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Abstract -

Theorem proving in parameterized specifications allows for shorter and more structured proofs.
Moreover, a generic proof can be given just once and reused for each instantiation of the parameters.
We present procedures to test sufficient completeness and to prove and disprove inductive properties
automatically in parameterized conditional specifications. Our method relies on the notion of test
set, which can be seen as a well-suited induction scheme. Previously, we could only compute a
test set for conditional specifications if the constructors were free. Here, we give a new definition
of test sets and an algorithm to compute them even if the constructors are not free. The method
uses a new notion of provable inconsistency which allows us to refute more false conjectures than
with previous approaches. This new method when limited to non-parameterized conditional speci-
fications, can refute general clauses; refutational completeness is also preserved for boolean ground
convergent rewrite systems even if the functions are not sufficiently complete and the constructors
are not free. The method has been implérnented in the prover SPIKE. Based on computer exper-
iments, the method appears to be more practical and efficient than inductive theorem proving in
non-parameterized specifications.

Keywords: Parameterized Conditional Specifications, Sufficient corhpleteness, Theorem Proving,
Implicit induction, Term rewriting systems.
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Spécifications paramétrées:

Complétude suffisante et Induction implicite
ADEL Bousoura

CRIN & INRIA-Lorraine
BP 239, 54506 Vandoeuvre-les-Nancy, France
email: bouhoula@Iloria.fr

Résumé

Les preuves dans les spécifications conditionnelles paramétrées ont I'avantage d’étre courtes et
structurées. De plus, une preuve générique peut étre donnée une seule fois et est valide pour toutes
les instanciations possibles du parametre. Nous proposons deux procédures de test de complétude
suffisante et de preuve par induction dans les spécifications conditionnelles paramétrées. Notre méth-
ode se base sur la notion d’ensemble test. Dans les travaux précédents, nous ne pouvions calculer un
ensemnble test pour une spécification conditionnelle que dans le cas ou les constructeurs somt libres. .
Ici, nous présentons une nouvelle définition des ensembles test et un algorithme-permettant de les =
calculer méme dans le cas ol il y a des relations entre les constructeurs. La méthode utilise Tmenou-
velle notion de preuve d’inconsistance qui permet de réfuter plus de conjectures non valides-qu’avec s
les méthodes précédentes. La nouvelle procédure limitée aux spécifications non parameétrées. pet -
réfuter des clauses générales; la complétude réfutationnelle est aussi préservée pour les spécfmations &
booléennes convergentes méme si les fonctions ne sont pas suffisamment tomplites et 71l wea-des
relations entre les constructeurs. Nous avons entierement implanté cette nouvelle méthadbksisas e -
prouveur SPIKE. Sur la base de résultats expérimentaux, la méthode s’est avérée plus prmtique et~
efficace que les prouveurs de théorémes par induction dans les spécifications non paramétrées.

Mots clés: Spécifications Conditionnelles paramétrées, Complétude Suffisante, Preuvernutoma- -
tique, Induction implicite, Systeme de réécriture.



1 Introduction

Algebraic specifications provide a powerful method for the specification of abstract data types in pro-
gramming languages and software systems. Often, algebraic specifications are built with equational
or conditional equations. Semantically, the motivation for this is the existence of initial models;
operationally, the motivation is the ability to use term rewriting techniques for computing and auto-
matic prototyping. One of the most important issues within the theory of algebraic specifications is
the specification of parameterized data types. Most common data types like list are in fact param-
eterized types, list(data). The key idea is to consider the parameter part data as a formal algebraic
specification which can be actualized (i.e. instantiated) by other predefined algebraic specifications
like nat, int or bool. Hence, we can obtain from the parameterized specification list(data) the three
value specifications corresponding to lists of natural numbers, lists of integers and lists of boolean
values. The benefit of this process is not only an economy of presentation but also the automatic
correctness of all the value specifications provided that the parameterized specification lst(data) is
corréct and the actual instantiation is valid. This is a very important property for building up larger
data types and software systems from small pieces in a correct way. Sufficient completeness and
consistency are fundamental notions for guaranteeing correctness of a parameterized specification.
Also, they are very useful in proofs by induction. Informally, given a conditional specification S and
a set of distinguished operators C, called constructors, S is said to be sufficiently complete, if any
normal form of a ground term is a primitive term, i.e. a term only built from constructors. Guttag
showed that this property is undecidable. However, some syntactic criteria can be given. Most of
them are based on rewriting methods [Guttag, 1978; Kounalis, 1985; Lazrek et al., 1990]. In the
context of conditional parameterized specifications, the art is less developed. This is mostly due to
the fact that the problem is much harder. In this paper, we give an effective method for testing this
property for parameterized conditional specifications. This method is inspired by [Kounalis, 1985;
Bouhoula et al., 1992a] and it is based on the notion of Pattern trees.

Another direction is to make use of parameterization at the proof level and to develop a generic
proof method. This approach allows us to have shorter and more structured proofs. A generic proof
for a parameterized specification must be given only once and can be reused for each instantiation
of the parameter. We are interested in automating proof by induction. Many tools for proof by
induction have been developed for non-parameterized specifications: The first type applies explicit
induction arguments on the term structure [Boyer and Moore, 1979; Bundy et al., 1989; Walther,
1993]. The second type involves a proof by consistency [Musser, 1980; Huet and Hullot, 1982;
Jouannaud and Kounalis, 1986; Fribourg, 1986; Kapur and Musser, 1987; Bachmair, 1988]. More
recently, new methods were developed that do not rely on the completion framework [Kounalis and
Rusinowitch, 1990; Reddy, 1990; Bouhoula et al., 1992a; Bouhoula and Rusinowitch, 1993}.

Inductive theory of a parameterized specification are studied by Navarro and Orejas [Navarro
and Orejas, 1987]; their results generalize [Padawitz, 1985]. But they do not give effective methods
to prove inductive theorems. H. Kirchner has studied proofs by induction in the unconditional case
(where the parameter theory is equational) [Kirchner, 1991] using techniques of proof by consis-
tency. K. Becker has dealt with proof by consistency in parameterized positive/negative conditional
equational specifications [Becker, 1992]. To conclude, most of the work in proof by induction only
considers the techniques of proofs by consistency. It is generally accepted that such techniques may
be very inefficient since the completion procedure often diverges. For that reason, we adopt here a
method which does not require completion.

The system SPIKE [Bouhoula et al., 1992b] has been developed in this framework. It incorpo-



rates many optimizations such as powerful simplification techniques. To our knowledge, our system
is the only one that can prove and disprove inductive theorems in conditional theories without any
interaction. Note that NQTHM, CLAM and RRL were not designed to refute false conjectures.
SPIKE has proved several interesting theorems in a completely automatic way, that is, without in-
teraction with the user and without ad-hoc heuristics. It has also proved the challenging Gilbreath
card trick with only 2 easy lemmas which are given in the beginning of the proof [Bouhoula and
Rusinowitch, 1993a]. This example was treated by B. Boyer in NQTHM and H. Zhang in RRL.
Unlike SPIKE, they require a lot of lemmas, some of them being non-obvious.

We give in this paper a new procedure for proof by induction in parameterized conditional
specifications. Qur procedure relies on the notion of test set which can be seen as a special induction
scheme that allows us to refute false conjectures by the construction of a counter-example. Our
definition of test set is more general than the previous one given in [Bouhoula and Rusinowitch, 1993].
It permits us to obtain a smaller test set, which improves efficiency. This definition together with a
new notion of provable inconsistency permits us to refute more false conjectures than our previous
definitions [Bouhoula and Rusinowitch, 1993], in particular if the specifications are not sufficiently
complete and the constructors are not free. As in our previous procedure [Bouhoula et al., 1992a;
Bouhoula and Rusinowitch, 1993, to prove conjectures, we just instantiate them with terms from
the test set at induction positions and simplify them by axioms, other conjectures or induction
hypotheses. The method does not require any hierarchy between the lemmas. They are all stored in
a single list and using conjectures for mutual simplification simulates simultaneous induction. Unlike"
our previous method [Bouhoula and Rusinowitch, 1993), this new procedure when limited to non-
parameterized conditional specifications, can refute general clauses; refutational completeness is also
preserved for boolean ground convergent rewrite systems even if the functions are not sufficiently
complete and the constructors are not free. The method has been implemented in the prover SPIKE.
Based on computer experiments, the method appears to be more practical and more efficient than
inductive theorem provers in non-parameterized specifications.

