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Calcul du sous espace singulier associé aux plus
petites valeurs singuliéres de matrices creuses de
grande taille

Résumé : Nous comparons la méthode de Lanczos par blocs et la mé-
thode de Davidson pour calculer le sous-espace singulier associé aux plus
petites valeurs singuliéres de matrices creuses de grande taille. Nous intro-
duisons une modification sur la méthode de Davidson qui se révele efficace
par rapport aux deux méthodes précédentes.

Mots-clé : méthode de Lanczos par blocs, méthode de Davidson, SVD,
préconditionnement, matrices creuses.
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1 Introduction

In this paper, we consider the problem of computing a few smallest singular
values and the associated singular vectors of a large sparse m X n (m > n)
rectangular matrix. This problem has attracted a great deal of interest from
a variety of perspectives [1, 2, 4, 7, 8]. Among the examples mentioned in
these references, one can cite seismic tomography where the smallest singular
values and their corresponding singular vectors are required. In total least
square applications, one is interested in solving the linear system Az = b
by transforming it to the linear homogeneous system [A, ] 351 =0,
where only the computation of the right singular vectors of the appended
matrix [A, b] associated with its zero singular value is required . However, the
algorithms discussed there are either not suitable for large matrices or give
efficient approximations only for the largest singular values. If the size of the
matrix A is extremely large, it is not possible to rely upon the Singular Value
Decomposition algorithm [7] due to the expense of storage requirements and
the high computational cost. An alternative way to proceed for solving our

problem is to apply the Lanczos method [10] to the matrix B = £T 13
The eigenvalues of B are +o;(A4),i=1,...,n the singular values of A, with

m—n additional zeros. This approach might not be efficient since the smallest
singular values of A lie in the interior of the spectrum of B, and this part of
the spectrum is usually the most difficult to compute for Lanczos” method.
The second approach is to apply the Lanczos method to find the smallest
eigenpairs of the matrix ATA. The rate of convergence for the smallest
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eigenvalue o? of AT A is governed by the gap ratio v = . [10] where
2

oy and o, are respectively the second and the largest singular values of A.

The smallest is this gap ratio, the slower is the convergence. If 0y and o are
09 —01
On—02

be the ideal gap ratio. Therefore the smallest eigenvalues of AT A becomes

which would

very small compared to o,, then 7 is much smaller than

smaller and closer and in this case one cannot expect fast convergence.

An other approach which might be of interest is Davidson’s method [5],
[9], [3] applied to AT A. Davidson’s method does exhibit the same behaviour
as Lanczos’ method, but it is less sensitive to the distribution of eigenvalues.
However, to be efficient, Davidson’s method needs a good preconditioner.
The main difference between Lanczos and Davidson methods is that the
former finds several eigenvalues from one Krylov subspace whereas the latter
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adapts separately the vectors from which the eigenvectors are computed.
The aim of this paper is to compare these two methods, namely the block
Lanczos and the block Davidson methods applied to AT A for computing
the right singular vectors corresponding to the smallest singular values of A.
One advantage of these two methods over the classical SVD method is that
the (large) original matrix is not altered and that little storage is required
since only block matrix-vector multiplications are computed.

Since the smallest eigenvalues of AT A can become closer, we choose to
use a block version for the two algorithms. The block strategy although much
more expensive than the standard one, is accepted because of the following
reasons:

- It may improve the numerical efficiency: Lanczos with block size [ can
compute close eigenvalues and eigenvalues of multiplicity less than [ whereas
the standard Lanczos algorithm may not. For Davidson’s method, only the
block version allows the computation of several eigenpairs at the same time.

- It involves BLAS 3 primitives which are more efficient for memory
management and for parallelism.

Throughout this paper A = UXW7T denotes the singular value decom-
position of the matrix A where

U =[uy,...,uy] are the orthonormal left singular vectors,
Y = diag(o;) the diagonal matrix of singular values 07 <0, < ... <0,
and W = [wy,...,w,] denotes the orthonormal right singular vectors.

