archives-ouvertes

Parallel detection of all palindromes in a string
A. Apopstolico, Dany Breslauer, Z. Galil

» To cite this version:

A. Apopstolico, Dany Breslauer, Z. Galil. Parallel detection of all palindromes in a string. [Research
Report] RR-2136, INRIA. 1993. <inria-00074536>

HAL Id: inria-00074536
https://hal.inria.fr /inria-00074536
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00074536
https://hal.archives-ouvertes.fr

%I NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallel Detection of all
Palindromes in a String

Alberto APOSTOLICO, Dany BRESLAUER,
Zvi GALIL

N° 2136
Décembre 1993

—-——— PROGRAMME 2 .

Calcul symbolique,
programmation
ct génie logiciel

apport
derechercheu_

1993

Parallel Detection of all Palindromes in a String

Alberto Apostolico* Dany Breslauer! Zvi Galil?

Purdue University and INRIA Columbia University and
Universita di Padova : Tel-Aviv University
: Abstract

This paper presents two efficient concurrent-read concurrent-write parallel algorithms that
find all palindromes in a given string:

1. An O(logn) time, n-processor algorithm over general alphabets. In case of constant size
alphabets the algorithm requires only n/logn processors, and thus achieves an optimal-
speedup.

2. An O(loglogn) time, nlogn/loglog n-processor algorithm over general alphabets. This is
the fastest possible time with the number of processors used.

These new results improve on the known parallel palindrome detection algorithms by using
smaller auxiliary space and either by making fewer operations or by achieving a faster running
time.

Recherche parallele de tous les palindromes d’une chaine

Résumé
Ce papier présente deux algorithmes paralleles efficaces -lecture et écriture simultanées- qui
détectent tous les palindromes d’une chaine donnée.

1. Un algorithme sur les alphabets généraux, utilisant n processeurs et un temps O(logn).
Pour des alphabets de taille constante, seulement n/logn processeurs sont nécessaires:
I'algorithme est. donc optimal.

2. Un algorithme sur les alphabets généraux, utilisant nlogn/loglogn processeurs et un
temps O(loglogn). Pour ce nombre de processeurs, cet algorithine est le plus rapide
possible.

Ces nouveaux résultats améliorent les algorithmes paralleles de détection de palindromes
connus d’une part en utilisant. un plus petit espace auxiliaire et d’autre part en diminuant soit
le nombre d’opérations, soit le temps d’execution.

*Partially supported by NSF Grants CCR-89-00305 and CCR-92-01078, by NATO Grant CRG 900293 and by the
- National Research Council of Italy.
'Partially supported by the European Research Consortinm for Informatics and Mathematics postdoctoral
fellowship. '
}Partially supported by NSF Grants CCR-90-14605 and CISE Institutional Infrastructure Grant CDA-90-24735.

1 Introduction

Palindromes are symmetric strings that read the same forward and backward. Palindromes have
been studied for centuries as word puzzles and more recently have several important uses in formal
languages and computability theory.

Formally, a string w is a palindrome if w = w®, where w* denotes the string w reversed. It
is convenient to distinguish between even length palindromes that are strings of the form vv* and
odd length palindromes that are strings of the form vav®, where « is a single alphabet symbol.

Given a string S[1..n], we say that there is an even palindrome of radius R centered at position
k of S[1..n], if S[k — 4] = S[k+ ¢ — 1] for i = 1,---,R. We say that there is an odd palindrome of
radius R centered on position k of S[1..n], if S[k — i] =-S[k + 1] for i = 1,---,R. The radius R
(or 73) is maximal if there is no palindrome of radius! R + 1 centered at the same position. In this
paper we are interested in computing the maximal radii R[k] and R[k] of the even and the odd
palindromes which are centered at all positions k of S[1..n].

