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Abstract: User level software protocol implementations are known to have
more flexiblility. However, there ia a concern about the performance of such
implementations. XTP is a new transport protocol with execution efficiency as
inherent part of its design In this report we present a software implementation
of the XTP protocol. Our work consisted in implementing this protocol as a
set of user level library to be integrated within the application. We will present
the implementation choices and some performance tests over both Ethernet and
FDDI networks. We show that user level protocols implementation are not
necessarily relatively slow: the untuned XTP implementation have comparable
performance with kernel TCP. We also discuss the merits of the XTP protocol
and its suitability for the the support high speed communication.
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Implantation de XTP sous Unix

Résumé : Les implantations de protocoles au niveau utilisateur apportent une
flexibilité pour lintégration de ces protocoles dans les applications. Ceci dit,
les implantations existantes ont des performances tellement médiocres que les
protocoles de controle de transmission ont généralement été supporté par le
systeme d’exploitation. XTP est un nouveau protocole de transport qui a été
congu afin d’avoir des hautes performances. Dans ce rapport, nous présentons
une implantation en logiciel du protocole XTP. Nous I’avons implanté en une
librairie de fonctionalités qui pourrait étre intégrée a ’application. Nous allons
décrire les choix d’implémentation et les résultats des tests de performance aux
dessus des réseaux Ethernet et FDDI. Nous montrons qu’une implantation au
niveau utilisateur n’est pas nécessairement pénalisante: I'implantation de XTP a
des performances comparable a celle du protocole TCP implanté dans le noyau
Unix. Nous discutons les mérites du protocole XTP ainsi que sa convenance
pour le support de la communication a haut débit.

Mots-clé : Protocoles de transport, Implantation haute performance
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XTP implementation under Uniz . * 1

0.1 Scope

This work is carried out as part of Workpackage A (Design of high-speed trans-
port service and protocol) of the OS195 ESPRIT project. The aim of this work
was to assess the suitability of the XTP protocol for the support high speed com-
munication. The work consisted in implementing this protocol as a set of user
~ level functions to be integrated within the application. In this report we present
the implementation choices and some performance tests over both Ethernet and
FDDI networks. We also present general comments on the XTP protocol and
(lack of) service definition. '
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Chapter 1

Introduction

1.1 High speed transport protocols

One important goal for many research projects is high speed operation of networ-
king applications. As networks proceed to higher speeds, there is some concern
that the existing transport protocols will present a bottleneck. Several alterna-
tives have been proposed such as tuning of standard protocols (2, 4], outboard
protocol processors [20] and new transport protocols design [3]. The design group
of the Protocol Engine Project chosed a combination of the second and the third
alternatives: the design of a new protocol with execution efficiency as inherent
part of the design process and the production of a hardware implementation
of this protocol on a chip-set. The resulting Protocol Engine should be able
to perform real time packets processing initially over FDDI and in the future
over gigabit networks. Real time packets processing means the ability to deliver
back-to-back packets to the host at the same rate at which they arrive from the
network. :

1.2 Enhanced transport services

The OSI model implies a separation of functions in layers. The transport layer
is responsible of the transmission control of application data units. There is only
one connection oriented transport service. The application needs are expressed in
terms of quality of service parameters such as the transit delay or the maximum
throughput. However, this scheme is not sufficient to fulfill the requirements
of a broad range of applications. On one hand, there is no enforcement of the
quality of service parameters during the lifetime of the connection. One the
other hand, applications need more than a set of QOS parameters to control
the transmission. A set of requirements of the multimedia applications is cited in
the ELIN-1 document [15]. The work in that document shows that applications
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need to be involved in the choice of the control mechanisms and not only the
parameters of a unique transport service. This is to say that the transport service
itself needs revision.

1.3 Integrated Protocol design and Implemen-
tation ’

The XTP protocol provides a set of mechanisms. The application selects the
options that govern the data exchange. In other words, this approach means
that the application will select the policy used for the transmission control. In
fact, only the user has sufficient knowledge about the application to optimize the
parameters of a data exchange. This approach is not consistent with the layered
OSI model, where clear separation of data transmission control mechanisms
(lower layers) and data processing functions (higher layer) is made. However,
the integration of transmission control functions within the application has some
advantages: ’

o the application can combine costly functions (byte oriented manipulations)
in a more efficient way. Results reported in [5] indicated that a MIPS
processor performing the copy and the checksum on data can run at 60
Mb/s if these functions were done separately and at 90 Mb/s if they were
combined in a hand coded unrolled loop. The effect would be much more
pronounced if several of functions necessary to the application (like e.g.
presentation encoding, encryption and checksumming) were combined.

o the application can easily adapt to the network resources changes by ap-
propriate steps: instead of reducing the window size at the transport level
in response to a congestion indication’, a videoconference application may
chose to degrade either the quality or the frequency of the images in order
to adapt to the available bandwidth.

In order to fulfill the application needs, two design principles should be adopted:

e to have a flexible architecture where the application can select and control
the mechanisms needed for the data exchange,

o to have proper implementation techniques to combine the required func-
tional modules, and to define the syntax used for the data exchange.

