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Abstract: We formulate shape recognition as a coding problem. There is a
finite list of possible “hypotheses” - shape classes and/or spatial positionings
- and we wish to determine which one is true based on the results of various
“tests,” which are local image features. We use a decision tree: each interior
node is assigned one of the tests and each terminal node is assigned one of
the hypotheses. The assignment of tests, or “strategy,” is recursive: along
each branch choose the next test to remove as much uncertainty as possible
(as measured by entropy) about the true hypothesis. In contrast to the stan-
dard approach of “hypothesize and test,” there is no repeated elicitation of
hypotheses; instead, the “indexing” is dynamic and stochastic. We gradually
formulate specific conjectures as the evolving distribution on hypotheses be-
comes increasingly peaked. We apply this “twenty questions” approach to the
recognition of two types of linear, deformable structures: handwritten numer-
als and roads in satellite images.

Key-words: shape recognition, decision tree, entropy strategy, caracter recog-
nition, satellite images, road-tracking
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Reconnaissance de formes et jeu des 20
questions

Résumé : Nous formulons le probleme de la reconnaissance de formes comme
un probleme de codage. D’une liste finie d”’hypotheses”- formes et/ou posi-
tionnement - nous souhaitons déterminer celle qui est réalisée (I’hypotheése
vraie) a 'aide des résultats de tests (ou questions) portant sur des caractéris-
tiques locales de I'image. Nous utilisons un arbre de décision. A chaque nceud
interieur est assigné un test et a chaque nceud terminal est assigné une hypo-
these. La “stratégie” utilisée pour assigner les tests est récursive: le long de
chaque branche, choisir le test suivant de maniere a réduire le plus possible
I'incertitude (mesurée par I'entropie) sur ’hypotheése vraie. En contraste avec
I’approche standart “hypothese et vérification”, il n’y a pas d”’essais” suc-
cessifs d’hypotheéses. Au contraire, la méthode pour indexer est dynamique et
stochastique. Graduellement, nous formulons des “conjectures” de telle sorte
que la distribution a posteriori sur ’ensemble des hypotheéses devienne de plus
en plus piquée. Nous appliquons cette approche a la reconnaissance de deux
types de structures linéaires et déformables: les chiffres manuscrits et les ré-
seaux routiers dans les images de satellites d’observation de la terre.

Mots-clé : reconnaissance de formes, arbre de décision, stratégie basée sur
I’entropie, reconnaissance de caracteres, images satellitaires, suivi de routes



1 Introduction

We explore the possibility of recognizing shapes “simply” be asking the right
questions in the right order. The approach is formulated in abstract terms
using statistics and information theory. We are given a finite list of possible
“hypotheses” (or “states of nature”); exactly one of these is true and we wish to
decide which it is based on the results of various “tests” or “questions.” There
is a decision tree which instructs us how to perform the tests and eventually
classify the results. Fach interior node of the tree is assigned one of the tests
and each terminal node is assigned one of the hypotheses. The assignment of
tests, the “strategy,” is adaptive in the sense that the choice of the test at
each node may depend on the test values observed at all preceding nodes. The
strategy is regarded as a code for efficient classification. Ideally, the choice
would be driven by some global measure of efficiency, such as achieving the
most accurate classifier for a given average number of tests, or reaching the
fastest decision at a given level of accuracy. But these problems are intractable,
and we shall opt instead for the “greedy” strategy in which the tests are chosen
recursively in order to remove as much uncertainty as possible about the true
hypothesis.

We have applied this to two problems in shape recognition. The raw data
is a single, grey-level image, the tests are particular “features” (i.e., image
functionals), and the hypotheses refer to particular shape classes or spatial
positionings. Specifically, we shall focus on linear, deformable structures. The
main application is the tracking of major highways in SPOT satellite imagery.
There is only one shape class (“road”) and the hypotheses are indexed by
the “pose.” The strategy is constructed on-line based on entropy reduction.
In order to illustrate the scope of the method, we shall also mention another
application - the recognition of handwritten numerals; a full account will be
given elsewhere. In that case, there are ten hypotheses (the pose being of
secondary importance) and the strategy is constructed by the same principles,
but off-line. Some conclusions and speculative remarks are given in the final
section.
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2 Twenty Questions

There is a certain parlor game which sometimes goes by the name of “T'wenty
Questions” and seems to be known everywhere (e.g., as “Bar-Kokheba” in
Arabic or “jeu des métiers” in French). It is played like this: one player chooses
an instance from a general category such as famous persons, natural objects,
or historical events, and another player, who knows the category, tries to guess
the particular choice by asking whether it belongs to various subsets (“is the
person dead or alive?”, etc.). In one version, an old American television show
called “What’s My Line?”, the category was “unusual occupations” and there
was a panel of questioners who were allowed at most twenty questions to guess
the occupation of a guest.

