N

N
N

HAL

open science

Sequencing date flow tasks in SIGNAL

Eric Rutten, Paul Le Guernic

» To cite this version:

Eric Rutten, Paul Le Guernic. Sequencing date flow tasks in SIGNAL. [Research Report] RR~2120,

INRIA. 1993. inria-00074552

HAL 1d: inria-00074552
https://inria.hal.science/inria-00074552
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074552
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Sequencing data flow tasksin SIGNAL

Eric Rutten, Paul Le Guernic

N° 2120
Novembre 1993

PROGRAMME 2

Calcul symbolique,
programmation
et génie logiciel

apport
derecherche

%I NRIA

RENNES

Sequencing data flow tasks in SIGNAL

Eric Rutten*, Paul Le Guernic**

Programme 2 — Calcul symbolique, programmation et génie logiciel

Projet EP-ATR

Rapport de recherche n* 2120 — Novembre 1993 — 49 pages

Abstract: The SIGNAL language is a real-time, synchronized data-flow lan-
guage. Its model of time is based on instants, and its actions are considered
instantaneous. Various application domains such as signal processing and
robotics require the possibility of specifying behaviors composed of succes-
sions of different modes of interaction with their environment. To this pur-
pose, we introduce the notion of time interval, defined by a start and an end
event, and denoting the series of its occurrences. Associating a time interval
to a data-flow process specifies a task i.e., a non-instantaneous activity and
its execution interval. Different ways of sequencing such tasks are described.
We propose these basic elements at the programming language level, in the
perspective of extensions to SIGNAL. Application domains feature the dis-
crete sequencing of continuous, data-flow tasks, as is the case, for example,
of robotic tasks.

Key-words: Data-flow tasks, task sequencing, real-time, time intervals.
(Résumé : tsvp)

Acknowledgements: Thanks to Thierry Gautier, Mohammed Belhadj, Olivier Maf-
feis, Philippe Le Parc and Sylvie Thiébaux for commenting on previous versions of this

paper.

*rutten@irisa.fr
**leguernic@irisa.fr

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone: (33) 99 84 71 00 — Téécopie: (33) 99 38 38 32

Séquencement de taches flot de données en

SIGNAL

Résumé : Le langage SIGNAL est un langage temps-réel a flots de données
synchronisés. Son modele du temps est fondé sur les instants, et les actions
y sont instantanées. Divers domaines d’application, tels que le traitement
de signal ou le controle de processus physiques, requierent la possibilité de
spécifier des comportement composés de I’enchainement de différents modes
d’interaction avec leur environnement. A cette fin, nous introduisons la notion
d’intervalle de temps, défini par des instants de début et de fin, et désignant
la suite de ses occurrences. Associer un intervalle de temps a un processus
flot de données spécifie une tache, c’est-a-dire une activité non-instantanée
et son intervalle d’exécution. Diverses manieres de séquencer de telles taches
sont décrites. Nous proposons ces éléments de base au niveau du langage
de programmation, en perspective de l’extension de SIGNAL. Les domaines
d’applications comprennent le séquencement discret de taches continues a
flot de données, comme c’est le cas, par exemple, en robotique.

Mots-clé : Taches flot de données, séquencement de taches, temps-réel,
intervalles de temps.

Sequencing data flow tasks in SIGNAL 1

1 Motivation

1.1 Problem addressed

The problem we address is to provide ways of representing behaviors swit-
ching between different modes of continuous interaction with their environ-
ment. With regard to the environment, these behaviors consist in a succession
of different functions relating outputs and inputs, each between discrete start
and end events delimiting a time interval.

Application domains concerned are the control of physical, continuous
processes in general, and in particular: robotics. Such applications more spe-
cifically feature the mixing of numerical computations on sensor data, and
transitions along an automaton or place-transition graph. Example are:

e a speech recognition system [18]: the processing of the acoustic signal
features a segmentation treatment. Boundaries of the segments are de-
termined by changes that are detected by comparison to an average
value computed on a time window on the past values of the signal, as
illustrated in fig. 1. Establishing the first value of this average requires
time before computation of the variance can be performed.

value !
|
VWA
|
|
|
|
function !
of the l e N ~
average :
[P ———
|
computation reinitialization computation !

Figure 1: Phases in the segmentation of an acoustic speech signal.

Hence such an application presents succesive phases: for each segment,
phases of reinitialization alternate with the regular processing task per-
forming the computation. Each of them is active on a time interval, in
such a way that the end of the first one corresponds to the start of

Eric Rutten, Paul Le Guernic

the second one. The sequencing between these phases is intrinsic, in
the sense that it is imposed by dependencies on results produced and
consumed.

We want to provide a programmer with means to designate the phases
in a processing by subdividing its activity interval into different modes,
and to associate sub-activities to them.

the sequencing of robotic tasks. A robotic task consists in performing
a task function computing the command to the actuator from sen-
sor input data. Task-level programming of a robot involves associating
such activities with modes on which they are enabled. For example,
movements toward some point can alternate with prehension tasks, or
assembly of objects [10]. Each such task involves the performance of a
specific task function conditioned by the satisfaction of conditions to
be checked in the environment, for its start as well as for its end. For
example, in an assembly application, a movement of the gripper towards
an object to be grasped is an activity for which termination is defined
by certain conditions on their proximity and orientation. Grasping it-
self involves another kind of control rule e.g., with precision movements
and contact sensing. The transition between the two execution modes
is driven by the reception of externally sensed information.

Reactivity plays an important role here, in that tasks can be perfor-
med in response to some situation or property of the environment. In
other words, these modes correspond to the time interval on which the
property holds.

We want to have operations allowing for the specification of sequencings
of activities, relating their time interval to the state of the external
world or to other intervals.

the control of a digital watch, as a well-known example of hierarchi-
cal, parallel automata [14], that we treat in section 5.2. This example
consists in associating to each of various modes (watch mode, different
setting modes, stopwatch mode) a different activity. They are characte-
rized by the way input from the buttons of the watch is being interpre-
ted, and how and which internal values are being updated accordingly.
This is a characteristic example of extrinsic sequencing: the different

Sequencing data flow tasks in SIGNAL 3

modes of activity are independent, and the order in which they are
sequenced is arbitrary.

However, the use of automata for the specification of such behaviors
forces the order in which activities are performed, regardless of whether
there exist constraints or dependencies necessitating this. For example,
the order in which the various components of time (hours, minutes,
seconds, day, month year, ...) are updated is fixed in the automaton.

We want to find more declarative ways to specify constraints between
intervals on which activities are performed. For example here, they
might have to be exclusive because of the limited number of buttons
for controlling the digital watch.

The work presented here more precisely aims at providing structures sup-
porting:

e description the attachement of activities to different modes,
e description of the succession of such modes.

The motivation for having both paradigms present in a hybrid language is
to combine the advantages of on the one hand data flow languages for the
specification of input/output relations in terms of equations or networks of
operators, and on the other hand the association of such activities to modes
or time intervals (on which their execution is enabled) for the sequencing of
non-instantaneous tasks.

1.2 Context

The context of this work is reactive programming [20] and especially the syn-
chronous approach to it and the languages adopting it: (ESTEREL, LUSTRE,
SIGNAL, ARGOS, STATECHARTS, ...) have been developed for the safe design
of real-time, reactive applications [3, 14]. Their formal definitions support
their programming environments: compilers featuring static analysis, code
generation, proof tools and simulation of dynamic behaviors. Their model of
time supports reasoning about order and simultaneity of instants. Actions
are modelled as being synchronous, meaning that their input and their result
are present at the same instant.

4 Eric Rutten, Paul Le Guernic

From the point of view of their design as programming languages, they
can be classified into two styles:

e imperative languages, textual such as ESTEREL, or graphical such as
STATECHARTS and ARGOS or also GRAFCET! (even though its seman-
tics does not explicitely adopt full synchrony); they are particularly
well suited to the description of automata and the specification of se-
quencings (e.g., discrete controllers),

e synchronized data flow languages which are declarative (or equational),
such as LUSTRE (which allows to describe functions) and SIGNAL(allow-
ing to describe relations); they are best suited to the specification of
data flow computations (e.g., signal processing or digital circuits).

As can be seen from the overview of related work in section 7, the sequen-
cing and data flow languages do not generally feature constructs combining
both paradigms, particularly structures enabling the simple sequencing of
data flow tasks inside the synchronous framework.

1.3 Proposed approach
The solution proposed here is two-fold: it consists in

e explicitely defining modes (as a series of instants characterized by some
property) in data flow processing, hence the intervals and the tasks,

e using time intervals for the specification of sequencings of such modes,
hence the operations on intervals.

Associating a time interval to a data flow process specifies a task i.e., a
non-instantaneous activity and its execution interval (start and end times).
When entering an execution interval occurrence, a task can be started at its
current state, as saved when it was suspended, or restarted in its initial state,
if it was interrupted.

The intervals allow an explicit reference to states and transitions, suppor-
ting the specification of automata or place-transition networks. Hence, it is
possible to specificy hierarchical, parallel automata, controlling the sequen-
cing of data flow tasks, that can themselves involve a sequencing of sub-tasks.

L Also known as SEQUENTIAL FuNcTION CHARTS.

Sequencing data flow tasks in SIGNAL 5

However, sequencing is not necessarily imperative, in that executing a
task does not necessarily directly depend on the action immediately preceding
it. It depends on the satisfaction of some properties in its environment, for
its starting as well as for its terminating (e.g., in the examples of section
1.1: associating specific actions to the initialization phase, when in precision
movement use a certain sensor control procedure, ...). Hence the temporal
arrangement of such tasks concerns less the actual sequencing of actions
than relations between remanent properties in the environment, that can be
described by states (or state variables). When the concerned modes do not
involve complex interrelationships, their description is quite simple in the
data flow style, using scalar types for the definitions of state values, and
delays for their memorization. If the modes are sequenced in a complex way
however, then using an imperative style may be profitable.