The organization of this paper is as follows: In section 2, we briefly introduce basic concepts
about term rewriting..In section 3, we characterize the inductive theory defined by a parameterized
specification. We present in section 4 the procedure for testing sufficient completeness and we prove
its correctness and completeness. We also describe a session with SPIKE to give an idea about the
interaction with the user if the specification is not sufficiently complete. In section 5, we define the
notions of induction variables and test sets and provide an algorithm to compute a test set even if
the constructors are not free. We show how test sets can refute false conjectures and also illustrate

“with the help of an example the fact that we can refute more false conjectures than in [Bouhoula
and Rusinowitch, 1993), in particular if the specifications are not sufficiently complete. In Section
6 we define the notions of inductive theory and inductive rewriting, which is a fundamental tool for
proving inductive theorems. In section 7, we give a general inference system to perform induction
and to refute false conjectures and we show its correctness. The strategy is proved refutationally
complete for conditional equations with boolean preconditions if the defined functions are weakly
complete (subsection 7.3). Section 8 is dedicated to a computer experiment with our SPIKE system.
We give a comparison with our previous method for non-parameterized specifications and we show
how proofs in parameterized specifications are shorter and more structured.



2 Basic concepts

We assume that the reader is familiar with the basic concepts of term rewriting, equational reasoning
and mathematical logic. We introduce the essential terminology below and refer to [Dershowitz and
Jouannaud, 1990] for a more detailed presentation.

A many sorted signature ¥ is a pair (5, F) where S is a set of sorts and £ is a finite set of
function symbols. For short, a many sorted signature ¥ will simply denoted ‘by F. We assume that
we have a partition of F' in two subsets, the first one, C, contains the constructor symbols and the
second, D, is the set of defined symbols.

Let X be a family of sorted variables and let T'(F, X') be the set of well-sorted F-terms. Var(t)
stands for the set of all variables appearing in ¢ and §(z,t) denotes the number of occurrences of the
variable z in t. A variable z in t is linear iff §(z,t) = 1. If Var(t) is empty then ¢ is a ground term.
By T'(F) we denote the set of all ground terms. From now on, we assume that there exists at least
one ground term of each non-parameter sort.

Let N* be the set of sequences of positive integers. For any term ¢, oce(t) C N* denotes its set
of positions and the expression t/u denotes the subterm of t at a position u. We write ¢[s], (resp.
t[s] ) to indicate that s is a subterm of ¢ at position u (resp. at some position). The top position
is written €. Let #(u) denote the symbol of ¢ at position u. A position u in a term ¢ is said to be a
strict position if t(u) = f € F, a linear variable position if t(v) = z € X and §(z,t) = 1, a non-linear
variable position if t(u) = ¢ € X and §(z,t) > 1. We use sdom(t) to denote the set of strict positions
in t. If u is a position, then |u| (the length of the corresponding string) gives us its depth. If t is a
term, then |¢| is the maximum of the depths of occ(t). The symbol = is used for syntactic equality
between two objects.

A F-substitution assigns F-terms of appropriate sorts to variables. Composition of substitutions
o and 7 is written by o7n. The F-term t7 obtained by applying a substitution 7 to t is called an
instance of t. If n applies every variable of its domain to a ground term then we say that 5 is a
ground substitution. If ¢ is ground then it is a ground instance of t. A term ¢ unifies with a term s
if there exists a substitution ¢ such that to = so. .

A conditional F-equation is a F-equation of the following form: 83 =t A---As, =1, = s = 1o
where n > 0 and s;,¢; € T(F,X) are terms of the same sort. A F-clause is an expression of the
form ~(sy =t1) V ~(sp=t2) V -+ V =(sp, =) V () =t]) V -V (s, =t.). When F is
clear from the context we omit the prefix F. A clause is positive if = does not occur in it. Let ¢;
and ¢, be two clauses such that ¢y0 is a subclause of ¢; for some substitution ¢, then we say that ¢;
subsumes cp. Let H be a set of clauses and C be a clause, we say that C is a logical consequence of
H if C is valid in any model of H. This will be denoted by H |= C.

In the following, we suppose that > is a transitive irreflexive relation on the set of terms, that
is noetherian, monotonic (s > ¢ implies w[s] > w(t]), stable (s > ¢t implies so > to) and satisfy the
proper subterm property (f(?1,---,tn) > t, for all t € T(F, X)). We also assume that the ordering
> can be extended consistently when adding new constants to the signature. The multiset extension
of = will be denoted by >.

A conditional equation @y = by A ---a, = b, = | = r will be written as a; = by A---Aa, =
by => | — rif {lo} > {to,a10,b10,--+,a,0,b,0} for each substitution ¢ and Var(l) contains
Var(r)U Var(p) where p = AL a; = b;; in that case we say that ey = by A---a, = b, 2> 1 > 1 is
a conditional rule. The term [ is the left-hand side of the rule. From now on, we assume that for
each conditional rule p = | — r,if [ € T(C,X), then r € T(C,X). A conditional rule is used to
rewrite terms by replacing an instance of the left-hand side with the corresponding instance of the



right-hand side (but not in the opposite direction) provided the conditions hold. The conditions are
checked fecursively. Termination is ensured because the conditions are smaller (w.r.t. to >) than
the conclusion. A set of conditional rules is called a conditional rewrite system. We can define the
one-step rewrite relation —p and its reflexive-transitive closure —% as follows:

Definition 1 (Conditional Rewriting) Let R be a set of conditional equations. Lett be a term
and u a position in t. We write: t[lo), —g t[ro], if there is a substitution o and a conditional
equation N'—y a; = b; = |l =r in R such that:

1. lo>ro.
2. for all i € [1--.n] there erists ¢; such that a;o0 —F ¢; and bjo -} ¢;.
3. {t[sa].} > {a10, bio, -+ ,an0, byo}.

A term ¢ is R-irreducible (or in normal form) if there is no term s such that t —p s. We say
that two terms s and ¢ are joinable, denoted by s |g ¢, if s =% v and t =% v for some term v. The
rewrite relation —p is said to be noetherian if there is no infinite chain of terms 1, to, -, tx,---
such that ¢; —» g t;41 for all . The rewrite relation — p is said to be ground convergent if the terms
u and v are joinable whenever u, v € T'(F) and R = u = ».

3 Parameterized conditional specifications

A parameterized conditional specification is a pair PS = (PAR, BODY') of specifications: PAR =
(Fpar, Epar) and BODY = (Fpopy,Egopy) where Epag is the set of parameter constraints
consisting of equational clauses in Fpap and EFpopy is the set of axioms of the parameterized
specification. We assume that these axioms are conditional rules over I' = Fpap U FBopy, where
Fpsp and Fgopy are signatures.

Example 1 Consider the following parameterized specification: Spap = {bool, elem}, Fpar =
{true :— bool, false :— bool, <:elem x elem — bool, dif : elem X elem — bool}, Epsr condains
the following constraints:

true # false
z <z =1true
r<Ly=trueVe <y= false
z<y=truevVy <z = true
z<y= falseVy<z= falseVzx<z=1rue
dif(z,z) = false
dif(z,y) =trueVvdif(z,y) = false

S = Spar U Spopy where Sgopy = {nat, list}, F = FpsrUCpopy U Dgopy where Cgopy =
{0 :— nat, s : nat — nat, nil :— list, cons : elem X list — list} and Dgopy = {count :
elem x list — nat, sorted : list — bool, insert : elem X list — list, isort : list — list}, Egopy

contains the following conditional rules:

length(nil) — 0
length(cons(z,y)) - — s(length(y))

sorted(nil) — true



sorted(cons(z,nil)) — true (1)
¢ <y = false = sorted(cons(z,cons(y, z))) — false
z < y = true = sorted(cons(z,cons(y,z))) — sorted(cons(y,z)) (2)
insert(z,nil) — cons(x,nil)
z < y = true = insert(z,cons(y,z2)) — cons(z,cons(y,z))
z <y = false = insert(z,cons(y,z)) — cons(y,insert(z,z))
isort(nil) — mnal

isort(cons(z,l)) — insert(z,isort(l))

3.1 The canonical term algebra

An actualization (see [Ehrig and Mahr, 1985]) of the parameter theory Epag is a model A of Epyg.