We will be concerned only with the computation of right singular vectors
since the left ones can be obtained for example by noticing that they satisfy
U = = —Aw;. This formula may, however, not give a satisfactory accuracy on
the left singular vectors if w; is not well approximated. One remedy discussed
in [2] consists in using the obtained left approximation as starting point and
refining the approximation of the left singular vector using inverse iteration

A
AT 0
This paper is organized as follows. In §2 we briefly recall the block Lanczos
algorithm, in §3 we recall Davidson’s method and give some convergence

on AAT or on

analysis for computing the smallest singular values. We also discuss several
preconditioning techniques for Davidson’s method. §4 is devoted to nume-
rical experiments and comparison between the two methods for computing
the smallest singular values.
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2 The block Lanczos algorithm for A7 Az = o%x

A block version of Lanczos algorithm with block size [ for the m X n matrix
AT A can be written in the following

2.0.1 Algorithm 1

[ ] SetV():O, B1:0
Choose V; € R™*! with V{'Vy =1
Ay = VAT Av;

e for k=1,2,...,maxiter
S; = ATAv; -V, B
Aj = VjTSJ-

Riy1 =5 = V;4;
VisiBjy1 = Rj41 QR decomposition

The matrix AT A is of course never formed explicitly, only successive com-
putation of the form AT(A(V)) are needed. The matrices Vi, Sk, Ry for
k=1,2,...arenx !, A; and B; arel x [, with A; symmetric. The matrices
Vi41 and Bjy, are defined by the QR factorization of R; 1, so that B4, is
upper triangular and the column of V;;; are orthonormal. The block Lanc-
zos vectors can be grouped together as the columns of an n X kI matrix Vi
where Vi, = [V4, Vs, ..., Vi]; it is easy to show that the columns of Vi remain
orthonormal provided none of the upper triangular matrices B; are rank
deficient. Furthermore the columns of V; form an orthonormal basis of the
Krylov subspace Ki(ATA, Vi) = Span{Vy, ATAV;, ..., (AT A)*=1V;}. The
restriction T} of the matrix AT A4 to Kk(ATA, V1) is the kl x kl band matrix

Ay BY 0 ... 0
By, A, B
Ty =ViATAV, = | o . . - 0 (1)
: .. . . B};
0 ... 0 B A

with half band 7 4+ 1.
The convergence analysis of the block Lanczos algorithm, that is the
convergence of some eigenvalues of T towards some eigenvalues of AT A has
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already been studied in [13] [12]. We recall one of the main convergence
result.

Theorem 2.1 Let 81 < 6y < ... < 0y be the eigenvalues of Ty labelled in
increasing order, and assume that k steps of block Lanczos algorithm have
been carried out, then for j =1,...,1

2 2 2 2
0 < 0]- - o; tan(0;) 5 Oy — 0] @)
<53 < s where ;= —5 5"
n = Y Ty—1 {1 n = Y
and
2 2 2
0 < Tnmitl ~ Ot i < | __tan(®) (3)
- 2 — o2 - 1+7
Un—]—l—l 01 Tk—l (I—Tj)
where v; = —H—L, 1 = %, 0O; (resp.®;) denotes the prin-
n=7% n—j

ciple angle between span{V1} and the invariant subspace associated with the
l smallest (resp. largest) singular values of A and Ty_1 is the Chebyshev
polynomial of order k — 1.

Proof See [13], and especially [12] for an improved result. O

It is easy to see that the bounds (2) and (3) are quite satisfactory in the case
of convergence to an extremal singular value of A. However, in practice, it is
not always true that both ends of the spectrum are equally approximated.

