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Poursuite de trajectoires pour véhicules de
type unicycle et robots mobiles a deux
trains directeurs

Résumé : Dans ce rapport, deux approches sont utilisées pour la synthese de
lois de commande pour des véhicules de type unicycle et des robots mobiles
équipés de deux trains directeurs. Des conditions de convergence asympto-
tique vers la trajectoire désirée sont données et des résultats de simulation
sont présentés. Une originalité des modeles considérés et des lois de com-
mande proposées provient de la paramétrisation de I'attitude des véhicules
en termes de distance et d’orientation relativement a la trajectoire suivie.

Mots-clé : robots mobiles, non-holonomie, linearisation par retour d’état,
méthodes de Lyapunov, repere de Frenet
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1 Introduction

Several articles and reports have been written over the past ten years, on
the problem of controlling wheeled robots. Following simple control laws,
based on tangential linearization or heuristic methods [2], [10], [9], [5], new
and more general controllers have been proposed on the basis of nonlinear
control theory [3], [4], [6], [7], [8]. This article focusses on the trajectory
tracking issue for robots that move on flat ground without skidding, and is
concerned with a particular approach, which was first proposed in [6]. It is
based on a parametrization which separates the trajectory tracking problem
from the control of the translational velocity. The approach appears to be
well suited to mobile robot control, as long as the objective is not to stabilize
the system about a given posture, and consists in tracking a given trajectory
independently of translational speed, as in the case of road following. The
paper is organized as follows :

e The solution proposed in [6] for a unicycle-type robot is first recalled
and complemented.

e The approach is then extended to the case of a two-steering-wheels
mobile robot, which may be seen as a unicycle-type robot with one
additional degree of freedom which allows the vehicle orientation to be
controlled independently of the path’s direction. This family of mobile
robots is of particular interest in the field of industrial handling due to
their enhanced mobility capabilities.

In section 2, a state space representation is developped for both mobile ro-
bots. A linearizing feedback approach is presented in section 3 for the trajec-
tory tracking problem. In section 4, another non-linear control is proposed
via a Lyapunov analysis. For each control law, convergence conditions and
simulation results are presented.

2 Modelling

2.1 Kinematic equations of a moving point

In this paragraph, system equations describing the motion of a point relative
to a given curve (C') are derived. Consider a moving point M and the asso-
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ciated Frenet frame (7') defined on the curve as indicated in Fig.1. The point
P is the orthogonal projection of the point M onto the curve. Conditions
for which this projection is defined without ambiguity are given in [6]. The
coordinates of M are (0,y,0) in the frame (T') = (P;m, 7, ];) and (X,Y,0) in
the fixed reference frame (R) = (O; 57, ];)

<
<

=V

AN (©) o (R

Figure 1: Frames and Notations

The signed curvilinear abscissa of (T') along the curve is denoted as s. The
position of the point M in the plane (O;;, j) is then characterized by the
couple of cartesian coordinates (X, Y), or, equivalently by the couple of va-
riables (s,y). In the particular case where the curve (C') coincide with the
axis (O; ;), s and y are just equal to X and Y respectively, assuming that
s = 0 when P coincides with O.

A classical law of Mechanics gives :

4 OM 40P d PM R
R R T

0 0
= ( Yy ) and  [w.], = ( 0 ) (2)
T 0 0. = c.(s)$

with :

B
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[We]p is the rotation velocity vector of frame (7') with respect to (R), (%)R
means time derivation with respect to the frame (R), and c.(s) is the path’s
curvature at 7.

Let RE denote the transfer rotation matrix from (R) to (T,

cosf. sinf. 0

RI; = | —sinf, cosb. 0
0 0 1
One gets from (1) :
5 X c(s)ys
g | = RE| Y | + 0 (3)
0 0 0

and thus :
5 = @mmsmm)(g)/u—qﬁw

j = ( —sind, cosgc)_(); ) (4)

2.2 Model of a unicycle-type vehicule

The kinematic equations of a unicycle-type vehicule with two actuated wheels
on a common axle and the point M at mid-distance of these wheels are as

(§) = = (=)

0., = w

follows :

v and w are the mobile robot translational and angular velocities respectively,
and 6, is the vehicule’s orientation with respect to the fixed frame.
Using eqns (5) in (4) gives, in terms of the (s,y) parametrization :

$ veos (0, —0.) /(1 — coy)
y = wvsin(bn —0.) (6)
0

m = W
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The control variable chosen for this system is the angular velocity w. The
curvature’s derivative with respect to the path’s curvilinear abscissa, at the
point T, is denoted as ¢.(s). Therefore,

2.3 Model of a two-steering-wheels robot

Fig. 2 shows a geometric model of this mobile robot. The wheels’ orientation
angles are denoted as o and 3. The distance between the two wheels is equal
to L.