We shall describe A by its diagram (see [Ehrig and Mahr, 1985; Padawitz, 1987]). For this reason we -
enrich the signatures by adding new constants a for each element a of the carrier A of A. Let N(A)

be the set of new constants and let F(4) = FUN(A). The diagram D(.A) of A is the set of (directed)

equations f(a,,---,a,) = a such that f € Fpagr; a;, @ € A and fA(ay,---,a,) = a. We denote by

Egopy(A) the set Egopy U D(A). For any model A of Epg, we define a canonical term algebra .
T(A) representing the semantics of the result of an actualization: 7(A) = T(F (A))/=EEODY(A)
where =gy, is the smallest congruence on T(F(A)) generated by Epopy(4)- An interesting
case is when 7(A) is an initial model in the class of F(A)-algebras that are models of Epopy(.A)
for any model A of Epgg. To guarantee this fact we need that Egpopy(.A) is consistent (i.e. has a
model) for any model A of Ep4g. This result is shown by the following theorem which is analogous
to theorem 2.8 from [Padawitz, 1987].

Theorem 1 If Egopy(.A) is consistent for any model A of Epan, then T(A) is initial in the class
of F(A)-algebras that are models of Epopy(A) for any model A of Epsg.

Many works have already be made in order to check consistency of parameterized specifications
(see for instance [Ehrig and Mahr, 1985; Padawitz, 1987; Kirchner, 1991; Becker, 1992]).

3.2 Proving inductive theorems w.r.t. parameterized specifications

We shall now define what is an inductive theorem in parameterized specifications. Note that the
theorems to be proved are F — clauses.

Definition 2 A F — clause I' is an inductive theorem for a parameterized specification PS (or
inductively valid w.r.t. PS) iff T(A) is a model of T for any model A of Epsr. This will be denoted
by PS Einda I or Epopy(A) Eina T for any model A of Epsrg.

The next lemma which is similar to lemma 9 from [Becker, 1992], gives us a useful characterization
of inductive theorems.

Lemma 1 LetT be a F —clause, I' = ~(uy = 1)} V- -=(tp = 02) V(81 = t1) - V(S = t). Then
[' is an inductive theorem w.r.t. PS iff for any model A of Epar and for any ground substitution o
over T(F(A)): '

(for all i: Epopy(A) k w0 = v;o) implies (there exists j such that Egopy(A) k= s;0 = t;0)



4 Sufficient completeness for parameterized specifications

The property of sufficient completeness is in general undecidable. We now give a method for testing
this property for conditional parameterized specifications. This method is inspired by [Kounalis,
1985; Bouhoula et al., 1992a) and based on the notion of Pattern trees. Let A be a model of Epag.
If any ground term in T'(F(A)) can be expressed only with constructors and elements of N'(A), we
say that PS is complete w.r.t. the constructors and parameter (or sufficiently complete). Here is a
more formal definition:

Definition 3 (sufficient completeness) We say that PS is sufficiently complete if and only if
for any model A of Epar, for all t in T(F(A)) there ezists t' in T(Cpopy U N(A)) such that

* '
t T Epopy(A) v

4.1 How to check sufficient completeness

The main idea behind our test for sufficient completeness is to compute a pattern tree for every f
in Dgopy. The leaves of the tree give a partition of the possible arguments for f. If all leaves are
“pseudo reducible by PS”, then the answer is affirmative. To compute pattern trees, we use the
following notions: Let f be a function symbol in Fgopy, we say that t is in Def(f), if t is of the
form f(wy,---,w,) with for all ¢, w; € T(F,X). Let t be a term and u a variable position in ¢, we
say that u is nullary if there are only finitely many ground constructor terms with the same sort
as t(u). In the following, we present a definition which characterizes induction positions of function
symbols in F.

Definition 4 (induction positions) Let f in Fpopy, we define the set of induction positions of
functions as follows: pos_ind(f) = {u | there isp = g — d € Egopy such that g € Def(f) and u is
either a strict and non-top position in g or a non-parameter and non-linear variable position in g}.

Example 2 (example 1 continued) The output of the SPIKE procedure that computes induction
positions of functions is given in figure 6. ’ ¢

Example 3 Consider the following parameterized specification: Spar = {elem}, Fpar =0, Epar
= 0. Spopy = {nat, card}, Cpopy = {0 :— nat, s : nat — nat, R :— card, B :— card} et
Dpopy = {f : nat x nat x nat — nat, g : card X card — nat, h : elem x elem — nat}. Egopy
contains the following rules:

flz,9,2) — =

flz,z,9) — =

fly,z,z) — =
9(z,y) —
h(z,z) —

o pos_ind(f) = {1, 2, 3}. The positions 1, 2 and 3 are induction positions since they are
non-parameter and non-linear variable positions.

e pos_ind(g) = @. The positions 1 and 2 are not induction positions since they are either strict
positions nor non-parameter and non-linear variable positions.



e pos_ind(h) = §. The positions | and 2 are not induction positions since they are parameter
variable positions. ¢

From any node of the tree labeled by the term t = f(wy, -+, w,), with w; € T(Cpopy,X) for
all i € {1---n], we build the sons of this node by choosing a variable position u of ¢ that is nullary
or that is an induction position of f and by makiné a graft at this occurrence. Each son is thereby
labeled by an element of a set of terms called sons(t,u). In this case, we say that ¢ is extensible.

Definition 5 Let t be a term of the form f(wy,---,wy) where for all i, w; € T(Cpopy,X). Let
u be a variable position of t, that is nullary or that belongs to pos_ind(f). Suppose that t(u) is of
sort s. We define sons(t,u) as follows: sons(t,u) = {tfu — ¢] | ¢ = ci(z1,- -, 2n) where ¢; is a
constructor with codomain s, n the arity of ¢; and zy, -+, z, are distinct variables }.

We say that u is an extension position and that t is extensible. The transformation operation of t
to sons(t,u) is called the graft of t at the occurrence u. We denote by pos_ext(t) the set of extension
positions of t.

Example 4 (example 3 continued) Lett = f(z,y,2) and t' = g(z,y) then
sons(t,2) = {f(z,0,z2), f(z,s(y),z)} and sons(t',2) = {¢(z, R), g(z, B)}
Note that 2 is a nullary position in t’ since the only constructors of sort card are R and B. ¢

Definition 6 (case rewriting) Let t be a term. Assume there ezxists a non-emptly sequence of

conditional rules C; = t1 — vy, Co = ty — 19, -+ Cp = t, = 7, in Egopy and a se-

quence of positions uy,ug, -+- ,Up in t such that t/uy = tyoy, t/ug = ta02, -+ ,t/up, = t,0,

and Cyoy V Caoy V -+ V Cpho, s an inductive theorem w.r.t. PS. Then, we write:
case_rewriting(t) = {Cy101 = t[r101}uy,* **, CnOn = Tn0n]u, }

In this case, t is said to be pseudo reducible by PS. Otherwise, t is said to be pseudo irreducible by
PS. This definition can be generalized to the case where t is a clause in a straightforward way.

Thus, if a term ¢ is pseudo reducible by PS, then all its ground instances are reducible.

Example 5 Consider the following specifications which define odd and even for non-negative inte-
gers: Spap = 0, Fpar = 0, Epar = 0. Spopy = {nat, bool}, Cpopy = {0 i— nat, s: nat —
nat, true :— bool, false :— bool} et Dgopy = {even : nat — bool, odd : nat — bool}. Epopy
contains the following conditional rules:

even(0) — true
even(s(0)) — false
even(s(s(z))) — even(z)
even(r) = true = odd(z) — false

even(s(z)) = true = odd(z) — true

The term odd(z) is pseudo reducible by PS since even(z) = trueVeven(s(z)) = true is an inductive
theorem w.r.t. PS. However, the term even(z) is pseudo irreducible by PS. ¢



It is useless to continue the graft process when we meet a node labeled by a term which is
pseudo reducible by P.S. Then, we can describe the construction of the pattern tree in the following
way: from the tree initially constituted from the root t = f(z1,--,z,), where n is the arity of f
and zy,---,z, are distinct variables. We check the pseudo reducibility by PS of t. If ¢ is pseudo
irreducible by P.§, we build at every step the sons of a node s of the tree by choosing an occurrence
in pos_ext(s) and by making a graft operation on s at this occurrence. The construction of the tree

stops if each of its sons is either pseudo reducible by PS or we can no more split it.
. .

stop: 0 F¢ (0, Red, Irred)

delete reducible leaf: (Candidats U {t}, Red, Irred) ¢ (Candidats, Red U {t}, Irred)

if t is pseudo reducible

decompose: (Candidats U {t}, Red, Irred) +¢ (CandidatsU fils(t,v), Red, Irred)

if t is pseudo irreducible and u € pos_ext(t).

delete irreducible leaf: (Candidats U {t}, Red, Irred) +¢c (Candidats, Red, Irred U {t})
if t is pseudo irreducible and pos_ext(t) = §.

