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LACS: Un Langage pour des Structures de

Communications Affines

Résumé : On propose un langage qui donne une notation uniforme pour spécifier des
affectations paralleles et des opérations de communication et de réduction dans les pro-
grammes massivement paralleles. Il est construit autour d’une instruction d’affectation
parallele (PAS), et d’événements atomiques de communication (ACE). En LACS, on
peut exprimer la majorité les opérations de communication les plus fréquentes en une
seule ligne (comme en APL) : ‘1-to-1 transfer’, diffusion, ‘personalized communication’,
réduction, ‘scans’, etc. LACS utilise des polyedres convexes et des transformations affines,
et il est donc possible d’utiliser les outils de ’algebre linéaire pour 1’analyse statique. On
peut détecter automatiquement quand une PAS est bien formée, a des conflits d’écritures,
etc. On peut aussi détecter automatiquement la présence d’activités de communication

comme des ‘scatters’, réduction, ‘scans’ et leur géneralizationes.

Mots-clé : dépendences affines, ‘broadcast’, bibliotheques de communication, polyedres
convexes, partitionement de données, fonctions d’indéxage linéres, préfix parallele, reduc-

tion, ‘scan’, ‘scatter-gather’, ‘spread’, ‘total exchange’.
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A Sneak Preview

Consider the problem of specifying communication activity in massively parallel programs
(data parallel, nested loop and/or single assignment). Our principal data structure is the
multidimensional array, so we have data variables such as X, Y etc. To access them, we have
index variables such as i, j, etc. A data variable may be accessed only by constructing
an appropriate index expression—an affine combination (i.e., linear combinations plus
a constant) of index variables. An Atomic Communication Event (ACE) is specified with
a source, a destination, and a transfer operator, =>. We can have multiple destinations
(broadcast), and/or multiple sources (reduction®). All this is a single ACE. We specify
collections of simultaneous ACE’s as a Parallel Assignment Statement (PAS). The only
way to specify “collections” (both for multiple sources and destinations, and for the ACE’s
that make up a PAS) is through convex polyhedral regions of index space, whose syntax

is:  {\tt List-of-vars ‘|’ List-of constraints}.

With this brief introduction, look at a few examples (as shown in Fig 1). Let us use
the convention that in an array access such as X[p,q,r], the p refers to rows, q refers
to columns and there may be additional indices such as r. For some examples, the first
two indices are also implicitly the processor id’s (although LACS does not impose such

an interpretation).

1. A broadcast of X[N,N] to X at all points (size of X is N) can be written as an ACE:
X[N,N] => {i,j | 0<i,j<=N: Y[i,jl}

2. A reduction (with addition as the operator) of X on the first row, whose result
overwrites the value that used to be in X[1,1] may be described by the ACE:
{1 | 0<i<=N: X[1,i]} +=> X[1,1]

3. The same reduction, but the result is now broadcast back along the row:
{i | 0<i<=N: X[1,i]} +=> {i | 0<i<=N: X[1,i]}

4. A scatter of N different X values (stored along a third dimension) from point [1,N]
to all points along the same column (this is a PAS, like all subsequent examples):
{1 | 0<i<=N: X[1,N,i] => Y[i,N]}

5. Simultaneous scatter from all points on the main diagonal to their rows:
{i,7 | 0<i,j<=N: X[i,1,7] => Y[i,j]1}

*In this case we need to specify a binary operator.
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6. A gather of X on the main diagonal whose result goes to Y at index [N,N]
{1 | 0<i<=N: X[i,i]l => Y[N,N,i] }

o o

N ST

L/

= N

T N

Figure 1: Motivating examples: N is 3, and X and Y are solid and open circles, respectively
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Thus, we can claim that LACS has the following features:

e Simplicity: Most of the syntactic features have been summarized in the first para-

graph. The important part of the BNF (see Appendix I) is less than a page.

e Expressive Power: A large number of common communication patterns can be writ-

ten as one-liners. You have already seen a few examples. You will see many more.

e Compile Time Analysis: Many important properties of the communication can be

automatically deduced from a LACS program. For this you will have to read the
paper.

1 Introduction

The emergence of practical massively parallel computers such as the Connection Machines,
MasPar and others (building on the earlier work on the ILIAC, DAP, MPP) has spurred
the development of programming languages that can effectively harness their power. Data
parallel languages have become increasingly popular in this role, since they specify the
computation in terms of operations on (ideally) independent pieces of data. At this level
of abstraction, one can consider languages such as FP, APL2, CMLisp, Crystal [7], Lucid
[1], etc., as very high level data parallel languages [16]. Regardless of whether the language
model is functional or imperative (nested loops or data parallel) the most important data
structure in massive parallelism is the array, and parallelism is achieved when different
processes operate on disjoint index subsets of the array. The early data parallel languages
such as DAP-FORTRAN, MPP Pascal, *Lisp and MPL were closely tied to the machine
architecture, where physical processors were identified explicitly with specific array in-
dices. Recently there has been work on architecture independent data parallelism [4, 19],
where the programmer specifies the computation in terms of virtual processes, with vir-
tual indices, and the mapping to physical processor indices is isolated to a few directives

(or chosen by the compiler).

One of the major factors affecting the performance of parallel programs is the com-
munication cost. Massively parallel computers, such as the Connection Machines, MasPar

and others perform SIMD style, local communication much faster than arbitrary point
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to point communication. Distributed memory machines, perform certain communications
faster than others, depending on their topology (and the communication libraries avai-
lable). In order to achieve the best performance, it is necessary to fully exploit such
specific ability, and this has received increasing attention [6, 9, 12, 13, 15] in the context
of nested loop and/or data parallel programs. In order to address this problem in a syste-
matic manner, we first need a formal model to describe the communication at an abstract,
architecture independent level. In this paper, we present a Language for Affine Communi-
cation Structures (LACS) for this purpose [17]. It is based on convex polyhedra and affine
transformations, and enables us to concisely specify a large class of practical communica-
tions (in APL-style one liners), yielding a generalization of the standard communication

libraries such as broadcast, multicast, spread, reduce, scatter-gather, total exchange, etc.

