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Abstract

We consider here the optimum design of a wing profile, with respect to aerodynamical and elec-
tromagnetical criteria and constraints. In these optimization design problems we have to face
constraints of a very different nature (such as electromagnetic, aerodynamic, geometric,...).
A new approach algorithm given by Herskovits has allowed us to solve succesfully the problem
of finding a wing profile with mintmum radar cross section under aerodynamic constraints on

lift.

OPTIMISATION DE LA FORME D’UN PROFIL
D’AILE POUR LA VISIBILITE RADAR SOUS CON-
TRAINTE AERODYNAMIQUE

Résumé

On considére ict le probléme d’optimisation de forme d’un profil d’aile d’avion, pour minim:-
ser sa visibilité radar, tout en satisfaisant certaines contraintes aerodynamiques et géometriques.
Les variables d’optimisation sont la forme du profil d’aile et l’épaisseur de la peinture ab-
sorbante. Les contraintes sont géometriques (rayon de courbure par exemple) et aérody-
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namiques sur la portance en approzimation potentielle.
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Shape Optimization, Optimum Design, Finite FElements, Electromagnetics, Coating Paint,
Fluid Mechanics, Aerodynamical Constraints, Partial Differential Equations, Nonlinear Op-
timization.



CONTENTS

Contents

1 Introduction

1.1  Optimumdesign problems . . . . ... .. ... .............
1.1.1 Thecost function . . . . .. ... ... ... ... .. ......
1.1.2 Theconstraints . . . .. .. ... ... ... ... ... . ...,

1.2 Openproblems . ... ... ... . ... ... . ... ...

2 The continuous wave problem
2.1 Thestateequation . ... ... ............ ... .......

3 The cost functional

4 Differentiability of wave problem

4.1 Domain variations. . . . . . . . . . .. it e e e e e e e
4.2 Computation of the derivative . . . .. . ... ... ........... .
4.3 Optimality Conditions . . .. ... .. ... ... ............

5 Discretization of wave problem

5.1 Discrete stateequation . . . . . . ... ... L L Lo,
5.2 Computation of the gradient of cost function . . . . ... ... ... ..
5.2.1 1) Discrete state equation. . ... .. ... ...........
5.2.2 i) Discrete adjoint equation. . . . .. ... ...........
5.2.3 iii) Gradient of the cost function. . . . . ... ... ... ...
5.3 Relation between continuous and discrete problems . . .. .. ... ..

6 The use of splines

7 The aerodynamic constraint
7.1 Formulation of the aerodynamic problem . . . . ... ... .......

7.2 Discretization . . . . . . . . . o v 0 e e e e e e e e e e

8 The Optimization Method
8.1 General nonlinear optimization problem . .. ... ... ........
8.2 The Kuhn-Tucker optimality conditions . . . . ... ... ... .....
8.3 The Herskovits’ algorithm . . . .. ... ... ... ... .. ... ..

~ ov Ov Ov N

©



4 CONTENTS

9 The Absorbing Paint Problem 47
9.1 The boundary condition for a coating paint . . . ... .. ... . ... 47
9.2 Variational formulation and approximation . . . . . .. ... ... ... 48
9.3 Computation of the discrete gradient . . . . . . ... ... ....... 50

9.3.1 i) Discrete state equation. . . ... ... .. .......... 50
9.3.2 ii) Discrete adjoint equation. . . . .. ... ... .. .. ... 50
9.3.3 iii) Gradient of the cost function. . . . .. ... ... .. .... 51

10 Numerical exemples 53

10.1 Geometrical optimisation . . . . .. . ... ... ... .. ... 53
10.1.1 Weakly constrained problem . . . . .. .. .... e e e e 53

10.1.2 Strongly constrained problem . . ... ... ........... 33

10.2 Paint thickness optimisation . . . . ... ... . ... ... ..., 54

11 Conclusion 63

References 67



1 Introduction

We consider here the optimum design of a wing profile with respect to criteria and con-
straints of very different nature such as geometric, electromagnetic and aerodynamic.
Our purpose is a methodology to reduce the radar visibility of a wing profile. The con-
straints on the geometry concerns the maximum and minimum thickness, radious
of curvature; the aerodynamic constraints act on the lift, drag, skin pressure, ...

Figure 1.1: The wing profile

1.1 Optimum design problems

We shall use for our optimum design problem the notation of optimal control theory.
The controlis a curve I' = S in R? : S represents a plane airfoil in dimension two. S
belongs to a family of admisible designs S,q4. S.4 includes the design constraints on S.

The wing profile I is the border of S.

The state of the system ys is solution of a partial differential equation written on the
exterior of S. Here ys is the solution of Helmholtz’ equation in R? — S.

1.1.1 The cost function

We call it j(S) and it depends on S also via ys:

Here it will represent the radar visibility of S with respect to the amplitude ys of the
wave.

1.1.2 The constraints

We consider on S two types of contraints: geometrical and aerodynamical.
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The geometrical constraints: They are for example:

e S has only one connected component.

e S5 CSCS,, with §;, S; being fixed.

Fixed length of the wing profile.

Fixed angle at the trailing edge P.

The changes of curvature are not large.

length

Figure 1.2: The geometrical constraints

The aerodynamical constraints: They would be for example:

o Let A(S) be the lift coefficient of the wing for a fixed angle of incidence . We
can consider a constraint of the type A(S) > constant.

e Constraints on the pressure field on I' to prevent boundary layer separation.

The geometrical constraints are easily considered and described. Aerodynamical con-
traints are much harder because the dependence on the control S is given by Partial
differential equations of fluid mechanics.

Here we consider only one aerodynamical constraint on the lift to be computed through
a potential flow approximation. See [14]{15][17] for the computations of some aerody-
namical magnitudes that can be used as constraints in the optimum design problem.
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P

Figure 1.3: The lift

For the optimization algorithm with contraints we have chosen an algorithm due to

Herskovits because it is robust and efficient. It generates a sequence of feasible designs

with decreasing values of the cost. It is very important in optimum design problems

that the sequence of all iterates be feasible.

1.2 Open problems

In control problems for optimum design we are interested to obtain the following results:
i) Existence of optimal domain.

ii) Characterization of optimum.

iil) Numerical approximation of the solution.

For 1) and ii) it is necessary to know the derivative of a function

J:8a4 — R
S — 3(S5).
But we have no vector space structure on the family of feasible designs S,4, so we must:
e Givea seﬁse to the expression ”S — j(S) differentiable”.
e Prove the existence of a derivative j'(S).

o Compute an useful expression for j'(S).

The computation of j'(S) can be also useful for the numerical approximation, because
it gives information of how to decrease the cost by modifying S.
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2 The continuous wave problem

2.1 The state equation

The scattering of the 2D plane stationary wave 2(Z) = e¢¥Z by an obstacle S in a
homogeneous medium is described by the Helmholtz equation with the Sommerfeld
radiation condition at infinity.