»_|
™
==

Figure 2: A two steering wheels robot

Denoting the velocities of points W, and Wjy as v, and vg respectively, the
angular velocity of the vehicle’s body with respect to the fixed frame is given

by :

L
0, = 7 (vastna — vgsin) (7)

In the absence of skidding phenomena, v, and vg must satisfy the following
constraint :

vacosa — vgeosf =0 (8)

For this robot, the velocity coordinates of the point W, are :
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()= (i) 0

and, using the point W, to characterize the vehicle’s position, the following
equations are obtained from (4), (7) and (9) :

$ = weos(0, —0.4+a) /(1 —cy)
y = vsin (0, — 0.+ «a) (10)
0, = % (vastna — vgsinf3)

under the constraint (8).

For path following purposes, the translational velocity of the vehicle’s body
can be prespecified. For example, it can be assumed that the velocity v, ()
of the point W, is predetermined. In this case, the control objective consists
in regulating the lateral error y to zero and the angle (6,, — 6.) between
the vehicle’s body and the tangent to the path at point T, to a desired
angle denoted as 6,. (For the sake of clarity of the control expressions, the
variation of 8, is supposed to depend on s, so that éd(s(t)) = ¢q(s(t))s(t) and
Eu(s() = ga(s(1)3(1)). |

The control variables that may be used to achieve this objective are &, # and
vg. In fact, due to the constraint (8), the choice of vg is usually not free and
vg can be deduced from v,(t) according to the relation : vg = v, igjg This

leaves only two control variables, namely, & and ﬁ . However, if no precaution
is taken, problems will clearly occur when using the above relation and when
cosf} gets close to, or passes through zero. This difficulty closely meddles with
a structural particularity of this type of vehicle which is that, depending on
the relative orientation of the steering wheels, the vehicle may have either one
or two degrees of mobility. More precisely, as long as the steering wheels are
not parallel, the instantaneous motion of the vehicle’s body is a pure rotation
about the point /.., termed Instantaneous Center of Rotation, located at the
intersection of the wheels’ axles (Descarte’s Principle, See [1]). When these
wheels are parallel with cosa # 0 and cos3 # 0, the instantaneous motion of
the vehicule’s body is a pure translation in the direction of the wheels. This
may still be seen as a pure rotation about a point located at infinity on one
of the wheels” axles. Finally, in the singular configuration where the wheels
are parallel with cosa = cos# = 0, Descarte’s Principle still applies, but any
point on the line passing through the wheels’centers can potentially be an
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Instantaneous Center of Rotation for the vehicle’s body. This expresses the
fact that, in this particular configuration, the mobile robot has two degrees
of mobility, just like a unicycle-type vehicle.

The way chosen here to overcome this difficulty, consists, via a specific control
strategy, in :

e i) imposing the additionnal constraint cosa = 0 & cosff = 0, and

e ii) allowing only one degree of mobility when reaching the singular
configuration cosa = cosf = 0.

This strategy uses the fact that, away from the configuration cosa = cosfp =
0, the angular velocity of the vehicle’s body may also be written as :

0, =v,o with o= 1 (11)
Wa]cr

When cosf # 0, o can be deduced from « and 3 according to the relation :
1 .
o= j(smoz — tanfcosa) (12)

It is shown below that, through an adequate choice of /3 and vg, and the
introduction of an auxiliary variable, it is possible to extend the validity of
the relation (11) to the case where cosf = 0, and fall upon a new control
system for which the equality constraint (8) has been replaced by a simpler
inequality constraint.

Choosing 3 and vg

e Let us consider an auxiliary variable denoted as o (the relation between
this variable and the inverse of W,I., will be explicited further) and

suppose that :
1
| o< 7 (13)

Then,

\/(la — 3inoz)2 +cos?a# 0 Ya (14)
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Let 34 be the angle in ]oz - Z,a+ %[ such that :

cosQ ) sina — lo
cosfBy = and  sinfy =
\/(ZO' - 3ina)2 + cos? \/(ZJ — 5ina)2 + cos? «
(15)

this angle does exist in the interval ]oz - Z,a+ %[, since :

1 —losina

\/(la — 3ina)2 + cos? «

cos(fy — o) = cosPycosa + sinfysina =

is strictly positive, due to condition (13).
Using the following trivial identity :
By = cosQﬁdi [tan 3]
dt
and applying eqns (15), one gets :

By =

{

cos’a d lsina — ZU]

(lo — 5inoz)2 + cos? o dt cosa
and so :
/Bd _ a(l = losina) — locosa (16)

(lo — 3inoz)2 + cos?

The control ﬁ is chosen so that [ keeps tracking 34. A simple solution
is given by : o

B=0Bq—ks(B— Ba)
with kg > 0. According to this equation, if 3(0) = 34(0), then 5(t) =
ﬂd(t)7 vit.

In view of eqn (16), the complete expression of ﬂ can be written as :

. V(1 — lost — 10
- & osina) — locosa ks (B — Ba) (17)

' (lo — sz'noz)2 + cos? «

where :

— « and f are physical angles measured on the vehicle
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— 4 is determined by eqns (15)

— ¢ and & remain to be determined

This choice for ﬂ ensures that the error(3 — ;) will remain small even
if the measurements of a and 3 are slightly corrupted by noise.