The mathematical “T'wenty Questions Problem” is to determine the opti-
mal strategy for minimizing the mean number of questions that are asked. (It
is assumed the answers are truthful.) The solution to this simplified game, and
bounds on the mean decision time, are known from results in coding theory,
which formalize the plan of “divide and conquer.” (A precise definition of stra-
tegy will be given in §6.) Specifically, the Huffman code [14], [22], [26], provides
an explicit construction for coding the symbols of an alphabet with (variable
length) binary strings so as to minimize the mean number of bits that must
be examined during decoding. The mean length of the optimal code is at most
one plus the entropy of the “prior distribution,” i.e., the one initially placed
over the hypotheses. (Recall that entropy measures the uncertainty in a dis-
tribution, and is therefore minimized by a point mass and maximized by the
uniform measure.) This length is optimal because the mean length of any code
is at least equal to the starting entropy. Thus, for example, in the Twenty
Questions game we would only need about twenty questions on the average if
the category has 2%° items and each is equally likely to be chosen.

Of course this formulation is much too restrictive for practical decision-
making problems. For one thing, the problem is too easy as stated because
the hypotheses are too well separated if every subset question is allowed; in
reality it may be impractical or impossible to have exactly the right question
available at each instance, not to mention maintaining a data structure whose
size is exponential in the number of hypotheses.

Inria



In the “Constrained Twenty Questions Problem”([6], [7], [17],[18]) the set
of possible questions, i.e. subset choices, is limited. The problem is then deter-
mined by two things: an initial distribution on hypotheses and a binary matrix
indicating the answers to the questions for each hypothesis, with 1 standing
for “yes” and 0 for “no.” That is, each row corresponds to an individual hypo-
thesis and displays the answers for all tests, and each column corresponds to
an individual test and picks out a subset of hypotheses, Naturally, we assume
the rows are distinct (i.e., the set of tests uniquely determines the hypothesis)
as well as the columns (i.e., no test is repeated). For relatively “small” pro-
blems, say for 100 hypotheses and 20 tests, one can in fact find the optimal
strategy with dynamic programming. But the general problem is NP complete
[13]. Still, as with many hard combinatorial optimization problems, conside-
rable effort has been applied (see [7],[18] and the references therein) to finding
good “suboptimal” strategies.

It is precisely these suboptimal strategies we intend to apply to shape
recognition, but within a still more general framework that we shall still refer
to as “T'wenty Questions.” In particular, one cannot assume that the answers
are determined without error; given the true hypothesis, the tests are non-
deterministic due to variability in the image formation process and within
shape classes. In other words, the tests must be regarded as random variables.
Moreover, they may not be conditionally independent given the hypotheses;
this is the case, for example, in the application to numeral recognition; see §4
and $§6.

3 Indexing

Twenty Questions is not “hypothesize and test,” not in the sense of the popular
approach to object recognition which proceeds as follows. Given some feature-
based representation for the objects, two fundamental processes are iterated.
One process is “indexing”: the feature values derived from preliminary mea-
surements are used to elicit a candidate set of objects and/or poses which is
consistent with, or suggested by, the initial measurements. The other process
is “matching” - a correspondence is sought between object and data features.
In general these two processes are closely intertwined: indexing is driven by
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trial matches and trial conjectures focus attention on additional features to
compute, e.g., those likely to be visible or confirmatory.

In contrast to the repeated elicitation of candidate hypotheses., the in-
dexing in Twenty Questions, such as it exists, is dynamic and stochastic. We
gradually formulate specific conjectures. There is an evolving distribution on
hypotheses which is updated at each node of the decision tree in light of the
additional information derived from the most recent test. The distribution be-
comes increasingly peaked as information is accumulated, until one hypotheses
(or one homogeneous group) comes to dominate.

4 Models

Twenty Questions is not “model-based” per se. What is needed is the joint
distribution of hypotheses and tests. One way to determine this is to specify two
distributions: the marginal (= “prior”) distribution over hypotheses (which is
usually just uniform) and the conditional (joint) distribution of the tests given
each hypothesis. (If the tests are conditionally independent then it suffices
to provide the marginal distribution of each test given each hypothesis.) In
effect, our model for each hypothesis is the (conditional) distribution of tests.
Moreover, we can think of the strategy as providing a joint representation
for the ensemble of objects by selecting an ordered list of tests specifically
dedicated to that ensemble.

It is necessary to estimate the conditional distribution of tests from data.
In the road-finding application, since the tests are conditionally independent,
the strategy may be eractly computed once the marginal test distributions
are estimated; in particular, the conditional (= “posterior”) distribution on
hypotheses given the test results is calculated analytically. In contrast, in the
numeral application, the tests are conditionally dependent and we must es-
timate the strategy using the empirical distribution for tests and hypotheses
provided by a training set. This requires a large database of handwritten di-
gits; otherwise we lack enough instances of test histories to properly estimate
the residual entropy.
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5 Related Work

Decision trees are ubiquitous. We shall mention some related types which ap-
pear in Combinatorial Optimization, Statistics, and, to a somewhat lesser ex-
tent, in Computer Vision.

