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Abstract: The task of producing a VLSI architecture that will solve a given
problem contains many design decisions. The effects of these decisions on the
final design are often difficult to quantify. We will compare three different
implementations of a systolic architecture for solving the knapsack problem
using the dynamic programming method. The design decisions involved and
the “engineering” of the algorithm (altering the algorithm to improve its
implementation), are highlighted and their effects on the resulting imple-
mentation are discussed. We will also relate the design area and timing to
the parameters of the knapsack problem. We derive ©(log(wqz)) as estima-
tions of area and circuit timing complexity of the memory control. We will
eliminate the influence of the dominant knapsack parameter (the capacity ¢)
and replace it by the maximum weight w,,,,. This is of crucial importance
for a realistic and efficient VLSI implementation of this problem since in
practice W, < c.
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Algorithmique et conception VLSI

Résumé : Le passage d’un probleme a I'implémentation VLSI d’une ar-
chitecture qui résoud ce probleme comporte de nombreuses choix de mise
en ceuvre. Les effets de ces choix sur le résultat final sont souvent difficiles
a quantifier. Dans cet article, on compare trois implémentations différentes
d’une architecture systolique pour résoudre le probleme du sac a dos par la
méthode de programmation dynamique. Les choix de mise en ceuvre ainsi
que “I'ingéniérie algorithmique” (I’altération de I’algorithme pour améliorer
sa mise en ceuvre) sont mis en évidence, et leurs effets sur le résultat sont
discutés. Dans la troisieme implémentation, on obtient un controleur mé-
moire dont la complexité en surface et en temps est O(log(wmqz), o4 wax
est le poids maximum des objets. De la sorte, on élimine dans ce module,
I'influence du parametre dominant de ’algorithme du sac a dos, sa capacité
c. Ceci est crucial pour obtenir une implémentation VLSI réaliste et efficace
pour ce probleme, puisqu’en pratique, w,, .. < c.

Mots-clé : VLSI design, programmation linéaire, programmation dyna-
mique, récurrences, partitionnement, probleme du sac a dos, parallelisme,
algorithme systolique



Algorithm Engineering and VLSI Design 1

1 Introduction

Consider the design cycle from the problem domain to a VLSI solution.
Generally the designer will chose the most appropriate algorithm to solve
the problem. Then follows a long process of adapting the algorithm to the
requirements of the considered computer architecture. Very often this process
results in significant modifications at algorithmic level. Finally the designer
will design a VLST implementation of the architecture. In this paper we apply
this approach to a dynamic programming algorithm solving the knapsack
problem on a pipelined parallel architecture [1, 2, 3].

The knapsack problem includes a large class of classical combinatorial
optimization problems with a wide range of applications in the the manage-
ment and efficient use of scarce resources to increase productivity [4, 5]. These
types of problems appear frequently in computer science, operations research
and cryptology [6, 7, 8]. These are hard problems to solve - i.e. they belong
to the class of NP-complete problems [9] and polynomial algorithms for their
solution are not known. The results in [10, 11] prove that time-consuming
instances of these problems are easily generated. Therefore we wish to use
the power of current technology in order to get a VLSI implementation for
this class of problems.

One of the most well known approaches for solving knapsack problems is
dynamic programming. It is based on the principle of optimality of Bellman
[12]. Efficient dynamic programming algorithm for a class of knapsack pro-
blems, was presented recently by Lin and Storer [13]. It improves on Lee et
al. [14], and its running time is ©(mc/q) ' on an EREW PRAM of ¢ pro-
cessors and this algorithm has optimal speedup and processor efficiency. The
authors report that on a Connection Machine, the time complexity increases
to @(@) because of communication costs. Chen et al. [3] present another
idea using a linear array of ¢ general purpose processors connected as a ring
?. Tt has a time complexity ©(mc/q), which is asymptotically optimal. Howe-
ver the authors in [3] do not study the influence of the high communication
overhead which is typical for any transputer implementation.