For vg, we choose :

vg = va\/(la — 3inoz)2 + cos? (18)

so as to have, from eqns (15) :
vy cosa — vgeosfy = 0

Since [ tracks [y closely, one is ensured, in this way, that the non-
skidding constraint :

vecosa — vgeosf =0

is reasonably satisfied. In fact, it is theoretically exactly satisfied when
B(0) = B4(0) and when the measurements of o and / are perfect.
The choice (18) for the control vs is thus compatible with the cons-
traint (8). Moreover, from eqns (15,18), we have :

Ve Stne — vgsinfy = v,lo
and, using [ = 34, one obtains :

vestna — vgsinfd = vylo (19)

In view of eqns (7) and (9), this shows that the auxiliary variable o can
physically be interpreted as the inverse of W, 1.,. The knowledge of o
provides a way of determining the Instantaneous Center for Rotation
in the singular configuration where cosar = cosf3 = 0.

Now, by using eqn (19) in eqns (10), one obtains the following new
control model :

$ veos (0, — 0.+ a) /(1 — coy)

y = vsin (0, — 0.+ «a) (20)
0

mw = vO
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with & and &, the new control variables. The only constraint on the
choice of & is that the inequality (13) must always be satisfied, o being
obtained by numerical integration of &.

Under the assumptions that « and 3 are exactly measured, and that the
controls 3 and vg, given by eqns (17) and (18), are exactly implemented, the
model (20) is an accurate representation of the robot’s kinematical behaviour.
From there, it only remains to determine & and ¢ in order to achieve the
initial control objectives.

Remark 1 e From eqn (18), vg and v, have the same sign.

e From eqns (15), it can be verified that o, o, and 3 satisfy : locos =
sin(a — 3).

3 Feedback linearization approach

The method has been introduced in [5] for a slightly different parametriza-
tion, and more recently in [8]; it consists in linearizing the vehicle’s equations
of motion in terms of some curvilinear abscissa parameter via an adequate
feedback control law. In [5], this parameter represents the curvilinear abscissa
drawn by the robot itself, while in [8], it represents the curvilinear abscissa,
denoted here as s, along the tracked trajectory. The second option is here
preferred because it causes less singularities in the control equations.

For the sake of legibility, the angular variables 8,, — 6. and 8,, — 0. — 8, will
henceforth be replaced by 6 and 8 respectively.

3.1 Control of a unicycle-type robot

Following this approach, the equations of motion are expressed with respect
to the new variable = [ | § | dr instead of the time-index ¢. This variable
has the physical meaning of the distance travelled by the vehicle along the
path. Denoting % as ()’, the system (6) may also be written :

. - ., _cosl
s = sagn(v—l_ccy) ;
. ’ K ., _COS ¢
Yy = tandiEl —cy) sagn(v—l_%%) (21)
¥ = - (o)
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The control objective is to stabilize the output y at zero. Since the control
w does not explicitly appear in the expression of y’, a second derivation is
needed. One then obtains after simple but tedious calculations :

" w 9 1+ sin?f
y' = 1 —cy) — el —ey)——— — geytanb 22
y' =gl —cey) — el — cey)——7— — geytan (22)
This equation is linearized by setting :
cost cos*f cosfsind
W= ' (1 + sin?0 Y—— 23
w Ul—ccy ul_ccy—l—c( + sin )—I—gyl_cC (23)
This gives :
y' =u (24)

The auxiliary control u must be calculated so as to fall upon a stable closed-
loop system.
One may, for example, choose the following PD control law :

u=—kp,y—koy ;ky, >0, ky, >0 (25)
From eqns (22) and (23), the resulting control is :

0 0 veost
w = vlcjsccy { 16:)8 (gesind — ky, cosl) + sind [ccsinH — ky, cosllsign (fiojcy)] + cc}
(26)
Using eqns (6,26), the closed-loop equations in the time domain are :
S cosf
S 1—ccy
y = vsind
0 = 1co‘zfy {ylc‘”@ (gesint — ky,cost) + sin [ccsinﬂ — ky, cosflsign (%)]}
(27)

Provided that some initial conditions are satisfied, it is shown below that so-
lutions to the system (27) exist over £, and that y asymptotically converges
to zero.

Let ¢cpqr denote an upper bound of the path’s curvature (i.e. | ¢.(s) |<
Comaz V$), and assume that | g.(s) | is bounded. It can be stated that :
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Proposition 1 If the initial conditions y(0) and 6(0) are such that y*(0) +
tanzie(o)) < = L with | 0(0) |< Z, v(t) and 0(t) are bounded, and v(t) does

not converge to zero when t tends to infinity, then the solutions y(t) and 6(t)
of system (27) asymptotically converge to zero.