Hence the association of an activity to a time interval is a basic element
on the way to the definition of declarative, equational operators, in order to
facilitate the expression of dynamical behaviors. These operators would be
compatible with the equational approach of SIGNAL, and a formal calculus
would be based on them, extending the model of SIGNAL

An application currently being worked upon is the discrete sequencing of
continuous, data flow tasks in active robotic vision [24].

In the following, in section 2, we introduce the notion of tasks, associating
a data flow process and a time interval. We introduce the synchronous data
flow language SIGNAL in section 3.1, and time intervals are introduced as an
example of a particular SIGNAL process in section 3.2. Then, in section 4,
the sequencing of time intervals is presented in the form of place-transition
graphs, and various sequencing patterns. The sequencing of data flow tasks
is handled in section 5. Section 6 exposes the basic ideas for an application
of these principles to the sequencing of control functions in robotics. After
a review of related work in section 7, we gives perspectives of this work,
concerning the programming language level aspects, as well as model-oriented
and applications-oriented ones.

6 Eric Rutten, Paul Le Guernic

2 Tasks: associating a process with a time
interval

2.1 Applications and processes

A data flow application is an activity that is executed over time i.e., non-
instantaneously. It is composed of a set of data flow processes in the general
sense: they may include memorizing and state information (e.g., such a pro-
cess can be an automaton).

It is executed from an initial state that is built at an initial instant «.
This instant is not a reaction instant of the reactive process, in the sense that
it is not a reaction to an input event: it is before the beginning of the reactive
execution mechanism. Causally, this means that a process can not decide on
its own starting (this point of view is also adopted in other languages e.g.,
ARGOS [14], cf. section 7).

A data flow process has no termination specified in itself. Therefore, its
end can only be decided in reaction to the reception of external events or the
reaching of given values. Such a process can be seen as an application that
can be interrupted or aborted from outside: the termination is a reaction to
an event, that is the last one treated by the application (e.g., the instant
when the “QUIT” button is clicked in an application). This final instant can
be called w. Causally, this means that the process can decide on its own
termination (e.g., when reaching some threshold value), and also that it can
perform terminal calculations within this last instant.

In this sense, a general data flow application executes on a time interval
lasting from a beginning instant « (not included as a reaction event) up to
a final instant w (included in the interval). In other words, it executes on a
left-open, right-closed interval Ja,w].

2.2 Time intervals

Our motivation in introducing time intervals is to enable the structured de-
composition of the interval]o,w] into sub-intervals as illustrated in fig. 2. In
this section, we define intervals by their basic properties given in several pre-
cise points below. These points will have to be complied with when encoding
intervals in SIGNAL in section 3.2. In the context of data flow applications,

Sequencing data flow tasks in SIGNAL 7

«a w
7 7
| |

I 1 | | I 1

I 1 _] I

open I . . o
close I . .

Figure 2: Decomposing]a,w] into sub-intervals.

we are dealing with data in the form of series of values indexed by time: we
call them signals e.g., signal X has values X; (where ¢t € IN'\ {0} is not a date
but a order index). In general, different signals can have values at different
instants, especially events: they are not necessarily all present together. In-
tervals are defined in the following so that they have a value at any instant
t.

An interval I is alternately inside (the solid lines in fig. 5) and outside
(the dotted lines in fig. 5). Occurrences of the interval are the time intervals
where the interval is inside. This state of the interval is expressed at each
instant ¢ between a and w by its value I;:

I; € {inside, outside}. (1)

It is given an initial value from instant « (in the example of fig. 2, I is initially
outside). The complement of an interval I is the interval compl I which is
inside when I is outside and reciprocally.

Coherently with Ja,w], sub-intervals are taken to be left-open, right-
closed; like in reactive automata, a transition is made according to a received
event occurrence and a current state, which results in a new state: hence the
instant where the event occurs belongs to the time interval of the current
state, not to that of the new state. In other words, the value of I at time ¢ is
the value val;_; which is determined by the occurrence of a bounding event
at time ¢ — 1:

]t = valt_l (2)

The value val; of the interval is given by a new value newval; when there
is one (i.e., when it is defined by an occurrence of a bounding event), or else

8 Eric Rutten, Paul Le Guernic

by the previous value:

(3)

] newval; iff present
vaty = .
val,_q otherwise

At the first instant ¢ = 1, valy is defined by the initial value of 1.

Finally, the new value newval; alternates at the occurrences of opening
event open I and closing event close I;it is inside after the occurrence of
open I;, and outside after close I;:

inside iff (open I); is present
outside iff (close I), is present

newval, = { (4)

Furthermore, the point in defining sub-intervals is to express the restric-
tion to a part of Ja,w] of the existence of events and the data they carry
with them: we want to distinguish occurrences of events that are inside and

outside the interval:

(Xin I); = X, iff I, = inside (5)
(Xout I);=X; iff [, = outside

For an interval I :=]B,E] the opening bounds are outside of it: open I =
B out I, and the end bounds inside: close I = E in I.

2.3 Tasks

The notion of task that we want to introduce consists in associating some
(sub-)processes of the application with some (sub-)intervals (of Jar,w]) on
which they are executed. Tasks active on interval Ja,w] represent the default
case: they are remanent throughout the whole application.

Inside the task interval, the task process is active i.e., present, and exe-
cuting normally. Outside the interval, the process is inexistent i.e., absent,
and the values it keeps in its internal state are unavailable. In some sense it
is out of time, its clock being cut. Series of values of the signals involved in
a task will be restricted to the time interval contained between the start and
end event occurrences as seen in point (5) above.

This is transparent from the point of view of the process in the sense that
if its internal state is kept, then re-entering a new occurrence of the task
interval will see it resume execution as if it had remained active.

This introduces the characteristics defining a task:

Sequencing data flow tasks in SIGNAL 9

e the process executed P,
e the execution interval I,

e the starting state (current, or initial) when (re-)entering the interval.

More precisely, this latter means that, when re-entering the task interval,
the process can be re-started at its current state (6)

i.e., with its internal memories set to their values at the instant where the
task was suspended (meaning: in a temporary fashion). For a process P and

an interval I, such a task can be noted .

Another way of specifying a tasks is that
the process can be re-started at its initial state (7)

as defined by the declarations of all its state variables, if the task was in-
terrupted (meaning: aborted in a definitive fashion). This re-starting point
of the process is given at the instant beginning the interval, which, like «
for applications, is outside of the execution interval. For a process P and an
interval I, such a task can be noted .

A suspension or interruption occurs at the end instant, which is inside
the interval, like w in the case of applications. Hence, on each end instant,
particular treatments can be performed (signals emitted, memories updated,
...). It also means that the end of the execution interval can be determined
from inside the process, in a locally data-driven way, as well as from outside
of the task.

The process in a task can itself feature sub-tasks, which are active on sub-
intervals of the task interval. This introduces the possibility of hierarchical
arrangements of tasks. Parallelism between tasks is obtained naturally when
tasks share the same interval, or overlapping intervals. Other structures for
the sequencing of tasks are studied later in this paper.

For example, consider a process count with input signal T, and output
signal the number N of occurrences of T. We want to specify a task counting
a certain number V of occurrences of T after event B. For this, the process
count can be associated with the interval beginning with event B and ending
with an event E defined by the moment when N takes the value V as follows:

count each 1B, E]

10 Eric Rutten, Paul Le Guernic

Figure 3: Counter suspended on]1S,R] (a), each 1B,E] (b).

which provides us with an example of a process determining its own termi-
nation: the calculated output value participates in the decision of ending the
execution interval.

2.4 Derived task behaviors

Task behaviors different from the two constructions on and each introduced
earlier, and less primitive, are considered in this section.

2.4.1 Suspending and terminating a task

For example, consider a counter of the number N (initialized to the value NO)
of occurrences of an input, and is:

e started upon begin event B, with initial value NO, and
e stopped upon end event E,

e suspended upon event S, until it is

e resumed upon event R.

The suspension of the process count on interval 1S,R] means that it
is active on the complementary interval (using a complementation operator
compl, we call it compl 1S,R]). This is obtained by:

count on compl]S,R]

which behaves as illustrated in fig. 3 (a). Counting is performed on the com-
plement of 18,R] (relatively to Jar,w]: those occurrences of the input that
are outstde of 1S,R] are counted i.e., inside the interval compl]1S,R].

Sequencing data flow tasks in SIGNAL 11

Its starting and ending on interval 1B,E] is then obtained by:
(count on compl]S,R]) each]B,E]

which behaves as illustrated in fig. 3 (b). The counter is re-initialized to the
value NO each time the interval 1B,E] is re-entered. In particular, counting
can be stopped whether it is suspended or not.

2.4.2 Suspending activity, with values available

An activity (e.g., setting alarm time in an alarm clock, ...) can be suspended,
while the computed values should remain accessible to other components
of the application (e.g., for display, comparison of alarm time with current
time, ...) Then, it is the computing activity that must be suspended, while
the memorizing of values remains active: they must be separate tasks, each
associated with its interval.

The following example concerns a stopwatch, and especially the alarm
setting functionality: the alarm time is set (i.e., incremented) by pushing
a button during interval Alarm update delimited by occurrences of events
from another button of the watch. This alarm time is displayed on the watch
display only during an interval Show_Alarm, but is constantly compared to
the current time, given by the timer, and outputting an event A causing the
bell to ring in case of equality.