As we have already seen, Twenty Questions exemplifies a class of problems
in coding theory and combinatorial optimization. In particular, we shall focus
below on a class of “greedy” strategies (for choosing and ordering tests) which
are sometimes called “splitting algorithms” ([6],[7],[18]) in applications of bi-
nary search trees to fault-testing, machine diagnostics, and related problems.

In Sequential Design of Experiments ([3]) a more general framework is
considered, which involves a loss function (i.e., a penalty for each possible
misclassification), experimental “costs” for each test, and a resulting overall
“risk.” (Multi-armed Bandit ([10]) and Adaptive Control ([16]) problems are
closely related.) A major difference from Twenty Questions is that, in these
studies, the tests are repeatable and the emphasis is on asymptotic results
for large numbers of tests ([3],[15]). In our case, the available information
is inherently limited, represented by a fized number of tests; no additional
information is provided by performing the same test again: the answer must
be the same because the tests are simply functionals of a single image.

The basic set-up in CART (“Classification and Regression Trees”, [2]) is
essentially the same as ours. In particular, the observations are random and the
tests are not repeatable. Both approaches involve the construction of decision
trees based on principles of information gain. The main difference is dimensio-
nality - of the data, of the (effective) number of hypotheses, and of the pool
of questions. For example, when object “poses” are taken into account, we are
dealing with an essentially infinite number of hypotheses. Moreover, it is by no
means obvious what are the “right” features to entertain, whereas, in CART,
we are provided with a relatively small set of measurements and every test is
derived by applying a threshold to one of these.

Decision trees have already been used for recognition in pattern recognition
and computer vision. In particular, Swain ([24]) constructs a decision tree based
on entropy reduction and object topology in order to recognize polyhedra.
Our basic outlook is almost the same. One difference is that we account for
noisy responses in the construction of the decision tree; another is that we
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consider large-scale problems. Goad ([9]) uses search trees to match detected
vs. predicted edges, and emphasizes pre-processing to reduce recognition time.
Hansen and Henderson ([11]) use CAD models to generate a “strategy tree”
based on features (e.g., edges and surface patches) and use it to generate
hypotheses about object poses. Sossa and Horaud ([23]) explore a variation
of geometric hashing based on relational graphs which capture the intrinsic
topology of objects. See also [1], [12],[21], [25].

Finally, many ideas here originate in unpublished work by E. Bienen-
stock, S. Geman, D.E. McClure, and the first author on invariant (i.e., view-
independent) recognition of rigid objects, such as vehicles and character fonts.
A coarse-to-fine classification is performed at each image location; many hy-
potheses are simultaneously considered at the early stages, giving way in a
controlled progression to increasingly specialized tests. The decision tree is
constructed off-line by maximizing measures of dissimilarity among object sil-
houettes.

6 Mathematical Formulation

6.1 Hypotheses and Tests

We begin with a set of hypotheses, say X = {z1,zs, ...,z }. In some cases,
each z € X refers to a specific object/pose pairing. For example, in our formu-
lation of the road problem, there is one hypothesis for each (allowable) road
configuration and its placement in the image. In other cases, the hypotheses
are actually compound. For instance, each one might represent an entire class
of shapes, as in numeral recognition; neither the poses nor specific variations
are explicitly enumerated. (We may also wish to include an appropriate “null
hypothesis,” for example one representing the event that no object is present.)
We assume that exactly one hypotheses is true, denoted by X, and chosen
according to some initial distribution g = {po(z) = P(X =z),z € X'}.
Information is available from a discrete collection of tests Y7, Ys, ..., Y,
which are random variables. In our applications, the tests are local functionals
of the image data; specific examples are given later. Notice that there are
two distinct sources of randomness: uncertainty about the true hypothesis and
uncertainty in the test answers. In general, this family of tests is very large
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and we may assume that, with probability one (or nearly one), the entire set
of tests (essentially) determines X. In other words, given all the test results,
the conditional distribution on X would be extremely peaked. The idea is to
perform only a small fraction of the tests and still accurately estimate X. The
tests are performed sequentially and adaptively, meaning that at each stage
we may utilize the results of previous tests in order to choose the next one.
Our problem is then to perform these tests in an “optimal” order relative to
some criterion, for instance using as few tests as possible at a given accuracy
level, or achieving the best accuracy with a given number of tests.

In the simplified Twenty Questions game, the random variables Y,,n =
1,..., N, are binary and conditionally degenerate. Hence all the relevant in-
formation is captured by the binary matrix D = {D,,,,m = 1,...,M,n =

., N} where Dy, ,, = P(Y, = 1|X = z,). (Of course, P(Y, =0|X =z,,) =
1 — Dy, ) There is no randomness in the test outcomes once X is known. In
the case when all tests are available (so that N = 2M), the mean length [ of
the Huffman code satisfies the inequalities

H(po) <1< H(po) +1

where H(u) denotes the entropy of the probability distribution u:

Zu i) log, (1)

with the convention that 0log0 = 0. (The entropy of a random variable U
is defined as H(u) where pu(u) = P(U = u).) When only some of the subset
questions are available (but they still determine X, i.e., the rows of D are
distinct), the problem is then to determine the optimal strategy for minimizing
E(7), where 7 denotes the decision time, i.e., the number of tests performed
before X is known exactly. Unfortunately, this problem is NP complete.