Proof Proposition 1 is demonstrated by considering the Lyapunov func-
tion :

1
V= 3 (kpny + tan?0(1 — ccy)Q) (28)

and assuming that the system’s solutions exist over [0, +oo[. Existence of
the solutions may in turn be proved retrospectively after establishing that
“explosion” phenomena cannot occur in finite time. This comes as a by-
product of the present stability proof and the uniform bounds obtained for
y(t) and 0(1).

Calculating the time-derivative of this function along a system’s solution
gives :

1 —cy

V= .Y sin? <0 (29)
cos
with :
2V 2V (0 1
' < — < ()<2 —¢ (30)
Py kpy Comaz
and :
2V
2 - .

e For any system’s solution, V' (¢) being non-increasing converges to some
limit value V;,,. By Barbalat’s Lemma, V(t) being uniformly conti-
nuous converges to zero. As a consequence, and omitting the time index
from now on, vsinf, and thus v (since | 0 |< 04, < 7), tend to zero.

e Since v is bounded, v?0 also tends to zero. By differentiating v*6, one

o U3 . . . .
finds that v26 is the sum of —(fiyc yz)/Q, which is uniformly continuous

since its derivative is bounded, and of other terms which tend to zero.
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e A slight generalization of Barbalat’s lemma (see appendix) then tells

us that v20 tends to zero. Therefore, v3y, and thus vy, tend to zero.

e From the convergence of v and vy to zero, one deduces that vV, and
thus vVj., tend to zero.

From there, it can be concluded that (y, ) asymptotically converges to (0, 0)
if v does not.

(End of proof)

At this stage, two remarks can be made :

Remark 2 o When v(t) keeps the same sign, the convergence of y to
zero is exponential with respect to n. This directly results from equa-
tions (24) and (25). If, in addition |v(t)| > € > 0 Vi, then, lim;_o inf (@) >
€ and the convergence is also exponential in time.
o If, initially, T < 6(0) < 2F, Proposition 1 (and its proof) still apply
except that 6 will now converge toward w. In the particular case where
0= +£7%, then § =0 and y does not converge any longer to zero.

3.2 Simulation results for a unicycle-type robot

Simulation of the control law (26) is presented for two reference trajectories :
a straight line in Fig.3 and a semi-circle trajectory in Fig.4. In both cases, the
initial values of y(0) and #(0) have been chosen so as to satisfy the conditions
in Proposition 1.
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Figure 3: Straight line following

Figure 4: Circle following
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3.3 Control of a two-steering-wheels robot

For the sake of legibility, sin(8 + «), cos( 4+ «) are now denoted as Sg;, and
Co1o respectively.

In this case, it possible to take advantage of the two control variables to
linearize the equations of two system outputs, chosen as y and 0. Following
the same approach as before, and in the same way as eqns (21) were derived
from eqns (6), the system (20) yields the following equations :

¢ = sign(ogs)

Sota Co o
y' = CZJ, (1—ccy)szgn(v—:—y) i} (32)
§ = | 1—cey |5Lgn( ) — ¢ szgn(vl_e—jcz)

Deriving y’ a second time, one obtains :

" ay (1 — ccy)2 1+ S§+a Sota N
y' = (o+ ) = (1 - - 33
y <0- —I_ 'U) Cg_l_a c ( c y) 092+a g C@_}_a ( )

This equation is linearized by setting :

. C@+a 06’2—|—oz C@—I—aSé’—}—a ‘
&= v .y [Uyl " ey + co(1 + 592+a) + gc‘ym —vo (34)

This gives :
y" =, (35)

Choosing, as before, a PD control law for the auxiliary control variable wu, :
uy = —kp,y — ky,y' with  k, >0 and k,, >0 (36)
yields the control :

C C
— il—& S“ota
—cey {311 cey gcsb’-l—oc kpy Cé’-}—a)

59+a {CCSQ_W ky,Coyasign ( 9+°“)] + cc} —vo

1—cey

(37)

Concerning the second output variable 0 = 0 — 0, we have, from the last
equation of (32) and the fact that 8; = ¢4 :

0 = [aw — (e.+ cd)] sign (”Cﬂ) (38)

1 —cy
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Differentiating this relation a second time in order to make o explicitely
appear, we get :

~ . ‘ —Ce¢ Ce C ia
0" = o 103 ya —(9: + 9a) 109+j {1 eccyy (gccé’-}-a + kpy59+a) + (39)
S@—}—a Cccﬁ—l—a + kvy Sﬁ—l—olegn (109;:)]}
By setting :
o = ’Ulce—jz {10922 [ug + (gc + 94)] + 0{1 ey (gc09+a + kpy59+a) +
S@—I—oz [cccé’—}—a + kvy S€+a369n (1 9;:)] }}
(40)
we get the linear equation : )
9" = Ug
and choosing the auxiliary control uy as follows :
g = —kpo0 — ko0 kpy >0, kyy >0 (41)

we obtain :

o = v% —— [ kpeg + (gc + gd ] + U{ o (gcC€+a + kpy59+04) +

1—ccy L1—cey lcy

S et o Senotan (155)]) o o e+ ) 2] s (152))
(42)
Regrouping eqns (20,37,42), the closed-loop system is characterized by the
following equations :