In the case of the smallest singular value, bound (2) shows that the
convergence rate of block Lanczos method depends on the gap between the
square of the smallest singular value ¢,,;, and the square of the next [tk
singular value o;,1, and on the spread o2, — O'IQ_HOf the unwanted singular
values. The larger this gap and this spread the larger the gain in speed.
Note that the gap and the spread would be ¢2 — 02 . and 02,,, — 02 if we
had used the standard Lanczos method. We conclude that if the smallest
singular values are close, block Lanczos with block size as large as the num-
ber of singular values in a given cluster can be helpful for accelerating the
convergence.

In Theorem (2.1), it is not assumed that Algorithm 1 restarts periodi-
cally, thing that is very often used as remedy to the growth in storage [11].
There is, however, no difficulty in proving convergence of Algorithm 1 when
restarting is used, but bounds similar to (2) and (3) remain to be done in
this case.
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We do not want to develop any further the properties of the block Lanc-
zos and prefer to refer to the literature [10] for the details.

3 The generalized Davidson method for A" Az =
2

ox

Davidson published his algorithm in quantum chemistry field [5] as an effi-
cient way to compute the lowest energy levels and the corresponding wave
functions of the Schrédinger operator. The matrix dealt with must be stron-
gly diagonally dominant in the sense that its eigenvectors are close to the
canonical vectors. The algorithm uses then the diagonal as preconditioner.
In [3, 9] Davidson’s method has been used with general preconditioner.

From now on, C}, stands for a set of n X n preconditioning matrices whose
choice will be discussed later.

3.1 Algorithm 2

The following algorithm computes the [ smallest eigenpairs of the matrix
AT A; m is a given integer which limits the dimension of the basis. MGS
stands for Modified Gram Schmidt Procedure

Choose an initial orthonormal matrix V; := [vy,---,v] € R™¥ ;

fork=1,---do

1. Compute the matrix Uy := AV};

2. Compute the matrix W} := ATU,;

3. Compute the Rayleigh matrix Hy := VkTWk;

4. Compute the [ smallest eigenpairs (v ;, Yr:)1<i<i of Hg;

5. Compute the vectors z; 1= Viyr,, for i = 1,_- -_-,l;

6. Compute the residuals 7y ; := Wiy — V%ixm fori=1,---,1;
if convergence then exit; 7

7. Compute the new directions t; := Cy;rgy, for e =1,---,1;

8. if dim(Vy) <m —1
then Vi 44 := IWGS(Vk,th, .- '7tk,l)§
else Vi4q = ]WGS(QT]CJ, S TR TR, '7tk,l)§
end if
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end for

Here again, an important characteristic of the algorithm is that the
matrix AT A is not required explicitly. All that it is required is two su-
broutines that compute A * u and A! x v for given vectors u and v. At
step k, the basis Viyy is obtained from Vi by incorporating the vectors
lpi = CriTri, t=1,...,1 after orthonormalization. The subspace spanned
by V} is not a Krylov subspace and if the matrices C}; are not diagonal,
then [ linear systems must be solved at each iteration. The hope is to reach
the convergence very quickly with a small value of m, thus rewarding the
extra cost involved by these system resolutions. A detailed convergence ana-
lysis of the above algorithm can be found in [3]. We give here a simplified
convergence result for the smallest singular value.

3.2 Rate of convergence of the smallest singular value

For ¢« = 1,2,...,1, it is clear that the sequence {1/,372-} is decreasing and
bounded below by o2, hence it converges.

For the sake of simplicity we restrict the study to the case [ = 1 where
only the smallest singular value is sought. The numerical experiments deal,
however, with the case where more than one singular value is computed. We
simplify the notation in Algorithm 2 and drop the subscript . We denote by
(0%, ) the smallest eigenpair of AT A, 6" and 0,4, denote the second and the
largest singular values of A, by {(v?,z)}r the sequence of Ritz value/Ritz
vector obtained at step 5 and by tx = Cpry where rp = (ATA — V,f])xk
the step 7. We finally denote by s; the vector zx — t and by 1, the angle
L(Vy, si) between the subspace spanned by V}, and the vector sg.