6.2 Maximum Likelihood Classification

In principle, we can imagine doing all the tests and computing the maximum
likelihood (or maximum a posteriori) estimator XM’ = argmax, ,P(X =
z|Y1,...,Yn). This is obviously more accurate than any estimator based on
doing some of the tests. However, even if it were feasible to do all the tests,
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there remains the problem of determining XML; there are certainly too many
test histories to store all the possibilities in advance, and often no obvious
way to compute the estimator on-line. Indeed, we wish to get roughly the
same performance when each branch of the decision tree contains only a very
small fraction of the total number of tests. In effect, we estimate the maximum
likelihood estimator.

6.3 Strategies

For simplicity, assume each test Y, assumes values in common, finite set ) of
size L. A strategy is then a function 7 = (mq, ..., my) from observation vectors
(y1,...,yn) € YN to permutations of {1,..., N} such that m; € {1,..., N} is a
constant, mo = ma(y1), ™3 = m3(y1,¥y2), etc. The number of possible strategies
grows very fast with N.

The observations generated by re-ordering the tests Y,,,n =1, ..., N accor-
ding to a strategy m will be denoted by @1, Qs, ..., @n. Thus, @1 = Y,,,Q2 =
Y@, and, in general, @, = Y, (g,,...0._,)- The notation is awkward, but the
meaning should be clear: m; determines the first question asked, denoted Q1;
7o applied to @); determines the next question ()5; etc. Notice that @1, ..., @n
are not conditionally independent given X.

6.4 The Decision Tree

The decision tree then has ¢); at the root (or level-one) node, which branches
into L nodes corresponding to the possible answers {1 = y},y € V. Each of
these L level-two nodes then branches into L level three nodes corresponding
to the outcomes of )5, and so forth. Certain nodes are declared to be “terminal
nodes” and labeled by one of the hypotheses £ € X'. This may be formalized
using stopping and classification rules but we shall skip the details. In general,
each hypothesis z will be associated with many terminal nodes, and following
such a terminal node back to the root will produce one sequence of observations
for which X = x, where X denotes our estimator of X . For each x, the totality
of such sequences determines a region of observation space - the event {X = z}.

Basically, we want to stop testing when one of the hypotheses, or one
coherent class of hypotheses, becomes overwhelmingly likely. For each 1 <
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k < N and each (yi, ..., yx) € V* consider the “posterior distribution” P(X =
z|Q1 = y1, .-, @k = Yx). One simple stopping time is

7=min{l <k < N|m3xP(X=:L‘|Q1 =Y, Qr=1yk) > 1—¢€}

if P(X =z|Q1 =vy1,...,Qk = yx) > 1 —¢€for somez € X,k =1,...,N, and
7 = N otherwise. The terminal nodes are those at “level 7.” This is equivalent
to stopping as soon as the entropy of the posterior distribution falls below a
threshold.

The overall accuracy of the procedure might be measured by P(X = X)
or using the entropy at the terminal nodes. The speed-accuracy trade-off is
then represented by “dual” constrained optimization problems: fix the mean
decision time and search for the most accurate decision tree (the true analogue
of the twenty questions problem) or fix the level of accuracy and search for
the decision tree with the shortest mean path length. In either case, exact
solutions are generally unavailable and we are led to the problem of finding
good heuristics.

7 The Entropy Strategy

If B is an event, the entropy of a random variable U relative to the conditional
probability measure P(.|B) is denoted by Hg(U), and the conditional entropy
of U given another random variable V is defined as H(U|V) = >, P(V =
v)Hyy—y(U). Tt follows easily that

0<HUV) <HU),

i.e., the uncertainty about U can only be reduced upon observing V', and will
remain unchanged if U and V are independent.

Let By = {Q1 = v1, ..., Qr = yx} and assume P(By) > 0. The basic idea is
this: at stage k& + 1 choose the test Y,,n # w1, 79, ..., Tk, which maximizes the
expected gain in information about X from observing Y,,, having already ob-
served By. This is the same as minimizing the expected amount of uncertainty
about X i.e., under the pending posterior distribution. Thus,
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and, for £ > 1,

1 (Y1 ooy Y ) = argmin,, . Hp (X|Y,).

A Special Case. There is a special case (that we shall apply to finding roads)
in which it is possible to calculate the entropy strategy exactly. Go back to the
constrained twenty questions problem and recall that if hypothesis z,, is true
then the answer to test n must be “yes” if D,, , = 1 and the answer must be
“no” if Dy, , = 0. There is no randomness in the responses once the hypothesis
is fixed. Now generalize this by declaring that for any pair (m,n) for which
Dy, = 1 the probability law P(Y,, = y|X = z,,),y € Y for test Y,, is given
by some (discrete) distribution p;(y) and whenever Dy, , = 0 the distribution
is po(y). The ideal, noiseless, answer is Y,, = 1 when D,,,, = 1 but the actual
answer is a sample from p;, and similarly for the other case.