We envisage three main benefits from LACS. In the short term, it provides a separation
of concerns: application programmers specify the communication in their program in a
high level, declarative, machine independent manner. Parallel machine manufacturers are
responsible for providing a correct and efficient implementation of LACS. In the medium
term, we expect to infer the LACS specification that achieves the communication of a
given program (data parallel or nested loop) provided that data partitioning (allocation
of data values to processors) annotations are also given. Another medium term goal is to
determine estimates of the costs of implementing a LACS specification, given some of the
machine parameters. We thus expect LACS to serve as an intermediate representation for
the compilation of communication. In the long term, we anticipate that this will lead to a
general theory for automatic data partitioning, which can address non rectangular arrays

and also data alignments with skews, replication etc.

As a first step in this direction (both for efficient compilation and for cost estimation),
it is necessary to analyze a LACS program and deduce its properties. This is the second
subject of this paper, and we focus on the Parallel Assignment Statement (PAS), the
principal construct in LACS. The remainder of the paper is organized as follows. In the
following section, we describe the language (the syntax is given in the Appendix I). This
is followed by a number of exercise problems (Sec 3) for you to get a feel for the expressive
power of the language. Then, in Sec 4 we describe the internal representation that is used
for the analysis. Sec 5 presents the first part of the static analysis of a PAS—the conditions

under which it is well formed. Each test is illustrated with a number of examples. Then, in
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Sec 6 we show how using these results, scans, scatters, gathers, etc., can be automatically

deduced from a given PAS. Finally, we discuss related work and give our conclusions.

2 Specification of LACS

In parallel processing, communication activity is typically described as a directed graph
[5, 20], where nodes represent source processes, and arcs represent communication from
a (single) source node to a (single) destination node. LACS uses two generalizations of
this. First, we use multi-graphs® in order to permit multiple destinations (broadcasts)
and multiple sources (reductions). Second, we explicitly model temporal information—
specifying which multi-edges are simultaneously active, and also the order in which these

groups become active (this idea was originally used in our earlier language, LaRCS [14]).

Thus, we can model the communication in a massively parallel program by a multi-
graph where each element of each array corresponds to a node. Obviously, such a fine
grain description is unacceptable if the compiler has to actually construct the multi-
graph. LACS can thus be viewed as a language for specifying such multi-graphs in a
compact manner. A LACS program consists of a sequence (or a nested loop containing a
sequence) of Parallel Assignment Statements (PAS’s). Each PAS is a collection of Atomic
Communication Events (ACE’s). Thus, an ACE models a single multi-edge, and a PAS
models a group of simultaneous multi-edges, and a complete LACS program is a sequence

of PAS’s.

2.1 Syntax

Syntactically, LACS has two types of variables, data variables and index variables. Data
variables are simply the names of multidimensional arrays. Index variables are integer
variables which are used in order to access elements of the data variables. Certain index

variables are declared to be size parameters. In general, index variables are used to

*A directed multi-graph is defined as a pair, (V, M). V is the set of nodes, and M is a set of multi-edges.
Each multi-edge is an ordered pair of subsets of nodes—the source nodeset and the destination
nodeset.
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build index vectors, and any data variable is accessed only through such index vectors.

There are two fundamental constraints in LACS:

e The only way to construct an index vector is through affine combinations of index

variables.

e The only way to specify collections of index variables is through convez polyhedral

regions.

It is these constraints that both give LACS its simplicity and expressive power, and also

enable the use of linear algebra for our analysis. The main constructs in LACS are as

follows (see the Appendix I for the BNF).

2.1.1 Convex polyhedral regions

Convex polyhedra (actually, we are only concerned with polytopes, i.e., bounded polyhe-
dra) are central to LACS because of many important properties: they are closed under
intersection, difference and other geometric operations; standard libraries exist for com-
puting these. Most importantly for the static analysis of LACS, they are also closed under
unimodular affine maps (and also the pre-images of arbitrary integer affine maps). From
a pragmatic perspective, index spaces that occur in practice are often convex polyhedra,
since loop bounds are typically affine functions of indices. Furthermore, the data access
patterns within the loops are usually affine index functions. The following examples give

an idea of the LACS syntax for polyhedra

i,j,k | 0<i<=j<=N; k=0 read as “the indices, ¢, 7, k such that they satisfy
0<:<j<Nandk=0"(Nis a parameter).

i,j | 0<i,j<=N the comma is a shorthand for four inequalities.

k | j<=k<=N j must be a parameter or defined in an outer scope.

2.1.2 Atomic Communication Events

As mentioned above, data variables can be accessed only by an index vector—an affine

function of index variables. A data variable plus its index vector, eg, X[1,1,N-1,3k+i]
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and Y[i,1,3j] constitute a Data-Variable-Expr. Taken completely out of its context, it
may have some free index variables, and by instantiating (some of) them, we can define
a collection of Data-Variable-Expr’s, called a Src-Expr (or Dst-Expr). For example,
{i] 0<i<=10: X[i,2i]} denotes the set of 10 values of X at index points along a parti-
cular line. Lexically, the braces declare a local scope of index variables, the Polyhedron

specifies the values that they may take, and the Data-Variable-Expr uses them.

The fundamental construct in LACS is an ACE, and it specifies that data at index
points given by a Src-Expr is moved to the index points specified by a Dst-Expr (so it
is nothing but a glorified MOVE instruction). It is called atomic because there is a single

result value. Recall that an ACE can model a single multi-edge. Examples:

Al1,2,4] => B[0,0,0] a point-to-point transfer (simple)
Al1,2,4] => {j | 0<j<10: B[0,j,0]} multiple destinations (broadcast)
{i | 0<i<10: A[i,i,10]} *=> B[0,10] multiple sources (reduction)

2.1.3 Parallel Assignment Statements

Since an ACE corresponds to a single value, we need a construct to describe multiple
transfers. This is done in LACS by the PAS, whose syntax consists of a polyhedron to
declare and define the index variables, and an ACE within this lexical scope. The idea is
that for each each point in the polyhedron, we have a specific ACE, and the PAS denotes
this simultaneous collection of ACE’s. This notion of simultaneity is at the level of the
specification (an actual implementation may be serialized). Consider the following PAS
(Ex 4 from the preview): {1 | 0<i<=N: X[1,N,i] => Y[i,N]} It is to be read as “for
all 2 between 1 and N, the collection of ACE’s, X[1,N,i] => Y[i,N]”.