Manacher {17] discovered an elegant linear-time on-line sequential algorithm that finds all initial
palindromes in a string. Galil [11] and Slisenko [18] presented real-time initial palindrome recog-
nition algorithms for multitape Turing machines. It is interesting to note that the existence of
efficient algorithms that find initial palindromes in a string was also implied by theoretical results
on fast simulation [6, 10]. Knuth, Morris and Pratt {15] gave another linear-time algorithm that
finds all initial palindromes in a string:

A closer look at Manacher’s algorithm shows that it not only finds the initial palindromes, but
it also computes the maximal radii of palindromes centered at all positions of the input string.
Thus Manacher’s algorithm solves the problem considered in this paper in linear time.

A parallel algorithm is said to be optimal, or to achieve an optimal-speedup, if its time-processor
product, which is the total number of operation performed, is equal to the running time of the fastest
sequential algorithm. Note that there exists a trivial constant-time CRCW-PRAM algorithm that
finds all palindromes in a string using O(n?) processors. However, the large number of grocessors
leaves much to be desired.

Fischer and Paterson [9] noticed that any string matching algorithm that finds all overhanging
occurrences of a string in another can also find all initial palindromes. This observation has been
used by Apostolico, Breslauer and Galil [1] to construct an optimal O(loglegn) time parallel
algorithm that finds all initial palindromes in strings over general alphabets, improving an QO(legn) -
time non-optimal algorithm of Galil [12]. Breslauer and Galil [5] show that any parallel algarithm
that finds initial palindromes in strings over general alphabets requires Q([n/p|+loglogp, ppq29p)
time using p processors. Thus, the fastest possible optimal parallel algorithm that finds imnitial
palindromes must take Q(loglog n) time and this is the time required even with nlegn processors.

Crochemore and Rytter [7] discuss a general framework for solving string problems sm parailel.
(Similar results have been discovered by Kedem, Landan and Palem [14].) Most problems they
consider, including the problem of detecting all palindromes in a string, have O(logn) time, n-
processor CRCW-PRAM algorithms. However, their method uses O(n!*¢) space and requires that
the input symbols are drawn from an ordered alphabet, an unnecessary restriction in the palmdrome
detection problem.

This paper presents two new CRCW-PRAM algorithms for detecting all palindromes in a string.

'For the convenience of our notation, we sometimes refer to indices in S[1..7] that are out of the defined range. It
is agreed that all undefined symbols are distinct and different from the symbols in S[1..n].

Both algorithms have the same time-processor product as the Crochemore-Rytter algorithm, use
linear space and work under the general alphabet assumption, where the only access they have to
the input symbols is by pairwise comparisons that determine if two symbols are equal.

1. The first algorithm takes O(log n) time using n processors. If the alphabet size is bounded by
a constant, then the number of processors can be reduced to n/logn, making the algorithm
optimal.

2. The second algorithmn takes O(loglogn) time using nlogn/loglogn processors. This algo-
rithm is the fastest possible with the number of processors used since it takes at least this
time to find the initial palindromes.

The paper is organized as follows. Section 2 overviews some parallel algorithms and tools that
are used in the new algorithms. Section 3 gives important properties of periods and palindromes.
Sections 4 and 5 describe the new algorithms. Concluding remarks and open problems are listed
in Section 6. '

2 The CRCW-PRAM Model

The algorithms described in this paper are for the concurrent-read concurrent-write parallel random
access machine model. We use the weakest version of this model called the common CRCW-PRAM.
In this model many processors have access to a shared memory. Concurrent read and write opera-
tions are allowed at all memory locations. If several processors attempt to write simultaneously to
the same memory location, it is assumed that they always write the same value.

Our palindrome detection algorithms use an algorithm of Fich, Ragde and Wigderson (8] to
compute the minima of n integers from the range 1,---,7n, in constant time using an n-processor
CRCW-PRAM. The second algorithm uses Breslauer and Galil’s [4] parallel string matching algo-
rithm that takes O(loglogn) time using an n/loglog n-processor CRCW-PRAM.