lhere m and ¢ are the parameters giving the size of the problem (see section 2 for
further details)
Zthe authors use transputers for their implementation
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Our parallel algorithm is close to the approach of Chen et al. [3] and
has the same time complexity. But it requires significantly less memory and
it is systolic oriented. The considered model meets completely the require-
ments for communication intensive algorithms. More precisely our work is
related to the design of systolic arrays for dynamic programming algorithms.
The difficulties in this field of research arise from the necessity for the al-
gorithms to meet the requirements of modularity, ease of layout, simplicity
of communication and control and scalability. Independent of the knapsack
problem, many researchers have proposed systolic arrays for dynamic pro-
gramming. This includes arrays for specific instances, such as optimal string
parenthesization [15], path planning [16], etc., some general arrays [17, 18] as
well as arrays that can solve any instance of dynamic programming, [19, 20].
Usually, the arrays for specific instances have better performance than the
general purpose arrays because they can exploit properties of the particular
problem at hand. This is the case for the knapsack problem too—if we use
Li and Wah’s array [19] for our problem, we will get worse results than our
approach.

Based on these considerations, our array is designed by studying the speci-
fic structure of the corresponding dynamic programming recurrent equation.
A starting point of our study are the results in [2, 21] where a processor-
efficient systolic algorithm for the knapsack problem has been recently presen-
ted. Due to its simplicity, regularity and local interconnections the proposed
array is a good candidate for VLSI implementations. The design parameters
(the number of processing elements and their memory storage) are problem
size independent. Moreover comparisons and additions are the unique opera-
tions used in this dynamic programming implementation. However the results
in [2] are more theoretical and they raise numerous questions for an efficient
implementation of this array. We answer some of them in this paper, raising
on the other hand, more questions concerning the VLSI implementation of
pseudo polynomial algorithms [5].

There are of course many choices in how we implement a given systolic
array as a VLSI design. In this study we present three different VLSI imple-
mentations of a systolic architecture to compute the knapsack problem. We
will compare each implementation in terms of silicon area and clock speed.
The design area and timing is also related to the knapsack parameters, thus
allowing each design to be evaluated for different problem sizes.
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This paper is organized in the following way. Section 2 describes both
phases of the dynamic programming approach for the considered problem
on a serial machine. In section 3 we discuss the parallel implementation on
a linear systolic array. Sections 4 and 5 are devoted to the analysis of the
different VLSI implementations and their impact at algorithmic level. Our
conclusions are presented in section 6.

2 Dynamic Programming Algorithm

Suppose that m types of objects are being considered for inclusion in a knap-
sack of capacity c¢. For : = 1,2,...,m, let p; be the unit profit, w; the unit
weight and z; the number placed in the knapsack of the :-th type of object.
The values w;, p;, x;, ¢ = 1,2,...,m, and ¢ are all positive integers. The
problem is to find out the maximum total profit without exceeding the total
weight constraint or capacity of the knapsack. Thus we must determine how
many of each object we may put in the knapsack i.e. the value of x; for each
object. This may be formalized as:

max {sz% : szajz <c¢,z; > 0 integer, ¢t = 1,2,...,m}. (1)

In order to use the dynamic programming technique [4, 5] we need to
define a new function fi(j), the maximum profit obtained by using only the
first k items subject to weight limit j:

k k
fe(j) = max {D_pix;: Y wir; < j,a; > 0integer,i = 1,2,...,k},  (2)

where 0 < 7 <c¢and 1 < k < m. This leads us to a recursive relation:

Je(g) = max {fe_1(7), fr(J — wr) + pr}- (3)

The meaning of this recurrence is as follows: if fx_1(j) is the maximum
then we do not add an object of type k to the knapsack; if, on the other hand,
fr(y —wk) + pr is the maximum then we do add another object of type £, ie.
we increment ;. The optimal value of (1) f,.(¢), can be found in m stages by
generating successively the functions f1, fa, ..., fi using equation (3) and the
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initial conditions fo(3) = 0, fx(0) = 0 and fi(¢) = —oo for any k, j and ¢ such
that 1 <k <m,0 <j < cand : < 0. This approach solves simultaneously a
set of knapsack problems with knapsack capacities 1,2,...,c.