Thus, the alarm time, memorized in a variable M, fed by the value V, is
modified by a process update on interval Alarm update, is displayed by a
process display on interval Show_Alarm, and compared to the current time
T by a remanent process compare. An encoding for this can be sketched as
follows:

(I VvV := update{M} on Alarm update
| D := display{M} on Show Alarm
| A := compare{M,T} % remanent %
| M := memorize{V} % activities %
1

2.4.3 Restarting anew on each beginning event

Another particular behavior involves stopping a task and restarting it in its
initial state i.e., a new instance of it, within the same instant, as ESTEREL and

12 Eric Rutten, Paul Le Guernic

ARGOS do (cf. section 7). An example of application of this is the stopwatch,
where the reset can be seen as the stopping of the stopwatch, and within the
same instant, the start of a new instance of it.

This involves performing two kinds of actions upon the occurrence of
this Reset event: computing the values at this instant inside the interval,
and preparing the next interval occurrence i.e., re-initializing state variables.
There are different approaches to integrate this behavior into our framework:

e it is possible to define a restart primitive, along with on and each.

However, this involves a modification of the definition of intervals,
because they should have occurrences meeting at bounding instants,
which is not the case by now (where there is at least one instant bet-
ween two interval occurrences); the interpretation of the intervals as
tasks suggests that it might be envisaged. But then, it divides an inter-
val into parts 1B,B] followed by a final part JB,E], and the question
arises whether they must all be considered as separate interval occur-
rences of I:=]1B,E], or just as parts of one occurrence from B to E.

e it is possible to simulate it using two intervals, as follows:

(I 1B := 1B,B]
| P each IB
| P each compl IB % complement relative to 1B,E]1%
|) each 1B,E]

but this approach involves, in a sense, duplicating the process P.

o resetting the internal state of processes can be considered to be inde-
pendent of the concept of interval, and achieved using a process input
for the reset event, managed manually by the programmer. The reset
then happens to coincide with the beginnig event of the interval. Hie-
rarchically, it can involve propagating the reset to sub-processes, going
all the way down to each memory cell or delay.

However, this solution provides no general structure.

The possibilities in this alternative require closer examination before
choosing whether having a derived features of the language, or a primitive.

Sequencing data flow tasks in SIGNAL 13

3 SIGNAL, time intervals and tasks

In this section we show how the concepts presented above can be specified
and integrated in the data flow synchronized language SIGNAL. We will first
introduce the essential mechanisms of the SIGNAL language, and then the
time intervals, which will serve as an example of SIGNAL process, encoding
the memorizing of state information [18]. On these bases, possible encodings
of the tasks in SIGNAL are proposed.

3.1 A brief introduction to SIGNAL
3.1.1 An equational synchronized data flow language

SIGNAL [18] is an equational, data flow oriented, synchronous language, built
around a minimal kernel of basic constructs. It manipulates signals, which
are unbounded series of typed values, with an associated clock determining
the instants where values are present; for instance, a signal X denotes the
sequence (x;);er of data indexed by time ¢ in a time domain 7'. Signals of
a special kind called event are characterized only by their clock i.e., their
presence (they are given the boolean value true at each occurrence); given
a signal X, its clock is obtained by the expression event X, giving the event
present simultaneously with X. The constructs of the language can be used
to specify, in an equational style, relations between signals i.e., between their
values and between their clocks. Systems of equations on signals are built
using the composition construct.

The compiler performs the analysis of the consistency of the system of
equations, and determines whether the synchronization constraints between
the signals are verified or not. If this is the case, and if the program is
constrained enough so as to compute a deterministic solution, then executable
code is produced.

From a data flow point of view, SIGNAL processes communicate through
signals, seen as sequences of typed and timed values. A small number of
elementary processes, and the possibility to link them into a network, are
used to build larger applications, using the hierarchical process structure [8].
Within this framework, the SIGNAL programming environment features a
graphical, block-diagram oriented editor, allowing for top-down as well as
bottom-up design [7].

14 Eric Rutten, Paul Le Guernic

3.1.2 The kernel of SIGNAL

Basic operators in SIGNAL define elementary processes, each of which cor-
responds to an equation; they are:

functions: they are defined on the types of the language (e.g., boolean nega-
tion of a signal E: not E). The signal (Y;), defined by the instantaneous
function f in: Y; = f(Xy,, Xa,, ..., Xp,) is written:

Y := f{ X1, X2, ... , Xn}

Functional expressions are monochronous, meaning that the signals Y,
X1, ..., Xn are said to be synchronous: they share the same clock. In
other terms, when computing the value of Y;, all X; are taken with
their value at that time ¢; therefore they are all required to have the
same clock.

delay: it gives the past value of a signal, generally noted ZX; = X;_4, with
initial values ZX; =V, for 0 <12 < d; in SIGNAL, for the simple case
where d = 1, this is written:

ZX := X$1| with initialization |ZX init VO

Delay is monochronous too i.e., X and ZX have the same clock.

conditional selection: under-sampling a signal X according to a boolean
condition C is written in SIGNAL:

‘Y := X when C‘

This operator is polychronous: the operands and the result do not have
identical clock. Signal Y is present if and only if X and C are present at
the same time and C has the value true. Thus, Y is at most as frequent
as X and C: in other terms it is non-strictly less frequent than both
of them. The intersection of the clocks of X and C (i.e., the instants
when the expression can be evaluated) includes the clock of Y (which
features only the instants when C evaluates to true). When Y is present,
its value is that of X.

Sequencing data flow tasks in SIGNAL 15

deterministic merge: defining the union of two signals of the same type
is written:

|Z := X default Y |

This operator is polychronous too: the clock of Z is the union of that
of X and that of Y: thus it is at least as frequent as each of them.

The value of Z is the value of X when it is present, or else that of Y if
it is present and X is not.

process composition: elementary processes can be composed with the as-
sociative and commutative operator “|” denoting the union of the un-
derlying systems of equations. In SIGNAL, for processes P; and P, it

is written:

I

For example, the equation x; = x,_1 + 1 can be written:

r; =zxs+1
z

Ty = Tt

which is written in SIGNAL: (| X := ZX + 1 | ZX := X$1 |).

Furthermore, it is possible to confine signals locally to a process using
“/7: e.g., in the previous example, hiding ZX gives the following code:
(I X :=2ZX + 1| ZX := X$1 |)/ZX.

3.1.3 Modularity and derived processes

The language is built upon this kernel, and features derived operators for
a variety of facilities, like arrays or variables. A structuring mechanism is
proposed in the form of the definition of process schemes, which are given
a name, typed parameters, input and output signals, a process, and local
declarations. Occurrences of process schemes in a program are expanded
by the compiler. Derived processes have been defined from the primitive
operators, providing programming comfort [8], such as: synchro{X,Y} which
specifies the synchronization of signals X and Y; CLK := event X giving the
clock CLK of a signal X; when C giving the clock of occurrences of C at value
true; and X cell B which memorizes values of X and outputs them also
when B is true. Arrays of signals and of processes have been introduced as
well.

16 Eric Rutten, Paul Le Guernic

3.1.4 Compilation and clock calculus

We only give a very brief overview of the compilation process, the formal
calculus underlying it, as well as the formal analysis of static and dynamical
properties of systems. Some of the perspectives exposed in section 8 will refer
to these aspects of SIGNAL.

In order to model the absence or presence, and the value true or false,
of logical signals, an encoding in Z/3Z has been defined, as well as formal
calculi on this model [18]. It is as follows: absence is coded by 0, presence
with value true is coded by +1, presence with value false is coded by —1.
For a non logical signal, its value is not encoded: only its presence or absence
is (by 41) Hence, for a signal X with value z, its clock is encoded by z? (as
it is equal to 1 when the signal is present).

Clock equations for primitive operators are encoded as follows:

e X := f{X1, ... Xn} by: 2* = z,* = ...z,,* (clocks are equal)

e Y := X$1 init XO by: y* = 2? (clocks are equal)

e Y := X when Chy: y* =a?(—c—¢c?) (ie,y? =z iff c=1and * =1)
e Z := X default Yby: z? = 2*+ (1 —a?)y? (ie, 22 =2*iff 2> =1, or

else 2% = y? iff 2? = 0)

For a signal defined by a delay, its past value is taken into account when
calculating the present one. This involves a dynamical system; for the process
X := V$1 init VO, with V boolean:

= vt (1ot
€o Yo
= v¥

where ¢ represents the current state of the system, &' the next state, and &
its initial value. The value of the current state changes when v is present,
otherwise (i.e., v = 0, (1 — v?) = 1) it keeps its value ¢ at instants of a clock
more frequent than v2.

Using this encoding, a system of equations can be associated with any
SIGNAL program, and the corresponding temporal behavior can be analysed,
and possible inconsistencies detected. This is called the clock calculus: it has
a static part, and a dynamical part. The static part is performed on a graph

Sequencing data flow tasks in SIGNAL 17

of data dependencies between the signals of the program, each conditioned
with the clock at which it is effective. This graph enables the detection of
dependency cycles, where the conditioning clocks are not exclusive, meaning
that there exist instants where the dependency cycle is effective. The graph
is also used for other treatments on the programs: code generation, optimi-
zation, partitioning and placement on multi-processor architectures [18, 19].
The analysis of the dynamical behavior of the programs relies on the equa-
tional representation of the synchronization and of the logic of programs in
Z/3Z: it consists in translating properties of the program into equivalent
algebraic properties, that can be verified by formal calculus tools [11]; this
is implemented in the proof tool SIGALI. Other works concern the automa-
tic synthesis of hardware architectures implementing SIGNAL programs [35].
In relation with other languages of the synchronous approach (LUSTRE and
ESTEREL), common formats have been defined, in the perspective of sharing
the various tools that grew around them [27].

3.2 Time intervals in SIGNAL

The time interval is an example of a SIGNAL process [18, 4]. The encoding of
time intervals in SIGNAL is made by considering each of the points in section
2.2.

