N

N
N

HAL

open science

Take pity on the user! the RED customization package

Vincent Prunet

» To cite this version:

Vincent Prunet. Take pity on the user! the RED customization package. [Research Report] RR~2103,

INRIA. 1993. inria-00074569

HAL Id: inria-00074569
https://inria.hal.science/inria-00074569
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00074569
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Take pity on the user!
The RED customization package

Vincent Prunet

N° 2103
Novembre 1993

PROGRAMME 2

Calcul symbolique,
programmation
et génie logiciel

apport
derecherche







%I NRIA

SOPHIA ANTIPOLIS

Take pity on the user!
The RED customization package

Vincent Prunet *

Programme 2 — Calcul symbolique, programmation et génie logiciel
Projet Croap

Rapport de recherche n” 2103 — Novembre 1993 — 31 pages

Abstract: X applications will not enter the market of PC users unless they
provide a uniform and convenient customization mechanism. The RED (Re-
source Editor Description) language lets the application designer specify ab-
stract objects that convey a conceptual model of the application. Values for
abstract resources of this model may be specified either from RED text files
or interactively using a generic RED resource editor. The editor’s user inter-
face is generated from the abstract model. Thus, conventional users easily
customize applications.

Key-words: Window System, Resource editing, User Interface, RED, X11,
Centaur.

(Résumé : tsvp)

*SEMA Group c¢/o INRIA Sophia Antipolis, Vincent.Prunet@sophia.inria.fr

Unitéde recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone : (33) 9365 77 77 — Télécopie : (33) 93 65 77 65



Ayons pitié de 'usager!
Parameétrisation des ressources avec RED

Résumé : Les applications X ne pénetreront le marché bureautique qu’a la
condition de proposer un mécanisme de paramétrisation des ressources uni-
forme et convivial. Le langage RED permet au concepteur d’une application
de spécifier des objets abstraits a partir du modele conceptuel de 'applica-
tion. Les valeurs des ressources associées a ces objets peuvent étre spécifiées
dans des fichiers ou interactivement a I’aide d’un éditeur de ressources géné-
rique dont I'interface graphique est générée en accord avec le modele abstrait.
L’édition des ressources est ainsi mise a la portée de l'usager non spécialiste.

Mots-clé : Systeme de fenétrage graphique, Edition de ressources, Interface
utilisateur, RED, X11, Centaur.



Take pity on the user! The RED customization package 1

1 Introduction

X [1] has a powerful resource policy, which makes Intrinsics [2] based appli-
cations that exploit the X resource manager extensively highly customizable.
Unfortunately, very few tools provide a high level interface to the resource
mechanism, and the customization of an Xt application is still reserved to
experienced X users.

Application writers sometimes ease suffering by providing an embedded
resource editor, specifically tailored for the application. The advantage of this
approach is that the concrete object hierarchy is hidden behind a conceptual
model better suited to users. But we would rather not have to write a dedica-
ted resource editor for every application. Moreover, the list of customizable
resources cannot be modified without altering the application code. Another
disadvantage is that distributed applications cannot be customized consis-
tently. Lastly, embedded resource editors may exhibit different user interface
models, and be inconsistent with each other.

FEditres [3] is probably the first generic resource editor to be offered to
Xt users. With Fditres, one can dynamically edit the resources of a running
application. When any visible object in the running application is selected
with the mouse, FEditres automatically computes the path leading to this
object in the application widget tree. This path may be used to build an
X resource specification. Editres allows interactive resource experimentation
on a running application, which dramatically decreases editing time. With
Editres, competent Xt users, and not just application developers, can custo-
mize an application. But even with FEditres, normal users are excluded from
this practice since the application’s conceptual model remains obscure.

Custom [4], the IBM resource editor, targets naive users. Natural language
text replaces resource patterns. A friendly user interface makes color or font
selection very convenient. Custom abstracts somewhat from low level resource
specifications by pretty printing resources understandably. Users may provide
their own resource presentation declarations to accommodate their vision of
the application. Custom is very handy, but fails to abstract sufficiently from
the X resource pattern language.