We have the following result:

Lemma 3.1

e Cril < Nk N/l Avir 12— w240 07 — vRlsin(en)] (4)

Proof The new vector vi41 of the basis constructed at step k& of Algorithm
2 is such that vgyq = ﬁ# where z441 = (I — Vk‘f’kT)Ckrk.
2

Since ’/134-1 is the smallest eigenvalue obtained from Vi1, the optimality
of Raleigh-Ritz procedure [10] ensures that

(2 — QK41 )TATA(wk — QUk41)

a2 Ya € R

2
Viyr S
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_ 1/;‘; - 2av;{+lATAxk + QQU]{HATAWH Va R
1+ a2 )

Hence, for any a # 0, such that sgn(a) = sg*n(v;{_HATAxk)

1
T 4T T AT
|2”k+1A Azy| < _|(V13 - V13+1) + |a|(vk+1A Avgy1 — V13+1)

|

2_ 2 2
v 14
By ChOOSing ol = k__ktl we 11&Ve
T 2
| | Uk+1ATAUk+J Vit

L 1
|U;€F+1ATA$k| < (vf - V13+1)2(”1{+1ATA%+1 — Vip1)?

The proof follows by noticing that

; TC
v;{HATAxk = Tk Tk
| 2e41 [l
and that
| 2ha1 Iy = I (1= VeVl )sk lly = || sk Iyl sin(w)]

O

Theorem 3.1 If the preconditioning matriz Cy, is positive (or negative) de-
finite, then Algorithm 2 converges.

Proof If the preconditioning matrix C} is positive definite, then from
(4) and the convergence of {v#}, we have limj_ ., rngrT = 0 and thus
limg_,oo 7 = 0. We conclude that limg_,o, v is a singular value of A. O

4 Choice of preconditioning

We now discuss some choices of the preconditioning matrix C. Note that
if no preconditioning is used, that is if Cy = v I,7 # 0, then the block
Lanczos method is recovered under an costly implementation. On the other
hand, as was already pointed out a diagonal preconditioning of the form
Cr = (D —viI)~! with D = diag(AT A) is the simplest choice. It is effective
only if the eigenvectors of AT A are close to the canonical vectors. If we take
a good approximation to AT A, then we are faced to the problem of solving
(several) linear systems at each iteration and the amount of work could be
untolerably high.
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In order to overcome this difficulty, we propose to take C, = M~! as a
preconditioner in Algorithm2, where M is a good approximation to AT A.
An advantage is that the cost remains low since the matrix M is constant
during the iterations. Furthermore it is clear that the convergence result of
Theorem 3.1 still holds as soon as M is positive (or negative) definite. With
this modification s =z —t = (I — LM_lATA)a?k + v M~z which shows
that if M is a good approximation to AT A, and if we write z;, = arz + Brys,
where y; is of norm 1 and y; L z, the components of s; will be dominated
by those of (AT A)™ 'z = 2% 2 4 B1(ATA) ;. Now if ¢ is small compared
to the other singular values, then the components of z becomes increasingly
dominant.

Theorem 4.1 Assume that M is such that at some step k, || (J\/[_l — (ATA)_l) Tk ||2 =
O(e), then

2 2 4 4 252
Vk-l—l_g g Orar — 00
0< < Ofe 5
- 1/]3 —o? = 0',2(0',2 — 0'2) O-;’lnaz - SinQ gk(gglaz - 04) * ( ) ( )

where O = L(xy,x) is the angle between xy and x.

Proof 1, = M~ 'r, whence s = x5 — l} = V%(ATA)_I.Tk — uy, with
up = (M~ — (AT A)Yyry
Now if we decompose the vector zp as x; = cosliz + sin 0ryr where
Yk € {x}J‘, then s, = v} [%cos@kx + sin Ok(ATA)_lyk] + ug.
The optimality of Rayleigh-Ritz procedure ensures that
9 sTAT Asy
Ver1 S — 75—
| sk |l

so that
sF(ATA - ol)s
| s ||
1/;91 sin? HkykT ((ATA)_1 — UQ(ATA)_Q) yr + O(€?)