The values of intervals defined in point (1) are encoded as a boolean signal:
inside is true and outside is false. The initial value is given using the
SIGNAL statement init in the declaration of the state variable encoding the
interval. The complement compl I of an interval I is the boolean negation
not of I.

Intervals are left-open and right-closed?, as stated in point (2): this is
encoded as: I := Val § 1.

Following point (3) the value Val is the new value New_val when it is
present, or its previous value (i.e., I) otherwise, which is encoded as follows:
Val := New_Val default I.?

20ther forms of intervals, [B,E[, [B,E], and 1B,E[can also be envisaged, but we chose
1B,E] as a standard for reasons given in section 2.1.

3This is essentially equivalent to the macro-construct of SIGNAL called V cell C [8],
which is a memory cell outputting the latest value of ¥ when the condition C is present
and true. The difference is that it outputs the new value of V when it is present; in the
interval, it is the previous value that is output.

18 Eric Rutten, Paul Le Guernic

OFEND OFEN IR ¢ T:= VAL $1

{1 OPENI:= B when{ not I } CLOSE LLOSE_T I ¥AL:= NEW_VAL default I T IHT
E E | CLOSEI:= E when I | NEW_VAL:= { not CLOSE_I)
B 1 default OPEN_I

__] 1)/ NEW_VAL., VAL

Figure 4: The time interval programmed with the graphical intertace.

B ° ° . .
E

INT ___H 2}_________3 Z%________
compl INT .. }—— . -
open INT ° °
close INT . °

Figure 5: A possible trace of a time interval and its bounding events.

The new value alternates at the occurrences of bounding events as defined
in point (4): New_Val := (not (close I)) default (open I).

The restrictions for a signal X: X in I and X out I of point (5) are
respectively encoded as: X when I and X when not I (i.e.,X in compl I).

To summarize, a left-closed, right-opened interval INT, with opening event
B and closing event E noted:

|INT := 1B, El|

is encoded as shown in fig. 4, obtained with the graphical interface of the Si-
GNAL environment [7], and where boxes correspond to levels of composition.
The bounds open I and close I are defined respectively by B out I and
E in I. The trace shown in the chronogram in fig. 5 for an interval initially
instde illustrates in particular that when B and E occur simultaneously, prio-
rity is given to changing the state. Also, when outside, receiving E has no
effect, and reciprocally when inside and receiving B. It behaves like the two-
state automaton illustrated in fig. 6. The interval process recognizes series of
occurrences of the interval defined by occurrences of its bounding events B

(begin) and E (end).

Sequencing data flow tasks in SIGNAL 19

Figure 6: The time interval as a two-state automaton.

Coherently with the boolean encoding of inside and outside, the union of
intervals |I1 union I2]can be coded as the boolean disjunction I1 or I2,
intersection |I1 inter I2|as the conjunction I1 and I2. This brings for-

ward the question of the clocks of intervals, in particular with regard to the
constraints imposed by functional operations in SIGNAL (see section 3.1). As
a SIGNAL process, the interval has no fully defined clock: the fact that it is
defined default its previous value makes that the only constraint is that it
be at least as frequent as (not (close I)) default (open I). The clocks
are being resolved by the compiler i.e., the clocks at which the values of the
intervals must be computed is the upper bound of all the clocks at which it is
needed i.e., the clocks of the expressions in which it is involved. The calcula-
tion of this upper-bound is a special treatment which distinguishes intervals
from regular signals: it argues in favour of the constitution of a specific type
for intervals.

3.3 The encoding of tasks in SIGNAL

The encoding of tasks in SIGNAL can be considered at different levels, from
the lowest and most general, to a higher-level and less costly one. It has to
comply with points (6) and (7) of section 2.3.

3.3.1 Primitive processes level

At the level of the five instructions of the SIGNAL kernel, the encoding offers
generality, being applicable to any SIGNAL process. An advantage is that this
is precisely the level at which the re-initialization of state variables (or delays)
has to be performed. Also, this is the level where the compiler manages
all the dependencies, optimizations, etc ... A possible drawback is that the

20 Eric Rutten, Paul Le Guernic

P P on I | P each I
Y := f{X;} Y := f{X; in I}
Y := X when B Y := (X in I) when (B in I)
Y := X1 default X2 Y := (X1 in I) default (X2 in I)
(et | P21 (Il PLonI (I P1 each I
| P2 on I |) | P2 each I |)
Y := X$1 init VO |Y := (X in I)$1 | (] Y_V:=
init VO (VO when open I)
default (X in I)
| Y := (Y.V$1 init VO)
when event (X in I)
1)

Table 1: Primitives-level encodings of on and each.

encoding is performed on the expanded form of the process instances, and
can introduce redundancy in signals filtering.

Encoding. Encodings for on and each are proposed in table 1. Simpli-
fications of this encoding are possible e.g., (X in I) default (Y in I) is
equivalent to (X default Y) in I,in terms of signals, even if the executable
code produced by the SIGNAL compiler makes a difference between filtering
before or after computing the value of an expression.

Example. Intervals as defined in section 3.2 are particular cases of pro-
cesses: I :=]B,E] has inputs B and E, and logical output I. Hence, an
interval can be associated with another interval into a task. In table 2 we
give the encodings of I on Jand I each J. The code proposed in section 3.2
for interval I :=]B,E] is arranged in order to dissociate the computation
of the new value of the interval NI, from the memorization of its previous
value in ZI

The parts of the code that are added to this specification in order to
transform it into I on J and I each J are framed in boxes.

Note that the filtering in the NI line could be factorized as it is in
the VI line, which is one of the simplifications applicable to the code obtained
from applying schemes in table 1.

Sequencing data flow tasks in SIGNAL 21

d d
4 L e
Jd
(| BB:=
B I_0M_T
1= I I_OM_J
E E > l;her‘u BB BEGIM > wher‘l.
| EE:= INTERWAL { 3 f IHTERYAL 1 T
E E E EE EMD
> >
when
J
L

Figure 7: Filtering input and output of P on I: example of an interval.

3.3.2 Task process level

Encoding on. At that level, the encoding of on consists in filtering the
inputs and outputs of the process in the interval. The advantage of this
highest level is that it avoids duplicating filterings down to the lowest levels,
as ilustrated in fig. 7.

For example, the interval I ON_J :=]1B,E] on J is encoded by filtering
input events (i.e., bounding events) inside interval J, and by filtering the
output (i.e., the value of the interval) as follows:

ION.J := 1B in J,E in J] in J.

This is equivalent to the coding proposed in table 2: only, the filtering is
made at the interface of the process with the external world, as fig. 7 shows,
instead of the primitive processes level.

Filtering both inputs and outputs is motivated by the existence of pro-
cesses whose clock is determined by constraints imposed by their context.
This can imply the possibility of state or value changes in the absence of
inputs. Hence, in order to avoid that, when the clock is defined from that of
the outputs, those must be filtered to be present only inside the interval.

Encoding each. Concerning the encoding of each at this level, the reini-
tialization needs to be propagated at lower levels: all state variables must be
provided with a reset signal, defined in terms of all the reset signals along
the hierarchical structure.

22 Eric Rutten, Paul Le Guernic

I1 :=]JB,E] on J I2 :=]B,E] each J
(I NI :=((not E) in I) |in J| (I NI :=((not E) in I) |in J
default B [in J default B
| VI :=(NI default ZVI) |in J IVI :=(NI default ZVI) |in J
| ZVI := (VI [in J$1 init 10 | | ZVIV := ([(I0 when open J)|
default |VI in J|)
| ZVI := (ZVI_V$1 init IO)
‘when event (VI in J)‘
| I1 := ZVI | 12 := ZVI
D) 1)

Table 2: Encodings of T on J and I each J.

For example in the process (| X:= expr | ZX := X$1 1), X has the va-
lue of expression expr, and ZX has the value at the previous instant of X.
When re-initializing the state variable, the value to be input in the delay is
not the current value of X (i.e., of expr), but its initial value X0. That is to
say, the value of ZX must be the previous value of X, except when Reset is
present: then it must be X0. In SIGNAL, this is written:

ZX V := (X0 when Reset) default X.

This signal has a clock more frequent than that of X in its original defi-
nition. Therefore this value, after having been delayed, must also be filtered
in order to exactly have the clock of X i.e., event X.

Hence, a delay process with a Reset can be coded as follows:

(| X = expr

| ZXV := (X0 when Reset) default X
| ZX = (ZX V$1) when (event X)
[

where ZX init XO.

This resetting scheme can be applied to the encoding of each, with Reset
being open Ii.e.,B out I.It can also serve for the encoding of the restarting
on each occurrence of the beginning event presented in section 2.4.3, for which
Reset is B.

Sequencing data flow tasks in SIGNAL 23

4 Sequencing time intervals

Now that tasks are defined by the association of a process with an inter-
val, we want to proceed towards sequencing them. An intermediary stage is
to consider the sequencing of time intervals. Fach time interval holds some
state information, and events cause transitions between these states. Hence
one way to specify a sequencing is to give the corresponding automaton,
or a place-transition system where a transition can lead to several places
simultaneously.

The SIGNAL language is event-based, hence relations between intervals
will be constructed on their bounding events. These events fire the transitions
between states or places; there exist methods to constrain them in SIGNAL,
so that the resulting intervals verify some constraints, such as being disjoint,
or in strict sequence.

We first describe how a transition between two places can be specified,
and then how parallelism can occur between places, hence enabling the spe-
cification of place-transition systems. As particular cases of this, we will then
describe various patterns for the sequencing of two intervals.

4.1 Place-transition networks

Automata and place-transition systems are widely spread formalisms for the
specification of dynamical behaviors. As models, they underlie many other,
higher-level formalism, including the synchronous languages like ESTEREL.
Also SIGNAL supports the specification of automata. What we present here
is one way of programming them using time intervals. However, it neither
means that this is the best or only way to program automata in SIGNAL, nor
that dynamical behaviors should be programmed in terms of automata, as
discussed in section 4.2.