The OSI approach was to discharge the application from the transmission con-
trol functions by defining the transport service . The applications are transport
service users according to the layered reference model. The integrated design
and implementation approach is to let the application be inside the “control

la packet loss or a duplicate acknowledgment

-
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loop”, but it still needs to define how the application level parameters will be
mapped onto network parameters and control functions. According to the di-
versity of the applications two solutions are possible:

o either we define application classes and we select appropriate control func-
. tions to be integrated to these applications (i.e. we define typed transport
services as proposed in [11]),

e or we use a suitable specification language to express the .applications
needs and we design a generic tool to derive the configuration of the pro-
tocol functions automatically.

We are currently investigating the feasibility of the second solution, and we will
report on this work in a paper in preparation. '

1.4 XTP a step towards integration

The interest of a user level implementation of XTP is to provide a support for
the test of the architectural design described in the previous section. This work
Is a contribution to the assessment of the service provided by the XTP protocol.
We will focus in this report on the description of the implementation. We will
also compare the performance of user level XTP implementation with kernel
supported TCP.
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Chapter 2

XTP implementation

2.1 Introduction

This chapter describes the implementation of XTP under Unix. We implemented
XTP from scratch as a user level library with kernel support via an extension
of the sockets interface.

We do not aim to provide a complete and well tuned implementation of XTP.
The goal of this work within task A.10 is to assess the XTP mechanisms, and
to compare the protocol performance with TCP.

2.2 General Architecture

The implementation is based on an extension of the 4.3 BSD socket interface.
The extension of the kernel protocols was done in order to add the support of
XTP on top of IP. We ended with “XTP sockets” which will be described in the
next section. The implementation architecture is depicted in figure 2.1.

The XTP Protocol Definition 3.6 mentions four components helpful in ex--
plaining the protocol operations. Figure 2.2 illustrates these components and
their relationships to each other. We will indicate throughout the text the rela-
tion between this explanatory host architecture and our XTP implementation
architecture.

2.3 Kernel support

The goal of the kernel support part of the implementation is to provide a “data-
gram” socket interface for applications using XTP. For this purpose, XTP has
been defined as a new protocol on top of IP within the AF_INET family. The
following lines have been added to the in_proto.c file:
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{ SOCK_DGRAM, &inetdomain, IPPROTO_XTP, PR_ATOMIC |PR_ADDR,

xtp_input, xtp_output, o, : 0,

xtp_usrreq, »

xtp_init, 0, o, o,
} ’

2.3.1 Interface with IP

The definition of XTP as a new protocol above IP allows the switching of the IP
datagrams having the IPPROTOXTP value in the protocol field of the IP header.
They will be passed to the xtp_input routine. On the other hand, packets from
xtp_output will be passed to ip_output.

2.3.2 Socket level interface

User applications have access to the XTP socket interface. The following system
calls are possible:

¢ socket,

e bind,

e connect,
e send,

e sendto,

® writev,

e recvfrom,
e readv, -
e select.

Most of these system calls are mapped onto the corresponding routines irm-
plemented in the file xtpusrreq.c. The socket, sendto and recvfrom systems
calls have the same semantics as for UDP sockets [6]. The bind system call as-
signs a name to an unnamed socket. The socket address is identical to the
TCP/UDP address structures: an IP address and a port number. The connect
system call permanently specifies the peer to which datagrams are sent (by sa-
ving the address in the structure containing information about the socket: the
protocol control block (or pcb). If a socket is connected, the send system
call can be used to send a single datagram to the peer address. The writev
system call attempts to gather an array of buffers of data and send it as a single
datagram (connected socket). The readv system call attempts to read a data-
gram from a socket and scatters the input data into an array of buffers. The
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select system call examines sockets whose addresses are specified by a mask
for a maximum interval to.see if some of their descriptors are ready for reading,
ready for writing, or have an exceptional condition pending. It can be used to
wait for either the arrival of a packet or for the expiry of a timeout.

xtp.input and xtp_output

The xtp_input routine is called when an IP datagram with a value in the
protocol field of the IP header indicating X'TP. The main protocol functions
performed by the routine are the following:

o test the key field of the XTP header. If the value is a return key, then
access directly pcb and socket. Otherwise, the xtp_pcblookup is called to
perform a pcb lookup operation based on the pair <srcipaddr, key>!.

o if invalid context reply a DIAG packet,

e copy the source address and port in order to pass them to the user (for

FIRST and other packet types),

o update the socket buffer marks in order to reflect the receipt of the com-
plete packet (XTP header included) and wakeup the socket.

The xtp_input routine corresponds to the receiver block in the XTP host
architecture. The intermediate input queues are the kernel level mbufs.

The xtp_output routine is called when the user issues a send request (any
packet type). The main protocol functions performed by the routine are the
following: '

¢ allocate and fill the fields of an IP header,

e if a FIRST packet initialize destination and source IP address and port
number in the address segment,

e call ip_output.

2.3.3 Role of kernel support

We used a minimal kernel interface in order to simplify and optimize the part of
the protocol functions performed by the kernel. The provision of XTP sockets
enables the application to declare “network entry points”. Transmission control
procedures are performed at the user level and thus can be easily configured
according to the application needs. ‘

!We did not use the route field, it has always the value 0.



10 W. Dabbous, C. Huitema

2.4 XTP control mechanisms

In this section we present the user level procedures. We will focus on the des-
cription of the implementation problems. The most important topics are: the
programming interface, the context initialization, packet header coding, buffer
management, connection management, data transfer and error control (retrans-
mission strategies, timers, checksum).