Example. Fix two error rates ¢; and ¢, and choose p1(y) = 1—e; and po(y) = €
ify =1,and p;(y) = ¢ and po(y) = 1—¢€o if y = 0. Thus ¢; (resp. ¢p) represents
the probability of hearing the “wrong” answer if the “right” answeris ¥, =1
(resp. Y, = 0).

In §9 we shall see that if the tests are conditionally independent, then the
only quantity that matters in constructing the entropy strategy is the proba-
bility that, given the previous k answers, question Y,, is answered according to

D1-

8 Handwritten Numeral Recognition

This problem has many variations. The most realistic and difficult is to “read”
unsegmented character strings in grey level images, say images of zip codes or
hand-drawn checks, in which case the individual characters may touch each
other and there may be artifacts from other structures. It is then necessary
to deal with multiple levels of context. The numeral problem gets easier if one
assumes (as we do) that the characters are segmented from the background
and from each other.

There are now ten (compound) hypotheses corresponding to the ten digits;
all variations within shape classes and spatial positionings are aggregated into
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one hypothesis. Thus, X € {0,...,9} and entropy reduction is relative to X
rather than an enumeration of individual presentations.

8.1 Tests

The tests are all binary and based on attributed graphs. We fix a set of possible
vertex labels, a set of possible relational labels, and consider the corresponding
set G of attributed graphs g in the usual sense. The vertex labels are invariant
classes of elementary binary patterns; invariance is with respect to translation
and (discrete) rotation. Some of these patterns loosely correspond to configura-
tions resembling “endings,” “junctions,” and “turns,” but there is no inherent
subclassification problem - the tests are well-defined image functionals. For
each two vertex labels, there is a set of possible invariant relations, based on
properties such as coincidence (i.e., same class, same orientation), co-linearity,
proximity (i.e., “next t0”), reflection, etc. (In this sense, we have adopted the
outlook of Lowe [19] about invariant groupings.) There are two types of tests:
those asking about the existence of a specific invariant class and those asking
about a relationship between two classes.

We limit ourselves to IV distinct graphs. Let Y, denote the question associa-
ted with g € G. Let I denote an image. There is a mechanism for determining
whether the answer to the test “Does g appear in I ?” is yes or no. For example,
given a mapping from images to graphs, we put ¥, = 1 if g is a subgraph of
G(I) and Y, = 0 otherwise, where G(I) is the graph associated with /. Notice
that the tests are conditionally dependent; for example, if g is a subgraph of
f, then Xy = 0 implies X; = 0.

8.2 Decision Tree

Let Iy, ..., Iy denote the images in the database; perhaps there are several
thousand of these for each of the ten digits. The conditional distribution
P(Y, = y4,9 € G|X = x),y, € {0,1}, on the family of questions is estimated
by the empirical distribution determined by the database, i.e., the proportion
of images of class z which satisfy the constraints. Just as before, at each ite-
ration we search for the test which gives the greatest average reduction in the
entropy of X.
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The decision tree is binary. Each node ¢ is assigned a graph g¢(¢) € G and
the two branches departing from ¢ correspond to the two possible answers to
the test Y, associated with g. Determining the answer to subgraph questions
requires considerable book-keeping, and would be computationally infeasible
on-line (and perhaps even off-line) except that we restrict a priori the order
in which the questions can be asked. For any node ¢, the graph g¢(t) assigned
to ¢ must be a supergraph of the one assigned to the parent of ¢. In fact, we
only consider strategies for which g(¢) differs from any ancestor graph g(s) by
a single element, meaning that either i) g(¢) and g(s) have the same vertices
and g¢(t) has one additional relation; or ii) g(¢) and g(s) have exactly the same
relations and g(¢) has one additional vertex.

So the first question is the vertex label with the highest information content.
Let @1 = y1,11 € {0,1}. If y; = 0, we again choose from among singleton
graphs (and necessarily from among the remaining vertex labels). If y; = 1,
we choose m(1) from among graphs g with two vertices and no relations. (Of
course the two vertices may have the same label.) Continuing, if @1 = 1 and
@2 = 0, then we search for m3(1,0) among graphs with exactly two vertices,
whereas, if @ = 1 and )2 = 1, the next graph m3(1,1) has either three
vertices (one of which is “new”) and no relations, or two (“old”) vertices and
one “new” relation. And so forth. As it turns out, most of the questions chosen
are relational. Finally, we can store the tree since it is binary and it is possible
to reach “homogeneous” nodes (i.e., one dominant explanation) with relatively
few tests.

8.3 Execution

The training may be quite intensive, but we can contemplate a very large pool
of tests. However, the on-line recognition is extremely simple: we need only
execute the strategy, i.e., follow the instructions. There is no on-line optimi-
zation. Moreover, since we traverse exactly one path of the tree (or perhaps
several to account for ambiguity and insure robustness) it doesn’t matter how
many different tests are represented altogether: we must only perform those
we encounter on the path dictated by the data.