2.1.4 Complete LACS Programs

Finally, a complete LACS program is merely a sequence of PAS’s. There are two ways of
doing this: a finite sequence, or a nested loop whose body is a finite sequence of PAS’s.
We do not allow arbitrary loops, but only those that represent a lexicographic traversal

of a polyhedron, and so the syntax is as shown in the following examples.
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{ k | 0<k<=N: lex {1 | 0<i<=k: X[i,1i] => Y[k,k,i]1} }
{ k | 0<k<=N: lex {i,7 | 0<i,j<=N : X[k,i,j] => Y[k,j,1i]1} }

You can check that the first one is a sequence of N gathers on the main diagonal, each
time to index point [k,k], and the second is a series of total exchanges on the columns
one after the other. One important point to note is that the outermost Polyhedron is not
merely a set of index points, but also imposes a specific order of traversal. The keyword

lex is used to emphasize this point (and also to disambiguate the grammar).

LACS has exactly three levels in its block structure as delimited by the braces. Some
index variables are declared at the outermost level (sequence of PAS’s); they are similar to
index variables in a nested loop program. They are called temporal indices and belong
to the temporal polyhedron. Variables declared at the level of a PAS are called parallel
indices, and belong to the parallel polyhedron. Within an ACE, index variables can
be declared either as source indices or destination indices, and constitute the source
or destination polyhedra, respectively. You can see that the scope of a source polyhedron
ends before the Transfer-0p, that of the destination polyhedron can only begin after a
Transfer-0p, and that of a parallel polyhedron extends on both sides. Scope rules are
lexical, so that all outer indices are visible in an inner scope. Also note that an index
variable may be used in two different ways within its scope—to construct an Index-Expr,

and to define the linear inequalities of an inner polyhedron.

2.2 Examples

At this point I recommend that you return to the first six examples and study them
carefully. Observe why the first three are single ACE’s while the others are PAS’s, and

note the manner in which the index variables are used to construct the index expressions.

For the following examples, we use an operation called scan, or parallel prefix, which
has been identified as an important class of communications (see the book by Bleloch [3]
for an excellent discussion). A scan of a vector, X, is defined as the vector Y, and is given
by Y; = E;’:l X, (the summation represents an arbitrary associative and commutative
operator). Like reductions, scans combine some aspects of communication and computa-

tion with a binary operator; the difference is that in a scan we also want all the partial
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results. They can be implemented efficiently on parallel machines (in ©(logn) time), and
most vendors now provide library routines for them. Let us now look at a few LACS

programs with scans.

Example 1 Let us write a scan on the main diagonal, using the same conventions as
before. This must be a PAS (since we need multiple result values), whose ACE’s are
enumerated by, say, 1 = 1...N. The i-th ACE produces the result for X[1,1i], which is a
reduction of the preceding values on the diagonal, i.e., all values X[j,j], where 0 < j < 1.
This gives us the following PAS:

{i | 0<i<=N: {j | 0<j<=i: X[j,jl1} +=> X[i,il}

Example 2 Now consider the problem of specifying a scan on the fifth off-diagonal, i.e.,
the points [6,1], [7,2] ... [N,N-5]. The destinations are all points of the form, [1+5,1],
where i ranges from 1 to N-5. Hence our PAS will have the form,

{i | 0<i<=N-5: Src-Expr +=> X[i+5,i]}
Observing that all the points preceding [1+5,1] (and on the same off-diagonal) are of
the form [j+5,7], where 0 < j < i, the solution is

{i | 0<i<=N-5: {j | 0<j<=i: X[j+5,j]1} +=> X[i+5,1]}

Example 3 Finally, consider the problem of specifying independent scans on all off-
diagonals in the lower triangular region. This can be done simply by replacing the 5 in
the above PAS by an new index variable, k in the parallel polyhedron, which ranges from
1 to N-1. Hence, we have the following solution.

{i,k | O0<k<N;0<i<=N-k: {j | 0<j<=i: X[j+k,jl1} +=> X[i+k,i]}

3 Exercise Problems

Using the same kind of reasoning as above, express the communication actions shown
below in LACS (hint: a single PAS is required for each of them). As with the above
examples, try to first identify the number of results (i.e., the number of ACE’s), then
choose indices for them, and then work out the details of the individual ACE’s. You will

soon get the hang of it and begin to have fun. Pictorial descriptions are given in Fig 2.

1. A total exchange on the main diagonal.
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Figure 2: Exercise Problems: A Pictorial View

2. An all-to-all broadcast on the main diagonal.

3. A total exchange on row N.
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4. Multiple independent total exchanges on all rows.

5. A product scan on row N.

6. The same scan, but the results are to be broadcast along the respective columns.
7. Independent scans on all columns.

8. Two dimensional scan (each point gets the product of all points that are above and

left of it). In the figure, we show this serialized in order to avoid clutter.

9. Reverse scan on each row in the upper triangular region (each point in the upper
triangular region gets the product of all values on the same row and to its right).

This too is shown serialized.

The solutions are shown in Fig 3. I have taken the liberty of mixing up the answers
and also removing the * from all the Transfer-0p’s. This has been done for two reasons.
I feel that somewhat different skills are needed for writing your own programs, than for
reading someone else’s’” solutions*. There will be ample opportunity to develop these latter
skills when we come to static analysis, but for now I'd like you to get the synthesis skills.
Second, though there are many equivalent solutions, there are certain transformations
that you can apply to a PAS. I conjecture that there is a unique normal form for PAS’s. If
you get substantially different solutions, I would love to hear about them. Can you think
of any other interesting communications that you want to express? Write to me, and we’ll

try it. Then I’ll give you an excuse for why we can’t do it in LACS. :-)

4 Abstract Representation of LACS Programs

Before addressing the problem of analysis of LACS programs, we need to develop an
internal representation. First consider, the two ACE’s given below, which specify the

same communication, namely that A[0] is broadcast to all the diagonal values of X.