2.4.1 Programming interface

The definition of the programming interface depends mainly on the service de-
finition. As there are no standard XTP service(s) definition(s), we chosed to
provide the following functions for the application:

e xtp_ctx_init(),
. xtp_bloanii(),.
e xoutput(), .

e xfinput(),

e xd_input(),

e xtp_timer_init()

All these functions use the context data structure defined in the annex A. Most of
the fields of this context structur€ are self explanatory. In the following sections,
we explain how some of these state information are used by the control functions.
The xtpctx structure corresponds to the context records defined in the XTP
Protocol Definition. The control block field reflects the programmability of the
XTP protocol. It allows the application to define the parameters that governs
the data exchange (see annex B). '

The service field designate the type of service requested by the application.
It may have one of the values defined in the following:

/*

* Service type values

74

#define Connection 0x01
#define Transaction 0x02
#define UnackDgram 0x03
#define AckDgram © 0x04
#define IsoStream 0x05

#define BulkData 0x06
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These service types are used by the protocol machine to select appropriate
control procedures to be applied. We have considered only the Connection and
UnackDgram service types.

2.4.2 Context initialization

An application using XTP should initialize a context before sending or receiving
data. This can be made using the xtp_init() function. After this call, the
cbloc field points to a control block with default values. The application may
overwrite some or all the fields of the control block . The kernel chooses a part
of the context number to guarantee uniqueness on a given host . The structure
of the key field is depicted in the figure 2.3.
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The application may have access to the context number by doing an ioctl
system call as follows: '

ioctl(ctx.soc, SIOCGLKEYS, (char *)&;:tx.my_key);

When an XTP packet with the key field identifying a context on the end system
sending the packet (MSB = 0) is received, the complete context lookup will
be performed by the kernel. The local key number (attributed by the kernel at
the initialize time) will then replace the key field. This means that users always
manipulate local key numbers.

2.4.3 Packet processing

XTP header coding (decoding) is performed by the sender (receiver) process.
When the sender calls xoutput (), the appropriate values of the header fields are
derived from the context state variables. The cost (number of instructions) for
a packet processing vary according to the requested type of service (datagram,
connection, etc). However, the header processing is not the most cpu consuming
protocol function as has been explained in [12] and [5].

2.4.4 Buffer management

The allocation of memory buffers is performed by the application. The sizes of.
the maximum receive or send buffers are specified in the corresponding fields
in the xtpcbloc structure. These buffers are directly used by the application to
compute/process data. There is no intermediate transport level buffers. When
an XTP packet is received only the packet header is consulted. Only after the
necessary control functions had been performed, the data is copied into the
corresponding place within the user level buffer. The system calls readv and
writev are used to accomplish the scatter /gather 1/O. In some case, the received
packet is scattered to four area buffers: the XTP header, a part of the data
segment copied to the end of the user buffer, the rest of the data segment
copied in the beginning of the user buffer (overwrite the processed information)
and the trailer is read into a specified zone. When an ECM indication has been
received, the application is invited to process the message. This is indicated by
special return codes of the functions xf_input and xd_input.

2.4.5 Connection management

The connection is established by the implicit handshake mechanism. After the
called side had performed a xtp_ctx_init() (resulting in an initialized context
in the Listening state), the sender issues a call the xoutput (). This will put
the sending context in the Active state, and will initiate FIRST and eventually
subsequent packets. If the quality of service parameters match the values in the
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context at the called side, the connection is accepted (context state becomes
Active) and data is copied to user level buffers (by the use of xf_input for
this FIRST packet?). Otherwise, data is discarded and a DIAG packet is issued
to inform the sender that the connection had been refused. Other negotiation
mechanisms may also be implemented.

The application controls the data transfer by the use of the SREQ bit in the
Connection service mode. When a FIRST ot DATA packet with the SREQ bit set
is received, a control packet is returned to inform the application of the state of
the receiver. During the data transfer window based flow control is performed
through the use of the alloc field of the XTP control segments. When all the
data has been transmitted, the application performs the abbreviated graceful
close of the connection as detailed in XTP Definition 3.6 page 58.

Context scheduling

An application may have several active contexts in the same time (N point to
point associations with different application entities). When a context becomes
active, it will be referenced in the active context list (entry added in the end of
the list), together with the date of the next meaningful event (timer expiry) on
this context. After each processing of a received packet or a timer expiry, the
application will issues a call to xtp.timer_init () to determine the next context
to be processed and to initialize the wait timer value. A select () call with this
timer value will be issued in order to wait for a packet receive in the meantime.
The following simple algorithm is used with the xtp_timer_init() function to
determine the next active context to be processed and the timer value: the active
list is examined sequentially and the context with the earliest event date will be
chosen. This technique allows to avoid complex sort procedures after each event
as detailed in [7].

2.4.6 Error Control

The error control procedures within XTP are designed to facilitate reliable data
transfer. The procedures provide error detection and recovery in several ways:
(1) by removing old or duplicate packets, (2) by monitoring the data transfer
for data loss, (3) by protecting against corrupted data, (4) by supporting resyn-
chronization between endpoints. We will describe hereafter the implementation
of the first three control mechanisms.