, Ce-l-a

Ul_ccy

= vS@—I—a

_ , CQ-I-a
= v(o —c.? ccy)

Cora C N
= vl ec Y [yl 90 y(.gCS€+a kpy C@-I—oz)

Sotal(ccSota — kvy09+a5lgn( i‘j))—l—cc]—'va
5 = o Ce:l-_a {Ceia [ ko0 + (g0 + g4) ] _I_O-{ilﬂ (gCC€+a—|-kpySg+a

—cey | 1—cey l—ccy

vCoyqa Cota vCpta
Svvn [exCon + by Sesasion (2252)] } 8, o — (c. + cd>1_9;yfszgn (7))
(43)
We will show, as in section 3.1, that the controls (37) and (42) ensure the
asymptotical convergence of y and 6 to zero, provided that some initial con-

0. .. w-

ditions are satisfied.
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To this purpose, let us consider the following Lyapunov functions :

|
Vy = 5(kn,y* +9") (14)

and

1 .
Vo= Sk +0 ) (15)

Proposition 2 If the conditions :

tan*(6(0 0
Jy(o)ﬂ 2 (00) +ol0) . (46)
kpy chaz‘
and : 1
2V5(0) 4 sup | c. + ¢4 |< 7(1 — CemazT) (47)

are salisfied, if v and © are bounded, and if v does not converge to zero, then
| o(t) | stays smaller than T and the solutions y(t) and 0(t) of system (43)
asymptotically converge to zero.

Proof

e The convergence of y and 6 + « to zero is proved exactly as in the case
of proposition 1 by replacing 6 by 6 + a and using the fact that V, is
non-increasing. Indeed, the time derivation of V, (eqn (44)) gives :

| S <0 (48)

e The boundedness of | o() | is demonstrated as follows :

— From the value of Vj (eqn (45)), it can be deduced that :

2

<2V, (49)

1—c.
[ Cy—(ccircd)

g
C@—}—a

and thus :

o 11— coy 1< 2Vt | ec+cu | (50)
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Combining condition (46) and the fact that V, < 0leadsto | y |< r

and thus, | 1 — c.y |> 1 — ¢eppapr > 0. Introducing this result into
\/2VQ+|CC+Cd|‘

1—ccmazT

inequality (50) yields | o |<

The time derivation of Vj gives :

1 —cy

gLy Cota
v C€+a

o= —k < 1
Vi S 0 (51)

(et cd)r ,

thus, by applying condition (47), one gets that o stays smaller
than 1.
]

e The convergence of 6 to zero is proved through the following steps :

Vi being positive and non-increasing asymptotically converges to
some limit value. By Barbalat’s Lemma, V5 converges to zero. As

a consequence, vf', 0, and thus v[o — (cc + cq)] tend to zero.

Since v is bounded, v*[o — (¢, + ¢4)] also tends to zero. By dif-

ferentiating v*[o — (c. + ¢4)], one finds that (v?[o — (c. 4 cq)]) is
the sum of a term equivalent to —v®k,, 0, which is uniformly conti-

nuous since its derivative is bounded, and other terms which tend
to zero.
As in section 3.1, an extension of Barbalat’s lemma then tells us

that (v%[o — (¢, + cq)]) tends to zero. Therefore, 030, and thus v,
tend to zero.

From the convergence of v and v’ to zero, one deduces that vVj,
and thus vVjy,,, tend to zero.

From there, it can be concluded that  asymptotically converges
to zero if v does not.

(End of proof)

Remark 3 As in the previous case, when v(t) keeps the same sign, the
convergence of y and 6 are exponential with respect to n. If, in addition

| v(t) |> € > 0 Vi, then, the convergence is also exponential with respect to

time.
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3.4 Simulation results for a two-steering-wheels ro-

bot
The system :
So= vl
!/ = vS@—I—a (52)
0, = vo

has been simulated with & and & taken as control variables. In Fig.5(a) and 6(a),
the reference trajectory is a straight line and two different constant values
are considered for 8, (8, = —1rd and 0, = —2rd respectively). In the third
Fig.7(a), the reference trajectory is a circle, with 84 set to —1rd.

For each simulation, the curve (o, a) ((b) plot) is given in polar coordinates.
It can be seen from these curves that | o | remains smaller than } (with [ =1,

here).

(a) Mobile trajectory (b) (o, @) plot

Figure 5: Following a straight line with 6, = —1rd
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(a) Mobile trajectory

Figure 6: Following a straight line
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(a) Mobile trajectory

Figure 7: Following a circle with 8; = —1rd
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4 Lyapunov-oriented control design

The feedback linearization technique used in the previous section presents the
major advantage of yielding linear closed-loop output equations, the solutions
of which are well known and can easily be tuned. Moreover, in the case of two-
steering-wheels mobile robot, the transients of the two outputs of interest,
namely y and 6, are decoupled so that a perturbation action on one of them
will not affect the other output.