Ays+k*ys = 0 inR*-S
ys = z onl (2.1)

lim, .o, /2 (%’g—ikys) =0

Figure 2.1: The incident wave

Here ¥ = (z,y) is a point of R?, r = |Z|, k = (k cosa, k sina) is a wavevector of the
incident wave 2, where « is a an angle of incidence, and the complex valued function
ys = ys(&) is the diffracted wave.

We can use for ys the following equivalent form of the Sommerfeld condition [5]:

lim /re * ys(r,8) = A(8). (2.2)

r—00

The term A(8) is the radiation diagram of the obstacle S, i.e. the radiated power at
infinity.

Another form of the Sommerfeld condition allows us to work with bounded domains.
It consists in the introduction of a disk D of center 0 and radius R large enough in
order to have



10 2 THE CONTINUOUS WAVE PROBLEM

Figure 2.2: The diffracted wave

SCD, VS € S (2.3)

Then the computational domain associated to the wing profile S is 2 = D — S. We
denote the family of feasible computational domains as:

Qi ={0=D-5: S €Su}. (2.4)

Let 052 be the border of 2. It is made of the wall of the wing dS and of the boundary
of the disk:

o0 =dSUdD =T UaD. (2.5)

The way to obtain a boundary condition on @D equivalent to the Sommerfeld one, is
the following. We suppose that the value y(R,8) of the wave on 9D is known. In that
case the solution of the problem:

Ay+kly = 0 out of D
y = y(Ra 9) 0 € [0,27('] (26)
lim, o, 71/2 (g‘z -2k y) = 0
is (see (18] for example) of the form:
., (1) 2m
y(r,0) = - 3 L B (k) [*" o5 (8 — 0) y(R, ') d¥', (2.7)

= HV(kR) Jo
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Figure 2.3: The computation domain

where H{V are Hankel’s functions of first kind, with the convention that

o, ao oo
San=5+)_ an (2.8)
n=0 2 n=1

Differentiating with respect to r, and substituting » = R, we have:

%(R, 0)=-3 | " ma(8 - 0) y(R, &) do’ (2.9)

n=0
m,(0) = cos né. (2.10)

Then the boundary condition verified on 8D is an integrodifferential Dirichlet-Neumann
condition:

dys _
O —Mys on 9D, (2.11)
— [~ / / ’
Mys(R,80) =Y /0 ma(0 — 8')ys(R,8') d6'. (2.12)
n=0

Relations (2.2) and (2.7) can be used to compute the radiation diagram, once we know
the values of diffracted wave y on dD. For r large enough, we have indeed
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VT y(r,0) |~ A(6). (2.13)

Then we compute the radiation in the sector © = [6,, 8;] by

/e | y(r,0) |* df. (2.14)

It is easier to work with homogeneous conditions at the border dS. We introduce
ws = yYs + 2, the total wave (incident and diffracted wave). We see that the total wave
is solution of the following system of equations:

Aws + kK*ws = 0 in
ws = 0 on

2.15
s = —Muws+(Mz+§Z) ondD. (215)

3 The cost functional

The radiation at infinity is computed from the values of ys on dD. Let O be an open
set of regular boundary such that:

SCOCD, VS € Su (3.1)

e c aD. (3.2)

Assume that the disk radius R is large enough. The radiation at infinity in a direction
6 € [0,2 7] can be approximated by | ys(R,0) |. Then, for minimizing the radiation at
infinity in the arc [0, 0;] we introduce the cost functional j defined by

i(S) =/99 | ys(R,0) |* d =/e lys |2 dO. (3.3)



oD

Figure 3.1:

The observation region
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4 Differentiability of wave problem

To characterize the optimum domain that minimizes the radar visibility, and to com-
pute descent directions of the cost function like in optimal control theory, we must
conveniently express the idea of variation of the state and the cost function with re-
spect to the domain. To do this, we need to introduce some vector space structure
associated to the set of feasible domains, which are our control variables.

Here we use the method of distributed variations, that briefly, consists at the following:
We consider an initial domain 2 € " (n = 2 in our 2D problem). For

u: R — R

vector of displacements in R", we define

Q+u={z+u(z), z€N}

Then we consider the elements u as variations of §) and we define the ”derivative of ;
with respect to 2”7 as follows:

u— Q+u—ygey — J(Q+u)=J(D+ ¥, yo+u) (4.1)

Now, the control variable is u defined on a vector space, and we look for a development
of the form:

J(Q+u)=35(2)+ L(u) +--- (4.2)
or equivalently
J(Q4u)=35(Q) + ;' (Du) + o(u). (4.3)

Here L = j' () is a linear mapping, and is the derivative of j with respect to €, and
o is such that
o) _ (4.4)

m =
Jv}—o0 l v l

4.1 Domain variations

In [3] we find the following lemma:

Lemma 1 For every k > 1, there is €, > 0 such that if u € W (R") and |[ulx00 < €
then:

t) I +u:R* — R" is bijective;
i) (I +u)"' € W2 (R™),
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We use this lemma with £k =2, n = 2, € = ¢; and we define the set of variations of §
(or equivalently S)

U={ueW> (R), |lullae < € u=0in % - 0} (4.5)

It yields from lemma (1) that

I+u: Q—Q+u={z+u(z), z €N} (4.6)

is bijective. We impose u = 0 in R2— O to ensure that the feasible airfoils are contained
in a bounded region O. Then the observation region © has no intersection with any
S € S,4- So Ysie is always defined.

Let us suppose that {Q + u, u € U} C Q,q4, that is, ”Q is an mterlor point of ,4”.

It yields also from lemma (1) that for all v € U the matrix [3;( + u);] is invertible.
We denote by M(u) the matrix

[Mij(u)] = [9;(1 +u)i]™ (4.7)
In what follows we need the following results (see [3]):
Lemma 2 Ifu € Wo(R"), k > 1, ||ullkw < }, and f € WPY(R"), then

(VoI +u)=Mu)V(fo(l+u)) (4.8)

Lemma 3 For all k > 1, the application

Wk’oo(%") _ Wk—l,oO(Rﬂ)
u +— V(I +u)7 =[0I+ u)]™ = M(u)

defined for ||u|| < € is continuously differentiable in a neighborhood of 0. Its derivative
in 0 in the direction u is [Dju;).
4.2 Computation of the derivative

Let g € C* (?RN) be the solution of

0 in R2 —
0 in O (4.9)

~Mg+(Mz+$Z) on dD.