The RED language (for Resource Editor Description), presented in this
paper, lets the application designer specify abstract objects that convey a
conceptual model of the application. Values for abstract resources of this
model may be specified either from RED text files or interactively using a



2 V. Prunet

generic RED resource editor. The dynamic configuration of the editor re-
sembles that of Custom, but the RED specification file contains mostly abs-
tract information intended to forge the user’s perception of the application.
Setting a resource on a single abstract object may result in modifying several
concrete application components, but this is hidden from the user.

A RED compiler and a prototype of a RED resource editor have been
implemented. The resources of any X Resource Manager based application
can be specified using this editor.

2 A small example

The example we present is based on the zcalc [5] calculator. This Athena
toolkit application emulates a pocket calculator, with two possible modes, ti
or hp, corresponding to a TI-30 or an HP-10C calculator.

2.1 Xcalc architecture

The widget tree! of the application depends on the emulation mode. In ¢
mode, it is:

XCalc xcalc
Form ti
Form bevel
Form screen

Label M
Toggle LCD
Label INV
Label DEG
Label RAD
Label GRAD
Label P

Command buttonl

Command button?2

Command button3

1The widget tree was collected using Editres.



Take pity on the user! The RED customization package 3

Command button38
Command button39
Command button40

where each line contains the widget class followed by the widget name.

The top-most Form widget, ti, contains the lcd display (bevel and sub-
widgets) and as many Command widgets as there are keys on the calculator.

In hp mode, the top-most Form widget is named hp instead of ti. There
are only 39 buttons in Ap mode.

In both modes, keys are named according to position, not function. So
digit 5 is represented by the widget button27 in tt mode or button17 in hp
mode.

2.2 High level customizations

Customizations often have a semantic foundation: objects are customized
according to function, not position. However, the associated resource values
may also depend on object position (especially resources such as colors or
fonts), to ensure the best contrast with sibling objects and the overall con-
sistency of the application.

Here is an example of a semantic rather than position-based resource speci-
fication:

e a Turquoise background color for the numeric keypad,

e and a DarkSlateGrey2 background for all other keys.

The following X resource implementation of this specification takes into
account the zcalc application hierarchy and the semantics of each button (for
both emulation modes):

XCalc.Form.Command.background: DarkSlateGrey2
XCalc.ti.button22.background : Turquoise
XCalc.ti.button23.background : Turquoise
XCalc.ti.button24.background : Turquoise
XCalc.ti.button27.background : Turquoise
XCalc.ti.button28.background : Turquoise



4 V. Prunet
XCalc.ti.button29.background : Turquoise
XCalc.ti.button32.background : Turquoise
XCalc.ti.button33.background : Turquoise
XCalc.ti.button34.background : Turquoise
XCalc.ti.button37.background : Turquoise
XCalc.hp.button7.background : Turquoise
XCalc.hp.button8.background : Turquoise
XCalc.hp.button9.background : Turquoise
XCalc.hp.buttonl7.background : Turquoise
XCalc.hp.buttonl18.background : Turquoise
XCalc.hp.buttonl19.background : Turquoise
XCalc.hp.button27.background : Turquoise
XCalc.hp.button28.background : Turquoise
XCalc.hp.button29.background : Turquoise
XCalc.hp.button36.background : Turquoise

This specification deserves a few comments:

It is barely readable. Actually, one cannot guess from this specification
what keys are affected.

It is long. Compare the size of this resource code with the length of the
plain English specification.

It cannot be maintained. The semantic information initially specified
—that all numeric keypad buttons share the same background color—
was lost during the translation into X resource specifications.

The user must have a sound knowledge of the application hierarchy.
Editres partially relieves this burden.

Identifying and writing down all of the above resources was a lengthy,
error-prone process, to be repeated for both emulation modes.

Finally, we remark that generally, conventional users do not fully un-
derstand the X resource pattern matching algorithm and consequently,
do not manipulate the precedence mechanism correctly. The above spe-
cification probably could not have been written by the average user.



Take pity on the user! The RED customization package 5

A more concise but equivalent specification would be:

numeric_keypad.background = Turquoise ;
keypad.background = DarkSlateGrey2 ;

which is how we customize the application in RED.