On the other hand, the method has also some drawbacks. In particular, the
domain of stability where the control behaves properly is not as large as it
could be due to the existence of singularities. For instance, the orientation
error | # | in the case of the cart-type mobile robot, and the angle | § + « |,
in the case of the two-steering-wheels mobile robot, must not initially exceed
5. This is shown in the convergence conditions given in propositions 1 and 2
which, although only sufficient and rather conservative, are somewhat limi-
ting. It can be argued that the profile of the vehicles’ trajectories, before
convergence to the desired path and when initial position errors are large,
resulting from a closed-loop linear equation in the form y" +k, y' 4+ k,,y = 0,
does not necessarily coincide with the user’s idea of how the system should
behave during transients. For example, it may be desirable to approxima-
tely maintain the angle 6, or 6 + «, between the tangents to the vehicle’s
trajectory and the tracked trajectory, at a specified constant value when the
vehicle is far from the desired trajectory. Such a requirement cannot easily
be formulated within the framework of feedback linearization.

We will thus focus, in this section, on an alternative control design method
which will overcome some of the shortcomings evoked above. It is based
on the choice of adequate Lyapunov functions which are used not only for
convergence analysis purposes but also at the control design stage.

4.1 Control of a unicycle-type robot

The method’s principle has been proposed in [6] for unicycle-type mobile
robots. The Lyapunov function considered in [6] was :

1r, 1
" _92] ‘
V=3 [y o (53)
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The method is here improved by considering a more general function :
1

(0= 8(y0)) (54)

1 9/
V=§ [ (y) +

where the functions f(y) :]—r,7r[— R and §(y,v) : R*R — R are C'* and
C*! respectively, and such that :

Hy : f(4r) = £o0

Hy @ f(0) = 8(0,0) = 0, %o

Hs : f,'(y) >0,Vy

Hy : of(y)sin(6(y,v)) <0,y Vo

The functions f and é are introduced in order to broaden the control stability
domain and achieve additional user’s objectives. For example, by requiring

f(y) to tend to infinity when | y | tends to ——, it is possible to keep

y(t) in the open interval | — ccl , ccl [ when y(0) belongs to this interval.

Concerning 6, it may be interpreted as the desired value for the orintation 6

during transients.

Asymptotical convergence of y and € to zero can be achieved by choosing a
control w which makes V' tend to zero. This is more precisely explained in
the following proposition :

Proposition 3 Consider the control :

w = e 200 g rosindr 6. oo 1,00 T Lo | (6=8) 5 k>0
1 —ecy )
(55)
which is applied to system (6).
If | y(0) |< Cc:m, and if v(t) and O(t) are bounded, and if v(t) does
not tend to zero when t tends to infinity, then the solutions y(t) and 6(t)
asymptotically converge to zero.

, Ag >0
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Proof
o Differentiating V' with respect to time gives :

Vo= [f/vsind + 5 30— 8§)(0 — 68, "vsind — (5 ,'0)
= ff, vsiné + (9 — 8) [£f, vei=si L (§ — 6, vsing — 6,'b)]

(56)
e Replacing § by (w— ccfcﬂ) with w given by eqn (55) yields :
V= ff,/ vsiné —k|v|(0—6)°<0 (57)

V(t) is thus non-increasing, implying that | f(y(¢)) | and | 0(t) —
6(y(t),v(t)) | are bounded. Thus, from the properties of f and 6,
| y(t) |< ccl — €, Vt, and | O(t) | is bounded. V(t) converges to

some limit value, and, by Barbalat’s Lemma, V(t) converges to zero

since it is uniformly continuous. Therefore, in view of (57), v(6 — 6)
and ff,'vsind (the time index is omitted to simplify the notations)
asymptotically converge to zero.

e From the control expression (55) :

sinf — sind

(9— &) ==Xl f,/v T—k)\ﬂ‘ﬂ(@—‘s) (58)

Hence :

, 3sinl — sind

mzm}v(@—(S) Aof fyv 0_§

—kXg | v ] (0 —6) (59)
The time-derivative of v*(6 — §) is thus the sum of two terms which
tend to zero and a third term which is uniformly continuous. Using the
fact that v*(6 —¢) tends to zero, a slight extension of Barbalat’s lemma

then tells us that v2(6 — §) also tends to zero. Therefore, f f,'v?2nf=sind

tends to zero. This in turn implies, using the convergence of v(f — 6)
to zero and the fact that (M)Q +(0—6)°>e>0 (V0,Y6), that

=5
ff,/v tends to zero.

Recalling that f,'(y) > 0 (from assumption Hj), and since |y|is boun-
ded, we obtain that vf tends to zero.
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e Now, from the convergence of v(#—§) and v f to zero, v?V tends likewise
to zero with V' converging to some limit value V;,,. Hence v?V};,, tends
to zero and, since v does not tend to zero, Vj;,, must be equal to zero.