Ag + kg

g
g
7

We consider the problem:
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mln E(u) / | w(u) —z |* d6 (4.10)

where w(u) is the total wave, solution of Helmholtz equation for the domain S + u:

Aw(u) + k*w(u) = 0 in (Q+ u)
w(u) = 0 onI'+u (4.11)
dule) = —Muw(u) + (Mz+ gﬁ) on dD.
We see that by definition:
w(u) = Wsyu ; w(0) = ws (4.12)
E(uw)=j(S+u) 5  E(0)=3(5) (4.13)

for every variation u € U. That is, 7 and F represents the same cost function with the
difference that the second one is written on a set U with a local vector space structure
convenient for differentiation.

From [16][18] we have the following theorem
Theorem 1 There is only one solution w(u) of the problem (4.11), and it is in H? (Q + u).
We now look for u* € U such that E(u*) < E(u) for all u € U.

For that, we are interested in the existence and computation of a Frechet derivative of
the function

E:U — R

u — E(u).

(4.14)
Theorem 2 The application

U — H? ()

u — w(u)o (I + u) (4.15)

is differentiable in 0.

Proof: We define the spaces:

W. = {ve H*Q) : v=10on dS, @=—Mv+ Mz+az
on on

Ve

{y€H2(Q) : y=00n68,%=—My}.

Then we can write W, = g + V..
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i) The equation satisfied by w(u)o (I + u)
For u € U, w(u) € H? (2 + u) is solution of

[Aw(u) + Bw(uw)]o (I +u) = 0 in
w(u)o(I+u) = 0 on T (4.16)

Q%%Q —Mw(u)+(Mz+g%) on 0D

Then w(u) o (I + u) € W* and this implies the existence of v(u) € V, such that

w(u) o (I +u) =g+ v(u). (4.17)

We now define an application F : U x V, — L% (Q) by

F(u,v) = {A [(v +g)o(I+ u)“]} o(l+u)+k(v+g). (4.18)
Then by definition of F' we have

F (u,v()) = [Aw(u) + Fw(u)] o (I +u) = 0 (4.19)

In other words, v is the variation of the solution of the P.D.E. with respect to u
when the domain is changed and F = 0.

So (4.17) can be written as:

F (u,v(u)) = [Aw(u) + kzw(u)] o(I+u)=0 (4.20)

ii) Differentiability of F.

Lemmas (2)(3) show that F is well defined, continuously differentiable in a neigh-
borhood of (0,v(0)) in U x V, and yield the expression that follows:

F(u,v) = {A[(w+g)o(I+u)|}o(I+u)+k(v+g)
= LV{V|[v+g)o(I+uw)"|}o(I+u)+k(v+g)
= T, [M)V{V|v+g)o(I+u)"|o(I+u)}] +k*(v+g)
= T, {M(v)V [M(u) V(v +g)]} ¥*(v + g). (4.21)
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iii) 0F/0v is an isomorphism.

Let w € U and v, 7 € V*. Then

oF

%(u,v) 5 = T, {M(u)V[M(u)V3]} + k*%
= {APo(I+u)|}o(I+u)+kw. (4.22)
(4.2
Then we have that
‘;—f (0,v(0)) = A + k*1d, (4.24)

and this is an isomorphism between the two spaces (see [16]).

iv) Application of Implicit Function Theorem

From i), ii) and iii), the Implicit Function Theorem concludes that there are:

e O; neighborhood of 0 in U,
e O; neighborhood of v(0) in V4,

e v: 0, — V, continuously differentiable

such that

{(u,v) € 01 x Oy : F(u,v) =0} = {(u,v(v)) € O x V. }. (4.25)

That is, for all u € O,, there exists v = v(u) € V,, verifiying F (u,v(u)) = 0.
Setting '

w(u) = [v(u) + gl o (I +u)™! (4.26)
this says that the application:

H:0, — H*(Q) C H(Q)
u — w(u)o(l+u)=g+v(u)

exists and is continuously differentiable in 0.

(4.27)

Definition 1 We note w'(u) the derivative of the above application H at the origin
u = 0, in the direction of u

w (7)) = H'(0;3). (4.28)

This is the so-called local dertvative.
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We see that H'(0;%Z) = v'(0; %) = w (%) and then, the implicit function theorem implies
that

w(w) =~ (3E 000) 5 000 () (1.29
that is
Aw (u) + Bw.lu) = —Z—i (0; v(0)) (u). (4.30)

In [3] we have that existence of local derivative implies existence of a derivative at
u = 0 for all applications

u — w(u), (4.31)
for every w CC .

Definition 2 The derivative of these application is called global dertvative and we
denote by w'(u) the global derivative in the direction u.

We find in [2}, the relation between local and global derivative:

w'(%) = w (") — T Vw(0) (4.32)
We now proceed to the calculation of w'(%). We first have:

Proposition 1

_ g_f (0:9(0)) T = A (7 Vw(0)) + K (u Vun(0)).. (4.33)

Proof: Let u,u € U and v € V*. Then

—(u,v) -7 = T, {M(u) Vi M(u) V[M(u) V(v + g)]}
+ T. {M(u)V[M(u)Va M(u) V(v +g)]}. (4.34)

Then, we have in one hand:

2L 00(0)T = T VAV Y (0(0) + )]+ VIVEV ((0) + )}
= T, {VaV[Vw(0)] + V[Va Vuw(0)]}
= niz (0u1;0,w(0) + 20;%;0;;w(0)) . (4.35)

1,5=1

(4.36)
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On the other hand:

A (T Vw(0)) + k¥* (T Vw(0)) =
= T, {V [V (aVw(0))]} + k* [@ Vw(0)]

= T, {VIVaVu(0) + ¥ (Vu(0)) T} + . K 0(0) T,

= Xn: (8:,85(0) + 20:3,8,0(0)) + 30, ( "~ B,(0) + k2w(0)) ;. (4.37)

j=1 1=

- o

 pm—

=0 from (4.17)(4.16)
(4.38)

We now go back to the calculation on w'(@). Considering that w(0) = ws it follows

from last proposition and relations (4.32)-(4.30) that for all directions 7 € U,

Aw (7) + Fw'(@) = A(EVws)+ k*a Vuws (4.39)
Aw'(7) + Kw'(@) = 0. (4.40)

At the boundary the following conditions are easily verified:

v(u)=w(u)o(I+u)=00nT Yu e U, (4.41)
and then for u = 0, we have at all directions u € U that
V(0;u) =w(@) =0onT (4.42)
From (4.32) we have
w'(¥) = w (") — ¥ Vws = —uVws on I'. (4.43)
But ws = 0 on T, then
Vws = % n, : (4.44)
and thus B s
w'(¥) = -1, B (4.45)

Here %, is the composant of @ in the normal direction 7, U, = u - 7.