= (8)
v} (01—460520k + sin?0;|| (AT A)~ 1y ||2) + O(e)

IN

2 2
Vk+1—0'

visin? Gyl ((ATA)_1 — UQ(ATA)_Q) Yk

_ +0(e)  (9)
v} (01_46052% + sin?0g | (ATA) 1y, ||2)
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i _ o
< 0" ias sin26y, + O(e) (10)
- U%COSQO;C + o;*iw sin20y k
4 4 2 2
- L Ime” 77 =~ sin?6, +0(e) (1)
o'c o} . —sin® (ot ~—o?)

2_ 2
The proof follows by using the classical inequality [10] sin? §;, < 25—~ ~. O

a —0

It is important to stress that, unlike theorem 2.1, theorem 4.1 provides es-
timates on the singular values within one iteration. These estimates are often
pessimistic and v, may converge towards ¢ much better than this theorem
predicts. However, they are acceptable in the important case where the smal-

lest singular value ¢ is small compared to the others. Consider for example
2 12

4
Tomaz—9 0

—sin? 0y (o ,o—0%)

a matrix in which ¢ = 10~! ¢, then - is bounded by

max

14 tg?6,, and is expected to settle down around 1 while U,Q(U",iz_gz) ~ 1074

The choice of the preconditioning matrix M plays a crucial role for the
success of the method. We have seen that the better the approximation to
(ATA)_I, the closer the vector s; to . The extreme case happens when
M = (AT A)~1. This case, although usually impossible in practice, may be
used to enlighten the theory.

Proposition 4.1 Assume that M = (ATA)_l, then the columns of Vi cons-
tructed by Algorithm 2 form an orthonormal basis of the Krylov subspace

KL(ATA)™1 V) = Span{Vi, (ATA)"'v, ..., (AT A"V} where V;
denotes the rectangular matriz used at each restart.

Proof Follows from the fact that Vy, = MGS(Vi_1,tk—11,...,1k—1,) and
in this casefori =1,...,1, ty_1; = (ATA)_lrk_M = Th_1,—0F_, Z»(ATA)_l.rk_M =
Vic1:Uk—1,: — Uz_u(ATA)_I"’k—l,iyk—u O

We can thus, in this case, derive optimal bounds for Davidson’s method.
The smallest singular value of the matrix Hy satisfies

where K = K, ((AT4)71, 1) .

Let w = (ATA)%?J then

wl (AT A)tw
= max ———————

veK1 wlw

where K1 = K ((ATA)_I,(ATA)%VI) '

<
> F



10 Bernard Philippe and Miloud Sadkane

This means that Davidson’s method applied to ATA for computing the
smallest singular values amounts, in this case, to Lanczos method applied to
(AT A)~! for computing the largest singular values. Unlike Lanczos method,
Davidson’s method does not require the explicit use of (ATA)_I, one can be
happy with any good approximation to (AT A)~! in step 7 of Algorithm 2.
The disadvantages over Lanczos method are the cost and the storage which
are high and the fact that the projected matrix Hy is not band as was the
matrix 7% in (1). A straightforward application of theorem 2.1, bound (3),
leads us to the following theorem

Theorem 4.2 Assume that M = (AT A)™1, and that k steps of Algorithm
2 have been carried out, then

i . 2
0< 7 tan(¢yp) (12)
o2 T o2 Tk (}—E—Z)

11

o 0'2
where | = ——52- and ¢; denotes the principle angle between span{(ATA)%Vl}

2 2
T %mazx

and the invariant subspace associated with the | smallest singular values of
A and Ty_q is the Chebyshev polynomial of order k — 1.