Af0]=>{i,j | 0<i,j<=N,i=j: X[i,jl} and AT0]=>{i | 0<i<=N: X[i,il}

*For this you have to see things exactly their way—i.e., put yourself into their frame of reference, and
use their conventions, etc.
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{i,j | 0<i,j<=N : {i,j,k | 0<i,k,j<=N: {i | 0<i<=N:
X[i,i,31 => Y[j,j,1] X[k,i,j] => Y[k,j,i] {3 | 0<j<=1i: X[N,jl%}
t } => X[N,i]}
(a) (b) (c)
{i,j | 0<i<=j<=N: {i | 0<i<=N:
{k | j<=k<=N: X[i,k]} {j | 0<j<=i: X[N,jI1}
=> X[i,]] => {k | 0<k<=N: X[k,il}
} }
(d) (e)
{ {i | 0<i<=N:
i,j | 0<i,j<=N: X[i,1] =>
b }
(f) (8)
{i,7 | 0<i,j<=N: {i,k | 0<i,k<=N:
{k,110<k<=1,0<1<=j:X[k,1]} {j | 0<j<=1i: X[j,k1?}
=> X[1i,j] => X[i,k]
} }
(h) (1)

Figure 3: Solutions to the exercises (jumbled)

At first glance, it seems that the first ACE has a two dimensional polyhedron (it has
indices, 1 and j), while the second one has a one-dimensional polyhedron. However, the
constraints in the first ACE indicate that there is a redundancy—although embedded in
a two dimensional index space, the polyhedron is really a line. Such redundancies are not
allowed. Also, domains such as i,j | 0<i<10, as well as i,j | 1>j; 1<j+10, are also
not allowed. The first one declares a variable, j but does not constrain it in any way,
so the domain is unbounded along the £; axis. The second one is similar, except that
direction in which the domain is unbounded is +[1, 1]T. Both these polyhedra have what

is called a lineality space.



LACS: A Language for Affine Communication Structures 13

Convex polyhedra have two dual representations. With a constraint representation,
they can be viewed as the set of points that satisfy a finite number of linear inequalities,
{z : Az > b}. With the parametric representation, a polyhedron is the set of (a particular
form of) linear combinations of its extremal points, {z = Ry : p > 0}. There are standard
libraries for converting between the two representations. In the parametric representation,
redundant indices are detected easily by checking if the matrix R has full column rank.
The lineality space is detected easily in the constraint representation by testing if the
matrix A has full column rank. By appropriate preprocessing, any redundant indices
and/or lineality spaces can be removed automatically, and for further analysis we assume
that R and A are of full column rank.

We also assume (without loss of generality) that index variable names are distinct,
and let z;, z,, z, and z; denote the vector of temporal, parallel, source and destination
index variables, respectively. When necessary, let zy, = [z, zp]T and z = [z, zp, z]" and
similarly, zo = [Zt,zp,zd]T. The temporal polyhedron, D; is specified as Tz; > t, the
parallel polyhedron D, as Pz;, > p (note that temporal as well as parallel indices may
be used here), and the source and destination polyhedra (D, and Dy) as Sz > s and
Dzy > d respectively (note how z; and z; are used here allowing you to specify constraints

on all the outer indices).

Example 4 To illustrate the notation, consider, the following LACS program.

{i,j 1 0 <1 <=3 <=1N : lex
{k | i<=k<=j: {I,m | 0<=1,m <=k : X[i+l,m-k]}
+=> {r | 0 <=1 <=k : Y[i+j,r,r] Y r}
}
}

. 4T T T T . T . T
Here, z; = [z,]T] v zp =1kl 2z =[L,m] , za =[r], 2ty = 1,5, k], 21 = [t,7,k,[,m]
and z = [7,7, k,r] . The temporal, parallel, source and destination polyhedra are, respec-
tively, as shown below.

-1 0 1
’ 01 -1
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000 1 0 ; 0 ;
000 0 1 0 000 1]/ 0
> >
001 -1 0 %—0 and [001—1]k—0]
001 0 —1 0 r
m

Notice how we have treated the parameter N as a constant—in general, it is simply
another index variable (at yet an outer level). The parameters belong to an unbounded
polyhedral region*. Also note that in a LACS program, the linear inequalities defining a
polyhedron impose constraints in addition to those imposed by the outer scope. Hence,
at the innermost level, the set of all the constraints on the visible variables is given by
what are called the complete source/destination polyhedra. Observing that you can

easily partition the columns of the above matrices into submatrices of appropriate sizes,

P =[P|P,)], S = [51]5:]55] and D = [D;]|D4| D3], the complete polyhedra are given as

T 0 0 Zt t T 0 0 Zt
Pl P2 0 Zp Z p and Pl P2 0 Zp Z
Sl SQ 53 Zs S D1 D2 D3 Zd

QW e~

Now consider the two Data-Variable-Expr’s that occur in a LACS program. Fach
one consists of the name of a multidimensional array variable, and a list of index-expr’s
which yield an affine indexing expression. We denote the source indexing function as
Az + a and the destination indexing function as Bzy 4+ b, where A and B are matrices of
appropriate dimensions and @ and b are column vectors. A and B may be partitioned into
appropriate columns that access the temporal, parallel, source and destination indices

respectively, A = [A;|A3|A3] and B = [B;|B3|Bs].

Definition 1 Any LACS program may be written as follows (the & is the optional, binary
reduction operator, if present).

T 0 0 Zt
P1 P2 0 Zp Z
Sy Sy S <s

c X(Arze + Aszp + Aszs + a)

n S o~

*One consequence of this is that for any constant vector p, there is always a “large enough” problem
size—one for which the other polyhedra (temporal, parallel, source and destination) contain at least two
points separated by p. This will be useful later on.
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T 0 0 Zt t
b = P P, 0 zp | > | p | Y(Bizi+ Bazp + Bsza + b) (1)
D1 D2 D3 Zd d

A single PAS may be represented as
P2 0 Zp

SQ 53 Zs

P2 0 Zp

={ln

This description may be obtained directly from an abstract syntax tree of the program.

>

p] IX(AQZp+A3,ZS—|-CL)}

S

>

p ] .Y (B2, + Bsza + b)} 2)

A final bit of notation: for a linear map, L : Z" — Z™ its null space, N(L) and range
space are given by N(L)={z€ 7" : Lz=0} and R(L) ={z € Z™ : Jx € 7", z = La}.
Also, if the rank of the transformation is r, L is said to be quasi unimodular iff the ged
of the determinants of all r x r square submatrices of L is 1. One can show that L is a
1-to-1 function on integral points iff it is quasi unimodular (this is a technicality and is
needed because we are not really dealing with vector spaces but lattices—integral points).
We assume for the analysis, that the matrices Ay, Ay and As (and likewise the three B
matrices) are quasi unimodular. This reduces the expressive power of the language, but
is not a serious limitation; it may be possible to extend LACS to address collections of
indices which are linearly bounded lattices (LBL’s [21]) but this is a matter for future

work.

5 Static Analysis I: Type Checking

We now address the problem of compile time detection of the properties of a given LACS
program. As mentioned earlier, we restrict the analysis to the level of a single PAS. A
complete analysis involving the temporal components is beyond the scope of this paper,
but must necessarily build on the analysis presented here. Note that many important
properties of interest such as conflicts, message time estimates, etc., depend on the set of
communication activities that are to occur at a single instant of time, and a PAS is the

syntactic construct in LACS that contains the relevant information. In order to motivate
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the discussion, consider the following LACS program, each of which illustrates a particular

problem.