Usually, the number of questions asked varies between five and twenty. If
a random strategy is employed in the construction of the decision tree, i.e., if
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the tests are chosen in a random order subject to the nesting constraint, then
the number needed for accurate classification can extend to 100 or more. (Of
course we couldn’t store a tree of that depth.) Asking all the questions (though
not feasible) yields the maximum likelihood classifier. The trick is to get the
same performance with only a tiny fraction of the tests. As mentioned earlier,
a full account of the experiments will be given elsewhere.

9 Detecting Roads in SPOT Images

9.1 The Road Problem

We propose a new method for detecting major road networks in panchromatic
SPOT satellite imagery with a (ground) resolution of 10 meters. The image size
we consider is 1024x1024 pixels, which represents a 10km x 10km square on the
ground. An example is given in Figure 3. Whereas these networks can usually
be rather easily identified by people at a large scale (say on the order of several
kilometers), the problem is far more difficult at small scale, as shown in Figure
3. In other words, the problem is more global than it might at first appear.
(This may be one reason there doesn’t seem to exist a practical solution at
this time.)

Most of the algorithms previously developed contain two major compo-
nents, one dealing with low-level processing and one with higher level algo-
rithms. The low-level algorithms are devoted to the identification of local,
road-like structures, often based on local filtering; see, e.g., [4]. In the second
stage, local detections might be organized using geometric information (e.g.,
curvature) about the shape of actual roads, together with techniques from ar-
tificial intelligence, as in [5], or together with global optimization, as in [8] and
[20]. In the next section we shall show how the tracking problem, that is, the
problem of extracting one single road when a starting point on the road is
given, may be solved using Twenty Questions. In addition, we are currently
extending this approach to the fully automated case; this involves incorpora-
ting an appropriate “null hypothesis” to cover the case of “no road” (in the
field of view) and determining appropriate rules for stopping and classification.
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9.2 Tracking as a Twenty Questions Problem

A major road in a SPOT image is modeled as a discretization of a smooth,
planar curve whose curvature is bounded by a known value. We use a piecewise
linear approximation; each knot corresponds to a pixel and the segments (which
we call “arcs”) are digitized lines of approximatively the same length. Such an
object is completely determined by an ordered list of regularly spaced pixels
(the knots) and an algorithm which constructs a digitized line between any
two pixels. The curvature constraint is expressed by limiting the angle between
successive arcs. Experimental results show that if the length of the segments
is sufficiently small (say 12 pixels, although this is conservative), then major
roads in SPOT images can be well approximated by allowing only three angles
labeled {0, 1,2}, corresponding to “no turn” between successive segments and
the next two smallest ones.

We suppose from now on that the first arc is given. Therefore each road
candidate is identified with a sequence of digits in {0, 1,2}. These are the
hypotheses X = {zy,...,zp}, each being a road containing logs M arcs. The
individual arcs in z are also labeled as sequences of digits; for example, if
x = 0021022011, the constituent arcs are 0,00,002, 0021 etc. Let A denote the
set of all arcs contained in some road candidate; then §.4 = 3(M — 1). There
is a test associated with each arc a € A; the test values, labeled {0, ..., J},
are determined by a matched filter (see §9.5) that uses the data at the corres-
ponding image location to measure how well the arc matches the true road.
Let {Y,, a € A} denote this family of tests. We assume these are conditionally
independent given X. (This is not exactly true for the functionals we use, but
a reasonable approximation.) Thus,

P(Ya = yaya € AIX = 2) = [ P(Ya = gal X = 2).
a€A

Another assumption is that the marginal (conditional) distributions depend
only on whether or not a € x, meaning that arc a is contained in road z. Let
us denote these distributions by p; and pg respectively. Then

P(Ya) fa€x
P(Y, = | X = z) = :
(Ya = alX =) {m@d et
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where y, € {0, ..., J}. Thus,

P(Y,=ys,a€ Al X =x) = H 91(Ya) Hpo(ya)-

a€x afx

The distributions pg and p; quantify the performances of the filtering algo-
rithm. They are estimated from sample data; see §9.5.

9.3 The Entropy Strategy

The first arc chosen is 7, the second is me, which depends on the response
Y:,, and so forth. The entropy strategy can now be characterized as follows.
Define ¢(2) = H(p1)z + H(po)(1 — 2) — H(zp1 + (1 — 2)po),0 < z < 1. Here
zpo + (1 — z)p; is the mixture distribution of py and p; with weights z and
1 — z respectively. It is easy to show that that ¢ is convex.

Theorem. Having observed By = {Y;, = Yn,, s Yn, = Un,} choose the next
test (i.e., arc) a # w1, ..., T by minimizing ¢(P(a € X|By)).