By definition, u = 0 in R?> ~ O for all u € U, then for the absorbing boundary we have
that H(u) = w(u) at the points close to dD. Thus
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0H (u) Ow(u)

on on
= —Mu(u)+ (M2 + 3%)
= w(u 2+ o
= —-MH(u)+(Mz+%). (4.46)
and that implies:
9 (@) _ _ Muwr(m) on 9D 4.47
T = w'(u) on (4.47)
Thus the relations (4.32) and (4.47) yield
ow'(u)  Ow(w) _
on ~  On —uVus
_ Ow(@®
T On
—Muw ()
—Mu'(a). (4.48)

Of relations (4.40)-(4.47) we conclude the following result:

Theorem 3 For all u € U we have:

Aw'(T) + F*w'(@) = 0 in Q
w(a) = _Bur)l "8, onTl (4.49)

@37(1@2 = —-Muw'(a) ondD

We have then, the differentiability of the state w. Let us study now the differentiability
of the cost functional.

Lemma 4 The application

K: U — Wl’l(ﬂ)

u — |wu)o(I+u)—g| (4.50)

is differentiable at all points and

K'(u)-v=2Re{[w(u)o (I +u)—g] - w(u)}, YveU. (4.51)



4.3 Optimality Conditions

Proof: It is only necessary to write:

U — H'(Q) — wii(Q)
u — wu)o(I+u)—g — |ww)o([+u)—g|

to see that K is composition of differentiable applications.

From this lemma, we deduce:

Theorem 4 The cost function

j:U — R
u — foluw(u)—g P df

is differentiable. The derivative at 0 in the direction u € U is

7(0)u=2 /; Re [(w -9)- w’(un)] dé

4.3 Optimality Conditions

23

(4.52)

(4.53)

(4.54)

We know that the derivative j'(0) with respect to variations u of S is related to the

- optimality conditions.

Now we look for a more suitable expression for j/(0) - v that may give a valuable inter-
pretation for the optimality conditions and for the computation of descent directions.

Theorem 5 Let p € H(Q) such that

pr = 09

/Q[V¢°Vp—k2¢-p]d:t+/aD(M¢)-p = 2Re /e(w—g)q_SdG

for all ¢ € H'() such that ¢ =0 onT.
Then for all u € U we have

2}_)_ a'ws

e

7'(0)u=

Proof: From (4.56), we first have

/{; [Vw'(u) Vp— kzpw'(u)] dz =

= [ M) pt2Re [(ws—g)w@do+ [ P wiuyar.
/ao /t; /r on

(4.55)
(4.56)

(4.57)

(4.58)



24

On the other hand, writing (4.49) under a variational form, we get

4 DIFFERENTIABILITY OF WAVE PROBLEM

/n [Vw'(u) Vp — k? pw'(u)] dz =

— /n [Aw'(u) + k2 w'(v)] pdz — /8 , M) p

- Mu'(u)p.

abD

By substraction, and from (4.49), we deduce

7'(0)u

= 2Re/e(w—g)md0

(4.59)

(4.60)
(4.61)

(4.62)
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5 Discretization of wave problem

Let 2(Z) = € the plane incident wave. For u € U, we have that the diffracted wave
w, 1s the solution of

Aw, + K*w, = 0 in Q4+ u
w, = 0 onI'+u (5.1)
%‘%ﬂ = —Muw, +(Mz+ g%) on 9D,

and the objective is to minimize
. _ 2
min E(u) = /é) |lw, — z|* db _ (5.2)

5.1 Discrete state equation

We use a finite element method. First we replace (5.1) by its variational formulation

0z
/mu[un-VqS—kzwuo¢]dQ+/z’DMwu~¢=/;D(Mz+%)-¢ (5.3)
forall¢ € H}(Q+u),¢=0o0n T + u.

At the discret level, let u, be the discrete displacements corresponding to the dis-
cretization of the domain Q + u by Q,,, with a mesh

[Quh] = (Eh, Xu;.) . (54)

Above, =, is topology of the mesh, which is made of triangles and quadrangles (and is
independent of u;) and X, is the vector of mesh coordinates.

Let Hg,, be the space of piecewise polynomial functions of degre 1 in §,, associated
to the mesh [f,,] which vanishes on 38,,, the interior boundary of Q,,.

The approximation of w, is given by w,, € H(}uh solution of

0z
. — 2 . . —_— — .
/ﬂuh [un,. Vér—k Wy, ¢h] dfl + /BD;, thuh on ./E)D,, (Mhz + an)h on (5.5)

for all ¢, € Héuh, where M, and (Mhz + g%) , are discrete approximations on 9Dy,
h
of M and (Mz + gi-), respectively.

Let n, the dimension of Hy,, , and ¢;” its finite element basis, associated to the mesh

[,
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Figure 5.1: Mesh close to the airfoil

The approximate solution being of the form
np
Wy, = Z W;‘h . q;:‘h’ (56)
—~

we get the finite dimensional linear system of grid equations

82
. Bh_ 1.2 gth ath = | g%
/ﬂ . [V, - Vg — k2w, -] d+ /8 5, Mt /8 o (Mhz + an)h g, (5.7)

for all y =1, -.-, n;. This is equivalent to
ASW = B i=1, ... np, (5.8)
where A = [A}] € M,,(C), B* =[B*] € Ma,x1(C), Wy, = [W*] € Mp,x1(C),

A = / (Vgi* - Vg;* —k2q?"-q}"‘]d9h+/aD Mg - ¢i*
h

bt 3

o), o
aDy, on),

For the optimization problem we have a certain number of moving mesh points. They
are the points on the interior boundary [, and perhaps their neighbors. Let o =
(o1, ..., o0k) be the vector that describes the coordinates of these moving mesh points.

Up
B;
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We fix the other mesh points, i.e., the points not closed to I'y. In fact, for the analysis is

sufficient that the points closed to the absorbing boundary D), and to the observation
region O, be fixed once for all.

Figure 5.2: The points to optimize

Then for every o vector of coordinates of mesh moving points we have the corresponding
discrete displacements vector ui(o), and the scheme:

0 — up(0) — Wy, (o) ——v.jh(a) =Jx (wuh(,)) (5.9)

We define the nonlinear constrained finite dimensional optimization problem
. de de
min j, (o) 2N (wuh(,)) f /e [Wy, (o) — 2| db. (5.10)
h

The contraints of the problems are not classical and hard to describe, because they are
related with the non degeneration of the mesh. We forget for a moment the contraints
and for an admissible o, we are interested at the gradient Vj,(o), to be used in a
descent algorithm for optimization.

Looking at (5.8) we have that j,(o) depends on o by means of the solution of a linear
system whose coeflicients depends on o.