Let us consider the favourable singular value distribution in which ¢ =
10_1al+1 and 0 = 10720,,4,, then, after 10 steps of Algorithm 2 and if no-

2
thing goes wrong, (12) will be approximated by 1—( ) < (tan(¢r) x 7.2949 x 10_24)2 .

o
Vg

5 Numerical experiments

Our main concern in this section is to illustrate the behaviour of Davidson’s
method for computing the smallest singular values, and to give comparisons
with Lanczos” method. We choose a set of realistic test matrices coming all
but one, from the Harwell-Boeing set of sparse matrices [6]. The experiments
have been performed on an IBM/RISC 6000-550 using double precision.

Before considering our test examples, let us recall that steps 1 to 5 in Al-
gorithm 2 are nothing but the Rayleigh-Ritz procedure [10] applied to AT A
where only the last columns of U, W) and H; are computed at each ite-
ration. We point out that only the matrix A is stored and that we access
the elements of AT using the data structure of A. The algorithm involves
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intensive use of matrix-matrix operations (BLAS 3 level) and the desired
eigenpairs of Hg, step 4 in Algorithm 2, are computed with EISPACK thus
the portability of the algorithm is preserved on a wide class of computers.
In order to keep the complexity of the algorithm at a reasonable level and
since some of the [ singular values may converge before others, we choose
to restart the algorithm not only when the maximum size of the basis is
reached, but also whenever a singular vector zj; is converged. In this latter
case we put the converged singular vector at the beginning of the basis so
that all the vectors are orthogonalized against it. We then restart with a
reduced block size. This may be considered as a cheap deflation technique.

Concerning the preconditioner C} ;, we choose first the most commonly
used one Cy,; = (D — v} .I)~! where D is the diagonal of ATA, we call
DAVID this version of Davidson’s method. The second choice is of the form
Cr; = (MTM)™' where M is an incomplete LU factorization of A, the
so called TLUTH which consists in removing any entry of A which is less
that some prespecified drop tolerance. We call DAVIDLU this version. The
reason of this choice is essentially due to its simplicity and the reasonable
good results derived from it. More interesting preconditioners based on an
incomplete factorization of AT A rather than A (incomplete Cholesky of AT A
or incomplete @R factorization of A etc...) should worthwhile and will be
investigated later.

The Lanczos method we choose to compare with is a sparse SV D via
a hybrid block Lanczos procedure for eigensystems of the form AT A called
BLSVD, developed by Berry [2] and available from netlib. BLSVD is nor-
mally designed to approximate the largest singular values and only a small
modification, indicated by the author, is made for obtaining the smallest
ones.

Both algorithms (Davidson and Lanczos) needs initial starting vectors, a
maximum size My,q, for the basis, an initial block size nblock and the num-
ber of desired singular values nvalues. In order to make a fair comparison
between the different methods, we use the same above parameters.

For each test example we give a table summarizing the obtained results. We
list in these tables the [ singular values as computed by EISPACK and those
computed by BLSVD, DAVID and DAVIDLU. The numbers in parentheses
indicate the residual norm || AT A& — 527 ||,, where 6 and Z (|| & ||, = 1)
denote the computed singular value and the corresponding right singular
vector. The quantity mat-vec is equal to the number of multiplications by
A plus the number of multiplications by A”. The execution time is also
reported. The parameter tol is the drop tolerance for ILUTH preconditioning



12 Bernard Philippe and Miloud Sadkane

and fill-in is the fill-in produced during the incomplete factorization of A.
As a matter of fact we have tested different values of the parameter tol, but
we report only the one which maintains the fill-in in the same order as the
number of nonzero elements of A.

For the three methods, we set itmax = 150 as an upper bound on the
number of outer iterations. The algorithms terminate when itmaz is excee-

ded.