The process of finding the values of fr(5),7 =0,1,2,...,¢, k=1,2,....m
is called the forward phase. However to determine each value of x; in problem
(1) we need to run a backtracking algorithm [4, 2]. In the course of the
forward phase a pointer ug(j) is associated to any value fi(j) in such a way
that ug(y) is the index of the last type of object used in fi(7). In other words
if ug(y) = r this means z, > 1, or the r-th object is used in fx(j) and z; =0
for all I > r. The value u(j) is used to keep the history of the forward
dynamic programming phase. The boundary conditions for uy(j) are

Vj:0§j§03'u1(j):{(1) ﬁﬁﬁji;g

In general we set

)= { ik—l(j) ft}{];i{v;ewk) pr 2 i (0) (4)

for Vk : 1 < k < mand Vj : 0 < j < c. The values ug(y) are computed
and propagated through the array simultaneously with the value fi(j). As
shown in [4], definition (4) allows the solution vector in problem (1) * € N™
(where by N we denote the set of natural numbers, i.e. N={0,1,2,...}) to
be found from the values of the function wu,,. The backtracking algorithm is
a sequential one and can be executed by the host computer [2].

3 Systolic Architecture

A systolic array consists of several identical Processing Elements (PEs) with
identical nearest neighbour inter-connections between PEs throughout the
array. These inter-connections can result in a linear (one dimensional) array
or a rectangular (two dimensional) mesh. In a systolic system the data flows
through the array in a rhythmic fashion in the way that blood circulates in
the body. This rhythmic data flow is achieved through the use of pipeline
data registers on all PE inter-connections.

The communication required for the execution of equation (3) can be
described by means of directed graph, called the dependence graph (DG).
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Each node of the DG represents an operation performed by the algorithm
and the arcs are used to represent data dependencies or communications. For
example figure 1 (a) depicts the DG for a knapsack problem, with 3 objects
(m = 3), a knapsack capacity of ¢ = 6 and the following weights w; =
4,wy = 3, w3z = 2. Fach node represents one calculation, detailed in figure
1 (b). The peculiarity of this graph is that in any column the dependence
vectors depend on the weights w;,2 = 1,2,...,m which are input data for
the problem. Such a dependency is not an affine dependency. This peculiarity
makes the knapsack recurrence equation difficult to transform into a systolic
array using the well-known synthesis methods [22, 23, 24].

k

j ‘ fO(O) — O, ———= 0 ——= 0 —> fg(o)

fo(l) —=©° °© °© fa(1)
fe(i —wi)
fo(2) —= o °© ° fa(2) l
fre—1(d) Fe(d)
fo(3) —= o °© ° fa(3) - °
fo(4) —= © °© ° fa(4) l
fx(3)
fo(5) —= ©° °© °© fa(5)

fo(6) —= © — = ° 7= 9 —= f3(6)

(a) (®)
Figure 1: The dependence graph for the given example
However as identified in [3], at each stage the same operations are per-

formed and data dependencies occur between adjacent stages and within the
same stage only. Therefore using the dependence projection method [22], we
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can map this DG onto a linear array of m identical PEs, Cy, k =1,2,...,m.
Each PE Ci,1 < k < m, has a memory of size a, where « is a design pa-
rameter. The purpose of the memory is to save the values of the function
fe

The design and operation of the systolic array PE is dependent on the
parameter a and the size of the weights wi, k = 1,2,..., m. We assume a >
wy for Vk,1 < k < m. Thus a straightforward projection of the dependence
graph of figure 1 along the j axis provides a systolic array of m PEs.

Usually the dependence projection method [22] uses two functions, the
Timing Function and the Allocation Function. However at this stage we have
to take into account the peculiarity of the dependence graph for recurrence
(3), where the calculations in each column are dependent on the weights
wg. In [2] a design based on the fact that in any processor only w; memory
locations are used was presented. Thus a new mapping is used called Address
function.

Address Function: a mapping such that addr(v) is the number of me-
mory locations in processor a(v) where the data v is stored. In [2] it is shown
that an address function for the dependence graph of the knapsack problem
is addr(y, k) = 7 mod wy.