Figure 1: Inference System C

4.2 Inference rules

To check if an operator f in Epopy is sufficiently complete, we apply the rules given in figure 1.
Candidates is the set of terms candidate for the check of reducibility. Red is the set of leaves of the
tree which are pseudo reducible. Irred is the set of leaves of the tree which are pseudo irreducible
and not extensible.

The initial state is ({f(z1,---,2n)},0,0), where n is the arity of f and z,---,z, are distinct
variables. The rule stop is applied if the set candidates is empty. Then, if Irred is empty, we conclude
that all the leaves of the pattern tree are pseudo reducible by PS. Consequently, the operator f is
sufficiently complete (see theorem 2). If we meet a term ¢ that is pseudo reducible by PS, then the
delete reducible leaf rule add it to the set Red and we continue the check of the pseudo reducibility of
the other leaves of the tree. The decompose rule expresses the operation of decomposition of a term
t at the occurrence u. This rule applies, if we meet a term ¢ that is extensible and pseudo irreducible
by PS. The graft operation produces the sons of ¢, for which we must check pseudo reducibility.
Finally, the delete irreducible leaf rule is applied if we meet a leaf of the tree that is not extensible
and pseudo irreducible by PS. In this case we add the term t to the set Irred and we continue the
check of the pseudo reducibility of the other leaves of the tree.

Example 6 (example 1 continued) The pattern tree of insert is computed by SPIKE (see fi-
gure 4). All the leaves are pseudo reducible by PS, then we conclude that count is sufficiently

complete. ¢

The height of the pattern tree is bounded. This result is shown by the following lemma:

10



Figure 2: The function insert is sufficiently complete

Lemma 2 Lett be a term f(zy,-- -,xn)' with f € Dgopy and 1, - -z, are distinct variables. The
pattern tree of f, computed by C, is bounded.

proof: The rules of R which have the function symbol f at the top is finite. This involves that
the set pos_ind(f) is finite too. As a consequence the set occ_var(t) N pos_ind(f) decreases during
the construction of the tree since consecutive grafts in the same branch of the tree are made at
deeper and deeper occurences. On the other hand, a nullary position correspond to a finite set of
constructor terms. Consequently, the height of the pattern tree is bounded. ]

4.2.1 Correctness and completeness

In the following we denote by Cgopy(A) the set Ceopy UN(A). A term t is strongly irreducible
by Epopy (or strongly Egopy-irreducible) if none of its non-variable subterms matches a left-hand
side of Egopy. Otherwise, we say that t is strongly reducible by Egopy.

Theorem 2 Let PS be a parameterized specification such that for all model A of Epar —Epopy(a)
is ground convergent over T(F(A)). If for any f in Dpopy, there ezists a sequence of states
({f(z1,---,22)},8,0) k¢ - - -+ (0, Red, D), then PS is sufficiently complete.

proof: Let f be a function symbol and suppose that there exists a sequence of states

({f(xh ot "xn)}’m’@) }_C e }_C (0, Red, 0)

Let A be a model of Ep4g, we have to prove the following property
P(t): ¥t € T(F(A)), 3t' € T(Copy(A)) such that t =% = 4t

We proceed by induction on ¢t w.r.t. > which is compatible ! with —Epopy(4)- Without loss
of generality, we can assume that ¢t = f(t1,---,t,) with f in Dpopy and for all i we have ¢;
in Cpopy(A). Then, there exists a leaf s of the pattern tree and a ground substitution o over
T(Cpopy(A)) such that so =t. Since s is pseudo reducible by PS, then there exists a non-empty

lTwo noetherian orders >, and »» are compatible if they are both included in a noetherian order.
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sequence of conditional rules C; = t; — ry, C"g >ty =19, Cp =>t, - r,in Fgopy and a
sequence of positions uy,u2, --- ,u, in s such that s/u; = ty01, s/ug = ta0q, -+ ,8/uy = t,0y
and Cyo; V Ca0y V -++ V Cpoy, is an inductive theorem w.r.t. PS. Then, there exists k such
'that 8Tk —Egopy(A) TkOk, since for all model A of Epag —Epopy(4) is ground convergent over
T(F(A)). This implies that tk0k0 =g, (4) TkORO since — g, - (4) is stable by substitution.
On the other hand, we have rroro < t and rioro € T(F(A)) since Cx = tx — 7 is a condi-
tional rule. Then by induction hypothesis, we conclude that there exists ¢’ in T(Cpopy(A)) such
that ryoo qz‘?aooy(A) t' and therefore there exists t" in T(Cpopy(A)) such that ¢ _)EBODY(A) t. o

The completeness of the procedure is shown by the following theorem:

Theorem 3 Let PS be a parameterized specification. Suppose that the constructors are free, all
parameter variables in the left-hand sides of Egopy are linear and if the defined function g appears
in a left-hand side of a conditional rule in Egopy, then every rule in Egopy that contains g in
its left-hand side is linear. If PS is sufficiently complet, then there ezists a sequence of states

({f(z1,-+,20)},0,0) ¢ - - - Fc (0, Red, 0).

proof: Assume that PS is sufficiently complete. Suppose that there exists a leaf ¢t which is not
extensible and pseudo irreducible by PS. Then, there are two cases to be considered:

a) t is strongly irreducible by Epopy. Let A be a model of Epsg and assume that {z;,---,zx} be
the set of non-parameter variables of ¢. Let us consider a ground substitution ¢ such that for all
parameter variable z of ¢, z¢ is an element from A(.A) of the same sort as z, and for all ¢ € [1- - -k],
z;¢ is strongly Epopy(A)-irreducible, and:

1Vie[lk]|zd| > |,
2. Vi, j€(l---kl,i# 5, |lzig] - |z;0]] > [t

Note that such ¢ exists thanks to the fact that ¢ is not extensible and the constructors are free, so
we can choose z;¢ among the terms built from constructor symbols and elements of N(A). Assume
now that {¢ contains an instance of a left-hand side g of a rule in Fgpopy. Since any z;¢ is strongly
Epopy-irreducible, there is a strict position u in ¢ such that t¢/u is an instance of g. Let v be a
position of g such that g/v is a function symbol. t/uv is a function symbol since ¢ is not extensible.
We consider two cases:

a.l) Assume that g is linear. We can define a substitution o such that for every variable z that
occurs at position w of g we have o(z) = t/uw. Such a substitution exists by the linearity of g. We
then have t/u = go which contradicts the assumption that ¢ is strongly Egopy-irreducible.

a.2) Assume that g is non-linear. Since t is not an instance of ¢ (and t/uw = g/w for every strict
position w of g) there exist two occurrences u; and u2 of a non-parameter variable z in g (since
all parameter variables in the left-hand sides of Egopy are linear) such that: t/uu; # t/uus and |
t¢/uuy = tp/uu,. There are three cases to be considered:

a.2.1) if t/uu; and t/uug are ground. In this case t/uu; = t¢/uuy and t/uu; = t¢/uu,;. Therefore
t/uu; = t/uugy, which is a contradiction.

12



a.2.2) if t/uu; is ground and t/uu; non-ground. Then some r; occurs in t/uuz. We have |z;0| > ||
by construction of © and therefore |to/uu;| > [t|. On the other hand. |t¢/uuy| = |to/uuy] =
[t/uuy| < |t|. which is a contradiction. ’

a.2.3) if t/uu; and t/uu, are non-ground. Then there is an occurrence v and a variable z; such
that {/uuyv = ry and t/uuyv # 1.

o If t/uuyr is ground the proof is similar to a.2.2
o If t/uupv is non-ground let Var(t/uuzv) = {x;, . 2i,}.

— If i € Var(t/uuyr) then [to/uuyv| < |t¢/uuzv| and therefore we cannot have t¢/uu, =
to/uu;y as this leeds to a contradiction.

— If ry ¢ Var(t/uupr) then let z; be the variable in Var(t/uupv) such that |z;¢| =
mari=1...m.|r;0|.

* If |zro] > |xjo| + [t| then |top/uuyv| = |zxd| > |20 + [t| > [td/uuqv|

x If |2j0| > |rr0| + |t| then [top/uugv| > |z;P| > |zx@| + |t] > |td/uu1v| = |2x¢| and we
derive a contradiction too.