0Old and dup'licate packets

The detection of duplicate packets is performed by the inspection of sequence
numbers. A special interest is given to the FIRST packet in order to avoid a du-
plication of the connection. The sync field is used to validate the seq field and to

2xd_input is used for subsequent data packets.
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differentiate retransmitted FIRST packets. The local context variable recv_sync
is initialized with the value of sync received in the first packet received from an
end systemn during an association: i.e. a FIRST, DATA, or CNTL packet. Sync va-
lues received in subsequent packets are compared with recv_sync. If the sync is
“less than”?3 the received value, it is an old or duplicate packet and is discarded.
Another protection mechanism is provided by the socket instance part of the
kernel generated key field: a process which has been killed and rerun cannot have
a context with the same key value before the instance number wraps around.
If context generation rate is not too high, the wrap time is greater than the
maximum holding time for a context key after a network failure or termination
of an association.

Timers

Certain aspects of the error control procedures rely on timers to signal when
an expected event has failed to occur. Three timers are used: (1) the WTIMER
(time to wait for a response to a CNTL packet, (2) the CTIMER limits the
duration of an inactive association, (3) CTIMEOUT bounds the time spent
trying to revive an inactive association (not implemented). The value of the
WTIMER is static, we did not implement the update mechanism of the time-
out value based on round trip times calculation. Time values are obtained using
the gettimeofday() function. As the time and techo fields of the XTP control
segment are only 4-bytes long, we adopted a representation of the time in units
of 20ms as follows:

a_time_value = (date_sec - initdate_sec)*50 + date_ us/20000

where initdate is a initialized when the first context becomes active on a given
host. This variable should then be updated at least once each 2.72 years.

Retransmission strategies

The selective ACK-upon-request? mechanism used by XTP facilitate the imple-
mentation of both well known retransmissions strategies, GoBack-N and Selec-
tive repeat. The mechanism works are described hereafter. When a sender wants
to check the status of the receiver it will issue a packet with the bit SREQ set.
The receiver will reply by a CNTL packet with the number of gaps in the received
stream at the other end system and which spans of output sequence numbers
have been received. The sender can then retransmit the gaps. The same proce-
dure applies for GoBack-N: in this case, the receiver replies with a CETL packet
indicating one gap, and the number of the last octet received +1 (hseq). The

3In XTP Protocol Definition 3.6: A 32-bit unsigned number, A, is defined to be “less than”
another such number, B, if (B-A)<0x80000000.

4The receiver may also issue a CNTL packet upon detecting an input data stream sequence
gap, if the FASTNAK bit in the listen flags is set.
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sender may then retransmit the “gap” (everything from the last byte received
in sequence rseq to hseq).

Maintaining selective acknowledgement queues, tracking spans and gaps,
can lead to considerable complexity and overhead (see the update_spans()
routine in annex C). Both strategies are possible in this implementation. We will
compare the performance of these strategies in future work. During the tests
presented in the next ‘chapter of this report, the receiver was implementing the
selective repeat strategy.

Checksum calculation

The 32-bit XTP check function called CXOR, is defined as the catenation of two
16-bit functions: XOR which is a straight “vertical” exclusive-or of each 16-bit
short word in a block of information, and RXOR a rotated “spiral” exclusive-
or of each 16-bit short word. The algorithm to compute the checksum is given
in page 78 of the XTP Protocol Definition 3.6. However, the performance of
the checksum algorithm may vary in a factor of 12 according to implementa-
tion techniques. We implemented the following enhancements of the checksum
calculation:

¢ Unroll loops,

e Calculate XOR’s on words that would have the same RXOR and saving
the rotate operations until the end,

o Calculate XOR’s over 32-bit words instead of 16-bit words and “folding”
the results down to 16 bits.

The optimized code is given in annex D. Results of the performance test show
that we can run the checksum calculation at 173 Mbps on a Decstation 5000/200.

2.4.7 Conclusion

In this chapter we presented a brief description of the control mechanisms that
we implemented with task A10. Within this task, the goal of this exercise is to
compare the performance of this user level implementation with the well tuned
TCP kernel implementation. The next chapter contains the performance evalua-
tion of this prototype implementation. Several XTP mechanisms have not been
implemented e.g. rate control, route management, multicast procedures. Some
of these mechanisms (rate control) may be added to the XTP implementation
in a further work concerning application driven flow and rate control.

This implementation was done in parallel with the work by Bull: Implemen-
tation of XTP under Streams. The Bull work consisted in porting the KRM
implementation of XTP in the STREAMs environment with the goal of compa-
ring the performance of XTP and TCP. Our user level implementation relies on a
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minimal kernel interface in order to test the integrated protocol implementation
approach described in section 1.3.
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Performance tests

3.1 Introduction

In this we present results of performance tests of both prototype implementation
of XTP and kernel implementation of TCP. The figures should be taken very
carefully: the performance of a protocol depends on implementation tunings and
enhancement technique as demonstrated in [14], and the XTP implementation
is not as well “tuned” as the TCP kernel implementation. Thus, it is not mea-
ningful to make precise comparison of both protocols based on the performance
figures we have. However, the figures gives an idea on the possible performance
of XTP when implemented in the user level.

3.2 Performance of the checksum algorithm

The speed of checksum calculation is known to be one of the important factors
that determine the performance of a transport protocol [5], [13]. That’s why it
is often done by the kernel. The designers of the Protocol Engine proposed to
perform this task in hardware [1]. The following results show that it is possible
to optimize the software implementation of this routine thus removing of the
bottlenecks for the protocol performance.

