block(1024) 98 25000 588 x1.02
double A[1000][1000] by block(1,1000) 1000 250000 6000 x1.02
double A[1000][2000] by block(50,500) 8000 500000 80000 x1.16
double A[1000][2000] by block(50,512) 4000 500000 24000 x1.05
double A[100][100][100] by block(100,1,50) 10000 250000 60000 x1.24

5.2 Integration in the PANDORE II Environment

The page-driven management for distributed arrays has been integrated in the PANDORE 11
environment and coexists with the two compilation schemes used by the compiler. The basic
compilation scheme, that relies on a runtime resolution technique, can be applied to every
input program. The optimized scheme is based on integer programming and linear algebra
results; it performs an analysis of parallel loops[10].

Inria

Distributed Array Management for HPF Compilers 13

We present in figure 1 the results of an experiment with the two compilation schemes.
A comparison is made between a block-oriented array management and the page-driven
management. The application is a Red-Black Successive Over-Relaxation algorithm run on

Red-Black SOR 1024x1024

T T T T T T T T
32 - -
ideal —
28 |- optimized - page —o— -
optimized - block -a—
24 - basic - page -a— .
basic - block
20 - -
Speedup
16 -
12 -
8 - —
4 - —
0 A i A4 | I I)

0 4 8 12 16 20 24 28 32

Number of processors
Figure 1: Comparison between block-oriented and page-driven managements

a 1024x1024 matrix of floats. We plotted the speedup against the number of processors for
each pair (compilation scheme, array management).

The use of the page-driven management clearly improves performances of codes generated
according to both compilation schemes. The joint use of the optimized scheme and the page-
driven array management leads to satisfactory performances (more than 50% efficiency for
32 processors) in spite of the unfavorably high ratio of memory operations to computation

of the Red-Black.

6 Conclusion

This page-driven management of arrays has proved to be efficient and results presented
here may improve on other distributed machines such as the CM5 using more up-to-date
processors.

This management is independent from the optimization techniques used in compilers. It
avoids using multiple representations of the same array in different parts of a program. The
page-driven array manageemnt also seems to be appropriate for irregular computations and
could be used together with the inspector/executor technique [7].

We plan to carefully compare our management scheme with shared virtual memory
systems and try to find out if HPF compilers can efficiently combine a shared virtual memory
with the owner write rule or if a specific runtime support is more efficient.

RR n" 2156

14

Yves Mahéo, Jean-Louis Pazat

References

(1]

2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[12]

[13]

F. André, O. Chéron, and J.-L. Pazat. Compiling sequential programs for distributed
memory parallel computers with pandore II. In J.J. Dongarra and B. Tourancheau, edi-
tors, Environments and Tools for Parallel Scientific Computing, pages 293-308, Elsevier
Science Publishers B.V., 1993.

F. André, J.L. Pazat, and H. Thomas. Pandore a system to manage data distribution.
In International Conference on Supercomputing, ACM, June 1990.

F. Bodin, L. Kervella, and T. Priol. Fortran-S : A Fortran Interface for Shared Virtual
Memory Architectures. In Proc. of Supercomputing 1993, novembre 1993.

T. Brandes. Compilating data parallel programs to message passing programs for mas-
sively parallel MIMD systems programs. In Working Conference on Massively Parallel
Programming Models, Berlin, September 1993.

D. Calahan and K. Kennedy. Compiling Programs for Distributed Memory Multipro-
cessors. The Journal of Supercomputing, 2:151-169, October 1988.

S. Chatterjee, J.R. Gilbert, F.J.E. Schreiber, and S.H. Teng. Generating Local Adresses
and Communication Sets for Data-Parallel Program. In The Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 149-158, July
1993.

R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Distributed Memory Compiler
methods for irregular problems - data copy reuse and runtime partitioning. In Third
Workshop on Compilers for Parallel Computers, pages 185-219, Austrian Center for
Parallel Computation, July 1992.

High Performance Fortran Forum. High Performance Fortran Language Specification.
Technical Report Version 1.0, Rice University, may 1993.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C.W. Tseng. An Overview of
the Fortran D Programming System. Technical Report TR91121, Center for Research
on Parallel Computation, Rice University, March 1991.

M. Le Fur, J-L. Pazat, and F. André. Static Domain Analysis for Compiling Commu-
tative Loop Nests. Technical Report 757, Irisa, September 1993.

C.-W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Ma-
chines. PhD thesis, Rice University, January 1993. Also available as Rice COMP
TR93-199.

H. P. Zima, H.-J. Bast, and M. Gerndt. SUPERB: a tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, (6):1-18, 1988.

H. P. Zima and B. Chapman. Compiling for Distributed-Memory Systems. Techni-
cal Report APCP/TR 92-17, Austrian Center for Parallel Computation, University of
Vienna, November 1992.

Inria

JINRIA

Unité de rechercheINRIA Lorraine, Techndpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derecherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Vialet, 38031 GRENOBLE Cedex 1
Unité derechercheINRIA Rocguencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derecherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