Therefore, f(y) and (8 — 6) tend to zero.

e From (H;) and (H3), y tends to zero. From (H3) and the convergence
of y to zero, ¢ also tends to zero.

From the convergence of (6 — é) and ¢ to zero, 8 tends to zero.

(End of proof)

Remark 4 o According to the previous proposition, asymptotical stabi-
lization of y = 0 and 0 = 0 can be obtained whenever | y(0) |< - 1,

This initial condition is much weaker than the condition required when
applying feedback linearization. In particular, | 6(0) | is no longer re-

quired to be smaller than 7.

e f(y) =y and 6 =0 are possible choices when c.,,,, =0, i.e. when the
tracked trajectory is a straight line. In this case, the convergence of y
and @ to zero is achieved whatever the initial conditions.

o Differentiability of 6(y,v) with respect to v is not absolutely necessary.
For instance, one may choose :

6(y,v) = —sign(v)gs(y) (60)

with gs(y) being a C' function such that gs(0) = 0 and ygs(y) > 0 Vy.
A possible choice is, for example, the following sigmoid function :

e?kéy _ 1

9s(y)

In this case, | 6 | is approzimately equal to 8, when y is away from zero.

e According to relation (58), and in order to keep (6 — 6) small, f(y)
should be chosen so as to maintain f(y)f,'(y) as small as possible in
the largest possible domain.
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For example :

Y

f) = —"—— k>0, k>0 (62)
(1+(2))
(= ff,) — 0 when |y |— +00) when cepep =0, and :

gy(y)
= r r+vy
, 9y(y) = 5 Log

<1_|_<93}€(2y))2)3 2 r—y

when ¢ ppoe # 0.

ik >0,k >0,7r>0

~
~—
S
S—
I
K
-

(63)

o When choosing f and 6 according to eqns (60)-(63), linearization of
the system’s closed loop equations about y = 0 and 6 = 0 gives, when v
keeps the same sign :

y" + kvyy’ + kpyy =0 (64)
with :
by = ksb, + kX
o T Tl TR (65)
by, = Ao (= + kksb,)

Fquations (65) can be used to determine the constants Ag, k, ks and kq
from prespecified values of k,, and k,,.

4.2 Simulation results for a unicycle-type robot

The application of control law (55) is illustrated through the following two
figures (Fig.8 and Fig.9). Initial conditions were chosen in order to show
that they can be now less constrained than they were within the lineariza-
tion approach. The effect of the 6 function is shown in Fig.8 where 8,, the
convergence angle, is set at 0.8rd.
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Figure 8: Straight line following

Figure 9: Circle following
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4.3 Control of a two-steering-wheels robot

The control design is decomposed into two stages. The first one is related to
the determination of the control & for the regulation of the variables y and
0+ a.

Applying the same method as in the case of the unicycle-type robot leads to
considering the Lyapunov function :

1 1
V= [P 04a -] ()
2 Ay
where f and 6 satisfy the same conditions as before, and yields the following
control law :

&=—v|o— 8 S + ccvcﬂ + Ayf’fM] —ky Ay || (04a—8)+6,"0
1 —cy v+ a—96
(67)
The second stage is related to the determination of the control ¢ for the
regulation of 0. A possible Lyapunov function to be considered at this stage

1S

10[x 1
——— 02 _~2:|
v, 2[ + 10 (68)
where 0 = 0 — 04 and :
Cc+ ¢yg
o4 = 1 — oy C@+a (69)

The control ¢ may be chosen so as to have :

G = —vrgl — ko(0)5 (70)

where kg(o) :]— 1,7[— R is a strictly positive Lipschitz C° function such
that :

[ ] k@(O‘) = k@(—O')
L] k@(:l:%) =+

This yields :
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o = U_lceciz_ { ge + 94)Coya + (cc + ca) {gcy%‘ec'ciy + Cc50+a]}
~Sora ot {u 6,/ Sove — A S ST — B0l (0+ 0 = ) + 64}
—oXgl — kg (0 — 2240 +a)
(71)
and : .
vy = —Folo) e (72)
Ao

Proposition 4 Assume that 04(s) is chosen so that :

1

1
Vs o | eo(s) +eals) |< 7(1 — Comaz’) With 1 < (73)

ccmal‘
and consider the controls (67) and (71) applied to the system (20). The func-
tions f(y), 6(y,v) and kg¢(o) involved in the control expressions satisfy the
set of properties defined above.

If 1 y(0) |< r and | 0(0) |< 1, then | o(t) | remains smaller than 1+ and, if

I
v(t) does not asymptotically converge to zero then the outputs y(t), (0 +a)(t)

and é(t) asymptotically converge to zero.

Proof

e Since V, is non-increasing along any system’s solution, | f(y(t)) | is
bounded and | y(¢) | thus remains smaller than r.