One of the major issues in the design of PRAM algorithms is the assignment of processors to
their tasks. In this paper, the assignment can be done using standard techniques and the following
general theorem.

Theorem 2.1 (Brent [3]) Any synchronous parallel algorithm of time t that consists of a total of
x elementary operations can be implemented on p processors in [z /p] +t time.

3 Periods and Palindromes .
Periods are regularities of strings that are exploited in many efficient string algorithms.

Definition 3.1 A string S has a period « if S is a prefir of «* for some large enough k. The
shortest period of a string S is called the period of S. Alternatively, a string S[1..m] has a period
of length m if S[i] = S[i +], fori=1,---,m— .

Lemma 3.2 (Lyndon and Schutzenberger [16]) If a string of length m has two periods of lengths
p and ¢ and p+ ¢ < m, then it also has a period of length ged(p, q).

Throughout the paper, we discuss only the detection of even palindromes. If interested also
in the odd palindromes, one can convert the input string.S[1..n] into a string S[1..2n] that is
obtained by doubling each symbol of the original string. It is not difficult to verify that the string
S[1..2n] has even palindromes that correspond to each odd and even palindrome of S[1..n]. Thus,
the palindrome detection algorithms can be presented with the string 3[1..271] as their input, while
their output is considered in the context of the original string S{1..n]. Note that an odd palindrome
in $[1..2n] consist of equal symbols.

The palindrome detection algorithms use the following lemmas that allow them to handle ef-
ficiently long palindromes that are centered close to each other. The lemmas concern only even
palindromes, but there exist similar versions for odd palindromes.

Lemma 3.3 Assume that the string S[1..n] contains two even palindromes whose radii are at least
T centered at positions k and I, such that k <l and ! — k < r. Then the substring S|k — 7.1+ 71~ 1]
is periodic with period length 2(1 — k).

Proof: If 1 < <7, then
Slk-d=S8Sk+i-1]=8l-(I-k)+i-1]=SU+({-k)-d=Sk+2(l-k)-1]
and .
Sl+i-1]=8ll-i]=8Sk+(U-k)—d)=Sk-(U-k)+i-1]=S[I-2(1-k)+i-1],
establishing that substring .S[k —r..l4+ r — 1] is periodic with period length 2(I — k). O

Lemma 3.4 Assume that the string S[1..n] contains an even palindrome whose radius is at least
T centered at position k. Furthermore, let S[ey,..€g) be the maximal substring that contains S[k —
..k + 1 — 1] and is periodic with period length 2r. Namely, S[i] = S[i + 27} for i = €1, -, ep — 27,
and Slep, — 1] # Slep + 2r — 1] and S[egp + 1] # Sler — 2r + 1].

Then the mazimal radii of the palindromes centered at positions ¢ = k + lr, for integral positive
or negative values of I, such that ef < ¢ < €g, are given as follows:

o Ifc— € #eg—c+ 1, then the radius is exactly min(c — ¢, eg — ¢ + 1).

o Ifc—€;, = €p—c+1, then the radius is larger than or equal to ¢ — €1,. The radius is ezactly

c— €r, if and only if Sler, — 1) # S[er + 1].

Proof: By the periodicity of S[er..€r], S[i] = S[j]if ez < 1,7 < egp and ¢ = j (mod 2r).
Combined with the existence of the even palindrome with radius 7 centered at position k, we get
that S[i] = S[j]ifex <i,j<epandi+j=2k—1 (mod 2r).

Consider the even palindrome centered at some position ¢ = k + lr, for integral positive or
negative values of [, such that ¢, < ¢ < €p. Since (c— 1)+ (c+:-1)=2k -1 (mod 27), we get
that S[c— i = S[c+i—1]fori=1,---,min(c¢ — €r,eg — ¢ + 1), establishing that the radius of the
palindrome centered at position ¢ is at least min(c — €r,eg — ¢+ 1).