The operation of the basic PE during the forward phase is presented in
figure 2. Each PE C}, stores the values pg, wy, k in registers p, w, k respectively.
The data input into the leftmost PE during the first ¢ + 1 instants ¢, ¢t =

0,1,...,care f;; = 0,u;, = 0 and j;, = t. Note the inclusion of a boundary
condition multiplexer where f.,.,; = fi, for j5;, < w. This implements the
initial condition where j —wy < 0 = fi(j — wi) = —o0.

If the number of PEs ¢ in the linear array is less than the number of
objects m then we need a memory queue to solve the Knapsack problem as
reported in [2]. The resulting architecture is called Ring and is well known
from systolic computation [25].

4 Systolic Array Design

Let us now consider the implementation of the linear array for solving the
knapsack problem as a VLSI design. If we examine figure 2 we can identify
four specific instructions carried out every systolic cycle that we need to
implement as hardware in our PE design:
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fffffffffffffffffffffffffffffffffff

repeat
addr := j;, mod w; {compute memory address}
if jin < w {boundary condition}
then fout = fzn
Uout = Uin
else fou: = max{fin, F'(addr)+p} {compute fr(j)}
if fin < F(addr)+p {compute ug(j) }
then wu,,; =k
else ugyu: = up
fi
fi
Jout = Jin;
Faddr) .= fout; {store fr(j)}
end _repeat

Figure 2: Knapsack Systolic PE and its Operation

calculate memory address: addr := j;, mod w
memory read:  F(addr)
calculate maximum: max{fi,, F(addr) + p}
memory write:  F(addr) := fou

Using a standard random access memory with single data and address
ports we can overlap two of the PE operations, giving us the instruction
pipeline illustrated in figure 3.

4.1 ROM PE Design

In order to calculate the memory address we need the function mod. This can
be implemented as division, but this process slows down the throughput rate
of the design. To maintain a high throughput a combinatorial implementation
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g Calculate + Memory + Calculate + Memory
Address | Read ! Maximum | Write
41 ' ' ' ' Calculate ' Memory ' Calculate ' Memory
J '

Address Read + Maximum Write

Figure 3: Instruction pipeline for Systolic PE

of mod is required. As a starting point, we choose a “naive” design using a
look up table (Read Only Memory). In order to latch the ROM address a
control signal me,,,, (memory enable) is required.

Each PE requires a Random Access Memory of size . A RAM will gene-
rally have two control signals 7z€é and we. The e (Memory Enable) signal
triggers the latching of the address and the transfer of data to or from the
memory. It is double-edge sensitive: address and data are latched on alter-
nate edges. The we (Write Enable) determines whether data is read from or
written to the RAM.

The final hardware element in the PE is the ALU to compute fi(7).
This can be achieved using adders for both the addition and the comparison
(as a subtractor). A possible VLSI implementation of the basic PE for the
Knapsack systolic array is illustrated in figure 4.

Figure 4 includes a systolic clock signal ¢, which controls the data trans-
fer latches between PEs, and three control signals m€,,,,, we and me,qy,.
Given the timing requirements of the RAM and ROM we note that me,,,, =
@1 = Meyop. The clock for PE with k = 0,2,4, ... is ¢; and a non overlapping
clock ¢, is used for PEs with £ =1,3,5,... as illustrated in figure 5.

The operation of the PE is as follows:

1. On the rising edge of ¢; the ROM address is latched and after a delay
of T,44- the appropriate RAM address addr is produced.

2. On the falling edge of ¢; the memory address addr is latched and after
a delay 7,4, the memory contents F(addr) is available.

3. The ALU then performs the calculation and after a further delay of
T.q1c the result f,,; is clocked to the next PE and written to memory.
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"o o 1\-/Ie1-no-ry-C£rl ! :' 777777777 li\/Iie;nio’r;'jw
! J ! : Jout !
' Reg ' 1 1
- $1 co I
» Jin ' : Address :
, ROM , | ,
' mod ' ! :
' T addr | :
, w " Fout F(addr)
MeErom ! :% Data =
. oo WE MEram ]
5 ALU |
\ F(addr) ) 1
, F(addr) + p |
} Add }
| (A+B)>C |
1 A 1
3 B Cmp ‘ . :
: ¢ Ny o
' Fout !
, 11 F :
" Fin mux !
| Reg |
T 0 |
o b —\ Uout,
| mux Reg
ol Backtrack |

Figure 4: PE Design for Knapsack Systolic Array
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Toddr ! Tram ! Tealc

¢1 = Mergm = Merom ! i

i o Calculate Address ' '
Instruction Pipeline ,Memory, Calculate PE k£ =0,2,4,...