The performance of TCP and ISO TP4 checksum algorithms are given in
the first two rows of the table 3.1 for three different machine hardwares. These
are byte or short word oriented calculations. The. “standard” implementation
of the XTP checksum as a loop of short word oriented exclusive-OR and rotate
operations was too slow (maximum throughput of 13.67 Mbps).

We analyzed the cost of the basic operations needed for the the checksum
routine in order to determine the most costly functions. The results are presented
in table 3.2. The rotate(x,n) macrois defined as n circular shifts on the short

18
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word x. This is a relatively costly operation and should be saved as much as
possible.

A first optimization (opl) consisted in doing the XORs on words with the
same RXOR rotation and saving the rotate operations until the end. For this
algorithm we used an array of 16 short words to store the XOR values. The (op2)
optimization consisted in declaring 16 short words instead of the array in order
to save indirections (unroll the loop). In (op3), the number of XOR operations is
divided by 2 by XORing the 16 words at the end instead of doing it on the fly. In
(op4) the same optimizations as (op3) are applied with long words calculations
and then folding the results down to 16-bits. The (op4) algorithm is given in
appendix D.

Checksum Sun 3/60 Sparc IPX [ DEC 5000/200
TCP | 2.61 Mbps 13.3 Mbps 30.52 Mbps

ISO 1.21 Mbps 6.50 Mbps 10.69 Mbps

XTP (std) | 1.36 Mbps 7.02 Mbps 13.67 Mbps
XTP (opl) | 1.46 Mbps | 6.83 Mbps 10.93 Mbps
XTP (op2) | 2.95 Mbps | 16.54 Mbps 36.96 Mbps’
XTP (op3) | 5.78 Mbps { 31.25 Mbps 66.06 Mbps
XTP (op4) | 22.59 Mbps | 172.05 Mbps 173.53 Mbps

Table 3.1: Maximum throughput with different checksum algorithms

Operation | Sun 3/60 | Sparc IPX | DEC 5000/200
rotate(x,1) 6.24 ps 1.00 ps 0.687 us
Short XOR 4.00 ps 0.88 us 0.445 pus

Table 3.2: Cost of the basic checksum operations (in a loop)

Operation | Packet length | Sun 3/60 | Sparc IPX [ DEC 5000/200
buffer catenation 10000 o 60 us 12 pus 4 ps
buffer update 10000 o 80 us 14 us 4 pus

Table 3.3: Checksum of assembled or modified buffers
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3.3 Throughput figures

Tests have been performed over both Ethernet and FDDI networks. We imple-
mented transport level UDP, TCP and XTP clients and servers. For UDP the
test scenario is the following: (1) declare and bind socket then loop on recv-
from at the server, (2) declare socket and send numbered packets at the client,
(3) exit at the server when the last packet is received. For TCP the scenario
is as follows: (1) declare, bind, listen, accept, then loop on recv at the server,
(2) declare, connect, send from the client side, (3) exit when the last packet is
received. For XTP the scenario is: (1) xtp_ctx-init(), loop on recvfrom at the
server, (2) xtp.ctx_nit(), then call xoutput(), (3) exit when the last packet is
received correctly at the server.

The throughput is defined in the three cases as the number of received bits
divided by the time interval between the reception of the first and the last packet
at the server.

The following tables give the results of the tests over both Ethernet and
FDDI. The machines running the client and the server are both DECstations
5000/200.

Packet size Ethernet FDDI
1000 o | 6.90 Mbps | 7.02 Mbps
1400 o | 9.57 Mbps | 10.32 Mbps
2000 0 | 9.52 Mbps | 13.22 Mbps
3000 o | 9.66 Mbps | 16.66 Mbps
4000 o | 9.47 Mbps | 29.03 Mbps
4600 o | 9.32 Mbps | 24.53 Mbps
9000 o | 9.21 Mbps | 24.66 Mbps

Table 3.4: Maximum throughput for UDP

3.4 Results Analysis

One may be tempted to say that the UDP figures give the raw performance that
may be obtained on either Ethernet or FDDI. However, this assertion should
be taken with care: packet losses at the ipqueue level due the high number of
packet transmitted during a test (100 to 500) reduce the throughput as defined
hereabove. The best performance for UDP are obtained for small number of
transmitted packets (15 or 20). Over Ethernet, there is no bottleneck at the
UDP level: the throughput is limited by the speed of the Ethernet interface.
Over FDDI, the maximum raw UDP throughput is also limited by the per-
formance of the FDDI interface. Note that the MTU is 1460 and 4312 octets
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Packet size Ethernet FDDI
1023 0 | 7.25 Mbps | 8.43 Mbps
1024 o | 8.35 Mbps | 19.05 Mbps
1400 o | 9.91 Mbps | 20.74 Mbps
2000 o0 | 9.82 Mbps | 18.86 Mbps
3000 0 | 9.16 Mbps | 18.04 Mbps
4000 o | 9.00 Mbps | 17.60 Mbps
5000 o | 8.71 Mbps | 15.73 Mbps

Table 3.5: Maximum throughput for TCP

Packet size Ethernet FDDI
2000 0 | 9.62 Mbps | 18.01 Mbps
4000 o | 9.65 Mbps | 19.72 Mbps
81920 | 9.71 Mbps | 20.38 Mbps

16384 0 | 9.77 Mbps | 21.24 Mbps

Table 3.6: Maximum throughput for XTP

over Ethernet and FDDI respectively. 9000 octets packets are transmitted as
7 Ethernet packets and 3 FDDI frames and reassembled by the kernel at the
UDP/IP layer. .