Matrix ADI. This matrix comes from information retrieval and seismic
tomography applications [2] and is available from netlib. It is rectangular
with 374 rows and 82 columns and 1343 nonzero elements. This example does
not present any special difficulty, we only use it for comparison purposes.
We compare BLSVD and DAVID for computing the 8 smallest singular
values and the corresponding right singular vectors. For the three methods
we used M4, = 40, nblock = nvalues = 8 and a stopping criterion such
that the residual norm is less than 107°. The results are listed in Table 1.
Both methods perform well, especially BLSVD where the precision in the
obtained residuals is higher than required. This is because Lanczos’ method
checks the stopping criterion only periodically and hence convergence may
be obtained before the iterations terminate.

singular values singular values(Residuals) singular values(Residuals)

EISPACK BLSVD DAVID

1.8842753757029 || 1.8842753757029 ( 3.94E-07
2.1044515491758 || 2.1044515491757 ( 2.74E-07
2.2646138010928 || 2.2646138010928 ( 6.27E-08
2.4128073672232 || 2.4128073672232 ( 1.52E-07
2.6076737719950 || 2.6076737719950 (

(

(

) || 1.8842753757029(6.21E-7

) || 2.1044515491757(8.56E-7

) || 2.2646138010927(4.45E-7

) || 2.4128073672232(9.06E-7
1.77E-08) || 2.6076737719950(8.985E-T7)

)

)

)

)
)
)
)

)
)
)

2.6589475772586 || 2.6589475772586 ( 9.93E-08 2.6589475772586(9.84E-7

2.6631702788999 || 2.6631702788999 ( 3.89E-09 2.6631702788999(8.56 E-7

2.7492829533297 || 2.7492829533297 ( 1.11E-08 2.7492829533297(5.60E-7
mat- vec:1688 mat-vec:1234
Time(sec): 1.16 Time(sec): 1.15

Table 1. Computation of the 8 smallest singular pairs
Matrix ADI
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Matrix PORES3. This matrix comes from the Harwell-Boeing set of test
matrices. It arises from reservoir simulation. It is square of order 532 and
has 3474 nonzero elements. The smallest singular values are not small in
magnitude, but they are small in comparison with the largest ones. For
example 0,,;, = 0.26733863526883 and 0,,,, = 149922.80169575 which
means, for the three methods that o2, = 3.12 107202 . Here again we
used Myq; = 40, nblock = nvalues = 8 and a the stopping criterion such
that the residual norm is less than 10=¢. Neither BLSVD nor DAVID were
capable of computing the 8 wanted singular values. In Table 2 we list the
results obtained by DAVIDLU.

singular values singular values(Residuals)
EISPACK DAVIDLU
0.2673386352688 0.2673386353738 (2.99E-7)
0.3189119825820 0.3189119826714 (9.92E-7)
1.0274629898236 1.0274629898151 (9.79E-7)
1.1551923630159 1.1551923630113 (9.77E-T7)
2.6543014616552 2.6543014616463 (7.75E-7)
3.1991610201392 3.1991610201750 (6.01E-7)
4.2009362777080 4.2009362777098 (7.50E-7)
5.0281947778858 5.0281947778886 (8.48E-7)
mat- vec:1186  Time(sec): 4.13
fill-in 3474 —7580  tol =10~"

Table 2. Computation of the 8 smallest singular pairs
Matrix PORES3

Matrix SHERMANT1. This matrix comes also from the Harwell-Boeing
set of test matrices and arises from the three dimensional simulation of black
oil. It is symmetric but we can treat it as an unsymmetric matrix. The order
is 1000 with 3750 nonzero elements. It has 1 singular value of order 1074, 47
of order 1073, 206 of order 102, 251 of order 1071, 315 equal to 1 and the last
180 singular values lie between 1.1325183438792 and 5.0448693671654. We
used the same parameters m,,q., nblock, nvalues and the stopping criterion
as in the previous examples. Here again neither BLSVD nor DAVID were
capable of computing the 8 wanted singular values. In Table 3 we list the
results obtained by DAVIDLU.
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singular values singular values(Residuals)
EISPACK DAVIDLU