' & ' Read ' Maximum'

' Memory Write ! ' '

¢2 = Meérgqm = Merom

Calculate Address . '"PE k=1,3,5,...

Instruction Pipeline + Memory Calculate

' & . Read | Maximum
. Memory Write | . .

Figure 5: Control and Clock Signals for Knapsack Systolic Array

4.1.1 PE Area

We will now examine the relationship between the knapsack problem para-
meters and the silicon area of the PE. The parameters are: ¢ the capacity of
the knapsack, m the number of objects, w,in(Wima,) the minimum(maximum)
weight that any of the m objects can have, p,,,,, the maximum profit that any
of the m objects can have. The purpose of the knapsack array is to calculate
the value of f,.(c). An object with weight w,,;, can be placed ¢/w,,;, times
in a knapsack of capacity c. If the object has profit p,... then the theoretical
maximum value ( fq2) of f.(c)in equation 2 is given by: fraz = Pmaz/Wmin-

From figure 4 we can identify four different modules used in the knapsack
PE: memory control, memory, ALU and backtracking. Five sub-circuits are
used in the design: storage and data registers; adders; multiplexers; ROM
and RAM. We can associate with each of these sub-circuits a parameter or
constant to represent the area of a one bit instance. For example the area of a
single bit adder we call Ay,. Likewise a one bit register, a one bit multiplexer,
a one bit ROM and a one bit RAM we call respectively Ajusen, Amuzs Arom
and A,,,,. The area of each module in figure 4 can be related to the knapsack
parameters as illustrated in table 1.
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Module | Area
memory control | Ajgsenlog(c) + Ataten 10g( frnaz) + Agalog(c)
+Arom Wiz log(Wnaz)
memory | AramWmaz 108( finac)
ALU | Aeenlog( frnaz) + Ataten 108(Pmaz) + 34 4 10g( frnaz)

‘I’Amuw log(fmaz)
backtracking | 2Aqech log(m) + Ajus log(m)

Table 1: Circuit Area of Knapsack PE

4.1.2 PE Timing

The clock speed of the PE is determined by the timing through each stage
of the pipeline as illustrated in figure 5. As with the area we can relate the
timing to the knapsack parameters as illustrated in table 2. Again we base
the timing on the bit level where ¢,,,, and t,,,, are the access times of a one

bit ROM and RAM and where ¢y, is the ripple of the carry in a full adder.

Module Time

memory control | Thadr | trom \/wmawclog(wmm)

memory | Tram | tram \/‘wmax log( frmaz)
ALU Tcalc tfa log(fmalf)

Table 2: Circuit Timing of Knapsack PE

4.2 Modified Design

The dominant term in table 1 is the area of ROM which has a complexity
of O(cwmaz 10g(Wmaz)). Thus to implement (@ mod b) is a costly (in terms of
area) and unrealistic procedure when using a look-up table. However we note
that if b is a power of two ie. b = 2%, then the implementation of the modulo
operator is significantly simplified and we further note that « is a power of
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two. Thus we present a new address function for use in the projection of the
dependence graph into a linear array.

4.2.1 New Address Function

In section 3 we describe the use of the address function in the mapping
of the non-affine data dependence graph into a linear systolic array. This
resulted in the need to implement digitally the mod operator using a ROM.
Therefore we transform the address function addr(j,k) = j mod wy into
memory read/write address functions:

e adread(j, k) = j mod wy = j mod «
adwrite(j, k) = (7 + wx) mod «a,

where « is the memory size and « > w4, 1s satisfied.

These two address functions implement the recurrence equation (3) as in
this case we use two address pointers, one (adread(j, k)) to read from the
memory the value fp(j — wg), the other (adwrite(j, k)) to write the value
fx(7). These two memory locations are separated by wy. This new address
function results in the basic PE operation illustrated in figure 6.