In the simplest case, a transition from state S1 to state S2 on the occur-
rence of an event E. as illustrated in fig. 8, can be coded as follows:

st :=1 4, E] | 52 :=]E in S1, B]]

Associating an instantaneous action to a transition, as is usually done in
automata, can be done here by conditioning the action by the presence of
the transition event. For example, emitting event 0 on the transition can be

24 Eric Rutten, Paul Le Guernic

Figure 9: A place with incoming and outgoing transitions.

done in any the three following ways:
0 := when E in S1, or when close S1, or when open S2.

In an automaton, the control state is located in one only place. In a
place-transition network, it can be in several places at ounce, which means
that the control state is defined by the set of entered places. There can
be several simultaneous transitions if several transition events are present
simultaneously, or if a same event causes several transitions. In the general
case, there can be several incoming or outgoing transitions to a place, labelled
by different events, as illustrated in fig. 9.

A place-transition network (P, L, T') is defined by a set P of places p, a set
L of labels e (in our case: events) and aset T: T C P x L x P of transitions
t of the form t = (p/, e, p”). For each transition p € P we have an interval I,
defined by] Begin,, End,]. The beginning event Begin, is defined as the
union for all (p’,e’,p) € T of occurrences of events e’ when in place p’ i.e.,
the default of (¢’ in I,):

Begin, := defaulty . yyer (¢! in I,).

Sequencing data flow tasks in SIGNAL 25

The end event End, is defined in terms of the outgoing transitions i.e., the
union for all (p,e”,p") € T of occurrences of events e’

Outgoing, := default,.m,ner €.

However, in case some incoming event is present simultaneously, the place

should not be exited: therefore, the end event is more restrictively defined,
excluding this case®:
End, := Outgoing, without Begin,

To summarize, each place p is coded as follows:

(I I, := 1 Begin,, End,]
| Begin, := default, . er (€ in I,)

| End, := (default(,cr,mer €”) without Begin,
1)

The initial state of the place-transition network is given by initializing the
corresponding interval inside (i.e., at the value true), and others outside.

A remark can be made regarding transitions returning on the same place,
like the one labeled by e in fig. 9. Such transitions encountered in automata
are used to mean that a certain action is performed on this transition, without
changing the state. In our framework, actions are separated from the state-
transition system, as we will see further when presenting the task structure;
hence this kind of transition, leaving the state unchanged, is useless, and
should better be avoided in automata (as illustrated in the example in section
4.2). However, in place-transition systems, this kind of transitions can be
interpreted as restoring a token in the place p while entering place p”. In our
case, this means that I, should not be exited when (e in I,) is present: this
is taken care of by the use of without in the definition of End,.

We can illustrate these bases by using them for the specification of various
ways of sequencing intervals. This is done by filtering bounding events, so that
resulting intervals comply the contraints by construction. We will define flat
structures, in the sense that they have no hierarchical structure: hierarchies
are introduced further, for the sequencing of tasks.

4We define ¢ without A by the expression: C when ((not A) default C).

26 Eric Rutten, Paul Le Guernic

Figure 10: Automaton for the logic control of a stopwatch.

4.2 Example: the control logic of a stopwatch

Automaton specification. The example of the control logic of a stop-
watch is well known in the synchronous languages litterature [14, 15]. It
counts impulsions of a base clock, and is controlled by two buttons R (for
run) and L (for lap), emitting corresponding events. For simplicity purposes,
these events are supposed to be exclusive i.e., they are never simultaneous.
Pressing button R causes alternately running and stopping the stopwatch.
Pressing L freezes or un-freezes the display of current time, except when the
stopwatch is stopped and the display un-frozen: in that case, it is interpreted
as a reset button. This behavior is described by the automaton illustrated in
fig. 10. We can apply what was described above, simplifying the scheme for
this automaton: it can be coded in SIGNAL intervals as follows:

(I s1 =]JR in S2 default L in S4, R]

| S2 :=]JR in S1 default L in S3, R default L]
| S3 :=]JR in S4 default L in S2, R default L]
| sS4 :=]JR in S3, R default L]

| Reset := L in S1

1)

where intervals are initialzed outside (i.e., at the value false), except S1,
which is the initial state, initialized inside (i.e., true).

In particular, the reflexive transition on S1 labeled by L is not encoded
as a transition here, but as an action (emitting Reset) performed on each
occurrence of L in S1.

Sequencing data flow tasks in SIGNAL 27

Equational specification. However, this coding of the automaton is un-
satisfying, because it does not benefit from the advantages of SIGNAL pro-
gramming in the design of this behavior: it is too close to the automaton, and
therefore lacks hierarchical structure. Another method, closer to the equa-
tional approach specific to SIGNAL, is to specify the aspects of the behavior
in a declarative way, and let the SIGNAL compiler analysing the correspon-
ding constraints, in order to build the implicit automaton. In this example,
it consists in exploiting the symmetry, visible in fig. 10, in characterizing the
stopwatch by the fact that:

e it counts between two occurrences of R,
e it freezes the display of time between two occurrences of L

o it resets the counter on L when not running nor freezing the display.

A corresponding encoding of this behavior is as follows:

(I RUN =]R, R]
| LAP =]L in RUN, L]
| Reset = (L out RUN) out LAP
[
The associated tasks can be specified as follows:
(| Time value := (count on compl RUN) each]R, Reset]
| Time display := memorize{Time value} in compl LAP
[

4.3 Particular sequencing patterns

Various classical sequencing patterns can be specified that way i.e., defined in
the form of states and transitions between them on the occurrence of events;
for instance:

e sequence is a simple transition, as seen above in section 4.1;

e a cobegin-coend parallelism is achieved by entering two places simul-
taneously:
(I 11 := 1B,E1] | I2 := 1B,E2] |)

i.e., two intervals overlapping from their begin instant;

28 Eric Rutten, Paul Le Guernic

e a loop is a cyclic path in the transition graph;

e a kind of watchdog, having I1 exited into I2 in case event W occurs
before its “normal” termination by E:

(| I1 :=]B,W default E] | I2 :=]W in I1,C] |).

However, a less classical approach in the specification of sequencing pat-
terns can be adopted e.g., by taking into account the periodical behavior® of
the primitive interval, which can be considered as a form of endless loop. For
example:

e the alternance of occurrences of intervals delimited by events A, B and
C, D can be coded as follows:

(| I1 J(A out I) default (A when close I2), B]
| I2 :=](C in I) default (C when close I1), D]
| I] close I1, close I2]

[

where I is used as auxiliary interval: no new occurrence of I1 can begin
instde I (and reciprocally no new I2 outside I).

e occurrences of intervals can be required to be disjoint; when both ope-
ning events A and C are present, priority is given to beginning the
interval opened by event A (i.e., interval I1), so that this behavior is
deterministic. For this purpose, we define C without A by the expres-
sion C when ((not A) default C). The coding is:

(I I1 := J(A out I2) default (A when close I2), B]
| I2 := 1((C without A) out I1)

default (C when close I1), D]
[

This pattern is less constrained than the previous one, as it does not
impose alternance.

These intervals may have common bounds, but, being semi-closed, they
do not overlap.

51t is periodical in the sense that an interval denotes a series of occurrences; it is
alternatively, and repetitively entered and exited again: hence it can be called periodical
in a qualitative sense; a quantitatively scaled period is not what is meant here.

Sequencing data flow tasks in SIGNAL 29

P E P

= P1 f>/\f> P2 =

Figure 11: A task P behaves like P1 until event E, and then like P2.

5 Sequencing data flow tasks

A task is defined as being a process associated with an execution interval:
sequencing such tasks means actually constraining their execution intervals.

One possibility is to use the sequencing patterns exposed above, and as-
sociate corresponding intervals to tasks. Another approach is to define com-
position operators on processes, closer to imperative composition operators
(sequential, parallel composition, ...). As was said earlier, a data flow process
has no specified termination in itself, and its end as well as the transition to
another task, can only be decided in reaction to the occurrence of an event;
hence the sequencing of data flow tasks has to be reactive.

5.1 Process composition

A quite natural, or at least very current sequencing pattern, is sequence
itself, meaning that a process P can be defined as behaving as illustrated in
fig. 11, first like process P1 until the occurrence of event E, and thereafter like
process P2. This can be written: [P1 until E then P2|, and simply encoded

as follows:
(I I :=1E, E’] init false

| P1 on compl I
| P2 on I
1

where the end E’ of interval I can remain unspecified: the termination of
P2 will be that of P, which is specified at a higher hierarchical level. The
transition event E can be defined from values computed by process P1, or be
an input of process P.

The definition of the interface of the new process P is made as for other
operators [13]: the inputs of process P are the union of the inputs of P1

30 Eric Rutten, Paul Le Guernic

and those of P2; the output signals of P are the union of those of P1 and
P2: for these latter, it can be the case that outputs of P1 and P2 have a
non-empty intersection: the resulting output of P is simply the default of
both, which will never be present simultaneously anyway, as I and compl
I are necessarily disjoint. This operator resembles perhaps more the “chop”
operator found in certain interval-based specification languages [29], than
the classical sequential composition of ALGOL-like programming languages,
because of its reactivity.
It can be used to define a sequential composition, for example in:

P1 until E1 then (P2 until E2 then P3)

where each of the three processes will be executed in the given order. In
contrast, another combination of such structures behaves as a watchdog-like
interruption structure; in:

(P1 until E1 then P2) until E2 then P3

if E2 occurs before E1, process P1 will be interrupted, and P2 will be skipped,
the application transiting directly to P3.