The proof is straightforward:

Proof: First, it is easy to see, and intuitively clear, that for any random va-
riables U, V, and event B,

Hp(U,V) = Hp(U|V) + Hp(V).
Now take U = X, V =Y, and B = By, the history of the first k tests. Then

Hp,(X[Ys) = Hp,(X,Ys) — Hp,(Ya)
= }{Bk(}%|)() +-}{Bk()() _-l{Bk(Y;)

Thus, the entropy strategy chooses the next test by minimizing Hp, (Y,|X) —
Hp, (Y,) as a function of a@ # y, ..., mg. This value will then be 741 (Yrys vy Yr, )
and the next test will be Qg1 =Y,

Th41°

Hp, (Yo|X) = > P(X = a|By)Hp, (Yol X = z)

reEX
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= Z P(X =z|By)H(Y,|X = z)
reX
(since the tests
are conditionally independent)

- Ze P(X = z|By)H(Y,|X = z)
+ > P(X =2|B) H(Y,|X = 2)
z:a¢T

= H(p1)P(a € X|By) + H(po)P(a & X|B)

Similarly, for any y € Y:

P(Yo=y|By) = > P(Ya=y|By, X =2)P(X = z|By)

reX
= Z P(Y:I = y|X = m)P(X = 37|Bk)
rzeEX
= Y PY,=y|X =z)P(X = z|By)
z:a€T
+ > P(Y, =y|X =z)P(X = z|By)
z:a¢r

= p(y)P(a € X|By) +po(y)Pla & X[Bx)

It follows that Hpg, (X|Y,) = ¢(2) + Hp,(X) with z = P(a € X|By), which
completes the proof.

Note: If the supports of py and p; are disjoint, then each test result eli-
minates certain hypotheses (i.e., their posterior probabilities become zero). In
this case, it is easy to see that ¢(z) = zlogy z + (1 — 2)logy(1 — 2), which is
symmetric about z = % Consequently, the strategy amounts to choosing the
test a for which |P(a € X|By) — 3| is as small as possible. In other words, we
choose the arc which most nearly divides the “active” roads into two groups
of equal probability. This case includes the noiseless game (e.g., constrained
twenty questions) in which the value of Y, is determined by X. Of course it is
impossible to design a local test which discriminates perfectly between roads
and background, so that the supports are never disjoint in practice.
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9.4 Implementation of the Entropy Strategy

The strategy must be computed on-line since the depth of the decision tree is
of order 100, corresponding to tracking approximately 10 km. Obviously the
full tree cannot be computed, let alone stored. However, if we can compute
it on-line, then we need only go down the path determined by the data, i.e.,
we needn’t compute the entire tree but rather only the particular branch we
traverse for the given image.

The on-line computation of the strategy is iterative. There are three steps
in executing iteration k + 1:

1. Choose an appropriate subset of arcs Ay from A;

2. For each a € Agy1, compute the quantity z(a) = P(a € X|By), where
By = {Yr, = Yrys s Yo, = Yn,}, evaluate the function ¢ at z(a), and
select mgy1 as the arc a for which ¢(z(a)) is minimized;

3. Perform the test Y, i.e., run the filtering algorithm using the image

Tk+4+1)
data at the location corresponding to mg41.

In the first step, Agy1 is a set of “feasible candidates” - arcs among which
#(2(a)) is minimized. The first set is simply A; = {0, 1,2}, the three arcs
branching from the (known) arc at the root of the tree. In general, it is easy to
see that Ak, need only contain the arcs that are “close enough” to {7, ..., 7 }.
For example the set of arcs which differ only in the last two digits from one of
the arcs {m, ..., 7} must contain argmin,c4 ¢(P(a € X|By)) for reasonable
choices of pg and p;. In practice, Ag,1 is constructed by removing 7, from Ay
and adding a small number of new arcs. In experiments to date, the size of the
set Ay never exceeds several hundred, whereas the total number of arcs (and
hypotheses) is of order 3'%. Moreover, the use of pruning techniques could
even further limit the growth of A.

Assume now that m has been computed based on evaluating P(a €
X|Bg_1) for all @ € Ag and we wish to compute 7. We construct Agyq
as above; now we wish to evaluate P(a € X|By) for a € Agy1.

First, since the tests are conditionally independent given X,

P(a € X|By) = (P(Bg))™" > P(Bi—1,X = z)P(Yy, = yr | X = 2).

r:acr
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Second, we can express P(By) as a function of P(By_1) as follows:

P(BY) = ¥ P(Bi, X =2)P(¥r, =3, |X = 1)

= M yﬂ'k Z PBk 1, —.’L')""

T:TRET

Po(Ym, ) (P(Bk—1) — Y. P(Bg-1,X = 1z))

T:TRET

= Po(Ym,)P(Bi-1)(1 + P(my, € X|By1)(v(yr,) — 1))

where

P1(Yr)

Po(Ym.)

Since 7 necessarily belongs to Ay, we can easily compute the new normalizing
constant P(By).

Finally, we exploit the fact that the arcs reside on a tree to show that, for
any a € Ay N A1, we can compute P(a € X|By) in terms of P(a € X|By_1).
(This covers nearly all the arcs a € Agiq; for the few remaining a direct
computation is easy since we have the normalizing constant.) For any two arcs
a,b € A, there are three possible cases:

V(Yr,) =

1. There is no x € X which contains both a and b;
2. Arc a is a descendant of arc b, i.e., a € x implies b € z for any z;
3. Arc b is a descendant of arc a.