Miracle? Not exactly. The long list of widgets that implement the numeric
keypad still has to be specified. But instead of being specified by the user, this
list is built, once and for all, by the application designer or an experienced
user. Furthermore, conventional users can customize the application without
ever knowing which toolkit implements it.

Appendix A lists the complete RED specification for zcale. Section 3 pro-
vides an introduction to the RED specification language. Section 4 presents

RED based tools intended for the end user.

3 The RED specification language

A RFED specification is logically divided into several sections, and may be phy-
sically split into several files. All of these sections but one are to be written by
the application designer or by an experienced X user (a system administrator,
for example).

The section written by the user contains his or her own preferences. This
section may be edited and modified using any text editor, but user preferences
are usually generated by using a RED resource editor.

Let us go deeper into the RED language. There are four kinds of sections
in a RED specification:

1. the abstract object model for the application. An application is repre-
sented as a set of RED objects. Each object belongs to a RED class.
Each class has a list of named resources (properties). An object may
have values assigned for each resource of the corresponding class.

Subclassing is encouraged: a class may inherit resources declared by
several other classes.

Resources, classes, and objects can be annotated with any kind of infor-
mation (including documentation messages and semantic links between
objects).



6 V. Prunet

2. the specification of default resource values for the RED objects defined
in the previous section.

3. user defined customizations for the same RED objects.

4. the mapping of RED objects and resource values to those of the under-
lying window system toolkit.

Sections 1, 2, and 4 are generally specified by the application designer.
Section 3 is generated under the user’s control.

Sections 1, 2, and 3 do not depend on the customization mechanism used
by the actual application. It should be noticed that every piece of information
used or specified by the user is independent of particular the window system
toolkit.

In the following sections, we describe the four section types in detail.

3.1 The abstract object section

The abstract object model consists of resource declarations, class declara-
tions, and object instantiations. Objects are typed and their resources are
constrained to be those listed in the corresponding class declaration.

3.1.1 Resources

RED resources must be declared. A resource declaration consists of a re-
source type name, a representation, and optional annotations. The resource
type name is later used within class declarations. Various operations such
as resource value range checking or specialized resource editing (using color
editors or font browsers) depend on the resource type.

Primitive resource types are Color, Font, FileName, String, Boolean, In-
teger (and subranges), Cardinal, and Pizmap.

Examples:

resource Geometry = String ;

resource Digit = [0..9] ;



Take pity on the user! The RED customization package 7

Enumerations, also called SelectOne or SelectMany depending on the
number of selected items, allow for discrete range values. All possible va-
lues must be listed in a symbolic form that is independent of the format
expected by the target resource manager.

Examples:
resource SimpleGeometry = {UpperLeft, UpperRight,
BottomLeft, BottomRight} ;

resource Caps = {SmalllLetters, CapitalLetters} ;

resource Alphabet = set of {A, B, C, D, E, F} ;
Annotations are optional (and appear in parentheses):

resource EmulationMode = {HP, Ti}
(doc = "Emulation mode:",
" HP emulates an HP-10C",
" Ti emulates a TI-30") ;

3.1.2 Classes

A class declaration associates a class name, a class structure, and annotations.
A class structure consists of a possibly empty list of superclass names followed
by a list of resources (with their names and types) and renamings.

Examples:

class Object = {
foreground, background : Color ;
backgroundPixmap : Pixmap ;

font : Font
}
(doc = "Common object resources") ;

class TopLevel = {
simpleGeometry : SimpleGeometry ;
geometry : Geometry ;
iconicOnStart : Boolean



8 V. Prunet

Y

class Dictionary = Object, TopLevel {
alphabet : Alphabet ;
caps : Caps

Y

The first example includes an annotation specification. The second fea-
tures user-defined resource types. The third shows inheritance from super-
classes.

Renaming

Name conflicts between resources may be resolved by renaming or hiding
some inherited resources. Other conflicts may be solved automatically by
applying the precedence rule and then the unification rule.

e Precedence rule.