4.2.2 VLSI Design

A possible VLSI implementation of this algorithm contains the memory, ALU
and backtracking modules of figure 4, but the memory control module is that
illustrated in figure 7. The ROM is replace by an adder and multiplexer and
we can achieve the (moda) just by choosing the log(«) least significant bits
of the multiplexer output.

This new algorithm requires a memory read and memory write operation
to different locations. Two addresses have to be latched into the memory
address register by the me signal for each systolic cycle. This results in the
instruction pipeline and clock signals illustrated in figure 8. The systolic clock

is ¢1 for PE k£ =0,2,4,... and ¢, for PE £ =1,3,5,....

4.2.3 PE Area

The area for the ROM is removed and replaced by an adder of area Ay, log(c)
and a multiplexer of area A,z l0g(wyqez). The overall design area for the
modified memory control module is given in table 3.
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repeat
adread := j;, mod «; {compute memory address}
adwrite := (adread + w) mod «;
if jin <w {boundary condition}
then fout = fzn
Uoyt = Uin
else fou: = max{fin, F'(adread)+ p} {compute fr(j)}
if fin < F(adread)+p {compute ug(j) }
then wuyy; =k
else ugy: = Uin
fi
fi
Jout = Jin;
F(adwrite) .= four; {store fr(j)}
end_repeat

Figure 6: The modified algorithm

Module | Area
memory control | Aperlog(e) + Alaten 10g(Wimaz) + 2A 14 log(c)
+Asnue log(wmaz)
memory | same as table 1
ALU | same as table 1
backtracking | same as table 1

Table 3: Design Area for Modified Algorithm

4.2.4 PE Timing

The clock period is defined by each stage in the instruction pipeline. The me-
mory access time T},,, and the ALU delay T.,;. are the same as the previous
design (see table 2). The relationship between the knapsack parameters and
the time taken to calculate the address 7,44, and the memory write set-up
time T,,ize are given in table 4.
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ffffffffffffffffffffffffffff

: Reg| Jout :
: adread o !
I ¢1 I
 Jin ,
: mux%
! 0 addr,
| adwrite '

Figure 7: Memory Control for Modified Knapsack Algorithm

module Time

memory control | Tyaar | 4 log(c)
memory | Ty, | same as table 2

Twrite | twrite (a constant)
ALU | T.,. | same as table 2

Table 4: Circuit Timing of Modified PE

4.3 Counter Design

There is another possible implementation of the address function addr(j, k) =
7 mod w; without the area penalty of the ROM. We note that at each systolic
time step a new value of fj is entered into a PE. Moreover the data fi(j),j =
0,1,...c enters a PE in exactly this order. Therefore we do not need to
propagate the argument j and we can generate the memory address by using
a re-setable counter. This counter is incremented each time step when a new
value of f; is entered and the counter is reset to 0 after w; time steps. Thus
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C Tastr 0 Tram 0 Tewte 0 Turice !
me ]
‘ ‘ ‘ ‘ ‘ 'PEk=0,24,...
o1 ‘
Pipeline Instruction ' Calculate ' Memory ' Calculate ' Memory | Calculate
+ Address Read " Maximum Write + Address

Figure 8: Clocking Scheme and Pipeline for Modified Algorithm

if we write addr(j, k) = count, we see that this is another implementation of
the address function addr(j, k) = j mod wy. The operation of this counter
based PE is illustrated in figure 9.

The timing diagram for this design is similar to that of figure 5. A possible
VLSI implementation of memory control is illustrated in figure 10. Note the
state machine used to determine first w; values of f,,;, for the dependence
graph boundary condition.

4.3.1 PE Area

In this design we have eliminated the j;, data register. However we need two
adders of area Ay, log(wmaz), two registers area Ajgsch, 10g(twmqez) and a set of
And gates to reset the counter of area Aynqlog(wmaz). The design area in
terms of the knapsack parameters is given in table 5.