Other such processes composition operators can be defined e.g., corres-
ponding to imperative control structures (parallelism, condition, ...).

5.2 Modularity and hierarchy

In general, it is possible in this framework to achieve the specification of a
desired reactive, dynamical behavior with a separation of the definitions of:

e the internal behavior of the various processes,

o their individual association with execution intervals, into a task, using
on or each,

e their sequencing (i.e., constraints on bounding events: external, or in-
ternal on sub-tasks output values).

The resulting process, as illustrated in fig. 12, has inputs and outputs
that are the union of those of their components. If intervals are not disjoint,
then several sub-tasks can simultaneously produce values for the outputs of
P. In that case, a unique values for output signals must be determined by an
operation marked by the box in fig. 12. For example:

Sequencing data flow tasks in SIGNAL 31

P1 on Il

P2 on I2

Figure 12: A process P with sub-tasks P1 and P2.

e a deterministic priority can be given between the processes (e.g., using
default),

e there could be a composition function on the values of signals (e.g., for
integers or reals: +, *, for booleans: or, ...), determining the value of
P’s output signal (as exists in ESTEREL [6]).

The sequenced processes can be sequencings of sub-tasks themselves: hie-
rarchical, parallel automata can be programmed, allowing for various inter-
ruption structures.

For example, the stopwatch of which the automaton is presented in fig.
10, is part of a broader watch [14]. The complete watch, for which the control
automaton of the upper level is illustrated in fig. 13 (with ALARM_UPDATE in
expanded form), features the following modes:

e the TIMER mode, the initial one, where time is displayed, and

— the 11 button changes to STOPWATCH mode,
— the ul button changes to TIME_UPDATE mode,

— the 1r button switches the time display mode between 24H and
AM_PM: to this end it emits event switch diplay mode,

— the ur button switches the light on, emitting switch light _on.
e the TIME_UPDATE mode, where:

— the 11 button changes the updated component of time (year,
month, day of month, day of week, hour, minutes, tens of minutes,
seconds), emitting change_item,

32

Eric Rutten, Paul Le Guernic

(l
I
I
I

% swilching off the alarm bell %
stop_bell := ur
% definition of the intervals %

(l

I
1

I timer :=] 11 in I_alarm default ul in I _t_update,
11 default ul] init true
I t update :=] ul in I timer, ul]
I stopwatch :=] 11 in I timer, 11]
I alarm :=] 11 in I_stopwatch default ul in I _a update,
11 default ul]
I _a update :=] ul in I alarm, ul]

| % tasks, associating a process with an interval %

(l

% TIMER on I_timer %

(| switch displaymode := 1r
| switch light on := ur

[) on I timer

% TIME_UPDATE on I_t_update %
(| change_item := 11

| update := 1r

|) each I_t_update

% STOPWATCH on I stopwatch %
(I R :=1r

| L :=ur

|) on I_stopwatch

% ALARM on I_alarm %

(| switch_chime := 1lr

| switch_alarm := ur

[) on I_alarm

% ALARM_UPDATE on I_a update expanded %
(] H :=1 11 in MN, 11] init true
| 10MN :=] 11 in H, 11]

| MN :=] 11 in 10MN, 11]

| updateh := 1r in H

| update 10mn := 1lr in 10MN
| updatemn := 1lr in MN

|) each I_a update

Table 3: Control logic of the digital watch.

Sequencing data flow tasks in SIGNAL 33

ul
TIME
TIMER
UPDATE
ul
11\
11 STOPWATCH
li//
ul
ALARM_UPDATE
ALARM
ul

11/ 11
O’

Figure 13: Automaton for the logic control of the digital watch.

— the ul button changes back to TIMER mode.
— the 1r button updates the value (i.e., increments it), emitting
event update.

e the STOPWATCH mode, where (see section 4.2):

— the 11 button changes to ALARM mode,

the ul button has no effect,

the 1r button is the R (run) button of the stopwatch,
the ur button is the L (1ap) button of the stopwatch.

e the ALARM mode, where:

— the 11 button changes to TIMER mode,
— the ul button changes to ALARM UPDATE mode,

— the 1r button switches the chime on and off, by emitting the event
switch_chime,

34 Eric Rutten, Paul Le Guernic

— the ur button switches the alarm on and off, by emitting the event
switch_alarm,

e the ALARM_UPDATE mode, where:

— the 11 button changes the updated component of alarm time, by
switching between states: hour H, tens of minutes 10MN, minutes
MN,

— the ul button changes back to ALARM mode,

— the 1r button updates the value (i.e., increments it) emitting,
respectively, update h, update_10mn, and update mn.

e in any of the above modes, the ur button turns the alarm bell off.

An interval-based specification of this sequencing is given in table 3, where
interval I_timer is initialized inside (i.e., true). The task ALARM_UPDATE,
which is given an expanded form, compared to TIME UPDATE, features sub-
states for each component of the alarm time: this sub-automaton has initial
state H, and is restarted in its initial state by the operator each on each
entering the interval I_a update.

The activity of the different sub-tasks in this example consists in transdu-
cing the incoming events (belonging to the set {11,1r,ul,ur}), by interpre-
ting them according to the current mode, into specific events acting on other
parts of the watch. For example, in the TIMER task, the management of the
display in twenty-four-hours or in a.m./p.m. mode corresponds to intervals:

(| 24H :=]switch display mode, switch display mode]
| AMPM := compl 24H
1

The same holds for the activity of the ALARM module, managing two state

values, encoded in intervals:;

(| CHIME :=]switch.chime, switch chime]
| ALARM :
[

These state informations must be permanently available, for displaying, com-

]switch alarm, switch_alarm]

paring or computing purposes: hence they have to be remanent in the appli-
cation.

Sequencing data flow tasks in SIGNAL 35

6 Application to task sequencing in robotics

An application domain envisaged for the sequencing of data flow tasks is
robotics. In this section we discuss possible guidelines for such applications.

Task functions as data flow processes. A robot task, at the relatively
lowest level, consists of a task function, which is an equation ¢ = f(s) giving
the value of the command ¢ to be applied to the actuator, in terms of the
values s acquired by the sensors. The command to the actuator is a conti-
nuous function f, more or less complex, involving differential equations, and
possibly dynamical aspects, referring to past values of s or ¢. Such a task can
be composed of several sub-tasks, that can be given a certain priority order.
An example of such a task is having a robot arm following the edge of an
object: one the one hand, as a primary sub-task, it has to keep a constant
distance from this object, as sensed e.g., by an infra-red sensor, and on the
other hand, as a secondary sub-task, it must move at some constant speed.
The implementation of such a task function is made by sampling sensor in-
formation s into a flow of values s;, which are used to compute the flow of
commands ¢;: Vt,¢; = f(s¢). This kind of numerical, signal processing, data
flow computation is the traditional application domain of data flow languages
in general, and of SIGNAL in particular.

Termination. Such a process defines a behavior, but not a termination:
this aspect must be defined separately. One way of deciding on termination
of a robot task is to apply criteria for reaching a goal so: when this value
is acquired by the sensor, the task is considered to have reached its goal,
hence its end. An example is that of a trajectory tracking task, where the
destination point constitutes the goal, and the criterium is the distance to
this goal. In other terms, an error |s — sg| has to be minimized, and the goal
is reached with a precision ¢ when condition |s — sg| < ¢ is satisfied. The
evaluation of this condition must be performed at all instants: hence this
evaluation is another data flow treatment. The moment when the condition
is satisfied can be marked by a discrete event, which, causing termination of
the task, can also cause a transition to another task at the higher level of
the reactive sequencing. In this sense, this event can be used to specify the
end of the execution interval of the task. Evaluation of such conditions can

36 Eric Rutten, Paul Le Guernic

be made following a dynamical evolution: a sequence of modes of evaluation
of s, or of the criterium, can be defined, becoming finer (and possibly more
costly) when nearing interesting or important values (an example of this in
the stopwatch example is that when comparing alarm time to current time,
minutes can be compared only once hours have been found to be equal, thus
dimishing the comparisons).

Sequencing. At a somewhat higher level, a robot task can be defined as
an already non-trivial behavior combining a task function, and various ob-
servers detecting, in the environment, events on which a reaction must be
given: e.g., preconditions that should be verified before starting the task func-
tion, observers on conditions that could imply interrupting the robot task, or
postconditions deciding on the task termination [10]. These conditions can
be combinations of information from several different sensors, and evaluating
such conjunctions of conditions, implies reasoning about their truth intervals
and their overlapping. Reaction to the events corresponding to the obser-
ver interruptions can involve different treatment levels: inside the robot task
(modifying parameters internally, without stopping), interrupting the task,
and causing transition to another task, or interrupting the whole application,
requesting external help. Finally, above the robot taks level, an application
level can be considered, where robot tasks are being sequenced according
to various patterns. In particular, the composition function for output va-
lues of different sub-tasks described in section 5.2 can be used to combine
effects of several tasks executed in parallel e.g., a movement combined with
wall-following, the results of both tasks being “added” in order to form the
resulting command.

Application to robotic vision. An application currently being worked
on concerns the sequencing of active vision tasks specified under the form
of a network of automata in SIGNAL [24]. The computations involved in the
sensor-based command of an actuator correspond to our data flow processes.
Determination of their start times and of their termination i.e., of their execu-
tion interval depends of events defined in terms of external inputs or internal
state information: hence they can be described by tasks. The sequencing of
vision tasks could then follow the patterns proposed earlier in this paper.

Sequencing data flow tasks in SIGNAL 37

7 Related work

In this section, we briefly review related work on sequencing and data flow
languages, mostly real-time and synchronous, from the perspective of their
combination into a language-level common framework.