Let us write explicitly where are the dependencies on o. The points near D), and of
the observation region @, do not move. Thus the basis functions associated to these
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points are noted ¢ because they do not change with 0. Let I be the set of index of
mesh points close to the observation region

Io={i=1,...,m : ¢! N O # 0O} (5.11)

Let [W;(o)] = [W:‘“”] . We obtain the following quadratic expression of j,(¢) in terms
of [Wi(a)]:

jn(o) = /eh jw — 2| df

[, | X Wito)at ~ = 1" do

1
2
1
2 i€le

= % Y. Wi(a)Wi(o) /éh grq; — Re [Z W"(")/eh q,.zda] +/e,. |2|2 d6

iy€le i€le

- %W‘(a) .C-W(o) + Re [D!-W(o)] + Co,

where C = [C};] € M,,,(R), D = [Di] € M,,x1(C), Cp € R are independent of o, that
is, they depend on the fixed part of the mesh, but not on the moving points. More
precisely, we have

[ [ atd} iij € lo
Cij = ¢ 7o
{ 0 if not
[ [ ¢z ifiels
D; = {
1 0 if not
Co = / 2.
Oh
Above, W (o) is solution of
A(o)-W(o) = B(0), (5.12)

where A(c) = A**(®) and B(c) = B9 are respectively the matrix of left and right
hand side corresponding to the system of linear equations (5.8) associated to o.
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5.2 Computation of the gradient of cost function

We treat the linear system (5.8) like a set of constraints and we define the Lagrangian

L : RE x My, 1(C) x Mo, 5i(C) — R (5.13)

Lo, W, P) = %W‘ -C-W+ Re (D'-W)+Co+ Re {P'-[A(c) - W — B(0)]}. (5.14)

Then the Kuhn-Tucker optimality conditions yield the following:

5.2.1 i) Discrete state equation.
W (o) verifies
DC

5@, W(0),P) =0 += A(e)- W(o) = B(o). (5.15)

5.2.2 ii) Discrete adjoint equation.

Let P(o) be, by definition, the adjoint state, solution of the adjoint equation

D‘(a W (o), P(c)) = 0 <= A(o)' - P(0) = C-W({@) = D.  (5.16)

5.2.3 ii1) Gradient of the cost function.
We have that

(o) = L(o,W(0), P(0)), (5.17)
and then, Vk € {1, ..., K},
O7n ac oL 3W oc JdP
3_01; = 'a?(mw( ), P(o)) + i oW (o, W(0), P(0)) - 7— BP (0,W(o), P(0)) - ad
aL

= 55 @ W(0),P(2))

= Re{P(a)‘ [aak(“) (a)—g—f;(a)]}.

The terms ga_—( ) and gﬁ(a) are easily and quickly computed, because they de-

pend on the variation of functlon basis of the mesh. We can also use, in the case
of complex basis functions, finite differences approximations to compute them. The
computational time for these terms is marginal with respect to the solution of state
and adjoint equations. Another instrument to do these computations is to use the
automatic differentiators of functions represented by programs [7]. The programs for
automatic differentiation will become quickly very useful in optimum design.
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5.3 Relation between continuous and discrete problems

Let u =0 € U, and p € H'(Q) be the solution of

/ﬂ[VqS-Vp—k2¢-p]d:c+/aD(M¢)-p=2Re /e(wo-z)q‘sde (5.18)

for all ¢ € H'(Q) such that  =0on T, p=0onT.
We approximate p on the mesh [Q;] by ps solution of:

/n,,[v¢h - Vpn — K¢y - pr) dz + /aDh(MhQSh) ‘pr =2Re /e,,(wo" — z)¢ndl, (5.19)

Vén € HYy, pr € HY,,, and then we write
. o
Ph = Z Rh . q;')h. (5.20)
=1

Let P* = {P,"] € M,,x1(C). We can see that P* = P(0y), where oy is the vector of

coordinates of fixed mesh points for the discretized initial domain 25 = Qg,. Indeed,

both vectors are solution of the same linear systems. That is, the approximation of the

adjoint of the continuous problem is the adjoint for the discrete problem, and then
]

—— Re {Phc _ [g_i(ao) - W(0o) — %05;(00)]}. (5.21)
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6 The use of splines

We have computed the derivatives of the cost functional with respect to the coordinates
of the moving mesh points. A mesh has much more information than is needed for
design. In practical cases, the airfoil to optimize is not given by a mesh but by a small
number of control points located on the wing profile or by a spline curve. Then we
" must write the derivatives of functional with respect these new variables, which are in
small number, say 20.

Let s = (s, -+, 8) represent a curve that describes the wing profile, with [ the
number of unknowns. We must have a method to build a mesh as a function of this
new variables.

A method due to Marrocco [13] is the following:

1. Give an initial s that represents for example a spline.

2. Build an initial mesh [Q] = (Z4, X)) where the points on T are on the spline
described by s.

Let K the set of mesh points of [(2;] represented by the o, i.e. the unknowns of
the optimization problem. Let K the subset of points on I'.

3. For a change of spline s, compute the displacements Dy for k € Kr, as given from
the new spline function. '

4. Compute the displacement D; for the rest of interior points z € K — Kr by

5,’ = —1- Z Wk Ay ﬁk (61)

& jexr
where

wi is a weight associated to the point k (e.g. the sum of the length of the two
boundary segments containing k);

Qi = —15- where d;; is the distance betwen points k and ¢, and § is a parameter

ki
related with the "elasticity” of the mesh. For 2 < § < 4 the mesh moves in
a very good way as we show in figures (6.1) (6.2);

Qi = Y kexy Wk ki 1s a normalisation factor.

5. Change the coordinates of the points K in X,. The mesh topology =, remain
unchanged. Actualize o accordingly..
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This is-a very robust method in practice: a mesh that is deformed following (6.1)
conserves its topology and seldom degenerates. We also see that the mesh changes
are differentiable with respect to the displacement of the boundary points. This is
important for the use of chain’s rule in the following scheme:

s — 0(s) — ju(a(s)) (6.2)

However, in the course of optimization process we sometimes need a new mesh. The
remeshing is not a differentiable operation and then we could have troubles, because
we can find that the new mesh have a different number of points and a different
topology. Fortunately this does not give big errors in the computation because we work
with sufficient accuracy in the approximation of the solution of Helmholtz problem, and
thus the influence of the mesh on the descent direction is small.

Figure 6.1: Initial mesh
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7 The aerodynamic constraint

For a perfect incompressible fluid, the velocity field satisfies

= 0, (7.1)
= 0. (7.2)

{1 &

v.

V x

The flow around a wing profile S at rest in an unbounded fluid at constant speed at

infinity @, is approximated numerically by a flow in a bounded domain Q with an outer

boundary I, sufficiently far from the airfoil boundary I'. So 2 is a two dimensional
domain with boundary 0§ = I' UT .

The wake is modeled by a stream line ¥ issued from the trailing edge P behind S.

The flow is not irrotational in the wake, so (7.1) , (7.2) hold in 2 — ¥. The boundary
conditions on ¥ are

@-ny = Oon X, ¥ isa streamline, (7.3)
Vxid-ng = 0 on X, Vorticity is parallel to I, (7.4)
lilg+ = |d]g- Continuity of (7.1) and of the pressure. (7.5)

Here ng is the normal to ¥ and £+, £, indicate the value from above and below when
the functions are discontinuous.