The TCP figures are more interesting: no bottleneck over Ethernet, TCP can
easily saturate the 10 Mbps CSMA-CD LAN. However, the performance over
FDDI are limited by the control mechanisms of TCP. The highest throughput
(20.74 Mbps) is lower than the best UDP performance. The socket receive buffers
have been set to 65535 octets in order to increase the window of TCP. TCP
Packets shorter than 1024 octets show poor performance even over FDDI. The
limitation comes from the buffering mechanism within the kernel: small buffers
of 128 octets are used, thus limiting the overall performance of the transmission.
For packets longer than 1024 octets, the performance are quite similar with a
tendency to decrease.

For the XTP tests, one should distinguish between two notions: ADU and
NDU as they are defined in [16]. ADU or Application Data Unit is the basic
unit of data exchange between application entities. NDU or Network Data Unit
is the unit of data processing and switching within the network. For the purpose
of these tests NDUs over Ethernet are 1400 bytes long and NDUs over FDDI
are 4000 bytes long. The packet sizes in table 3.6 are ADU sizes. This table also
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shows that XTP can saturate Ethernet and operate up to a speed of 21 Mbps
over FDDI. This was made possible because of the following factors:

e minimize data copying by the use of writev and readv,
o optimize the checksum calculation,
e minimal overhead by return key based context look up in the kernel

This, in fact, optimize the input processing in the normal case (no errors). This
optimization is a capital condition to enhance protocol performance.

3.5 - Conclusion

This chapter shows that it is possible to have high speed communication with
user level implementation of the XTP transport protocol. The throughput fi-
gures should be taken as an indication of the performance of the XTP protocol
with all control mechanisms implemented. However, the good performance of
the implementation of the error and flow control procedures is an encouraging
step in the direction of software implementation of protocols which facilitate
profiling of transmission control procedures by the application.



Chapter 4

On XTP

This chapter contains general evaluation of the XTP protocol mechanisms and
services. The XTP protocol is a step in the right direction for the definition a new
high performance communication protocol. XTP proposed a set of well founded
protocol enhancement mechanisms. However, there is no service(s) definition(s)
for the XTP protocol. In the next sections, we analyze these two aspects.

4.1 The mechanisms

X'TP includes several performance enhancement mechanisms like (1) fixed-length
and position fields, (2) efficient 1-way implicit handshake connection setup, (3)
efficient context lookup with a key-based scheme, (4) data alignment on 4-byte
boundaries, (5) selective retransmission, (6) acknowledgment control (7) “on-
the-fly” checksum calculation when the protocol i1s implemented in hardware,
and other mechanisms concerning routing. These mechanisms contribute to the
enhancement of the performance of the protocol. To give only one example, note
the important speed increase factor for checksum calculation using 4-byte long
words oriented operations. Some of these mechanisms are algorithmic enhance-
ments like (2), (3) and (4) and some other (5, 6, 7) are driven by an important
design philosophy of XTP: the programmability of the protocol mechanisms by
the end systems.

4.2 The services

The programmability of XTP facilitates the profiling of the transmission control
protocol by the transmitter. XTP provides a set of functional enhancements
like rate control, priorities based scheduling, reliable multicast, No-error mode.
The application selects the desired functions or policies via the control block
structure.

23
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However, this feature does not only have advantages. The lack of service
definition complicate the problem of the selection of protocol profiles or policies
by the application. Only the names of the five service types are cited in the XTP
Protocol Definition. There is no definition of service interface. The problem of
the service selection is left to the application. For this purpose, there has been
considerable work within the OSI95 project [17] and elsewhere [18], [19] to
define high speed transport service(s). Another possible way to solve the profiling
problem is to have automatic generation of communication profiles based on a
set of enhanced mechanisms as described in section 1.3. This corresponds to
an horizontal approach to the layered architecture i.e. applications select and
combine control functions based on the service parameters and on the cost
of these functions. Some tools are required to implement this approach: the
service description and specification language, the profiling tool that configures
the appropriate implementation based on the service specification and on the
generic protocol mechanisms. We plan to develop such tools as a continuation
of our work on XTP.

4.3 Conclusion

This XTP implementation exercise helped us to deeply understand the mecha-
nisms of XTP. The performance of the software implementation of XTP may
be comparable to the performance of well tuned kernel implementation of TCP.
Software implementations are not necessarily unéfficient. They are, however,
more easily programmable. This motivated us to consider the work about in-
tegrated protocol design and implementation and about automatic profiling of
communications services for network applications.