If c—ep < eg—c+1, then S[c—(c—e€r+1)] # S[c+(c—er +1)—1] since S[er, —1] # Sler, +2r —1]
and S[2¢ — €] = Slep, + 27 — 1], establishing that the radius is exactly ¢ — €. Similar arguments
hold if c—€f, > ep — c+ 1.

Finally, if ¢ — € = eg — ¢+ 1, then it is clear that the radius is larger than ¢ — € if and only if
Slep — 1) = Sler+1]. O

4 An O(logn) time algorithm

Theorem 4.1 There exists an algorithm that computes the radii of all even palindromes in a string
S[1..n] in O(log n) time using n processors.

Proof: The algorithm consists of [logn| — 1 steps. In step number 7, 0 < 7 < [logn| — 2, the
input string S[1..n] is partitioned into consecutive blocks of length 2". (Only palindrome centers
are partitioned. The palindromes themself may overlap.) The algorithm proceeds simultaneously
in all [n/27] blocks. It takes constant time and makes O(2") operations in each block. Therefore,
each step takes constant time using 7 processors.

The description below concentrates on a single block. The ideal situation is when the radii of
all palindromes that are centered in the block are determined by the end of the step. However, this
will not always be the case. The algorithm maintains the following invariant at the completion of
step number 7:

The palindromes whose radii are determined are exactly those whose radii are smaller
than 27%2.

The main observation is that at the beginning of step nuinber 7, the position of all undetermined
radii in the block form an arithmetic progression. Let ¢; < ¢z < --- < ¢ be the positions of
palindromes whose radii are not determined. We show that if [> 3, then ¢;41 — ¢; = ¢; — ¢;—; for
i=2,---,1 = 1. By the invariant and Lemma 3.3, S[c;_, — 2"%'..¢; + 2"*!] is periodic with period
length 2(¢;—ci—1) and S[e; — 2"+ . ;41 +27F1] is periodic with period length 2(ci41—¢;). Therefore,
by Lemma 3.2, S[c; — 27*1..¢; + 2711] is periodic with period length ¢ = 2ged(c; — ¢i-1, Cip1 — €i)-
But by Lemma 3.4, if ¢; — ¢;j—; > ¢, then the radius of the palindrome centered at position ¢; — ¢
is larger than the radius of the palindrome centered at position ¢;_; or the palindrome centered
at position ¢;, violating the invariant. Therefore, ¢; — ¢;_; = ¢ and similarly also ¢,41 —¢; = ¢,
establishing that the sequence of undetermined radii {¢;} forms an arithmetic progression.

Note that an arithmetic progression can be represented by three integers: the start, the dif-
ference and the sequence length. If the undetermined radii in the two 27~ 1-blocks that compose
the current 27-block are represented this way, then the two representations are merged using a
constant number of operations. This permits an efficient access to all palindromes whose radii are
undetermined.

We show next how to maintain the invariant at the end of each step. The computation takes a
constant time and (O(27) operations using symbol comparisons and the integer minima algorithm.

1. If the block contains a single undetermined radius, then the algorithm checks if the radius is
at least 2712 or finds the radius exactly if it is shorter.

2. If the block contains a non-trivial arithmetic progression of undetermined radii {¢;}, ¢ = 1.1,
with difference c, then let S[ey..€g] be the mnaximal substring that contains Sfey —c..c;+ ¢ — 1]
and is periodic with period length 2¢. By Lemma 3.4, the radius of the palindrome centered
at position ¢; is exactly min(¢; — €L, €g — ¢; + 1) except for at most one of the ¢;’s that satisfies
c; — € =€p —¢; + 1.

The algorithm checks if S[e; — 27F2..¢; + 27+2 — 1] is periodic with period length 2¢c. If this

substring is not periodic, then the algorithin has found at least one of ¢; and ¢g and it
can determine all radii which are smaller than 2"*2 iy Lemma 3.4. If the algorithm found

<t

both €1 and ¢r and there is a palindrome with undetermined radius centered at position
(€L + €r + 1)/2, then the algorithm checks if the radius of this palindrome is at least 272 or
finds the radius exactly if it is shorter.

