On-line recognition of interval orders

Abstract : The first one is optimal in time and space and recognizes the transitive closure of an interval order under the suborder hypothesis which means that we add a new element to the transitive closure of an interval order and test if the new digraph is always the transitive closure of an interval order. The second one recognizes the transitive reduction of an interval order in linear space and almost linear time under the linear extension hypothesis which means that we add a new maximal element to the transitive reduction of an interval order.
Type de document :
Rapport
[Research Report] RR-2061, INRIA. 1993
Liste complète des métadonnées

https://hal.inria.fr/inria-00074611
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 15:53:52
Dernière modification le : mercredi 16 mai 2018 - 11:23:04
Document(s) archivé(s) le : lundi 5 avril 2010 - 00:12:13

Fichiers

Identifiants

  • HAL Id : inria-00074611, version 1

Citation

Vincent Bouchitté, Roland Jégou, Jean-Xavier Rampon. On-line recognition of interval orders. [Research Report] RR-2061, INRIA. 1993. 〈inria-00074611〉

Partager

Métriques

Consultations de la notice

176

Téléchargements de fichiers

184