Example 5 A[0] => {i | 0<i<=N: X[0,N]} This ACE apparently specifies broad-
cast (the Dst-Expr contains a one-dimensional polyhedron), but the destination is really
a single point, X[0,N].

Example 6 {i | 0<i<=N: X[10,0]} *=> A[N] This is the dual-—an apparent reduc-
tion, but there is only one point in the Src-Expr.

Example 7 {i | 0<i<=N: X[i,i] => X[0,0] } This PAS has multiple ACE’s which
write to the same destination, leading to a write conflict.

Example 8 {i | 0<i<=N: X[i] => {j | 0<j<=N-i : Y[i+j]} } This is another,
subtle, example of a write conflict (it may be helpful to draw a diagram).

Example 9 {i | 0<i<=N: X[0,0] => X[i,0] } Thisisa PAS where different ACE’s
have the same source value—the program really specifies a broadcast but as a collection
of independent ACE’s. It should really be written as A[0] => {i | 0<i<=N: X[i,0]}

Definition 2 A PAS is said to have a false broadcast (cf false reduction) if there is
any multi-edge in the corresponding multi-graph, whose destination (cf source) node set
contains elements that are repeatedly enumerated.

A PAS is said to have a write conflict if there are distinct multi-edges whose desti-
nation sets have a non-null intersection.

A PAS has an undeclared broadcast if there are distinct multi-edges with the
identical source nodesets.

A PAS is said to be well formed if it has no false broadcasts no false reductions, no
write conflicts and no undeclared broadcasts.

Theorem 1 A PAS has a false broadcast iff Bs is not of full column rank.

Proof: See Appendix II |
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Theorem 2 A PAS has a false reduction iff Az is not of full column rank.
Proof: Analogous to Th 1. ]

Corollary 1 By projecting the source (cf destination) polyhedron along N(As) onto R(As)
(¢f N(Bs) onto R(Bs)), and properly rewriting the accessing functions in the Src-Expr
(¢f Dst-Expr), any false reductions and broadcasts may be automatically removed.

Observe that for Ex 5 and Ex 6 above, we have Bs = [0,0]" and As = [0,0]", both of
which do not have full column rank, and there is a false broadcast (reduction). Both their
null spaces are spanned by [1], so we project the polyhedron in this direction, yielding
a polyhedron with a single point. Hence, they may be rewritten as A[0] => X[0,N] and
X[10,0] => A[N] respectively.

Example 10 Consider the PAS, X[0,0] => {i,j | 0<i,j<=10: X[i+j,i+j]1} Here,
11
11

column rank, and so we have a false broadcast. Its null space is spanned by [1, —1]T. Pro-

the destination polyhedron is a 10 x 10 square, and A3 = , which does not have full

jecting the destination polyhedron in this direction (and removing the redundant index)
yields {k | 1<k<=20}. The equivalent ACE is X[0,0] => {k| 1<k<=20: X[k,k]}

At this point, (as you have probably discovered) you will find it very useful to have
a graph paper at hand (an engineering pad or something with grid lines will do just as
well). A useful trick when you read a PAS, is to first draw out all the points in the parallel
polyhedron (usually this is two-dimensional). Then enumerate the simpler one of the Src
or Dst (the one whose polyhedron is a singleton). Finally, you can start enumerating the

points of the other side.

Theorem 3 A PAS has a write conflict iff By is not of full column rank or the range
spaces of By and Bs have a non-trivial intersection, (i.e., R(By) N R(Bs) # {0}).

Proof: See Appendix II |
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Intuitively, the condition, “By is not of full column rank” corresponds to a case when
the entire set of destination points for different ACE’s is the same*, whereas the condition,
R(Bz) N R(B3) # {0} occurs when there is a non-null intersection among the destination
sets of different ACE’s, but the sets themselves may be distinct.

An undeclared broadcast occurs (see Def 2) when there are two or more distinct multi-
edges (i.e., ACE’s), with identical source nodesets (mere intersection will not do—it simply
indicates a “read conflict,” which is no problem). Hence, our first intuition would be that
that this occurs iff A is not of full column rank (a la Th 3). However, this is not strictly

true. There are some subtle issues, as we will see.

First, for Ex 9, i.e., {1 | 0<i<=N: X[0,0] => X[1,0]}, we can check that Aj is
[0, O]T, which does not have full column rank. We can also check that there is an undecla-
red broadcast—so far, so good. However, consider the following PAS, which has exactly
the same Ay. {1 | 0<i<=N: {j | 0<j<=1i: X[j,jl1} *=> X[1i,1i]} We may easily verify
that it is a scan on the main diagonal—a perfectly valid program! The difference is that,
although the index 1 is not used to access X, it is used to define the different source poly-
hedra. We formally characterize this in the following theorem, and we present numerous

examples illustrating the result.

Theorem 4 A PAS has an undeclared broadcast iff 3 l Zp ] spp 70,6 N(A)NN(S).

S

Proof: See Appendix II |

Now, let us look at a few more examples. They illustrate many of the subtle issues that
come up—some very slight changes to the programs produce very different results. You
will find your skills of tracing out the PAS on a graph paper very handy for these examples
Note that all of them have the same parallel polyhedron, namely, 1,7 | 0<i,j<=10. Using

our internal representation (Def 1) this polyhedron is given by

*This is not strictly accurate, but will suffice for an intuitive explanation.
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1 0 1
0 1 ? 1 )
% > henceforth denoted as P L >p
1 0] ~10 j
0 —1 —10

The destination expression in all these examples is simply X[1,j], and for each one, we

also show the internal representation (of the source side only).

Example 11 {i,j | 0<i,j<=10: X[i+j,i+j] => X[1,j]1}

i)l D)

This PAS has no source polyhedron (S, S5 and A3 do not exist), and hence the condition
becomes dp, # 0 € N(A;) which is obviously true, and we have an undeclared broadcast.
It is instructive to draw a figure and verify that all points in the direction [1, —1] will have

the same sources.