3.234871204E-4 3.234883881E-4 (7.60E-7)
1.0178313925E-3 1.0178315577E-3 (6.01E-7)
1.1131469008E-3 1.1131470276E-3 (5.51E-7)
1.5108868655F-3 1.5108869337E-3 (2.89E-7)
1.9207831764E-3 1.9207832211E-3 (1.91E-7)
2.0521929282E-3 2.0521932271E-3 (5.41E-7)
2.0928681061E-3 2.0928683807E-3 (2.74E-7)
2.1038958599E-3 2.1038962048E-3 (6.92E-7)

mat- vec:270  Time(sec): 1.15

fill-in:3750— 8304  tol = 107>

Table 3. Computation of the 8 smallest singular pairs
Matrix SHERMAN1

Matrix HOR131. This matrix also comes from the Harwell-Boeing set of
test matrices. It arises in the flow network problem. It is square of order
434 with 4710 nonzero elements and has 17 singular values of order 1075,
43 of order 104, 169 of order 1072, 173 of order 10~2 and 32 of order 1071,
With mune = 80, nblock = nvalues = 20 and a stopping criterion such
that the residual norm is less than 10~%. Table 4 reports the results given
by DAVIDLU. After 148 outer iterations and 23794 matrix-vector multipli-
cations 1.7924031832664E-5 and 2.4045394072133E-5 where declared good
singular values with corresponding residuals 9.53E-9 and 9.50E-9 by DA-
VID. A look on Table 4 reveals that the two numbers 1.7924031832664E-5
and 2.4045394072133E-5 lie respectively between the smallest and the se-
cond and between the fourth and the fifth singular values of A. BLSVD did
not converge.

In the conclusion, we can say that the numerical results confirm that
Lanczos and the standard Davidson method are, in general, not suitable for
computing the smallest singular values. The results given by the modification
we introduced in Davidson’s method are effective and by far superior to
those obtained by the two previous methods. There are, however, some still
problems regarding the choice of the preconditioner. The ideal would be to
find a reliable approximation to AT A using the data structure of A. We will
investigate this later.
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singular values

EISPACK

singular values(Residuals)
DAVIDLU

1.5338130942225D-05
2.1363547226369D-05
2.2736655865418D-05
2.3557411304847D-05
2.5659788515646D-05
2.7036649455056D-05
3.0659915472795D-05
3.5933337181559D-05
4.0190136698560D-05
4.1630845269902D-05
4.6249600876053D-05
5.1509531011866D-05
5.5485971489133D-05
5.8906973927180D-05
6.3030823663830D-05
7.1026655095114D-05
8.5762312230985D-05
1.2385189669020D-04
1.2549423295339D-04
1.5598303222124D-04

1.53384826275538998E-5(7.41E-9)
2.13639663047605141E-5 (8.35E-9)
2.2737460581733088E-5 (9.42E-9)
2.35576598151661457E-5 (7.88E-9)
2.56600611275800434E-5 (7.29E-9)
2.70367799804134917E-5 (4.03E-9)
3.06600995407382224E-5(9.40E-9)
3.59335145562999494E-5(6.10E-9)
4.01911819995656752E-5(9.84E-9)
4.16310038507273559E-5 (5.39E-9)
4.62498461920203614E-5 (7.59E-9)
5.15097661078101838E-5 (8.83E-9)
5.54862553910521279E-5(9.75E-9)
5.89074037368137533E-5 (6.58E-9)
6.30311213016695283E-5(6.18E-9)
7.10266881600436323E-5(3.94E-9)
8.57624954068630035E-5(9.96E-9)
1.23851977254590040E-4(7.83E-9)
1.25494369765957248E-4(8.93E-9)
1.55984024166726362E-4(8.31E-9)

mat-vec:1110  Time(sec):4.31
fill-in: 4710 — 7932 tol=10"*

Table 4. Computation of the 20 smallest singular pairs
Matrix HOR131
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