Problem (7.1)-(7.5) is well posed with the boundary conditions below acting on the
normal component of u:

= te N, on [y (7.6)

= OonT. (7.7)

14

(31

In two dimensions (7.1) implies that there exists a scalar function ¢ (&) such that

o (% B
U—VX'II)— (a—xz,—‘a—zl'). (7.8)
Then (7.2) reduces to
Ay =0 in Q. (7.9)

To find boundary conditions for ¥ we use (7.6)-(7.7):

oo -, on [

w-t:{ N (7.10)
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where t'is a tangent vector to the boundary. This equation can be integrated and give

"/) = UleoT2 — U200T1 ON I‘\oo, (711)
Y = [, constant on I'. (7.12)

The constant 8 is not known but it can be found by imposing continuity of the flow at
the trailing edge P:

— |pt= == |p- (7.13)

That is the Joukowski condition at trailing edge.

It can be shown that there is one and only one solution to (7.9)(7.11)(7.12)(7.13).
Indeed the solution of (7.9)(7.11)(7.12) is linear in S and (7.13) is an equation to
determine 3. Mathematically it has been shown (see [8]) that it is also the only
solution of (7.9)(7.11)(7.12) which belongs to H%(f2); when 8 does not satisfy (7.13),
the solution has a singularity at the trailing edge and it is in H*({2) but not in HZ().

7.1 Formulation of the aerodynamic problem

From a practical point of view, the easier way to solve the problem is to use the linearity
in 8; it also yields a description of the fluid problem analogous to the electromagnetic
one.

Let ¥° and ¢! be the solution of

(AY? = 0 inQ
0 = -
¥ = 0 onT,

\
[ Ay = 0 inQ

4 ¥' = 0 onle (7.15)

! = 1 onT.

\

Then the solution to the problem is

b =90+ By (7.16)
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with 3 given by

ay° ay°
,3=_W|P++_E;%|P_ (717)
3Pl 3yl ) )

on |P++ an 1P~

It can be shown that the lift A(S) of the airfoil (the vertical component of the force
applied by the fluid on §) is proportional to g:

A(S)=Bp |t | (7.18)

‘where p is the density of the fluid.

We see then, the analogy between the aerodynamical and the electromagnetic problem:

¢ On the computational domain § of the lift, we must solve two equations of the

form Ay = 0, that is Helmholtz equations Ay + k21 = 0 with k = 0.

e On the wing profile we have the Dirichlet conditions

¥° = 0,
Plo= 1,

as in the wave problem.

¢ At the ”infinity boundary” I',, we have the Dirichlet conditions:

4]
1/) = UiooT2 — U2c0T1,

¥ =0,
that is much simpler that the Sommerfeld radiation boundary condition.

A larger difference between electromagnetic and lift problems is as follows: The visibil-
ity is measured in a region © that is far from the control variable S (the airfoil). In the
aerodynamic problem, the lift is calculated using the values of )° and ! at the trailing
edge, and the geometry of this point could change in the course of the optimization
problem. This is not the case here because the geometry of trailing edge is a design
constraint which is given.
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7.2 Discretization

Computationally (7.14)(7.15) can be solved as (5.1) with £ = 0 and Dirichlet boundary
conditions on I' U I'y,. Then the discretization, the computation of the lift and its
gradient follow the lines of section (5).

Remark 1 For the Joukowski condition one can in fact apply condition (7.13) by
replacing P*, P~ by the triangles which are on S and have P as a vertez. See figure

(1.1).

Figure 7.1: The trailing edge
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¥

= cte

Figure 7.2: The stream close the airfoil

39
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8 The Optimization Method

For our optimum design problem we use Herskovits’ algorithm ( see [9][10][11]). This is
a strong and efficient method that is interesting in design problems because it generates
a sequence of feasible designs converging to a Kuhn-Tucker (K-T) point of the problem.
The fact that all designs of the sequence are feasible allows us to stop iterations when we
think that the gain is sufficient. That is important for optimum design with expensive
computing times.

8.1 General nonlinear optimization problem

Let us consider the constrained nonlinear optimization problem
Jnin f(z) (8.1)

where Q.4 = {z € IR™; g(z) < 0} is the set of feasible designs. The functions f: R* — R
and ¢ = (g1,...,gm)" : R* — R™ are smooth. The expression g(z) < 0 means that
gi(z) £0,Vi=1,---,m.

8.2 The Kuhn-Tucker optimality conditions

A solution of this optimization problem satisfies the first order K-T optimality condi-
tions below

Vf(z)+ XL AiVai(z)
Aigi(x)

gi(z) <
Ai(z) 2 0,i=1,--+,m,

0

0,i=1,---,m

(8.2)

0,i=1,---,m

where z and ) are the primal and dual variable respectively. A solution (z*,\*) of
conditions (8.2) is named a Kuhn-Tucker pair of the system.

Definition 3 A vector d € R" is a descent direction of f at x € R™ if Vf(z)-d < 0.
See figure (8.1)

Definition 4 The vector d € R™ is a feasible direction of Qqq at x € Q,q, if for some
6 > 0 we have z + td € Qqq for allt € [0,0]. Then for any point z at the interior of
Qa4 all the directions are feasible. For z at the boundary, that is, if gi(z) = 0 for some
t=1,---,m, we have

Vgi(z)-d < 0 => d is feasible. (8.3)
This is the notion of feasibility that we use in our computations. See figure (8.2)
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zz A

f(z) = constant.

~

Half space of descent
directions.

I
Figure 8.1: The descent directions

The algorithm we use, generates for a given initial interior point (feasible initial design)
a sequence {z*} of feasible points (feasible designs) with decreasing values of the cost
and converging to a K-T point z* of the problem.

At each iteration a search direction d is defined, which is a descent direction of the
objective and also a feasible direction of {1,4.

8.3 The Herskovits’ algorithm

Let
L(z,)) = f(z) + X' - g() (8.4)

be the Lagrangian of (8.1) and
H(z,)) = V2f(z) + 30 A V() (8.5)
1=1

its Hessian.

We define the matrices:

Clz) = [Vf(2)]' € Muxa(R)
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Alz) = %(:v) € Mysm(R)

6m,~ .
4

and G(z) € M,,(R) the diagonal matrix, with G;;(z) = ¢:(z).
Then the K-T first order optimality conditions can be written as

Clz)+ A()- A = 0, (8.6)
© G(z)- A 0, (8.7)
9(z) < 0, (8.8)

X >0 (8.9)

Being given z, )\, a Newton’s iteration for the solution of (8.6)(8.7) gives o, Ao, solution
of the linear system:

B A(z) To— T C(z)+ A(z) - A
. - (8.10)
AY(z)-A  G(z) do— A G(z)- A

Figure 8.2: The feasible directions
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Here A € M, (R) is the diagonal matrix with A; = A; and B = H(z, ), or a quasi-
Newton approximation or the identity matrix. As a requirement for global convergence,
B must be symmetric, positive definite.