Therefore to is strongly irreducible by Egopy. On the other hand, t does not contain any pa-
rameter function. so to is ground and irreducible by Egopy(.A). This contradicts the assumption.

b) Otherwise. t is strongly reducible by Egopy. Let L = {c; = l; — 71,--+,¢q = I, — 7.} be
the non-empty set of all conditional rules in Egopy such that there exists uy, - -, Uy With t/uy =
lyoy. - . t/u, = l,o,. Since t is pseudo irreducible by PS, C = Cy0,V---VC, 0y, is not an inductive
theorem of PS. Then there exists a model A of Ep4r and a substitution T over T(F(A)) such that
Epopy(A) Fing C7. ‘

Then, t7 cannot be reducible at the top. Assume otherwise that there exists arule r € Egopy —L
with left-hand side g that applies to t7 and tr = go. Note that every non-variable position of g is
a non-variable position of ¢ since ¢ is not extensible. On the other hand, g is linear by hypotheses.
So we can define a substitution p by zp = t/w for every variable z that occurs at some position w
of g. We have then t = gp, in contradiction with the assumption that L contains all the rules whose
left-hand side matches t.

The term 77 cannot be reducible at another position since no proper subterm of {7 contains a
defined symbol and since the constructors are free. This leads to a contradiction. O

4.3 Sufficient completeness with SPIKE

SPIKE checks automatically if an operator f in a specification PS is sufficiently complete. The
program builds a pattern tree for f. The leaves of the tree give a partition of the possible arguments
for f. If all the leaves are pseudo reducible by PS, the answer is affirmative. If one of the leaves
is not extensible and pseudo irreducible by PS, then SPIKE suggests new rules for completing
the specification. This rules are not entirely determined but rather possible schemes for them are
proposed. every rule is of the form: (condition, left-hand-side). Once the user has chosen the new
rules, usually by simply giving their right-hand sides, SPIKE replays the test. Consider example 1
and suppose that sorted is defined by the rules 1 and 2 and therefore it is not sufficiently complete.
Here we describe a session with SPIKE to give an idea about the interaction with the user if the
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Figure 3: The function sorted is not sufficiently complete
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Figure 4: The function sorted is now sufficiently complete

specification is not sufficiently complete (see figure 3). Then we add two rules and try again (see
figure 4).

5 Selection of induction schemes

To perform a proof by induction, it is necessary to provide some induction schema. In our framework
these schema are defined first by a function which, given a conjecture, selects the positions of variables
where induction will be applied and second by a special set of terms called a test set with which
the induction variables are instantiated. In general the selection of good induction positions leads
to drastic improvements. ‘

5.1 How to get induction variables

Given a specification, we start by computing a set of induction positions of function symbols (see
definition 4). This computation is done only once and it permits us to decide whether a variable

position of a term ¢ is an induction variable or not. We say that a variable z of sort s is nullary if for
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all model A of Ep4p, there exists a finite set of ground terms of sort s (i.e. in T(F(A))) irreducible
by Egopy(A).

Definition 7 (induction variable) Given a term t, an induction variable of t is a variable of
non-parameter sort s that is nullary or that occurs at a position u.v of t such that v is an induction
posttion of the top of t/u (if t is a non-parameter variable then it is considered as an induction
variable).

Example 7 (example 1 continued) y is the only induction variable of insert(z,insert(z, y))
because y occurs at position 2 of the subterm insert(z,y) and 2 in an induction position of insert.
There is no induction variable in insert(z, cons(y, cons(z,t))). ¢

5.2 Test set

A test set can be seen as a special induction scheme that permits us to refute false conjectures by
the construction of a counter-example. The definition of a test set given below is more general than
the one in [Bouhoula and Rusinowitch, 1993]. It permits us to refute false conjectures even if the
constructors are not free. On the other hand, with the new definition, we obtain a smaller test set,
which improves the efficiency of the proof procedure (see section 8). '

To define test set, we use the following notions: A rewrite rule ¢ = [ — r is left-linear if 1 is
linear. A rewrite system Epopy is left-linear if every rule in Egopy is left-linear, otherwise Egopy
is said to be non-left-linear. If t is a term, then the depth of ¢ is the maximum of the depths of the
positions in ¢ and denoted depth(t). The strict depth of t, written as sdepth(t), is the maximum of the
depths of the strict positions in t. The depth of a rewrite system Egopy, denoted depth(Egopy ),
is defined as the maximum of the depths of the left-hand sides of Egopy. Similarly, the strict depth
of Egopy denoted by sdepth(Egopy ), is the maximum of the depths of the strict positions in the
left-hand sides of Egopy. ‘

We define the number D(PS) to be depth(Epopy) — 1 if sdepth(Epopy) < depth(Egopy) and
Epopy is left linear, depth( Egopy) otherwise.

A term ? is weakly PS-irreducible if for all rule p = ¢ — d in Epopy such that g matches a
subterm of ¢ with a substitution 7, we have pr unsatisfiable in PS (i.e. for all model A of Epsr
and for all ground substitution A over T'(F(.A)), we have Egopy(A) £ pTA).

We say that a term ¢ is infinitaryif for any model A of Ep4r and for any position u in ¢ for which
t/u is a non-ground term, there exists infinitely many Egopy(A)-irreducible ground instances of ¢
whose subterms at position u are distinct.

Definition 8 (test set) A test set S(PS) for a parameterized specification PS is a finite set of
terms over T(F, X) that has the following properties:

1. For any model A of Epap and for any Egopy(A)-irreducible term s in T(F(A)), there exist
a termt in S(PS) and a substitution o such that to = s;

2. any non-ground term in S(PS) has non-parameter variables at depth greater than or equal to
D(PS);

3. For any model A of Epar and for any non-ground term't in S(PS), we have: if Egopy s
left-linear, then t has at least one ground instance which is Egopy(A)-irreducible, otherwise
t is infinitary.
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The first property allows us to prove theorems by induction on the domain of irreducible terms
rather than on the whole set of terms. Sets of terms with the property a. are usually called. cover
sets in the literature. Several proof procedures have been built on cover sets [Reddy, 1990; Zhang et
al., 1988]. Note that our method is also valid if we use cover sets rather than test set. However,
cover sets cannot be used to refute false conjectures. The second and the third properties of test set
are fundamental for this purpose.

The next definition provides us with the criteria to reject false conjectures. This definition
permits us to refute more false conjectures than in {Kounalis and Rusinowitch, 1990; Bouhoula and
Rusinowitch, 1993).

Definition 9 (provably inconsistent) Given a parameterized specification PS and a test set S(PS).
Then a clause C = ~(81 = t1)V -+ V(8 = tm)V (g1 = d1) V-V (gn = dy,) is provably inconsistent
with respect to PS if there is a test substitution o of C (i.e. that maps any induction variable of C
to a renaming of an element of S(PS)) such that:

1. EparE (1 =d1 V-V gn =dp)o;
2. foralli€[1---m]: s;oc = tio is an inductive theorem w.r.t. PS;

3. forall j €[1---n]: gjo # djo and the mazimal elements of {g;0,d;o} w.r.t. > are weakly
PS-irreducible.

Now we give examples to illustrate the notion of provable inconsistency:
Example 8 Consider ezample 1 in which we remove the rule 2. The equation:
sorted(cons(z,cons(z,y)) = false

is provably inconsistent since sorted(cons(z, cons(z,y)) does not contain any induction variable and
it vs weakly PS-irreducible since x < = false is unsatisfiable in PS. ¢

Example 9 Consider the specification of lists of natural numbers. Let R be the set Egopy defined
in ezample 1 in which we remove the rule 2 and add the following rules:

{0 <z > true, s(z) <0 — false, s(z) < s(y) — z.< y}
Note that sorted is not sufficiently complete. The equation:
sorted(cons(0,cons(0,y)) = false - (3)

is provably inconsistent since it does not contain any induction variable and it is weakly R-irreducible
since 0 < 0 = false is unsatisfiable in R. With the method of [Kounalis and Rusinowitch, 1990;
Bouhoula and Rusinowitch, 1993], the equation 3 is not provably inconsistent since it does not contain
any induction variable and it contains an instance of a left-hand side of R. ¢

So even if the specifications are not sufficiently complete, we can easily refute false conjectures
thanks to the new definition of provably inconsistent, which is not the case for the methods {Kounalis
and Rusinowitch, 1990; Bouhoula and Rusinowitch, 1993]. The next result shows that a provably
inconsistent clause cannot be inductively valid w.r.t. PS. This is proved by building a well-chosen
ground instance of the clause which gives us a counter-example.
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Theorem 4 Given a parameterized specification PS such that all parameter variables in the left-
hand sides of Egopy are linear and — g, (4) is ground convergent for all model A of Epar. If
a clause C is provably inconsistent, then C is not inductively valid w.r.t. PS.

proof: Let C = ~(s; = 1) V-V ~(sp = tn)V g1 = d, V---V g, = d, be a clause which
is provably inconsistent with respect to PS. Then there is a test substitution ¢ of C such that
Epar ¥ (g1=di1V---Vgy=dp)oand forall ¢ € [1---m], PS [Eing (si = ti)o.