Sometime the algorithm finds radii of longer palindromes but we prefer to leave these radii
undetermined to maintain the invariant,

In the beginning of step number 0 there is a single undetermined radius in each block and the
invariant is satisfied at the end of the step. At the end of step number |logn| — 2 all radii have
been determined. O

4.1 Constant size alphabets

If the size of the alphabet is bounded by some constant, then the O(log n) time algorithin described
above can be implemented using only n/logn processors, similarly to Galil’s [12] string matching
algorithm. This is achieved using the “four Russians trick” [2] of packing log n symbols into one
number, in order to facilitate comparisons of up to logn symbols in a single operation.

5 An O(loglogn) time algorithm

Theorem 5.1 There exists an algorithm that computes the radii of all even palindromes in a string
S[1..n]) in O(loglog n) time using nlogn/loglog n processors.

Proof: The algorithm proceeds in independent stages which are computed simultaneously. In stage
number 7, 0 < 5 < |logn| — 3, the algorithm computes all entries R[7] of the radii array such that
4l,, < R[] < 8, for [, = 2".

Note that each stage computes disjoint ranges of the radii values and that all radii.that are
greater than or equal to 4 are computed by some stage. The radii between 0 and 3 are computed
in a special stage that takes constant time and O(n) operations. (The special stage assigns one
processor to each entry of the radii array to check sequentially if the corresponding radius is between
0 and 3.) :

We denote by T, the time it takes to compute stage number 7 using O,, operations. In the
next section we show that each stage 7 can be computed in T;, = O(loglogl,)) time and O,, = -O(n)
operations. Since the stages are computed simultaneously, the time is maxT;, = O(loglogn). The
total number of operation performed is £,0, = O(nlogn). By Theorem 2.1, the algorithm can be
implemented in O(loglogn) time using nlogn/ loglog n processors. O

-

5.1 A single stage

This section describes a single stage 7, 0 < 5 < |logn| — 3, that computes all values of the radii
array R[1..n] that are between 41, and 8, — 1, in O(loglog/,) time and O(n) operations.

Partition the input string S[1..n] into consecutive blocks of length [,. Namely, block number k
is S[(k - 1)I,, + 1..kl,)]. Stage number 7 consists of independent sub-stages that are also eomputed
simultaneously. There is a sub-stage for each block. The sub-stage finds the radii of all palindromes
which are centered in the block and whose radii are in the range computed by stage n. Sometimes
palindromes whose radii are out of this range can be detected, but these radii do not have to be
written into the output array since they are guaranteed to be found in another stage.

6

The sub-stage that is assigned to block number k starts with a call to the string matching
algorithm to find all occurrences of the four consecutive blocks S[(k — 4), + 1..kL,}, reversed, in
S((k—2),+ 1.(k+4),, = 1]. Let p;, i = 1,---,7, denote the indices of all these occurrences. The
sequence {p;} has a “nice” structure as we show next.

Lemma 5.2 Assume that the period length of u string A[1..1} is p. If A[1..1] occurs only at positions
< p2<--<pgofastring B and pp — py < [%], then the p;’s form an arithmetic progression
weth difference p.

Proof: See the paper by Apostolico, Breslauer and Galil [1]. O
Lemma 5.3 The sequence {p;}, which is defined above, forms an arithmetic progression.

Proof: The sequence {p;} lists the indices of all occurrences of a string of length 4/, in a string of
length 6/, — 1. By Lemma 5.2, the p;’s form an arithmetic progression. O
By the last lemma, the sequence {p;} can be represented by three integers: the start, the
difference and the sequence length. This representation is computed from the output of the string
matching algorithm in constant time and O(l;) operations using the integer minima algorithm.
The next lemma states that we essentially found all “interesting” palindromes.