Let us define the direction in the primal space dy = zo — z. Then we can write the last
system as:

B-dy+ A(z) - A = —-C(x) (8.11)
Al(z) - A-do+G(z)- A = 0. (8.12)
It is proved that dy is a descent direction of f. But dj is not always a feasible direction.
Then we must introduce some modification to the Newton iteration so that, for a given
interior pair z, A, the new estimate is interior and the objective improved.
If z is on the boundary of 2,4 then g;(z) = 0 for some i. Then (8.12) implies that
Vgi(z) - do = 0. (8.13)

Thus dp is tangent to the active contraints, and may not be feasible.

y V(=)

Figure 8.3: The deflected direction

To overcome this problem, we can change system (8.11)-(8.12) and compute d, X solu-
tion of the following linear system:

B-d+ A(x) -
Al(z)-A-d+ G(z)-

= —C(z), (8.14)
= —pA-w, (8.15)

> >
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obtained by adding a negative vector in the right hand side of (8.12) with, p € R*,
w € R

In this case we have for an active contraint g;(z) =0
Vi(z) - d = —pw;. (8.16)

Thus d is a feasible direction.

The inclusion of a negative number in the right hand side of (8.12) produces the effect
of deflecting dy towards the interior of the feasible region. See figure (8.3). This
deflection, relative to the i-th constraint is proportional to pw;.

Since the deflection of dy is proportional to p and do is a descent direction, it is possible

to establish bounds on p which ensure that d is also a descent direction of f at z. We
obtain these bounds by imposing

Vf(2)-3< aVi(2) - do, (8.17)

and thus
aVf(z) do<0=>Vf(z)-d<0. (8.18)

In general, the derivative of f in the direction of d will be smaller than in the direction
of do. This is the price to pay to obtain feasible descent directions d.

Finally once a feasible direction d is obtained, to determine a new primal point z, we
make an inaccurate line search in the direction of d, requiring feasibility and a sufficient
decrease of the objective. To define a new positive A we can choose different strategies.
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9 The Absorbing Paint Problem

Until now, we have worked with an optimum design problem for a wing profile made
of a perfectly conducting material. To reduce even more the radar visibility we can
cover the wing with a coating paint layer absorbing radar waves. This paint layer is
characterised by its composition (homogeneous or not), its electromagnetics properties
and its local thickness.

9.1 The boundary condition for a coating paint

Using techniques of asymptotic expansion and homogeneisation we can describe the
macroscopic effect of such paint layers, with a boundary condition on I' = 3S. For a
perfectly conducting material we have the Dirichlet homogeneous condition

w=20on0dS. (9.1)

In the case of a coating paint layer on the wing profile, the Leontowitch boundary
condition is used (see [1][19]) :

%%U = —awon as, (9.2)

where a depends on:
e The geometry of 0S5,
e electromagnetics properties of the coating paint,
e the thickness of the paint layer.

For an homogeneous material, see figure (9.1), we have the following first order ap-
proximation of a: '

afz) = -1  (9.3)

where 1, is the magnetic permeability of the medium, and g, the permeability of the
paint. The term ¢ is a function defined on 98, such that €(Z) is the thickness (positive)
of paint in the direction of unit external normal vector, 7.

Let w, the electromagnetic total wave, be decomposed in w, = z+y., where 2(Z) = e**
is the plane incident wave and y. the stationary wave diffracted by the obstacle. On

dS, we have then

Jw, Jdy. 0z
= _ = — - = 3 4
5 aw, = on o Ye (an + agz) on 0§ (9.4)
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131

Figure 9.1: The homogeneous paint layer

Then the optimisation problem we solve here is:

Problem:
Minimise j(¢) = J(ye) = /e | e |* d6 (9.5)
where y, is solution of
Ay + K’y = 0 in 0
a € Z
—5% = —QYe — (g—"- + a(z) on 0§ (9.6)
%%‘ = My, on dD.

9.2 Variational formulation and approximation

We use the variational formulation of the problem for its finite element method ap-
proximation. First we replace (9.6) by

9
A[Vy(~V¢—k2y(-¢]dQ+/aDMy(-¢+/ra¢ycd>=/F(—a—;—a(z>-¢, Vo € H'(Q).
(9.7)
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We take a mesh Q) of the domain Q, and a space H} () of piecewise polynomial
functions of degree 1 in Q4. The approximation of y. is given by yx € H} () such
that '

0
/Qh[vyhz'vm—kzyhc - dn) th+/aD,, MiYhe '¢h+/rh QYncPh = —/I‘h (—z- + a(z> “dn

on
(9.8)
for all discrete test functions ¢, € H} (). The term M, is a discrete approximation
on 0D of M .

Let nj, be the dimension of H} (Q4), and {g;.} its finite element basis, associated to
the mesh. The approximate solution being of the form

nho
Yhe = DYl jn (9.9)
i=1

we get the finite dimensional linear system of grid equations

0z
VorVain =Ky gl a0+ [ Magnegint [ amain=— [ (5= +acz)-g
/9;,[ Yhe' Vin—k*ync-qin] dQn+ o, MR Gt [ acYhein b\ gn o) i
(9.10)
forall j =1, ..., ny,
This system can be written as
A;jyf = B.', 1= 1, coegp. (9.11)

where A= [A5] € M., (C), B¢ =[Bi] € Mayxa(C), Y. € Mya(€),

Ay = / [Vain - Vain — K2 qin - gjn) d + / Mogin - gin + / e Gingjn
Qn 3Dy, | VY

0z
B = - (—— +acz) " Gik
| S an
Yo = [v].
At the discrete level, the paint thickness € is given by some parameters o = (04, ..., ok)

which describe ¢ by
e(o) = orea(x) + ... + ogex(x) (9.12)

where ¢,, K = 1, ..., K are fixed polynomial piecewise linear functions on I'y or splines.
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The cost function depends on the values of these parameters, that is, 7, = j (01, ..., ok).

If the radius R of D is large enough we have that | y.(R,-) | is a good approximation
of the radiation diagram, and then we consider that the cost function is

. def l/ 2
]h(Ul,---,UK) = 5 elyhcl d0h
3 S vy df
= 3 Ye - Ye Gin * G5h
2 ei,j=l !
1 —
= _}/( : g
5 C-Y,
where
C =[Cyl = [ [, ain g da] € M, (R). (9.13)

This term is a classical linear quadratic optimal control problem [12].

9.3 Computation of the discrete gradient

We define the Lagrangian

L RX x My, 31(C) x My, x1(C) — R (9.14)

L(o,Y, P) = %7. C Y+ Re{P'- [A© .Y - B} (9.15)

The Kuhn-Tucker optimality conditions give:

9.3.1 i) Discrete state equation.