Let T be the set of the maximal elements of {g;0,d;o} w.r.t. >

Then for all j € [1---n}, g;o # d;o and every element in 7 is weakly PS-irreducible. In order to
show that C is not an inductive theorem of PS, it is sufficient to show that there exists a model A of
Epar and a ground substitution 8 over T(F(.A)) such that Epopy (A) tind (91 = d1V-- Vg, = d,)8
since all ground instances of =(s; = ¢;) V --+V 2(sp, = t,,) are not inductively valid in PS.

Let @ = (g1 = d1V---Vgn = d,). We have Epgr = Qo, then there exists a model A of
Epar and a substitution 7 over T(N(A)) such that D(A) & Qor, where D(A) is the diagram
of A and N (A) is the set of new constants added to the initial signatures to describe .A. For all
tin Z, tr is weakly PS-irreducible since all parameter variables in the left-hand sides of Egopy
are linear. Let Var(Qor) = {z1,---,24} and consider a ground substitution ¢ such that or¢ is
Epopy(A)-irreducible, and if Egpopy is not left-linear, we have also:

1. Vie [l -k, |z:d| > |QoT],
2. Vi, j€l -k, i # 7, ||lz:id| —|z;9| > [QoT].

Note such a substitution instance exists by using clause 3 of the definition of test set.

D(A)  QoTé since for all 7 € [1---k], we have z; is a non-parameter variable and z;¢ is D(A)-
irreducible. Assume now that there exists ¢t in Z and a rule p = ¢ — d in Egpopy and a substitution
a such that go is a subterm of tot¢ and Epopy(A) E pa. Since o1¢ is Egopy(A)-irreducible,
there is a strict position u in ¢ such that to7¢/u is an instance of g. Let v be a non-variable position
of g. v is a non-variable position of to7/u. Otherwise, there are two cases to consider:

1. if sdepth(Epopy) < depth(Epopy) and Epopy is left linear, then we have |v| > D(PS),
which implies that |v| > depth(Epopy). Now, since sdepth(Epopy) < depth(Egopy) there
is a rule whose left-hand side ¢’ satisfies depth(g’) > |v| > depth(Egopy) and depth(g’) <
depth( Egopy), absurd.

2. otherwise, we have |v| > D(PS) = depth(Epopy) and |v| < depth(Egopy ), absurd.

So necessarily v is a non-variable position of tor/u, Now, we reason as in the proof of theorem 4.1.
We conclude that tor contains an instance of g with a substitution S8 such that &« = 8A. On the
other hand tor is weakly PS-irreducible, then Epopy(.A) ¢ pa, which is absurd.

Therefore, Egopy(A) Find QoT¢ since — g, (4) is ground convergent for all A a model of
Epag. Thus, C is not an inductive theorem of PS. , a

5.2.1 How to get test set

The known procedure for computing test set for conditional theories assume that the constructors
are free. However, in this section, we give an algorithm to compute a test set in a non-parameterized
conditional specification even if the constructors are not free. A term t is inductively reducible by
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a rewrite systen R if every ground instance of ¢ is reducible. Plaisted [Plaisted, 1985] proved the
decidability of inductive reducibility for finitely many unconditional equations. Note that, it is easy
to semi-decide that a term ¢ is not inductively reducible by a conditional rewrite system.

Proposition 1 Let R be a non-parameterized conditional specification such that — g is noetherian.
Assume that R is left-linear and sufficiently complete. Let T = {t |t is a constructor term of depth
< D(R) where variables may occur only at depth D(R)}. Then, the subset of T composed of terms
that are not inductively reducible by R, is a test set for R.

proof: Let S(R) be the test set computed by the proposition and let ¢ in T(F). As R is sufficiently
complete, then there exists ¢’ in T(C) such that ¢t —% t’. On the other hand, — g is noetherian
and for each conditional rule p = ! — r € R if l € T(C,X), then r'€ T(C, X). Therefore, there
exists t” € T(C) such that ¢’ —% t” and t” is irreducible by R. This implies that ¢ —% t”. So any
irreducible term in T(F') is built only with constructors and therefore is an instance of an element of
S(R). The second property of definition 8 is trivially verified by construction. Let us check the third
property of definition 8. Any non-ground term ¢ in S(R) has at least one ground instance which is
R-irreducible since t is not inductively reducible by R. a

Note that if the constructors are specified by a set of unconditional equations, then we can decide

inductive reducibility of constructor terms.

Example 10 ([Kaplan, 1984]) Let R be the set of conditional rules:

0<0 — true
0<p(0) — false
s(z)<y — = <py)
p(z) <y — z<s(y)
s(p(z)) — =
p(s(z)) — =
0<z=true=0<s(z) — true
0<z= false=>0< p(z) — false

The test set here ts:
{0, p(O), p(p(x)), 5(0)7 s(s(x))’ true, false}

¢

We can also compute a test set in a parameterized conditional specification if the constructors

are free.

Proposition 2 Assume that =gy, (A) i noetherian 2 PS is sufficiently complete and the con-
structors are free. Then, the set T of constructor terms (up to variable renaming) of depth < D(PS)
where non-parameter variables are not nullary and may occur only at depth D(PS) is a test set for
PS. '

%to guarantee that — g o, (4) is noetherian, it is sufficient to assume that — g, 5y is noetherian and no left-hand

side of an equation of Egopy contains a symbol from Fpar.
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proof: Let A be a model of Epsr and t in T(F(A)). As PS is sufficiently complete, then there
exists t' in T(Cpopy(A)) such that ¢ —Esopy(A) t'. On the other hand, —g,,,,(4) is noetherian
and for each conditional rule p = | — r € Epopy, if | € T(Cgopy,X), then r € T(Cpopy, X).
Therefore, there exists t” € T(Cgopy(A)) such that, ¢/ _);Esooy(ﬂ) t" and t" is irreducible by
Epopy(A). This implies that ¢ —Epony(4) t”. So any irreducible term in T(F(.A)) is built only
with constructors and elements of A(A) and therefore is an instance of an element of 7. The
second property of definition 8 is trivially verified by construction. Let us check the third property
of definition 8. Since the constructors are free, any non-parameter and non-nullary variable z may
be substituted by infinitely many different constructor terms. Therefore, any ndn-ground term in 7

is infinitary. a

Example 11 (example 1 continued) The output of the SPIKE procedure that computes the test
set is given in figure 6. ¢

6 Inductive rewriting

To simplify goals, we generalize the inductive rewriting relation [Bouhoula and Rusinowitch, 1993].
Remember that with inductive rewriting we can check the conditions of a rule to be applied to a
clause C' with inductive hypothesis, other conjectures (not necessary proved) and the premisses of
C, considered as an implication formula. Let us first introduce a few notations. Let C = —~(a; =
by)V---V-lap, =bp)V(cs =d1) V-V (em =dp). Then we denote by prem(C') the set of negated
atoms of C: {a; = b;}i=1,n. The expression (a = b)° denotes the literal a = b if ¢ = + and the
literal ~(a = b) if £ = ~. The skolemized clause C of C is the clause obtained by substituting every
variable of C by a new constant. We recall that > can be extended consistently to terms with new
symbols.

The well-founded ordering on clauses is defined by first introducing the complexity of an equation.

The complexity of an equation g = k is defined as in [Bouhoula and Rusinowitch, 1993]:

({9}, {r}) if g=h
Clg=h) = § ({h},{g}) if g=<h
({g,h}, L) otherwise

where the new symbol 1 is taken to be minimal in <. We define an ordering on equations as follows:
(a = b) < (c = d) iff C(a = b) is smaller than C(¢ = d) for the lexicographic composition of < on
the first and second components of the complexity. The multiset extension of <. will be denoted by
e

Let C be a clause of type Aja; = b; = V;¢; = d;. We define Rep(C) = {C(a; = b;)}s U{C(c; =
d;j)};. Given two clauses Cy, Cs, we say that Cy <. C if lexicographically Rep(C;) <. Rep(Ca) or
nin(Cy) < nin(C3), where nln(C) is the number of negative literals of C.

Definition 10 Let R be a set of conditional rules and W a set of conditional equations. Consider
a clause C = (a = b)* V r and its skolemized version C = (a = b)* V7. We write:

Cir '
a ——R<W> a

if either @ —,cim(7) d and @' < a,
or there exists a position u in a, a substitution o and a conditional equation R = A, a; = b; =
‘s =1t in RUW such that:
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1. a = a[so], and a’ = a[to],.
2. if R € W, then Ro <. C and {a} > {a10, bio, -+ ,a,0, byo}.