Appendix A
Context structure

typedef struct

{
char ¢ recv_buf; /¢ pointer to application data area */
u_long saved_sync; /* see page 23 XTP Protocol Definition 3.6 »/
u_long recv_sync;
u_long should_xkey;
u_long my_key; /* local key number, to be put in the xkey field */
u_long rem_key; /* remote key number to be used for reply »/
u_long sort; /# priority of this context */
u_long hseq; /* highest seq number ever received + 1is/
u_long rseq; /* next in seq byte to be received = hseq if no holes */
u_long dseq; /* seq num of next byte to be delivered to application »/
u_long bseq; /* seq number of first unacked byte (at sendaer side) /
u_long last_sent; /* last consumed sequence number := eseq-1 */
u_long xseq; /* first octet “currently" being trx (!= bseq if retrx) */
u_long 1seq; /* one past the last octet “currently” being transmitted */
long first_seq; /* for duplicate First packet check */
u_long init_seq; /¢ start seq numbers from this value */
u_long nspans; /¢ number of spans for this contexts/
struct xtpspan * span; /¢ pointer to the spans structure s/
xtpcbloc * cbloc; /# pointer to the control block »/
int cstate; /¢ state of the context ¢/
int soc; /+* attached socket num */
struct sockaddr_in paddr; /* peer address (used for connect before send) »/
struct timeb t_start, t_end; /# for throughput calculation */

} xtpctx;
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Appendix B

Control block structure

/e

¢ Definition of the communication structure

* This structure represents the control block (interface)
s between the applications (XS-users) and the

* protocol machine.

s/

typedef struct {
u_long mode_flags; /+ specifies XTP options flags ¢/
u_long sort_value; /#* sort value for context */
u_long listen_flags; /* specifies LISTEN semantics ¢/
u_long field_flags; "+ /# enables writing the remaining fields =/
char service; /+ service type requested/provided »/
u_int rbufsize; /* read buffer size s/
u_int wbufsize; /#® urite buffer size »/
u_int maxdata; /# maximum output segment size */
u_int reindow; /# default allocation at the receiver ¢/
u_int retry_count; /# max number of handshake attempts ¢/
long input_burst; /# input burst size ¢/
long input_rate; /# input rate s/
long output _burst; /# output burst size »/
long output_rate; /# output rate s/
u_int ctimeout; /# ctimeout value ¢/
u_int ctimer; /# ctimer value &/
u_int vtimer; /* wtimer value ¢/
adrseg address_segment; /* connect, listen or FIRST address segments/
u_short mc_drops; /* number of multicast drops s/
u_short mc_sreqs; /* number of multicast sreqs */
u_short mc_rttgain; /# multicast RTT gain /
u_short mc_rttvgain; « /* multicast RTT var gain s/
u_long code; . /* DIAG code */
u_long value; /* DIAG value #/

} xtpcbloc;
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Appendix C

Spans update

/* Spans array processing

* -- Receiver actions
s to be called only if NOERR is O
*/

update_spans(xh, ctx)

xtphdr #* xh;

xtpctx ® ctx;

{

int reorder = O;
struct xtpspan * sp;
unsigned long seq, last;

seq = htonl(xh->seq);
last = seq + htonl(xh->dlen) + htonl(xh->offset);

if (seq > ctx->rseq){
if (seq > ctx->hseq){
struct xtpspan lspan;
lspan.low = seq;
1span.high = last;
1span.prev = lspan.next = (struct xtpspan *)0;
insertlast(&lspan, ctx);
ctx->hseq = last;
} else {
if (ctx->nspans &% seq < ctx->span->low){
/* falls before the first span, process separately »/
if ( (seq == ctx->rseq) &k (last == ctx->span->low)){
/» £ills in the first gap */
ctx->rseq = ctx->span->high;
remg(ctx->span, ctx);
} else if (seq == ctx->rseq){
/% append to in sequence data */
ctx->rseq = last;
} else if (last == ctx->span->low){
/+ append to first span */
ctx->span->low = seq;
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}

else {

struct xtpspan fspan;

fspan.low = seq;

fspan.high = last;

fspan.prev = fspan.next = (struct xtpspan »)0;
insertfirst (&fspan, ctx);

. } else for(sp=ctx->span;sp->next;sp=sp->next){

if ((seq >= sp->high) k& (last <= sp->next->low)){

}

/# within this gap */
if ((seq == sp~>high)
&k (last == sp->next->low)){
/+ data fills in gap */
sp->high = sp->next->high;
remq(sp->next, ctx);
break;
} else if (seq == sp->high) {
/* append to this span s/
sp->high = last;
break;
} else if (last == sp->next->low){
/+* append to next span ¢/
sp->next->lov = seq;
break;
} else {
/% in the middle of this span and the next one */
struct xtpspan newspan;
nevspan.low = seq;
nevwspan.high = last;
nevspan.next = nevspan.prev = (struct xtpspan *)0;
insertafter(&newspan, sp, ctx); :
break;

}
}
} else {
ctx->rseq = last;
} .

-~



Appendix D

Checksum Calculation

. #define rotate(x,n) ((((x)<<(n))ROxffff)| (((x)R(OXTEFf£<<(16-(n))))>>(16-(n))))
#define revrotate(x,n) rotate((x),(16-(n))) . '

xtp_cksum(buf, len, resi, res2)
unsigned char * buf;
int len; . -
unsigned short * resl, * res2;
{
int i, halfbuf, quartbuf, align, lastp;
register unsigned long *lp, *1p0, 1rx0, 1rxi, 1rx2, 1rx3,
1rx4, 1lrx5, 1lrx6, 1rx7, lmax; :
register unsigned short ¢p, xori, rxori, rx0, rxi, rx2, rx3, rx4,
rx5, rx6, rx7, rx8, rx9, rxi0, rxii, rxi2, rx13, rxi4, rxi15;

if (len == 0) return(0);
align = (len ~ len%32);
if (align ==0) align = 32;
lastp = (len - align);
halfbuf = lend>1;
quartbuf = len>>1;