Lemma 5.4 There exists a correspondence between the elements of the {p;} sequence to all palin-
dromes that are centered in block number k and whose radit are large enough.

o If p; + kl,, is odd, then p; corresponds to an even palindrome whick is centered at position

(pi + klp + 1)/2.

o If pi + kl,, is even, then p; corresponds to an odd palindrome which is centered on position

(Pi + kln)/2'

Each palindrome whose radius is at least 41, — 1 has some corresponding p;, while palindromes
that correspond to some p; are guaranteed to have radii that are at least 31,,.

Proof: Assume that there is an even palindrome whose radius is at least 4/, — 1 which is centered
at position ¢, such that (k — 1)l,, < ¢ < kl,,. Thatis, S[c—i]=S[c+i—-1]fori=1,---,4l, - 1.
In particular, S[c ~ 4] = S[c+ ¢~ 1] for ¢ ~ kly <7 < ¢~ (k- 4)l; ~ 1, establishing that there is an
occurrence of S[(k — 4)l,, + 1..kl,], reversed, starting at position 2¢ — kl,, — 1.

Conversely, if there is an occurrence of S[(k — 4)l,, + 1..kl,], reversed, starting at posltlon
i, then S[kl, — j] = S[pi + j] for j = 0,---,4l, — 1. In particular, if p; + kl, is odd, then
Sikl,, — 7] = S[pi + j] for j = (k& — pi + 1)/2,---,44, — 1, establishing that there is an even
palindrome of radius 41, — (kl, — p; + 1)/2 > 31, centered at position (p; + ki, + 1)/2.

Similar arguments hold for odd palindromes. O

We could design the algorithm to find the odd palindromes directly, but we rather use the
reduction to even palindromes that was given in Section 3. Define the sequence {¢;} fori=1,---,1,
to list all centers of the even palindromes that correspond to elements in {p;}. By the last lemma,
if the difference of the arithmetic progression {p;} is even or if there is only a single element, then
all the p;’s correspond either to odd or to even palindromes. If the difference of the arithmetic

(12] ‘Z. Galil. Optimal parallel algorithms for string matching. Inform. and Control, 67:144-157,
1985.

[13] Z. Galil and J. Seiferas. A Linear-Time On-Line Recognition Algorithm for “Palstar”. J.
Assoc. Comput. Mach., 25(1):102-111, 1978.

(14] Z. Kedem, G. M. Landau, and K. Palem. Optimal parallel suffix-prefix matching algorithm
and applications. Manuscript, 1988.

[15] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comput.,
6:322-350, 1977.

(16] R. C. Lyndon and M. P. Schutzenberger. The equation ¢ = b™c? in a free group. Michigan
Math. J., 9:289-298, 1962.

[17] G. Manacher. A new Linear-Time “On-Line” Algorithin for Finding the Smallest Initial Palin-
drome of a String. J. Assoc. Comput. Mach., 22, 1975. :

[18] A.O. Slisenko. Recognition of palindromes by multihead Turing machines. In V.P. Orverkov
and N.A. Sonin, editors, Problems in the Constructive Trend in Mathematics VI (Proceed-
ings of the Steklov Institute of Mathematics, No. 129), pages 30-202. Academy of Sciences
of the USSR, 1973. English Translation by R.H. Silverman, pp. 25-208, Amer. Math. Soc.,
Providence, RI, 1976. '

10

Unité de Recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

Unité de Recherche INRIA Lorraine Technopéle de Nancy-Brabois - Campus Scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)
Unité de Recherche INRIA Rennes IRISA, Campus Universitaire de Beaulicu 35042 RENNES Cedex (France)
Unité de Recherche INRIA Rhone-Alpes 46, avenue Félix Viallet - 38031 GRENOBLE Cedex (France)
Unité de Recherche INRIA Sophia Antipolis 2004, route des Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Cedex (France)

EDITEUR
INRIA - Domainc de Volucecau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedcx (France)

ISSN 0249 - 6399

A