Example 12 {i,j | 0<i,j<=10: {k | 0<k<=1i : X[i+j,i+j-k]} *=> X[i,j]1}

P 0 ¢ P ?
. — 1 1| 0 .

or 0 0 1 7 1>11]:X ll 1‘_1] 7 * = ...
1 0|-—1 k 0 k

Now, we have a new index k in the source polyhedron. A, is still the same, but we now
have an S = [53]53] and A;. We can check that N(A) and N(S) are one dimensional
subspaces (spanned by [1, 1,0]" and [0,1,0]" respectively). Their intersection is only 0,
so there is no undeclared broadcast. Use the figures to convince yourself that it really
specifies a scan.

Example 13 {i,j | 0<i,j<=10: {k | 0<k<=i+j : X[i+j,i+j-k]} *=> X[1,j]}

P 0 P ?
N I S B e N N O
1 1| —1 1



20 Sanjay Rajopadhye

This is identical to the previous one except that the bounds of the source polyhedron
are slightly changed. Observe that the right null spaces of S; and A; have a non-trivial
intersection (this is stronger than the condition in Th 4), and as a result we can state
(and also independently verify) that there is an undeclared broadcast.

Example 14 {i,j | 0<i,j<=10: {k | 0<k<=i+j : X[i+j,i+k]} *=> X[i,j]1}

LA P 1 1]0 !
> 11X 1 o0l1 9 * = ...
0 k

Now we have changed A,, so that it has full column rank, and this makes it a perfectly
legal LACS program (it is not exactly a scan, but can be written as the sum of two scans).

Example 15 {i,j | 0<i,j<=10: {k | i<k<=i+j : X[i+j+k,i+j+k]} *=> X[i,j]}

? p ?
. —_— 1 1)1 .

or -1 0] 1 71 >11]:X l ‘ ] 7 * = ...
k 0

Finally, we have an A, which is singular, but and S, which is not. It is very instructive
to study this carefully—it has an undeclared broadcast and illustrates why the condition
of Ex 13 above was too strong. The real condition is exactly as given in Th 4

6 Static Analysis II: Inferring the Communication

Once we have a well formed PAS (either automatically using the results of Ths 1-4, or
after write conflicts, if any, are removed by the programmer), we can readily infer many
communication properties from the PAS. The number of dimensions in the source and
destination polyhedra directly tell us if there is a reduction and/or a broadcast (the
volume of the polyhedra tell us the number of data values involved). Furthermore, the
number of dimensions in the parallel polyhedron and its volume tells us the number of
independent communication events that take place. All this information can be used in
order to determine exactly which routine in the communication library is to be called. A

more interesting result is our ability to detect scan operations, as we now show.
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6.1 Generalized Scan Operations

Recall that a scan of a vector, X, is Y, where Y; = Ej-:l X;. They use the notion of a
prefir in two crucial ways. First, every element in the vector has a prefix which is also
a vector. Second, there is an ordering among the elements of the vector such that their
prefixes are monotonic—the prefix of X[i] is a proper subset of the prefix of X[i+1].
We have already seen numerous examples of how LACS allows you to generalize this to
multiple dimensions, by simply extending the idea of prefixes to polyhedra. Let us define
this formally.

Definition 3 A PAS is said to have a scan, iff there is a family of multi-edges with
an order relation between them such that the corresponding source nodesets are proper
subsets.

Now remember that the multi-edges are labeled by index points in the parallel po-
lyhedron, and their source nodesets are simply the images of the corresponding source
polyhedra, transformed by the affine map (A, a). As a result, we have the following theo-

rem.
Theorem 5 A well formed PAS has a scan iff Ip = [pp, ps] > pp # 0, € N(A).
Proof: The proof is almost identical to that of Th 4. See Appendix II for details. |

Let us take a second look at Ex 12. Here, we see that although the right null spaces of
A and S did not have a non-trivial intersection, the fact that A was rank deficient implies

a scan. Let us study a few more examples.

Example 16 {i,j | 0<j<=i<=10: {k,1 | j<=1<=i<=k<=10: X[k,1]} *=> X[i,j]}

B T r T 3

0o 1| 0 o 1

T S U 0 i

1 0| 0o o . —10 .

0 —1] 0 1 %2 0]:X lg 8‘(1)(1)] 2 =
1 0| 0 —1 l 0 l

1 o]l 1 o0 0

0 o|-1 0] | —10 |
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We can check that since S is of full column rank, there is no undeclared broadcast. But,
Ay is the zero matrix, and so the right null space of A is the two-dimensional subspace
spanned by [1, 0,0, O]T and [0,1,0, O]T, and there is a scan. We will call the nullity of A the
dimension of the scan, so this is a two-dimensional scan. In fact it corresponds to a scan
where every point in the lower triangular region of the [i,j] index space (i.e., 1 > j)
gets the product of everything that is below and to its right. The two bases for the scan
are [1,0] and [0,1].

Example 17 {i,j | 0<=j<=i<=10: {k | i<=k<=10 : X[k,jl} *=> X[i,j]1}

0 1| O 1
1 =1 0 X 0 ?
or -1 0 0|y =] —-10|:X lg (1)‘(1)] J * = ...
-1 0| 1 k 0 k
0 0]-1 —10

We again have an S with full column rank, so there is no undeclared broadcast. This time
N(A) is spanned by [1,0, 0]", and hence we only have a one dimensional scan. Again, we
can verify that it consists of independent scans on the columns (restricted to the lower
triangular region).

Example 18 {i,j | 0<j<=i<=10: {k,1 | 0<=1<=i<=k<=10: X[k,1]} *=> X[i,j]}

This is identical to Ex 16, except that the lower bound on 1 is now 0 (rather than j).
Unfortunately, this results in an S matrix that is rank deficient (j is not used anymore)
and this has an undeclared broadcast. We can remove it by reducing the dimension of the
parallel polyhedron, yielding the following:

{1l 0<=i<=10: {k,1| 0<=1<=i<=k<=10: X[k,1]1} *=> {j| 0<=j<=10: X[i,j]1}}

1| 0 0] 1] ‘
—1] 0 0|, ~10 i
0 1| |+ 1 o1 0
> :
o 0 —1 % 21 ot l()‘()l] kl
~1] 1 0 0
[ 0|-1 0| | 10 ] )
1] o 1 _
—1] o[ ~10 1]o][q
— = |—:
simmEE R
1] -1 0
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Here, we have a one dimensional scan (as N(A) is spanned by [1,0, O]T), but the source
polyhedron for each prefix is two dimensional (there are two free variables in the source
polyhedron). Hence we have a scan where the result (for any row i) is the product of all
the data on the rows below i (within the lower triangular region, of course); this result
is broadcast along the row. Now we see that if we wanted to implement this we would
probably call a library to first reduce each row independently, then do a scan of these
results and then broadcast the results of the scans back along the row. There is freedom
in choosing the exact one dimensional region over which to do the scan. We could do it
on the first column, or we could do it on the diagonal.