. Cir * Cir * -7 . =
3. Vi€ [1---n] 3c},d! such that a;0 =S gy ¢l and bo »——T>R<W> d; and ¢} =prem(r) d:-

where =p,em(7) 15 the congruence generated by prem(T).

Definition 11 (inductive rewriting) Let R be a set of conditional rules and W a set of condi-
tional equations. Consider a clause C = (a = b)° V r and its skolemized version C = (@ = b)° V 7.

We write: Cla] —r<w> Cld’] if and only if a »C—;T+R<w> a' and Cla'] <. Cla).

The set W in the definition is intended to contain induction hypotheses and conjectures which
are not necessary proved in the proof system described below.
The inductive rewriting is stable by substitution:

Lemma 3 For all substitution 7: C —pews C’ implies Ct —pews C'T.

7 An inductive procedure for parameterized specifications

7.1 Inference rules

Our procedure is defined by a set of transition rules (see figure 5) which are applied to pairs (E, H),
where F is the set of conjectures and H is the set of inductive hypotheses. The generate rule allows
us to derive lemmas and initiates induction steps. The case simplify rule simplifies a conjecture
with conditional rules where the disjunction of all conditions is inductively valid (note that this case
analysis is more general than our previous definition given in [Bouhoula and Rusinowitch, 1993)).
The simplify rule reduces a clause C with axioms from Egopy U Epag, induction hypotheses from
H, other conjectures which are not yet proved. The premisses of C considered as a conditional
axiom can also help to check that the preconditions of a rule being applied to C are valid. Note that
simplify permits mutual simplification of conjectures. This rule implements simultaneous induction
and is crucial for efficiency. The subsumption rule deletes clauses C subsumed by an element of
Egopy U Epsp U H U E. The role of deletion is obvious. The disproof rule is applied if a provably
inconsistent clause is detected. The fail rule is applied to (F, H) if no other rule can be applied to
CekE.

An I-derivation is a sequence of states:
(Eo, Ho) b1 (EryHy) by~ by (En, Hy) by - -+

An I-derivation fails if it terminates with the rule fail or disproof.

7.2 Correctness

The correctness of a procedure based on our inference system relies on a fairness assumption:
every conjecture to be checked must be considered at some step. More formally, a derivation
(Eo, Ho) k1 (Ey, Hy) by - is fair if either it fails or it is infinite and the set of persisting clauses
(Uiso Nj»>i E;) is empty. Then we reason by contradiction: if a non-valid clause is generated in an
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generate: (EU {C},H) t; (EU (U, E;), HU {C})

if C = p = q and for every test substitution o of C
if Epap = go, then E, = 0;

if CU HEBODYUEPAR(HUEU{C}> C,’ then EG = {Cl};
otherwise, E, = case_rewriting(Co).

case simplify: (EU{C},H) +; (FEUE',H)
if E' = case_rewriting(C)

simplify: (FEU{C},Il) +; (EU{C'},H)
ifC HEBODYFUEPAR<I'IUE> Cl

subsumption: (EU{C},H) F; (E,H)

if C' is subsumed by another clause of Fgopy U EparUH UE.

deletg: (EU{C},H) Fr (E,H)

if C is a tautology.

disproof: (E U {C}, H) F1 Disproof

if C is provably inconsistent.

fail: (EU{C},H) F; O

if no condition of the previous rules hold for C

Figure 5: Inference System I

unfailing derivation then a minimal one is generated too. We show that no inference step can apply
to this clause. In other words, this clause persists in the derivation. This contradicts the fairness
hypothesis. Therefore, we obtain the following result:

Theorem 5 (correctness) Let (Eo,0) by (Ey,Hy) by -+ be a fair I-derivation. If it does not fail
then PS }=md Ey.

proof: We reason by absurd. Suppose that PS }ing Eo and let S = ming {Co | C € UE;
and there is a model A of Epsp and a ground substitution o over T'(F(.A)) that is irreducible by
Eopy(A) such that PS [£ing Co}. S # 0 since PS [Eing Eo and <, is well-founded. Consider a
clause C' which is minimal in & with respect to the subsumption ordering. It is sufficient to prove
that C cannot be simplified nor deleted, and that generate cannot be applied to C; this shows that
fail or disproof applies since the clause C must not persist in the derivation by the fairness hypoth-
esis. Hence let us assume that C € E; and (E;, H;) k7 (E;41, H;j41) by some rule applied to C.
We discuss now the situation according to which rule is applied. In every case we shall derive a
contradiction. In order to simplify the notations we write E for E; and H for H;. We show now
that wathever rule is applied to C, we obtain a contradiction.
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generate: If (E;, H;) by (Ej41, Hj41) by generate on C = p = q. since o is a ground substitution
over T(F(A)) that is irreducible by Epopy(A), there exists a test substitution oo of C and a
substitution @ such that o = 0¢f. Epagr [~ qog since PS Wing Cog, we have two possibilities:

1. if there exists a clause C’ such that Cog " EpopyUEpar<HUEU{C}> C’ then 3, by the lemma 3,
we conclude that Co =g, UEpr<HuEU{Cc}> C'0. For each instance ST of clauses of H U
E U {C} used in the rewriting step, we have St <. Co. Then, we have PS k=4 S6. The
premisses of Co are also valid since PS (g Co. Therefore, PS Wing C'6. On the other
hand, C'8 <. Co and C' € U; E;. This shows a contradiction since it proves that we can find
an instance of a clause in U; E; which is not valid and smaller than C'o with respect to <.

2. Assume that the rule case.-rewriting is applied to Co. Then, consider all the rules: C; =

ty =1y, Co =1ty =719, --- Cp, = t, — 1, in Egopy such that there exists a sequence of
positions uy,ug, -+ ,un in Co and Co/uy = tyoq, Co/uz = ty0p, -+ ,Co/u, = t,0, and
Ciyoqr V Cy09 V --- V Cphoy, is an inductive theorem w.r.t. PS. Hence, the result of the

application of case_rewriting is:
{Ci01 = Co[ri01]uy, -+, Cnon = Co[rnon)u, }

Then there exists k such that PS f=inq Crog. Let C!' = Crop = Co[rgokly,, we have PS |=ing
(Cr = tp — r¢)0k. Therefore, PS ing T10x = tx0k. Putting everything together, we get
PS Wing C'0. On the other hand, C' € U;E; and C'8 <. Co, this is also absurd.

case simplify: this case is similar to the previous one.

simplify: Suppose that the simplify rule applies to C, then, there exists a clause C’ such that
C —EgopyUEpar<HUE> C’, then, by the lemma 3, we conclude that

y
Co = EpopyUEpar<HUE> C'0

“For each instance St of clauses of H U E used in the rewriting step, we have St <. Co. Then, we
have PS |E;ng ST. The premisses of Co are also valid since PS £,y Co. Therefore, PS fing C'o.
On the other hand, C'c <. Co and C’ € U; E;, which is absurd.

subsumption: Since PS }£;,, Co, C cannot be subsumed by a clause of Egopy U Epag. If there
is C' € HU (E\ {C}) such that C = C't V r, we have PS £;q C'ro,s0 7 = 0 and 7 = T since C
is minimal in § w.r.t. the subsumption ordering. As a consequence C’ ¢ (E \ {C}). On the other
hand, C' ¢ H. Otherwise, the generate rule has been applied to C’. Therefore, generate can be also

applied to C in contradiction with a previous case. Hence, this rule cannot be applied to C.
delete: Since PS [£ing Co, C is not a tautology and this rule need not be considered. O
Since every I-derivation from (E,0) to (0, H), where H is some set of clauses, is fair then the

conjectures of E are inductive consequences of PS. This remark is important from a practical point

of view. Note also that F is valid even when the derivation is infinite.