7.1 Sequencing languages

Imperative languages. Amongst the sequencing languages, an impera-
tive one is ESTEREL [6], which is synchronous, meaning that its instruc-
tions are considered to be instantaneous in its formal model. It features
various control structures, including parallelism, and three ways to stop a
sub-process: natural termination (by reaching the end of a sequential state-
ment), withdrawal (in an exception handling mechanism, where a last action
on the instant of withdrawal is possible) and interruption (by a watchdog
mechanism, cancelling any action in the interruption instant). Interruption
and withdrawal are definitive: there is no way of restarting from the state
where the stopping happened. In order to enable tasks with a duration to
be executed, ESTEREL, in its recent version, supports an instruction exec,
causing an external asynchronous process to be executed: it receives a start
signal, emits a result signal, or can be stopped by a kill signal (no suspension
and resuming are supported yet). The processes have to be managed by an
external task controller [1], and are not written within the application, which
compromises the use of the programming environements and analysis tools.
An application of this construct is task-level programming in robotics [10].

The asynchronous language ELECTRE [28] provides a variety of inter-
ruption structures for tasks lasting over a duration. These interruptions can
be grouped into numerous combinations. In adition to them, the events ex-
changed can be submitted to various memorization policies. The tasks can be
suspended, and then resumed at their stopping state, or interrupted in a defi-
nitive way. Applications written in the language are compiled into automata,
which can be submited to various analysis and proof tools. When arriving
at the lowest level of the hierarchy of tasks and sub-tasks in ELECTRE, the
behavior of the primitive modules are external to the language.

Graphical languages. Classical graphical formalisms feature automata,
but they are difficultly applicable as such to more than small problems, be-

38 Eric Rutten, Paul Le Guernic

cause of their lack of structure: a modification of a system specification might
result in a very different automaton, which has to be completely revised, or
even rewritten. Petri nets feature concurrency, which simplifies specification,
and makes it more compact. Still, these place-transition nets are flat, and
lack a hierarchy which would allow to factorize some aspects of a behavior
at a high level: in this sense, they are still relatively low-level formalisms;
besides, their semantics is not always clear [14]. Another graphical language,
especially designed for and widely used in the control of physical processes,
is GRAFCET (also called Sequential Function Charts); it consists of place-
transition systems, controlling the activity of external tasks. Originally de-
fined in a quite ambiguous fashion, GRAFCET is being studied in the sense
of formalizing its semantics, and connecting it to the analysis tools from the
synchronous approach [23].

A well known formally defined graphical language is STATECHARTS [15],
which enables the graphical specification of hierarchical and parallel auto-
mata, with a variety of constructs amongst which the history, allowing for
keeping of the last visited state of an suspended sub-automaton, and resu-
ming of its activity in this current state. It has been influential as a spe-
cification language, along with the model defining its semantics. A recent
extension, called hybrid STATECHARTS [21], concerns timed transition sys-
tems, where states are labeled by unconditional differential equations, thus
specifying behaviors combining discrete and continuous evolutions i.e., hybrid
systems [26, 29].

Another graphical language is ARGOS, belonging to the synchronous fa-
mily, in a closer fashion than STATECHARTS, from which it is inspired [22].
It features the construction of automata, the possibility to encapsulate them
inside a state of an upper-level automaton, in a hierarchical way, and a pa-
rallel composition of automata. It does not feature suspension or history.
In its present version, it supports the specification of the control logic of
applications, but not of actions or operations on values of events [14].

As a conclusion on sequencing languages, within our perspective, one can
say that if they allow for hierarchical decomposition, down at the lowest
level, the non-instantaneous, non-sequencing, continuous tasks that are se-
quenced are external to the language, hence to the programs written, and to
the underlying model: there are two different, separated frameworks for the

Sequencing data flow tasks in SIGNAL 39

sequencing on the one hand, and the tasks on the other hand. As was already
noted above, drawbacks of this situation are that the analysis of applications
is limited, and that homogeneity of the specification formalism is impaired.

Part of the motivation forthe results presented in this paper is to integrate
durational behaviors of tasks into the same framework as reactive transitions
for sequencing.

7.2 Data flow languages

Data flow languages have originally been introduced as a declarative way,
related to functional languages, of specifying algorithms for a particular or-
ganization of parallel architectures [12]. However, they can also be seen as a
natural way of specifying certain types of computations, involving the repeted
evaluation of output values from input values according to a given equation;
in this sense, they are “very natural to control scientists” [14, p. 53], and “in
digital signal processing, even without the motivation of concurrency” [17, p.
502]. Thus from this point of view, data flow language seem to be the natural
way of specifying non-sequencing, non-instantaneous tasks.

The data flow language LUSTRE [14], like SIGNAL, is synchronous. An
important difference is that LUSTRE is functional, while SIGNAL is relational.
The definition principle in LUSTRE says that “a variable is thoroughly defined
from its declaration and the equation in the left part of which it appears”
[14, p. 57]; in SIGNAL, this is not true for the clock definition, which can
depend on the context in which the signal definition appears.

Neither of them does feature explicit sequencing constructs, but recent
work on LUSTRE concerns recursive functions [9], which enable the introduc-
tion of a form of imperative sequencing e.g., re-initialization of a program
when a condition becomes true.

It is possible to memorize state information in these data flow languages,
using the delay operators; it is also possible to make computations condi-
tioned by the presence of events or the value of boolean signals. Thus, it is
possible to implicitely manage the sequencing of different modes of computa-
tion. But in general, programming sequencings that way is made unpractical
by the absence of supporting structures, and the obligation to program them

by hand.

40 Eric Rutten, Paul Le Guernic

7.3 Hybrids of sequencing and data flow

Data flow networks of sequential processes. In the data flow commu-
nity, instances of hybrid sequential/data flow designs exist [12]: they concern
the sequentiality of groups of operations in a data flow network. The sequen-
tial character of some parts of the computation in a data flow network can
be given by the programmer, who supplies sequential processes as opera-
tors connected into a large-grain data flow network. It can also be extracted
from a network of primitive operators, by determining “execution threads”
that group some of them, and diminishing the amount of operators, hence of
communications between operators, by implementing these sequential parts
in the efficient “von Neumann” way.

In the synchronous approach, a combination of imperative and data flow
features is made in pGC [5]: this formal model was defined in relation with the
common formats for synchronous languages [27], and underlies the data flow
approach to synchronous programming. In pGC, the imperative parts consist
in ordering the actions inside an instant i.e., they are inside the operations
in the data flow.

Sequencing connection states of a data flow network. Another way
of combining sequencing and data flow is that of MANIFOLD [2], where an
event mechanism is used for the sequencing of different connection states of
a data flow network. However, the events and the units in the data flow are
handled in an orthogonal fashion. The language is designed at a level inspi-
red by hardware data flow architectures: is fully asynchronous, and features
numerous instructions motivated by this system-level relevance. Thus, as a
full-sized language, it is quite complex; an abstract model has been extracted
from it.

As a conclusion, it can be noted that the relation between sequential and
data flow computing seems to be made mostly at the level of the efficient
implementation of data flow programs i.e., having sequential operations in a
data flow network. The other way round, language-level sequencing of data
flow tasks, is less current in the litterature.

The work presented here proposes a solution for this, motivated by appli-
cations in doamins concerning the discrete control of physical processes, e.g.
robotics.

Sequencing data flow tasks in SIGNAL 41

8 Perspectives

In this paper, we have presented how a concept of data flow task, and the
sequencing of such tasks, could be built on top of the definition of time inter-
vals in an instant-based data flow language like SIGNAL. The same approach
should be appliccable to other data-flow languages. This work is part of a glo-
bal approach concerning the specification of dynamical behaviors of real-time
systems, their verification and their synthesis. Perspectives for extensions of
the work presented here are in the directions of:

the compilation of intervals and sequencing patterns: besides the
compilation of the intervals themselves, and the synthesis of their clock,
they provide us with an information that should be used for the ana-
lysis of the programs e.g., the detection of disjoint intervals, so that
memory management can take advantage of it; the clock calculus could
also benefit from this, for example in making use of the fact that signals
filtered on disjoint intervals have disjoint clocks.

the definition of operators for equational sequencing: the patterns
that have been proposed in sections 4 and 5 are exploratory work on the
way to more abstract, less imperative patterns, that are fully interval-
based: operators like union, intersection, complement, ..., and relations
like disjunction, inclusion, ... will be used to specify relations between
series of interval occurrences, which, when duly constrained, constitute
an algorithm. The goal is to be able to specify the dynamical behavior
of a reactive system by a system of equations on the time intervals, and
to solve it in the SIGNAL equational framework.

In the perspective of the specification of dynamical behaviors and pro-
perties, time intervals are also related to the verification and synthesis
of reactive systems, or to hybrid systems [4, 26, 29, 33].

the definition of a three-valued interval calculus: as is suggested by
the clock calculus defined on Z/3Z, briefly presented in section 3.1.4,
and by the discussion on suspendable tasks in section 2.4.1, interesting
states of an activity or a task are: active, inactive but present, and

42 Eric Rutten, Paul Le Guernic

absent. If encoding these three states as:

0 if absent (terminated / not started)
+1 if active

—1 if inactive (suspended)

+1 if present

behaviors can be specified equationally e.g., for intervals (or tasks) ¢
and 7, i? + 72 = 1 means that one of them is 41 while the other one is
0 i.e., one of them is absent and the other is present i.e., finally, that
they are complementary. The equation % + j* = k? means the same,
but relatively to interval k.

applications to:

o task-level programming in robotics, with applications in active
robotic vision [24], from the level of data flow command, up to
sequencing of tasks. General structures should be identified, that
facilitate the high-level programming of robotic applications, ta-
king into account their specific aspects: reactivity, complementa-
rity between “continuous”, numerical computations, and discrete
event directed dynamical behavior. This can also be related to
works on the definition of generic robot controllers [10, 32|, and
to task-level robot programming models [31].

e execution models for planning in articifical intelligence, especially
reactive planning, or more acurately reactive plans [34], and tem-
poral planning [30]: an application of this can be the execution
of high-level reactive plans on robotic architectures; it relates to
the definition of hierarchical architectures for autonomous systems
[25], and the automatic synthesis of sequencings [16].