6.2 Analysis based on Data Allocation

Recall that data variables in a LACS program are merely multidimensional arrays. Their
indices do not necessarily correspond to rows or columns on a processor grid. All the
analysis presented so far is independent of any such physical interpretation. However, in
data parallel programs, the arrays are allocated to physical processors, and this is what
ultimately determines the communication. Furthermore, there are certain communication
patterns such as scatters, gathers, total exchanges, etc. which rely on such an interpreta-
tion. For example, consider the PAS, {i | 0<i<=N : X[1,i] => Y[i,1]}

If the two dimensions of X and Y are interpreted as the two axes of a processor grid, this
represents a set of point-to-point transfers. However, if the first dimension is the processor
id, and the second is a local address, this is a scatter from processor 1, and if the second
dimension represents processor id’s we have a gather by processor 1. Similarly, the PAS,

{i,j | 0<i,j<=N : X[i,j]l => Y[j,i]
could be a transpose, or a total exchange (in the light of this, it may be useful to briefly

review Exs 4-6 from the sneak preview).

We adopt the standard notation [16] that the first m (typically 2) components of
an index expression are the processor id, and the [ remaining ones correspond to local
memory address. Thus, the array reference X|[z] or X[z,,|7] refers to the z-th element

element of array X which resides on processor z,, and has a local address of z;.

Definition 4 Given a LACS program, we define its processor projection as the LACS
program obtained by discarding all except the first z,, indices of each data variable. Along
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the lines of Def 1, the internal representation of the processor projection is as follows:

T 0 0 24 t
P P, 0 2o | > p | X(Alze + ALz, + Aszs + d)
Sy Sy S Zs S
T 0 O 2 t
P = P P, 0 zp | > | p | :Y(Bizi+ Byz, + Byza + 1) (3)
D, Dy Ds 24 d

where A" = [A]|A}|AL] and B’ = [B;|B,|BS] (and ¢’ and V') are simply the first m rows
of the A and B matrices (and a and b), respectively.

We now have the following results directly from Ths 1-4 when applied to the processor
projection of a PAS.

Result 1 If the processor projection of a well formed PAS has a false broadcast, it implies
that there are multiple destinations of the broadcast that reside on the same processor.
Furthermore, the number of dimensions in N(A}) gives the number of indices that can
be eliminated from the destination expression in the original ACE—the result is simply
copied by the destination processor.

We can analogously determine the true nature of reductions.

Result 2 If the processor projection of a well formed PAS has an undeclared broadcast,
it implies that a single source processor is sending to multiple destinations and this is a
scatter (since the original PAS is well formed). Again, the dimensionality of N(A") N N(.S)
gives the number of dimensions in the scatter.

!

The dual is that there is a gather iff 4p = [pp,pS]T,pp #0: , | p = 0. As before,

S
the dimensionality of N(B’) N N(S) gives the number of dimensions in the scatter.

7 Conclusions

In the past, researchers identified common communication patterns such as scatters, ga-
thers, reductions, etc., and developed optimal libraries for specific topologies [2, 10]. The
problem of deciding which library routine to use was left to the user. Li and Chen exten-

ded this in two main directions [13]. Their work was in the context of compiling massively
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parallel programs to hypercube. They assumed that the multidimensional meshes of the
virtual index space was first embedded in the cube, and the program was compiled to this
virtual mesh. They first specialized the libraries so that only a subset (corresponding to
one or more dimension of the virtual mesh) could participate in a particular communi-
cation, and used accurate cost measures for each library call. Their second contribution
was to show how the library calls could be generated automatically through a dependency
analysis. Gupta and Bannerjee [9] used these results to address the optimal data parti-
tioning problem. Essentially they formulated the choice of the data alignment (which was

assumed to be given in Li and Chens’ work) as an optimization problem.

Knobe, Lukas et al [11, 12, 15] have addressed the problem of array allocation to reduce
residual communication. Their work is based on alignment preferences which are deter-
mined from the access patterns in the program. They characterize an allocation as good
or bad depending on whether it causes communication or not—a simple binary metric.
Similarly, Ramanujam and Sadayappan [18] present an analysis of affine dependencies in
a program, and show that there is no communication if a certain system of diophantine

equations has a solution (of a particular form).

Recently, Chatterjee et al [6] have addressed the problem of optimal array alignment.
They use earlier results by Gilbert and Schreiber [8] showing how to minimize the cost of
evaluation of an expression tree. They also use certain metrics of the architecture, and they
classify the communication into three kinds—nearest neighbors (shifts), tree (reductions,
scans, spreads) and unstructured (transpose, stride changes, etc.). They show how to solve
the problem of optimal array alignment (i.e., choosing the axis, strides and offsets that

minimizes communication Cost).

I’'m sure that there has been other work on compiling for communication, and if you

know of any related work, I would appreciate if you drop me a line.

The work presented here is complementary. We have (for the moment) looked at the
problem of merely specifying the communication in an abstract, architecture independent
manner. The background of this was in our language LaRCS [14] which was developed
in the context of mapping. We noted that most of the previous work in mapping used a
graph theoretic model of the computation [5, 20], and did not explicitly describe temporal

information. LaRCS was developed to address this limitation, and includes the notion of
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collecting edges into groups that are simultaneously active, and of giving an order for this

activity.

LACS extends this by using multi-graphs (which lets us describe broadcasts and re-
ductions), and in using convex polyhedra and affine transformations. We found LACS is
surprisingly simple yet powerful—many practical communication patterns can be expres-
sed as APL-style one-liners. In this paper, we have shown how properties of a Parallel As-
signment Statement in a LACS program can be automatically inferred, by using standard
results from linear algebra, convex polyhedra and affine transformations. We anticipate
that this method of static analysis can be used to first develop an accurate cost model
of communication. Rather than simply using the number of non-local accesses as in the
past, we expect that we can develop a true cost metric based on the machine architecture,
distance, volume, presence of conflicts, etc. Using these accurate cost measures, we expect
that the data partitioning problem can be formulated as an optimization problem. We

believe that this will address the short, medium and long term goals as stated in Sec 1.
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Appendix I: LACS Syntax Highlights

Polyhedron ::= Index-var-list ‘|’ Constraint-list
Index-var-list ::= (a comma separated list of Index-Variable)
Constraint-List ::= (a semicolon separated list of linear inequalities)

Some additional shorthand is permitted, as shown in the examples.