A resource is either local or inherited. Local resources have a higher
precedence than inherited resources. Inherited resources that have the
same name as a local resource are not visible. Renamed resources have
the same precedence as local resources. Consequently, a renamed re-
source cannot have the same name as a local resource, and a renamed
resource takes precedence over inherited resources with the same name.

e Unification rule.

Identically named resources inherited from a common ancestor class
and resource (via different paths) are considered the same resource.

Renaming an inherited resource:

class Colored : Object {
Object.background -> global_background ;
background : Color
Y

Hiding an inherited resource:

class SubObject : Colored {
Colored.background -> ;

Y



Take pity on the user! The RED customization package 9

3.1.3 Instances

An object declaration associates an object name, a class structure, and an-
notations. Generally the class structure is just a class name, as in:

dictionary : Dictionary ;

However, in a few cases, it is not worth declaring a new named class for a
single object instance. In such cases, the class structure may contain several
superclass names and resource descriptions. The next example introduces the
object calculator. As no other object shares the same structure, this object
is declared as the unique instance of a anonymous class:

calculator : Object, TopLevel {
emulationMode : EmulationMode
}

(doc = "Main window") ;

3.2 The default and user value sections

The person responsible for RED specifications generally provides a set of
default values for the attendant abstract resources. The user may also provide
a section that further tailors the application.

A value specification is a three part statement including an object name,
a resource name, and a value or a reference to another resource. Both object
and resource are abstract. Values are abstract data. However, depending on
the resource representation type, there may be either an implicit conversion
from the RED representation to the toolkit representation or an explicit
conversion according to parameters specified in section 3.3.

Abstract values may be identifiers, character strings, booleans, or num-
bers. Values can also be represented by lists of identifiers in the case of
SelectMany resource representations.

A reference consists in a resource name prepended by an object name. Re-
placing a value by a reference to another resource ensures that both resources
hold the same value.

Examples:



10 V. Prunet

calculator {

simpleGeometry
emulationMode

BottomRight,
HP };

calculator.background = Aquamarine3 ;

dictionary.alphabet = {A, B} ;

Abstract values may be replaced by references to resources. The next example
shows how resources of an object (here colorPalette) may be used as constant
values in the specification:

colorPalette : { foreground, background,
highlight, shaded : Color } ;

calculator.foreground = palette.foreground ;

3.3 The mapping section

Abstract resources and objects are mapped to string values and resource
patterns, according to the X resource manager syntax.

3.3.1 Resource values

Resource values are generally specified as character strings or identifiers.
When the resource has an unbounded range of possible values (colors, fonts,
...), these strings and identifiers are also used as X values (i.e., implicit
casting).

Discrete resources must have abstract values that are represented by iden-
tifiers which may be expanded into different character string values. When no
translation information is provided for a given abstract value, the identifier
is cast to X’s character string representation of it.

Examples:

The screen location of an Xt top level widget can be specified abstractly
when the accompanying mapping section includes the following specifica-
tions:



Take pity on the user! The RED customization package 11

@ resource SimpleGeometry {
UpperLeft = "+0+0", UpperRight
BottomLeft = "+0-0", BottomRight

"—O+O",
n_o-Q" };

SelectMany resources can be parameterized to pretty print their values
with prefix, postfix, and separator character strings. The default prefix and
postfix strings are null; the default separator is a space character.

Example:

@ Alphabet {

prefix = (",
postfix = ")",
separator = ", " };

3.3.2 Object mapping

Depending on the abstraction level of the RED specification, designers may
choose one of three different syntactic constructs to express the mapping
from the abstract representation to application patterns.

e Object coupling: An abstract object is bound to a list of X object
patterns (an object pattern is any valid X resource pattern without its
last component). During the generation phase, the resource name is
appended to each of these patterns to produce a complete X pattern.

Example:
@ calculator -> ’7x%’
A slightly different example is:
@ calculator -> ’7’ & ’7.tix’ & ’7.hpx’ ;
which exploits the multiple pattern capacity of the mapping language.
This important feature of the language allows for binding a RED object

to any actual application objects, whether or not they can be designated
by a single pattern.