Now take b = 7. In case (1),

S P(Bies, X = 2)P(Ye, = gy X = @) = polm)P(Ba-1) Pla € X|Bys)
ZT:a€T
which implies that
P(a € X|Bg-1)
1+ P(m, € X|Bg-1)(0(yr,) — 1)

Pa € X|By) =

Similarly, in case (2),

v(yr,)P(a € X|By_1)
1+ P(Wk € X|Bk 1)(v(y7rk) - 1)

Pa € X|By) =
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and in case (3),

P(CL S X|Bk_1) + P(ﬂ'k S X|Bk_1)(v(y7rk) — 1)

P(a € X|By) = 1+ P(mp € X|Bg—1)(v(Ym,,) — 1)

9.5 Tests: Local Filtering

The filtering algorithm is designed to identify short, linear segments that are
likely to lie on major roads. The basic assumption that is utilized is that
two pixels in close proximity and both on the road should have a smal-
ler intensity difference than that of two pixels, one of which lies on the
road and the other off the road. Since the major roads appear in SPOT
images as structures of width between two and three pixels, the filter is
based on a pair of adjacent, digitized lines (see Figure 1). The overall res-

2 t 3

N

e

[ 4

Figure 1: Local Filtering.
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ponse of the filter is the aggregate along the strip of the individual, bi-
nary responses of elementary probes, each based on a pattern of six pixels
(t1,...,ts) arranged as shown in Figure 1. Let I(¢) denote the image inten-
sity at pixel ¢. Fach such pattern is assigned a value 0 or 1; the value is 1 if
(1) = I(t2)] < min{|1(ts) — 1(t2)], | T(ts) — [(t2)], |1 (t) = I(t2)], [1(t) — T(82)}
and 0 otherwise. The test result is the average value along the strip, which is
renormalized to obtain a value in {0, ..., J}.

The distribution of the filter output is p; for “true” strips and is py for
strips off main roads. These distributions were estimated using several test
images. (The smaller roads appearing in the images were taken into account
when estimating py.) See Figure 2.

9.6 Experiments on SPOT Images

Results are presented in Figures 4,5 and 6. The three images show three diffe-
rent areas in France, around Toulouse, La Rochelle, and Mantes, respectively,
and are of increasing complexity. The white lines which are superimposed on
the original images show the (arc) locations where the tests were performed.
In Figure 4, the starting point was chosen on the North side and about 200
tests were performed during the tracking. The second image (Figure 5) is more
difficult; the main road that goes from East to West is not as visible as the
one in the previous case (see Figure 3). Morever the road crosses a town and
becomes essentially invisible for about 200 meters (20 pixels). The starting
point is chosen on the West side. Tracking gets “stuck” in the Northeast cor-
ner, and would need to be re-initialized to continue. The third image (Figure
6) is quite difficult: the main road itself is somewhat hard to see and there are
many competing structures such as small roads and rivers. The starting point
was chosen on the Fast side. In all three cases, the tracking time is on the order
of 10 seconds on a SUN-SPARC computer. Finally, there are no parameters to
choose; in particular, the distributions py and p; are fixed throughout.
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Figure 2: Estimated Distribution of the Filter. Top : On Roads; Bottom: In
Background
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Figure 3: Top: A 1024x1024 SPOT image of La Rochelle, France. Bottom: Four
subimages: the two on the left are on the main road and the two on the right
are from the background.
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Figure 4: Tracking results on a SPOT image from Toulouse, France. The arcs
selected by the algorithm are shown in white.
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Figure 5: Tracking results on a SPOT image from La Rochelle, France. The
arcs selected by the algorithm are shown in white.
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Figure 6: Tracking results on a SPOT image from Mantes, France. The arcs
selected by the algorithm are shown in white.
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10 Conclusions

Perhaps the main contribution here is the demonstration of how Twenty Ques-
tions (basically “divide-and-conquer”) may be applied to high-dimensional re-
cognition problems. In handwritten numeral recognition, the decision tree is
computed off-line. Each test is associated with an attributed graph; the com-
putation is manageable because we restrict the amount of “new” information
in each test and because we exploit the discriminating power of relational
questions. The resulting decision tree is then of modest depth. In contrast,
the strategy for tracking roads is computed on-line, and, in fact, most of the
computation is devoted to choosing, rather than executing, the tests. In this
case we exploit a convenient analytic characterization of the entropy strategy
and certain recursion properties.

Both applications are incomplete. For example, we assume the numerals
are isolated, i.e., segmented from the background and from each other, and we
assume we begin on the road, so the problem is essentially one of tracking. In
order to achieve more ambitious goals, especially in the case of unconstrained
script recognition, any approach must solve the fundamental problem that, at
some level, the data is ambiguous and it is necessary to incorporate multiple
levels of context. Such issues might stand in the way of extending Twenty
Questions to very general object recognition problems.
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