3Let R’ and W’ be two sets of clauses and suppose that R (resp. W) is the set of all conditional rules (resp.
equations) of R’ (resp. W'). By abuse of notation, the relation — pcws will be denoted by +—rews.
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If disproof is applied at step k, then a provably inconsistent clause is detected and therefore, from
theorem 4, we conclude that some conjecture in Fj is false, if for all model A of Epsr —Epopy(a)
is ground convergent over T'(F'(A)) and all parameter variables in the left-hand sides of Egopy are
linear. The initial conjectures Ep is not inductively valid in PS too. This is a consequence of the
next result: '

Lemma 4 Let (Eo,0) by (Ey, Hy) by -+ be an I-derivation. If for all i such that i < j we have
PS f=ing E; then PS Eind Ej41. 4

'proof: Let C be a clause in E; and assume that (E;, H;) 1 (E;41, Hj4+1) by application of an
inference rule on C. Let us show that Vi < j PS |Einq E; implies PS [Eing Eji1:

generate: If (E;, H;) b1 (Ej41, Hjj1) by generate on C = p = q. Let o be a test substitution of
C. If Epar £ qo, then there are two cases to consider:

1. if there exists C’ such that Co — EpopyURule(Epap) C'» then the clauses which are used for
the rewriting step occur in some Ey (k < j) and therefore are inductively valid in PS by
hypothesis. On the other hand, we can assume that the premisses of Co are valid (otherwise
the proof is obvious). Hence, E;4; is inductively valid too in PS.

2. Otherwise, there exists a non-empty sequence of conditional rules P, = t; — ry, P, = 13 —
r9, +++ Pp = t, — rq in Egopy and a sequence of positions uy,us, -+ ,u, in Co such that
Coluy = tymq, Cofus = tame, --- ,Co/uy, = t,m, and Po1y V Pyry V --- V P,1, is an
inductive theorem w.r.t. PS. Hence, the result of the application of case_rewriting is:

{Pir1 = Co[rim1]uy, - +y PuTn = ColraTulu, }

Assume that there exists k such that: PS Wind Ck = PxTx = Co[rg7ily,. In other words
there is a ground instance Cif over T(F(.A)) (we can assume that Cof is ground without
loss of generality) such that: PS [inq Ci8, then PS [Eing Prmk6 and PS Weing Cobreri6).
Therefore, PS |Fing tk7k0 = rx70. This implies that PS ;g Co8[t,740), which is absurd.

case simplify: this case is similar to the previous one.
simplify: If (E;, H;) b1 (E;41, Hj41) by simplify, then the clauses which are used for simplification
occur in some Ej (k < j) and therefore are inductively valid in PS by hypothesis. On the other

hand, we can assume that the premisses of the clause to be simplified are valid {otherwise the proof
is obvious). Hence, E;4; is inductively valid too in PS.

subsumption and delete: If C is deleted then PS |=inqg Ej41 since Ej4; C E; in this case. a

The next theorem is a straightforward consequence of the above results:

Theorem 6 (refutation) Given a parameterized specification PS such that for all model A of
EpAR; —Egopy(ay 5 ground convergent over T(F(A)) and all parameter variables in the left-hand
sides of Egopy are linear. Let (Eo,0) b1 (Ey, Hy) 1 --- be an I-derivation. If there exists j such
that disproof applies to (E;, H;) then PS Wing Eo. ' '
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7.3 Refutational completeness for parameterized specifications with boolean pre-
conditions

In this section, we shall consider axioms that are conditional rules with boolean preconditions. To
be more specific, we assume there exists a sort bool with two free constructors {true, false}. Every
rule in Epopy is of type: A, p; = p; = s — t where for all ¢ in [1---n], p} € {true, false}. For
a € {true, false} we denote by @ the complementary bool symbol of a. Conjectures will be boolean
clauses, i.e. clauses whose negative literals are of type =(p = p’) where p’ € {true, false}. Let f
be a function symbol in Dgopy. If for all the rules in Fgpopy of the form p; = s — t; such that
s € Def(f), we have PS |Eing Vipi, then we say that f is weakly complete w.r.t. PS. We say that
PS5 is weakly complete if any function in Dgopy is weakly complete w.r.t. PS.
Note that a weakly complete specification is not necessary sufficiently complete.

Example 12 The following rules define the predicates < and P over the constructors 0 et s:

0<z — true

s(z) <0 — false

s(2)<s(y) ~ w<y

s(z) <y =true = P(s(z),y) — false
s(z) < y= false = P(s(x),y) — true

The predicates < and P are weakly complete. But P is not sufficiently complete since P(0,0) cannot
be reducible to a constructor term. ‘ ¢

Now, We can define a new inference system J from I by adding the following complement rule
which transforms negative clauses to positive clauses that are easier to refute.

complement: (EU {~(e=a)Vr},H) 5 (EU{(e=a)Vr},H) ifa€ {true, false}.
We also remove the fail rule and reformulate disproof as follows:
disproof: (E U {C}, H) F; Disproof if no condition of the previous rules hold for C

Let us assume that Ey only contains boolean clauses. The only rule that permits us to introduce
negative clauses is case_rewriting. Since the axioms have boolean preconditions, all the clauses
generated in a J-derivation are boolean. If disproof is applied in a J-derivation, then there exists a
positive clause C such that generate cannot be applied to C. Therefore there exists a test substitution
o such that Epar £ Co. Moreover Co does not match any left-hand side of Epgpy. Otherwise,
the inductive rewriting or the case rewriting rule can be applied to Co since PS is weakly complete.
As a consequence, C is a provably inconsistent clause. So, the new inference system J can be proved
refutationally complete for boolean clauses. '

Theorem 7 Given a weakly complete parameterized specification PS such that all parameter vari-
~ables in the left-hand sides of Egopy are linear and — gy, ,..(4) i ground convergent for all model
A of Epar. Let (Eo,0) by (Ev, H1) by -+ be a fair J-derivation such that Ey only contains boolean
clauses. Then PS Eing Eo iff the derivation ends with disproof.
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8 Implementation and experimental results

Our implementation is based on the previous inference system. The program is able to prove the
validity of a set of clauses in parameterized conditional specifications. Here is an overview of the
algorithm. The main data structures are: the list Egopy of axioms, that are conditional rules
built with the constructor discipline, the list E of conjectures (clauses) to be checked, the list Epsp
of parameter constraints, that are equational clauses in Lp4g and finally, the set H of induction
hypotheses (initialized by @). The first step in a proof session is to check if all defined functions
are completely defined. The second step is to compute test set for PS and also induction positions.
After these preliminary tasks, the proof starts.

Consider example 1 with Eg the set of conjectures to be proved (see figure 6). SPIKE can prove
these conjectures in a completely automatic way, using 104 steps and taking 200 seconds as shown
in figure 7. Note that one lemma (was generated automatically) is sufficient to prove the initial

conjectures.

£1' < 22 = True,z1 < 23 = True, sorted(Cons(z3,insert(z1, z4))) = sorted(Cons(z3,z4)),z2 < z3 = False

Now consider the same example with lists of natural numbers, using the method in {Bouhoula
and Rusinowitch, 1993), we have the following test sets (see figure 8). To prove the same conjectures
without parameters, SPIKE used 246 steps and took 1656 seconds. In addition, {0 lemmas were
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generated automatically to prove the conjectures. This example illustrates that with parameterized
specifications we have a smaller test set and fewer induction positions, permitting us to obtain
shorter and more structured proofs.

9 Conclusion

We have proposed a new procedure for proof by induction in parameterized conditional specifica-
tions. Like our previous procedure [Bouhoula et al., 1992a; Bouhoula and Rusinowitch, 1993], it
allows simultaneous induction and can handle non-orientable equations. It can also refute non-valid
conjectures. Qur method is also compatible with simplification rules given in [Bouhoula and Rusi-
nowitch, 1993]. An extension to theories that are presented by non-Horn clauses along the lines
of [Becker, 1992] should be easy. The property of sufficient completencss is very important for in-
ductive reasoning but is in general undecidable. We have given a procedure for testing this property
for parameterized conditional specifications. Previously, we could compute a test set for conditional
specifications only if the constructors were free. Here, we have given a new definition of test set and
an algorithm to compute them even if the constructors are not free. We have also proposed a new
notion of provable inconsistency which allows us to refute more false conjectures than our previous
definition [Bouhoula and Rusinowitch, 1993, in particular if the specifications are not sufficiently
complete. Unlike our previous method [Bouhoula and Rusinowitch, 1993], this new procedure, when
limited to non-parameterized conditional specifications, can refute general clauses; refutational com-
pleteness is also preserved for boolean ground convergent rewrite systems even if the functions are
not sufficiently complete and the constructors are not free. Note that our method remains valid in
theories without constructors. The method is implemented in the prover SPIKE. This system has
proved interesting examples in a completely automatic way, that is, without interaction with the user
and without ad-hoc heuristics. Experiments illustrate that proofs in parameterized specifications
are shorter and more structured.

We plan to generaliie the method to get refutational completeness for a larger class of rewrite
systems. Another powerful extension is to allow for generalization techniques, such as in the tra-
ditional induction method. How this can be done and the possible implications with respect to
soundness and refutational completeness, still have to be studied very carefully.
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