— Therefore, omitting the time-index to simplify the notations, there
exists a positive real number ¢ such that :

|1 —cy |> (1 = copmaet) +€> 1 — Coppaur >0

and, from the condition (73) put on the choice of 84(s) :

(74)

1 1
loa(t)] < 7 ¢, Vt with ¢ = o ¢

(1 — Comaer) + €

— Asymptotical convergence of y(t) and (6 + «)(t) to zero is establi-
shed exactly in the same way as y(t) and 6(t) were proved to tend
to zero in the case of the unicycle-type robot.
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e Since V; is non increasing, | 8(t) | and | o(t) | are bounded along any
system’s solution

— From eqn (70) :

1d . ~ . .
5%02 = —vAgl5 — kg(0)5” (75)

— Since kg(o) is continuous and grows to infinity when | o | tends
to }, eqn (75) shows, in view of (74), that | o(¢) | is bound to
stay smaller than % More precisely, there exists €’ > 0 such that
| o(t) |< § —€”, Vt. This in turn implies that kg(o(t)) is bounded.

— It remains to show that é(t) tends to zero. Since Vj is non increa-
sing, V4 converges to some limit value Vj;;,, and, by Barbalat’s
Lemma, Vj tends to zero. Hence, from (72), &(¢) tends to zero and

HN(if)2 converges to 2Vy;,,,. Also | é(t) |2 < 2V4(0).
— From eqn (70), since & tends to zero and v0 is uniformly con-

tinuous, & and v tend to zero by application of the extended
version of Barbalat’s Lemma given in the Appendix.

— The convergence of & and vl to zero in turn implies that v2Vj;,,
tends to zero and therefore, Vyy;,, = 0, since v does not (by as-
sumption) converge to zero.

— From there, it can be concluded that é(t) converges to zero if v
does not.

(End of proof).

Remark 5 By choosing a suitable function kg(o,«) that depends not only
on o but also on «, it is possible to ensure the satisfaction of the constraint

\/(la — 3ina)2 + cos?a > ¢ > 0 without requiring the inequality |o| < % to be
satisfied all the time.

4.4 Simulation results for a two steering wheels robot

As in the case of the feedback linearization approach, three sets of curves
are plotted. For each reference trajectory, a constant required orientation
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angle 6 is specified, and for each simulation, the related curve (o, «) in polar
coordinates is drawn. In comparison to the feedback linearization approach,
the contraints on the initial conditions are less severe.

(a) Mobile trajectory (b) (o, @) plot

Figure 10: Following a straight line with 8; = —1rd
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(a) Mobile trajectory (b) (o, @) plot

Figure 11: Following a straight line with 8, = —2rd
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(a) Mobile trajectory (b) (o, @) plot

Figure 12: Following a circle with 8; = —2rd
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5 Conclusion

In this paper, two types of controllers associated with a specific parametriza-
tion of the relative path-to-vehicle distance and orientation have been propo-
sed for unicycle-type mobile robots and two-steering-wheels mobile robots.
The first controller is designed to achieve exact output feedback linearization
and decoupling, while the second one is obtained via a Lyapunov-oriented
approach. For both controllers, path following convergence has been proved,
provided that some conditions are satisfied. These conditions are less severe
in the case of the second controller. The main difficulty arising in the case of
a two-steering-wheels mobile robot is the passage through singular configura-
tions where the wheels are parallel and their axles are colinear. A particular
control strategy has been derived to overcome this difficulty. Extension of
the results to mobile robots equipped with more than two steering wheels,
although not explicited in the paper, is not difficult.



34 A. Micaelli, C. Samson

Appendix : Extension of Barbalat’s Lemma

Lemma 1 Let f(t) and g(t) be two function from R* to R such that f is
differentiable and g is uniformly continuous on R*. If limy_o f(t) = [ and

limi—oo (f(t) — g(t)) = 0, then limy_o f(t) = limy—oo g(2) = 0.

Proof Assume that f(t) does not tend to zero, than ¢(¢) does not tend to
zero either, meaning that :

Je> 0, Htiiey ¢ Nim ti=Foo and | g(t)[>¢ Vi (76)
Since g(t) is uniformly continuous :
In 2 06 <=l glti+8) —glt) |< 5 (77)
and, from (76) and (77) :
6 €0, nl= g(ti +8) |> 5 (78)

From a classical averaging theorem :
tit+n
36; €]0, [ : /t g(t)dt =ng(ti + &) (79)
Thus, in view of (78) :
ti+mn €
[ gty de| > 0 (30)

t;

Introducing the function A(t) = f(t) — ¢(t) which, by assumption, tends to
Z€ero : )
Tt >t = h(t) < 1

Hence :
t; > tr =

/W h(t) dt‘ < (81)

t;
On the other hand :

ti+n

fttn) — ey = [ dwde= [ gwars [ by

t;
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Therefore :

| fti+n) = (L) |=

ti+n
/ g(t)dt‘ -
t;

/W h(t) dt‘

t;

and, from (80) and (81) :

> =] () = () > 05

This implies that f(¢) does not converge to some limit value, and this con-
tradicts one of the Lemma’s assumptions.

(End of proof)
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