4.3.2 PE Timing

The clock speed is determined by the pipeline delays T,44,, Tram and Tey. of
figure 5. The values of the RAM access time 7,,,, and the ALU calculation
time 7.y are those given in table 2. The relation between 7,44, and the
knapsack parameters are given in table 6.
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fffffffffffffffffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

{the counter count and the flag ms are initialized at 0}
repeat
if ms =0 {boundary condition}
then fout = fzn
Uoyt = Uin
else fou: = max{fin, F'(count)+p} {compute fr(j)}
if fin < F(count)+p {compute ug(j) }
then wu,; =k
else uyyut = Ui
fi
fi
F(count) := four; {store fr(j)}
if count =w, — 1 then ms:=1 fi
count := (count + 1) mod w; {generate memory address}
end _repeat

Figure 9: Systolic PE for Counter Based Knapsack solution

5 Design Comparison

The first point to note is that the area of the ROM in the naive design depends
linearly up to a constant on ctqz 10g(wmqz). This design is not realizable as
the size of ROM necessary cannot be fabricated. This design is included to
illustrate the problems encountered if we wish to implement the mod func-
tion as a combinational circuit in order to maximize throughput. A similar
problem will be encountered if the alternative of a PLA is used. However for
applications with small values of the product cw,,,,, the ROM/PLA option
might be considered due to the ease of design using ROM/PLA generators.

The dominant area term in the modified and counter based designs is the
area of the memory as this is linearly dependent on w,,,,. This corroborates
our assumption that the size of the memory is sufficiently large (o > wyqz).
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Figure 10: Memory Control for Counter Based Knapsack Algorithm

Module | Area
memory control | 2A;.40n 10g(Wnaz) + 2454 10g(Wimaz) + Aand l0g(Wiaz)
memory | same as table 1
ALU | same as table 1
backtracking | same as table 1

Table 5: Design Data for Counter Based Design

We have related the area/time to the knapsack parameters. We wish to
emphasize the dominance of the knapsack capacity ¢ in these parameters.
In fact it is this term that causes the problem to be NP - complete [9].
The relationship between the knapsack parameters and the area/time of the
memory, ALU and backtracking modules is fixed as shown in table 7. Here
we can see the influence of ¢. We cannot improve on the design of these three
modules, because the dependence of the area/time on ¢ is inherent to the
algorithm.
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module ‘ ‘ Time

memory control | Toaar | 2t o log(Wpmaz)
memory | T,,,, | same as table 2
ALU | T,,. | same as table 2

Table 6: Circuit Timing of Counter based PE

Module Area Time

memory | O(wpqzlog(e)) | O(1/Wmaz log(c))
ALU O(log(c)) O(log(c))
backtracking O(log(m)) No influence on timing

Table 7: Dominant Area/Time Variables for Knapsack PE Modules

Let us now consider the remaining module, the memory control. In the
ROM design the area dependence is ©(ctwq, 10g(Wmaz)), while the time de-
pendence is @(\/log(c) + log(wmaz)). Due to the modification proposed to the
address function in section 4.2 we get ©(log(c) + log(wmaz)) and ©(log(c))
for area and time respectively. In the final design, counter based, the memory
control signal j is not required, eliminating the area of log(c) routing wires.

We also get a complexity of ©(log(wmqz)) for both area and time, thereby
eliminating completely the dependence on ¢ in the memory control module.

6 Conclusion

Usually the largest value in the knapsack problem is the capacity ¢, which
provides the main obstacle to an area efficient VLSI implementation. In this
paper we highlighted the influence of ¢ and the largest weight coefficient
Woae ON the PE area of three different implementations. We show that the
area and time complexity of the memory control module of the first design

is O(cWnaz 10g(Wimaz)) and @(\/log(c) + log(wmazx)) respectively. We improve
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this in the second design where we reduce this dependence to ©(log(c) +
log(wmaz)) and O(log(c)). Finally in the third design we obtain a complexity
of O(log(wymaz)) for both area and time. In this way we have proved that the
influence of ¢ can be eliminated completely from the memory control module.
Theoretically this is optimal, under the assumption a > w,,,., since obviously
the other parts of the circuit (the ALU and memory) are inherently dependent
of ¢ in order to solve the problem. Thus by ‘engineering’ the algorithm, we
reduce the influence of ¢ on the circuit area to the theoretical minimum
and replace it by the influence of w,,,,. This is of crucial importance for
an realistic and efficient VLSI implementation of this problem since usually
Winar K C.
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