Data-Variable-Expr ::= Data-Variable ‘[’ Index-Vector ‘]’
Index-Vector ::= (a comma separated list of Index-expr)

Index-Expr ::= (an add-op separated list of Term)

Term ::= Constant | Index-Variable | Constant Index-Variable
Transfer-op ::= ‘=>’ | op ‘=>’ (op is a reduction operator)
ACE ::= Src-Expr Transfer-Op Dst-Expr

Src-Expr ::= Dst-Expr

Dst-Expr ::= ‘{’ Polyhedron ‘:’ Data-Variable-Expr ‘}’

Dst-Expr ::= Data-Variable-Expr (Polyhedron has 0 dimensions)

The previous rule is a shorthand for the case when polyhedron is a single point, as
also the second rule below (the ACE consists of a single source and/or destination point,

or th PAS consists of a single ACE):

PAS ::= ‘{’ Polyhedron ‘:’ ACE ‘}’

PAS ::= ACE

PAS-list ::= (a semicolon separated list of PAS)
PROG ::= ‘{’ Polyhedron ‘:’ ‘lex’ PAS-list ‘}’
PROG ::= PAS-list
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Appendix II: Proofs

Proof of Th 1:

It B3 is not of full column rank, it has a non-trivial right null space. Hence,
dp # 0 : Bsp = 0. Hence, for some large enough problem (see footnote, pp 14),
Jdzq € Dy : 2, = zq+p € Dy. Thus, for any z,, Y [Bzz,+ Bsz4+b] = Y[Baz,+ B3z, +b],

and the same destination index is repeatedly specified. So we have a false broadcast.

If the PAS has a false broadcast, the same destination index must be multiply
specified within the destination polyhedron of some ACE, i.e., 324, 2, € Dy, zq # 2,
such that for some z, € D,, Byz, + Bszq + b = Bz, + Bsz), + b. But this implies
that Bs(zq — 2z;) = 0, i.e., Bs does not have full column rank.

Proof of Th 3:

=1 (B3 not full column rank implies write conflict)|. If By is not of full column

rank, it has a non-trivial right null space, i.e. dp : Byp = 0. So dz, € D,, st, for
some large enough problem, 2/ = z,+p € D,. Hence for all 24, Y[Byz, + B3zq+b] =
Y[Byz, + Bszq + b]. Thus the same destination index is repeatedly specified in dif-
ferent ACE’s within the PAS, and we have a write conflict.

=5 (R(B2) N R(B3) # {0} implies write conflict) || Let Bz = Bsy # 0 for some
non-zero z,y. Consider the destination points, Baz, + B3zq+b and Byz, + Bz + 0,

where Z]/? =z, +x and 2z, = z; — y. Now
Byz) + Bszj+b = By(zp,+x)+ Bs(zg—y)+ b
= DByz,+ Byx + Bszg — Bsy + b
= DByz,+ Bszqg+0b

Hence the two destination points are the same and we have a write conflict.

< (write conflict implies one of the two conditions above)|If a write conflict exits,

we have z,, z,, 24, 2, Where 2z, # 2, such that they write to the same destination,
i.e., Byz, + Bazg+ b = Baz, + B3z + b. Hence, By(z, — Z;) = Bs(zl, — zq) = p (say).
So p belongs to the range space of both By and Bs. Now if p = 0, then 2z, — 2, is
a non-zero vector in the right null space of B;, and so it does not have full column
rank. Otherwise, the second condition is satisfied. |

Proof of Th 4: Note that the condition can be written as dp = [pp,ps]T,pp # 0 :
Ay A . .
l > ‘2| p = 0. From Def 2, we know that there is an undeclared broadcast iff
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the source nodesets for two distinct multi-edges are identical.
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Let there be an undeclared broadcast. So 3z, 2/, € Dy, for 2, —z, = p, # 0, such
that the images, under the affine map (A, a), of the two polyhedra, Syz, + S5z; > s
and Sz(z,+pp)+ S3zs > s, are the same. Since, from Th 2, A3 must be of full column
rank (otherwise there is a false reduction which can be automatically removed) the
two images are identical iff there is a bijection between the source polyhedra. Hence,

Vzs: Szzs > 8 — Sazp,, 328 = f(zs), such that Sy(z, + p,) + S5f(z5) > s and

Agzp + Aszs +a = As(z, + pp) + Asf(25) + @
i'e'v AS(ZS - f(Zs)) = AQ/OP

Since As is of full column rank, this implies that f(zs) — 2z, is a constant, say ps and
the bijection is really a translation. If we let p = [p,, ps]T, we see that p € N(A). Now,
the polyhedron, S3zs > s — S5z, translated by pj, is given by Sszs > s — S22, + S3ps,
and this must be the same polyhedron as Ssz, > s— S5z, — Sap,. Thus, Sz2p,+ Ssps =
0,i.e.,p e N(S).

Let p = [py, ps]T € N(A)NN(S), and p, # 0. For any z, in the source polyhedron
of some ACE, z,, the point z; + p, belongs to the source polyhedron of the ACE,
zp + pp (since p € N(S)). Conversely, for any point, z/ in the source polyhedron of
ACE, z,, z; — ps belongs to the source polyhedron of ACE, z/ — p,. Hence the two
polyhedra are identical, except for translation by p;. Now, since p € N(A), they also
have the same image under the transformation, (A4, a), so we have an undeclared
broadcast. ]

Proof of Th 5:

If there is a scan operation, 3z,,2, € D,, for 2z, — z, = p, # 0, such that the
image of the polyhedron, Sz, + S3zs > s under the map (A, a), is a proper subset
of the image of S3(z, + p,) + Sszs > s. This implies an injective (not bijective, as in
Th 4) translation by some constant p,, and hence, [p,, pS]T e N(A4).

Let p = [pp,ps]T € N(A), and p, # 0. Since there in so undeclared broadcast,
we know that Sp > 0, (we can choose the sign of p appropriately). Now, any z, in
the source polyhedron of some ACE, z, satisfies Sz, + S3z; > s. Subtracting Sp
from the RHS and simplifying, Sa(z, 4+ pp) + S3(zs + ps) > s, i.e, z5 + ps is in the
source polyhedron of the ACE z, 4 p,. Also, since Ap = 0, the nodeset of the first
ACE is a proper subset of the second, and we have a scan. |
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