Y. (o) verifies

D
D—f) (a, Ye(o)s P) =0 < A). Yo) = B). (9.16)

9.3.2 ii) Discrete adjoint equation.

Let P<() be, by definition, the adjoint state, solution of the adjoint equation

DLC (o)t -
oy (9 Yoy Paey) = 0 = AN Py = C - Vo). (9.17)
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9.3.3 iii) Gradient of the cost function.

We have that

(o)=L (da Yc(a)3 Pc(a)) (918)
and then Vk € {1, ..., K}
D g4 DL DLC DW DL DP
Dor — Do (U, }/L(a)’P((a)) tow (0', Yoy Pc(or)) ‘Do TDP (0, }/c(a)sPc(a)) Do
DL
= Do (Yo Pao)

D A€9) D B
— t - ———— & —
B RC{P“” [ Doy 77 Doy ]}

The optimisation problem can now proceed as before.
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10 Numerical exemples

We consider an airfoil NACA0012 and we apply to it the optimisation techniques de-
scribed above both, for geometric optimisation and paint layer thickness optimisation.

10.1 Geometrical optimisation

We consider that on the wing profile incides a plane wave, 2z, with an angle of 15° and
with a wavelength of 1/5 of the length of the airfoil:

a = 157/180,

k = 2x/5,

k k (cosa,sina),
2(Z) = ek,

We want to minimize the radiation in a sector close to the incident wave. We have
taken the sector corresponding to [180°,210°]. On figure (10.2) we see the diffracted
wave close to the airfoil NACA0012. The triangulation has 12,000 vertices, that is
approximatly 15 points per wavelength.

10.1.1 Weakly constrained problem

On the wing profile we consider the constraint that its points cannot differ more than
15% of the initial NACA0012. The final profile and the diffracted wave close to it are
shown on figure (10.3). It is obtained after 12 iterations and the number of control
points is 60. The cost function has been decreased by 500%. See figure (10.9).

The comparison between the radiation diagrams of the NACA0012 and the optimised
profile is shown on figure (10.5). The initial radiation diagram is the curve in bold and
the final is drawn with a thin line.

We see the gain in the reduction of the radiation diagram around 195°, but the wing
profile is not good aerodynamically.

10.1.2 Strongly constrained problem

We keep the contraints of the weakly constrained problem and add two others con-
straints.

e First, the curvature of the wing profile at control points is bounded.

e Second, we impose an aerodynamic constraint on the lift coefficient, which must
be greater than 0, for an angle of incidence of 15°.
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On figure (10.4) we see the obtained wing profile and the diffracted wave. The com-
parison between the final and initial radiation diagrams is shown on figure (10.6): 23
iterations reduce the cost fuction by 20%. See figure (10.10).

The stream function around the NACAO0012 is shown on figure (10.7). The stream
function around the optimised airfoil is shown on figure (10.8).

Clearly, the gain is not as large as in the weakly constrained problem, but this airfoil
is physically feasible.

10.2 Paint thickness optimisation

Here we consider the wing profile NACA0012 with an initial thin uniform distribution
of paint, and we optimise the paint thickness in every point of the wing profile to
minimise the visibility. In this test we consider an incident wave with an angle of 45°
and with k = 30.

We want to minimise the visibility in a sector near 225°.

On figure (10.11) we see the diffracted wave close to the airfoil for the initial constant
paint layer. Figure (10.12) shows the same thing for the optimised distribution of paint.

The initial and final paint distribution are showed on figures (10.13)(10.14). The paint
thickness has been scaled up for graphical reasons. On figure (10.13) the thickness is
closed to zero and and we see mainly the geometry of NACAQ012. On figure (10.15)
we see that 9 iterations reduce the cost by 40%.

The oscillations of paint thickness in (10.14) points to the use of coating non-homogeneous
materials to reduce the visibility. See figure (10.1). That will be a next step in our
work.

ﬁlon
omogeneous pam

Figure 10.1: Non homogeneous paint layer
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10.2 Paint thickness optimisation

Figure 10.2: Initial diffracted wave
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Figure 10.3: Final diffracted wave. Weakly constrained
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Figure 10.4: Final diffracted wave. Strongly constrained
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Figure 10.5: Initial and final SER. Weakly constrained
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Figure 10.6: Initial and final SER. Strongly constrained
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Figure 10.8: The stream for optimised airfoil. Strongly constrained
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Figure 10.9: Convergency of the weakly constrained problem
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Figure 10.10: Convergency of the strongly constrained problem
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Figure 10.11: Initial diffracted wave.

60

Figure 10.12: Final diffracted wave
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Figure 10.13: The initial paint layer.

Figure 10.14: The optimised paint layer.
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Figure 10.15: Convergency of the coating paint problem
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11 Conclusion

Here we have not solved the global optimum design problem of a wing profile. Rather
we show a method that we think is good to approach the problem of optimum design
of a shape and, in particular, of an airfoil shape.

In a real problem of optimum design we must minimise some criteria. We can not
change arbitrarily the conception variables to achieve the minimisation. Certaint con-
straints must be satisfied and maybe they are not of the same nature that the criteria
to minimise, and not easy to compute. For example, in the problem that we consider
here, we must reduce the radar visibility of a wing profile considering a aerodynamic
constraints on lift. A change of the wing shape can reduce its radar visibility but we
can loose the aerodynamical perfomances more that we can accept and viceversa. Thus
it is necessary to relate the two disciplines, aerodynamic and electromagnetic, in the
optimisation process.

In a real 3D optimisation problem of an airfoil we must also consider elastic criterias.
For example, the flow around the wing produces elastic deformation of the wing, and
this deformation changes this flow. Also, the deformation produces a stress field on the
wing that must not be large. Then the stress field must be considered as a constraint
on the design.

Another source of constraints is as follows. All the magnitudes above mentioned must
be computed using mathematical models that are approximations of the physical re-
ality. These models are good approximations if the shape (wing) to optimise verifies
some geometrical constraints that allow us to say that the shape is, in fact, a wing
profile, and that the computed magnitudes are meaningful. For example, a wing pro-
file cannot have strong oscillations on its geometry (figure (10.3)), not only by physical
reasons but also because a simple mathematical model (potential flow) cannot be used
for the flow computation around it, and we should use more complicated models.

Thus the choice of the model for the computation of the different criterias (aerody-
namical, electrodinamical, ...) implies a set of geometrical constraints to ensure the
physical meaning of the computations.

In this work we use a method that has shown to be robust and efficient for this first
application in multidisciplinary design. It is based in the nonlinear constrained opti-
misation algorithm of Herskovits. This algorithms allow us to generate a sequence of
feasible designs verifiying the imposed constraints. The sequence has decreasing values
of the cost and converges to a stationary point of the problem. The strength of the
method suggests us that should be useful for treating more complex design problems.
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