1p0 = (unsigned long *)buf;
xorl =0;
rxorl = 0;
1rx0=1rx1=1rx2=1rx3=1rx4=1rx6=1rx6=1rx7=0;
for(i=0,1p=1p0;i<align;i=i+32,1p=1p+8){
1rx0 "= slp; ‘
1rxl “= «(1p+1);
1rx2 "= =(1p+2);
1rx3 “= s(1p+3);
1rx4 "= »(1p+4);
1rx5 *= *(1p+5);
1rx6 “= »(1p+6);
1rx7 “= =(1p+7);
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8if defined(vax) || defined (NIPSEL)

Relse

$endif

rx0 = 1rxOROxFFFF;

rxl = (1rx0>>16)&0xFFFF;
rx2 = 1rx1&0xFFFF;

rx3 = (1rx1>>16)&0xFFFF;
rx4 = 1lrx2&0xFFFF;

rx5 = (1rx2>>16)&0xFFFF;
rx6 = 1rx3ROxFFFF;

rx7 = (1rx3>>16)R&O0xFFFF;
rx8 = 1rx4&0xFFFF;

rx9 = (1rx4>>16)20xFFFF;
rx10 = 1rxS5&0xFFFF;

rxi1l = (1rx5>>16)ROxFFFF;
rxl2 = lrxGZOxFFFF;

rx13 = (1rx6>>16)&0xFFFF; °
rxi4 = 1rx7&O0xFFFF;

rx15 = (Arx7>>16)R0xFFFF;
rxl = 1rxOROxXFFFF;

rx0 = (1rx0>>16)kOxFFFF;
rx3 = 1rx1&0OxFFFF;

rx2 = (1rx1>>16)&0xFFFF;
rx5 = 1rx280xFFFF;

rx4 = (1rx2>>16)&0xFFFF;
rx7 = 1rx3&0xFFFF; !
rx6 = (1rx3>>16)&0xFFFF;
rx9 = 1rx420xFFFF;

rx8 = (1rx4>>16)&O0xFFFF; .,
rx13 = 1lrx5&80xFFFF;

‘rx10 = (1rx5>>16)X0xFFFF;
rx13 = 1rx6&0xFFFF;

rx12 = (1rx6>>16)&0xFFFF;
rx15 = 1rx7&0xFFFF;

rxi4 = (1rx7>>16)20xFFFF;

xorl = rx0°rx1°rx2°rx3"rx4"rx5-rx6-rx7"
rx8-rx9°rx10°rx11°rx12"rx13"rx14°rx16;

rxorl "= rx0;

rxorl = rotate(rxori,1);

rxorl = rxi;

rxorl = rotate(rxori,l);

rxorl ~= rx2;

rxorl = rotate(rxori,1);

rxorl "= rx3;
rxorl = rotate(rxori,1);

‘rxorl "= rx4;

rxorl = rotate(rxori,l);
rxorl “= rx6;

rxorl = rotate(rxori,l);
rxorl "= rx6; '

rxorl = rotate(rxori,i);
rxorl "= rx7;

rxorl = rotate(rxori,l);



XTP implementation

under Uniz

31

rxorl "= rx8;

rxorl = rotate(rxorl,1);

rxorl "= rx9;

rxorl = rotate(rxorl,l);

rxort "= rx10;

rxorl = rotate(rxori,1);

rxorl "= rxii;

rxorl = rotate(rxort,1);

rxorl "= rxi2;

rxorl = rotate(rxori,i);

rxorl "= rxi13;

rxorl = rotate{(rxorl,1);

rxorl "= rx14;

rxorl = rotate(rxorl,1);

rxorl "= rx1§;

if (lastp){

p = (unsigned short ) (buf+align);

rxorl = rotate(rxorl,lastp>1);
switch(lastp>>2){

case 7:
xorl ~
rxorl
rxort
rxort
rxorl

case 6:
xorl
rxorl
rxorl
rxorl
rxorl

case 5:
xorl °
rxorl
rxort
rxori
rxorl

caseo 4:
xorl
rxori
rxorl
rxorl
rxorl

case 3:
xorl
rxorl
rxorl
rxorl
rxorl

case 2:
xorl ~
rxori
rxorl
rxori

s(p+12) "¢ (p+13);
“= s(p+13);
= revrotate(rxori,
= s(p+12);
= revrotate(rxort,

“= s(p+10) “»(p+11);

~= s(p+il);
= revrotate(rxorl,
~= *(p+10);
= revrotate(rxorl,

= #(p+8) "+ (p+9);
“= o(p+9);

= revrotate(rxort,
“= »(p+8);

= revrotate(rxoril,

= s(p+6) "3 (p+7);
“= s(p+7);

= revrotate(rxorl,
“= s(p+6);

= revrotate(rxorl,

= #(p+4) "»(p+5);
~= s(p+5);

= revrotate(rxorl,
“= 3(p+4);

= revrotate(rxorl,

= #(p+2) "s(p+3);
"= (p+3);

= revrotate(rxorl,
“= #(p+2);

1);

1),

1);

1);

1);
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rxorl = revrotate(rxorl, 1);
case 1:
xorl ~= sp-s(p+1);
rxorl “= s(p+1);
rxorl = revrotate(rxori, 1);
rxorl ~= *p;
case O:
break;
default:
break;
}
rxorl = rotate(rxorl, (lastp>>1)-1);
} R
sresl = xoril;
*ros2 = rxorl;

}

W. Dabbous, C. Huitema
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