12 V. Prunet

e Resource coupling: An object resource is bound to a list of X patterns
(including the last component, an X resource name or class). This al-
lows for different RED and X resource names.

Example:
@ calculator.emulationMode -> ’7.rpn’ ;

e Value coupling: Both X patterns and resource values are hidden. This
mechanism is available only for discrete resource types. A list of X
resource specifications is associated to each abstract value.

Example:

The dictionary application consists of a list of Label widgets that re-
present letters of the alphabet. The capitalization of labels may be
performed consistently, without modifying the application code.

@ dictionary.caps.SmalllLetters ->
’?*part_A.Label: a’ & ’7*part_B.Label: b’ & ... ;
@ dictionary.caps.CapitallLetters ->
’?*part_A.Label: A’ & ’7*part_B.Label: B’ & ... ;

When a value specification is compiled into an X resource specification,
the three coupling mechanisms are tried from the most specific one (value
coupling) to the most general one (object coupling).

3.4 Planned extensions

We have several worthwhile extensions in mind, but these have not yet been
completely specified.

3.4.1 Cooperating applications

One may wish that resources of different applications be edited together,
mapping abstract objects to widgets of different applications. For example
Custom lets the user specify resources for both the application and the win-

dow manager. We think that RED should do more in that direction. RED



Take pity on the user! The RED customization package 13

should be able to encapsulate a complex multi-application environment wi-
thin a single (modular) specification.

For example, our main project is the development of a programming en-
vironment generator [6] which is composed of many cooperating programs
including a user interface component, a processor for abstract syntax trees
(including a pretty printer), and a graph formatting and displaying engine.
A single RED specification would hide the complexity of the system and in-
crease the consistency of the environment, allowing, for example, the same
color resource to be used to display an identifier in a pretty printed program
and the corresponding node in the associated dependency graph.

We plan to extend the mapping syntax to allow for the specification of
distributed environments within a single RED specification.

3.4.2 Composite resource types

Among the different resources that compose a RED class, one may desire
that certain intimately bound resources be associated as a single, more abs-
tract resource type. For example, the foreground and background colors of
an object, although different resources, are often specified jointly for aesthe-
tic reasons. These resources could be associated into typed records. Thus,
specialized resource editors could be specified for composite resource types,
enabling one, for example, to edit jointly a set of matching colors.

3.4.3 Functions on patterns

We would like to be able to assign patterns to RED variables, and offer
pattern composition functions. This would greatly ease the process of writing

RED programs.

3.4.4 Support for different pattern levels

Patterns used as examples in this paper always start with a ? character.
Actual X patterns may start with the application class, the application name
(that may be changed by the user), a 7, or a * character. This feature,
although specific to the X resource manager, is very useful as it lets the user
decide whether a customization is applicable to all instances of an application
or only some of them. The RED mapping syntax should provide a way to
access this type of parameterization.



14 V. Prunet

4 RED tools

A RED specification is not only a high level specification of application cus-
tomizations, but also a specification of a dedicated resource editing tool.
Consequently, two different tools make use of RED specifications:

o the RED batch compiler, that processes a specification and generates
the corresponding X resource specification;

o the RED user interface and specification generator, which is able to
build a graphical user interface (specialized forms to edit RED resource
values) from the RED program, and to generate a list of RED value
specifications from the interaction of the user with the dedicated gra-
phical interface. These value specifications, coupled with the original
RED program, are processed by the RED compiler and produce an X
resource specification file.

4.1 Batch compilation

A RED compiler is a tool that parses a RED program, type checks the
specification , and then generates an X resource file from specified value set-
tings. The type checker verifies that all used resources, classes, and objects
are declared, computes the list of resources available for each object, and
checks that discrete resource values are valid. The compiler can process ei-
ther the default values specified in the RED program or a separate file that
contains user customizations.

Examples:
A possible but intricate binding for the calculator object is:

@ calculator -> ’7’ & ’7.tix’ & ’7 . hp*’ ;
Given this binding,

calculator.background = Aquamarine3 ;
is compiled into:

?.background : Aquamarine3
?.ti*background : Aquamarine3
? .hp*background : Aquamarine3