References

[1] C. André, J.P. Marmorat, J.P. Paris. Execution machines for ESTEREL.
In Proc. of the European Control Conference, ECC’91, Grenoble, France,
July, 1991.

Sequencing data flow tasks in SIGNAL 43

2]

[6]

F. Arbab, E. Rutten. MANIFOLD: a programming model for massive
parallelism. In Proc. of the Working Conference on Massively Parallel
Programming Models, MPPM’93, Berlin, Germany, September 20-23,
1993.

A. Benveniste, G. Berry. The synchronous approach to reactive and real-
time systems. Another look at real-time programming, special section of
Proceedings of the IEEFE, 79(9), September 1991.

A. Benveniste, M. Le Borgne, P. Le Guernic. Signal as a model for real-
time and hybrid systems. In Proceedings of the 4" European Symposium
on Programming, ESOP 92, Rennes, France, LNCS n°® 582, Springer,
1992.

A. Benveniste, P. Le Guernic, P. Caspi, N. Halbwachs. Data flow syn-
chronous languages. In Proceedings of the REX ’93 School/Workshop on
Concurrency, Noordwijkerhout, The Netherlands, June 1-4, 1993.

G. Berry, G. Gonthier. The ESTEREL synchronous programming lan-
guage: design, semantics, implementation. Science of Computer Pro-
gramming, 19(2), November 1992.

P. Bournai, P. Le Guernic. Un environnement graphique pour SIGNAL.

IRISA/INRIA-Rennes, Research Report, n® 741, July 1993. (In French.)

P. Bournai, B. Chéron, T. Gautier, B. Houssais, P. Le Guernic. SIGNAL
manual. IRISA/INRIA-Rennes, Research Report, n® 745, July 1993.

P. Caspi. Introduction de la récursivité en flots de données synchrones.
IMAG, Laboratoire de Génie Informatique, Rapport Technique, n°
SPECTRE L-18, November 1992. (In French.)

E. Coste-Maniere, B. Espiau, E. Rutten. A task-level robot programming
language and its reactive execution. In Proceedings of the 1992 IEEE In-
ternational Conference on Robotics and Automation, Nice, France, May
12-14, 1992.

B. Dutertre. Spécification et preuve de systémes dynamiques. Ph.D. The-
sis, IFSIC, University of Rennes I, France, December 1992. (In French.)

44

Eric Rutten, Paul Le Guernic

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

J.L. Gaudiot, L. Bic eds.. Advanced topics in data flow computing. Pren-
tice Hall, 1991.

T. Gautier. Conception d’un langage flot de données pour le temps réel.
Ph.D. Thesis, Computer Science Dept., University of Rennes I, France,
December 1984. (In French.)

N. Halbwachs. Synchronous programming of reactive systems. Kluwer,
1993.

D. Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8(3), pp. 231-274, 1987.

I. Klein. Automatic synthesis of sequential control schemes. Ph.D. The-
sis, Dept. of Electrical Engineering, University of Linkoping, Sweden,
1993.

E.A. Lee. Static scheduling of data flow programs for DSP. In [12], pp.
501-526.

P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire. Programming
Real-Time Applications with SIGNAL. Another look at real-time pro-
gramming, special section of Proceedings of the IEEE, 79(9), September
1991.

O. Maffeis, P. Le Guernic. Combining dependability with architectural
adaptability by means of the SIGNAL language. Proceedings of the 3¢
Workshop on Static Analysis, Padova, Italy, LNCS n® 724, Springer,
1993.

7. Manna, A. Pnueli. The Temporal logic of reactive and concurrent
systems : specification. Springer, 1992.

7. Manna, A. Pnueli. Models for reactivity. Stanford University, De-
partment of Computer science, Research Report, n® STAN-CS-92-1461,
January 1993.

F. Maraninchi. Argonaute: graphical description, semantics and verifica-
tion of reactive systems by using a process algebra. In Proceedings of the
International Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble, France, LNCS n° 407, Springer, 1989.

Sequencing data flow tasks in SIGNAL 45

23]

[28]

[29]

[30]

[31]

L. Marcé, P. Le Parc. Defining the semantics of languages for pro-
grammable controllers with synchronous processes. Control Engineering
Practice, 1(1), February 1993. (also in Proceedings of the 18" IFAC
Workshop on Real-Time Programming, Bruges, Belgium, June 1992)

E. Marchand, F. Chaumette, E. Rutten. Stratégie perceptive d’un en-
vironnement statique dans un contexte de vision active. IRISA/INRIA-
Rennes, Research Report, n® 775, Octobre 1993. (In French.)

M. Morin, S. Nadjm-Tehrani, P. (")sterling, E. Sandewall. Real-time hie-
rarchical control. IEEE Software, September 1992.

X. Nicollin, J. Sifakis, S. Yovine. Compiling real-time specifications into
extended automata. IEEE Transactions on Software Engineering, 18(9),
September 1992.

J.P. Paris, G. Bery, F. Mignard, P. Couronné, P. Caspi, N. Halbwachs, Y.
Sorel, A. Benveniste, T. Gautier, P. Le Guernic, F. Dupont, C. Le Maire.
Projet SYNCHRONE — Les formats communs des langages synchrones.
INRIA, Technical Report, n® 157, June 1993. (In French.)

J. Perraud, O. Roux, M. Huon. Operational semantics of a kernel of
the language ELECTRE. Science of Computer Programming, 97(1), pp.
83-103, 1992.

A. Ravn, H. Rischel, K.M. Hansen. Specifying and verifying require-
ments of real-time systems. IEFE Transactions on Software Enginee-
ring, 19(1), January 1993.

E. Rutten, J. Hertzberg. Temporal planner = nonlinear planner + time
map manager. A.I. Communications, 6(1), pp. 18-26, March 1993.

E. Rutten, L. Marcé. An imperative language for task-level program-
ming: definition in temporal logic. Artificial Intelligence in Engineering,
8(4), to appear, 1993.

D. Simon, B. Espiau, E. Castillo, K. Kapellos. Computer-aided design
of a generic robot controller handling reactivity and real-time control
issues. INRIA - Sophia Antipolis, Research Report, n® 1801, November
1992.

46 Eric Rutten, Paul Le Guernic

[33] R. K. Shyamasundar. Specification of hybrid systems in CRP. Procee-
dings of the International Conference on Algebraic Methodology and
Software Technology, AMAST °93, Twente, The Netherlands, June 21 —
95, 1993.

[34] S. Thiébaux, J. Hertzberg. A Semi-Reactive Planner Based on a Possible
Models Action Formalization. In Proceedings of the First International
Conference on Artificial Intelligence Planning Systems (AIPS92), 228-
235, Morgan Kaufmann, 1992.

[35] K. Wolinski, M. Belhadj. Vers la synthése automatique de programmes
SIGNAL. IRISA/INRIA-Rennes, Research Report, n® 746, July 1993. (In
French.)

Sequencing data flow tasks in SIGNAL

Contents

1 Motivation
1.1 Problem addressed
1.2 Context
1.3 Proposed approach

2 Tasks: associating a process with a time interval
2.1 Applications and processes
2.2 Timeintervals o
2.3 Tasks

3 SIGNAL, time intervals and tasks
3.1 A brief introduction to SIGNAL
3.1.1 An equational synchronized data flow language . .
3.1.2 The kernel of SIGNAL
3.1.3 Modularity and derived processes
3.1.4 Compilation and clock calculus
3.2 Time intervals in SIGNAL
3.3 The encoding of tasks in SIGNAL
3.3.1 Primitive processes level
3.3.2 Task processlevel
4 Sequencing time intervals
4.1 Place-transition networks,
4.2 Example: the control logic of a stopwatch
4.3 Particular sequencing patterns
5 Sequencing data flow tasks
5.1 Process composition L.
5.2 Modularity and hierarchy
6 Application to task sequencing in robotics

2.4 Derived task behaviorso
2.4.1 Suspending and terminating a task
2.4.2 Suspending activity, with values available
2.4.3 Restarting anew on each beginning event

13
13
13
14
15
16
17
19
19
21

23
23
26
27

29
29
30

35

48 Eric Rutten, Paul Le Guernic

7 Related work 37
7.1 Sequencing languages 37
7.2 Data flow languages L. 39
7.3 Hybrids of sequencing and data flow 40

8 Perspectives 41

Sequencing data flow tasks in SIGNAL 49

List of Figures

1 Phases in the segmentation of an acoustic speech signal. . . . 1
2 Decomposing Ja,w] into sub-intervals. 7
3 Counter suspended on 1S,R] (a), each 1B,E] (b). 10
4 The time interval programmed with the graphical interface.. . 18
5 A possible trace of a time interval and its bounding events. . . 18
6 The time interval as a two-state automaton. 19
7 Filtering input and output of P on I:example of an interval. . 21
8 A transition between two states.o 24
9 A place with incoming and outgoing transitions. 24
10 Automaton for the logic control of a stopwatch. 26
11 A task P behaves like P1 until event E, and then like P2.. . . . 29
12 A process P with sub-tasks Pt and P2. 31
13 Automaton for the logic control of the digital watch. 33

List of Tables

1 Primitives-level encodings of on and each. 20
2 Encodings of T on Jand I each J.. 22
3 Control logic of the digital watch. 32

JINRIA

Unité de recherche INRIA Lorraine, Techndpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derechercheINRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Vialet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derecherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

