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La méthode du repére mobile de Cartan et son application a I'étude
de la géométrie et de I'évolution des courbes planes euclidiennes,
affines et projectives

Olivier Faugeras

Abstract

Cet article est une introduction générale a la méthode du repére mobile de Cartan, méthode
qui est élégante, simple et de nature algorithmique. Nous montrons comment I'utiliser de
maniere systématique sur trois examples qui sont importants pour la vision par ordinateur, a
savoir les courbes planes des plans euclidien, affine et projectif pour calculer les équations de
Frenet correspondantes. Nous utilisons ensuite ces équations pour montrer comment ’analyse
de la déformation d’une courbe plane selon une équation de la chaleur intrinséque peut se faire
dans un cadre uniforme, et nous obtenons des expressions trés voisines décrivant 1’évolution des
trois invariants de courbure.

Cartan’s moving frame method and its application to the geometry and
evolution of curves in the euclidean, affine and projective planes

Abstract

This article is a general introduction to Cartan’s moving frame method which is elegant,
simple, and of an algorithmic nature. We have demonstrated how to use it systematically on
three examples relevant to computer vision, curves in the euclidean, affine and projective planes,
and derived the corresponding Frenet equations. We have then used these equations to show
that the analysis of the deformation of plane curves according to an intrinsic heat equation
could be done in a common framework, yielding very similar expressions for the evolution of
the three curvature invariants.



1 Introduction and motivation

A renewed interest in the theory of invariants has developed in the vision and robotics communities
speared by the need to increase the capabilities of artificial systems to represent objects shapes and
their robustness in performing recognition tasks. This has produced a large number of publications
and a book [16]. It is not too surprising that the question of invariance is also at the heart of another
problem central to computer vision, namely the problem of scale-space analysis. These two questions,
namely invariant shape representation and scale-space are at he heart of the core of Koenderink and
his coworkers [14, 13, 7).

This article addresses the question of describing the differential properties of shapes which are
invariant to the action of a group. The shapes of interest are differentiable manifolds such as curves
and surfaces but can also be differentiable sets of lines such as complexes or congruences. The groups
of interest in computer vision are the euclidean, affine (or unimodular affine) and projective groups.

Among the methods that can be used to obtain such descriptions there is one that clearly emerges
because of its simplicity, elegance, generality, and because it is quite amenable to computer imple-
mentation. This method is known as the Cartan’s moving frame method and has been developed in
the first decades of this century by Elie Cartan and his students [2, 3]. The method is widely used
in mathematics and physics but has not yet attracted many researchers in computer vision with the
notable exception of ter Haar Romeny and his coworkers [17].

In section 2 of this article we give a detailed description of the moving frame method which is
completely general and can be used (and automated) in all practical cases. This description uses the
tools of the modern exterior differential calculus which were being invented at the time Cartan was
developing his moving frame method and is an extended version of what can be found in [2].

We then attempt to help the reader develop some intuition about how the method actually works
by using it on three simple and useful examples: plane curves subject to the action of the euclidean,
affine, and projective groups. To help even further the intuition we present geometric interpretations
of the affine and projective arc lengths. We also relate projective and affine invariants to the more
familiar euclidean ones. We found these relations quite useful in applications.

The question of scale-space is discussed in the context of curve evolution. This approach is
closely related to the scale-space defined for grey-scale images [23] through for example the evolution
of isophotes. But it is also closely related to the question of shape description as shown for example
in the work of Kimia Tannenbaum and Zucker [12]. For the three groups of interest we show that the
Cartan’s method provides a natural framework in which to think about curve evolution as predicted
by an intrinsic heat equation. One important idea which follows from the study of differential
invariants is that the evolution of the curve is defined, up to a transformation of the group of interest,
by the evolution of its arc length and of its curvature. The euclidean case had been covered by Gage
and Hamilton [8, 9, 10] from the viewpoint of mathematicians and by Mackworth and Mokhtarian in
computer vision [15]. The affine case has been worked out by Sapiro and Tannenbaum [19, 18, 21, 20]
and by Alvarez, Guichard, Lions and Morel [1]. The projective case is new and we shed some light
on it in this article.

One interesting fact is that the three scale-spaces are intimately connected in the sense that they
can be thought of as forming a hierarchy. It is likely that this hierarchy can be used in several ways.
In this article we develop only the application that consists in reducing the order of derivation that
is required to compute the invariants. For example, we show that the affine scale-space reduces the



order of derivation necessary to compute the affine curvature from four to three by trading space for
scale. A similar property holds in the projective case.

2 Method of moving frames

The method of moving frames, due to Elie Cartan [2, 3], deals in a very simple way with problems of
differential calculus on curves and surfaces in a context which is not necessarily the usual Euclidean
one. In our opinion, the efficiency of the method lies in its potential for being automated, i.e., we
can easily write it in an algorithmic form.

We will consider essentially projective, affine and FEuclidean spaces which can be regarded as
specialisations of each other. Groups of the same name are fundamental for understanding these
spaces.

2.1 Background on projective frames

A projective frame in P" is a set of n + 2 projective points such that no subset of n + 1 of these
points belongs to the same hyperplane. We will designate them by Ag, A;,- -, Apt1. If we choose
Any such that

Aﬂ+1 = Z Ai
i=0
then the representatives of points A;, ¢ = 0,---,n are defined up to global scale, i.e., if A; is a
representative of point A;, then so is AA;, for any i =0,---,n.

With this choice, the fact that no subset of n 4+ 1 of these points belongs to the same hyperplane

is equivalent to saying that the determinant of size (n + 1) x (n + 1) of representatives of the first
n + 1 is different from 0

det(Aq,- -, Ag) # 0

The set of frames of the vector space R"*! satisfying the previous condition is an open set U of
(R**1)"+1] the complement of the closed set defined by

det(Ag, -+, A,) =0
We can normalize things in such a way that we have the important condition
det(Ag, -+, A,) =1 (1)

The mappings A; : U — R™*! will be considered as the differentiable mappings of the open set of
(R™*1)"+! into R™*!. For a given frame r, we note A;(r) the value of that function at the point r of
U, i.e. the representative of the i+first point of the frame r.

2.2 Cartan equations: projective case

We will consider a frame » € U depending on one or more parameters. Such a frame is called a
moving frame.

The n+1 functions Ay, A;,---, A, defined on the open set U naturally give us n differential forms
of degree one. Therefore dA;(r) € L((R**!)**1; R"**1), the set of linear mappings from (R"**1)"*+!
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into R®*!. One of the key points of the method of moving frames is to write the value of this linear
mapping in the projective frame r

dA(r) = Z wij(r)A (2)

Therefore the functions w;; are differential forms of degree one with values in R.. This relation is
true for1 =0,---,n+ 1.

The differential forms w;; are not independent, they satisfy a number of equations, called the
Cartan or Lie equations which we now derive.

By differentiating the condition (1) on the determinant of points A;, we immediately obtain the
following relation satisfied by the forms w;;

2:&&§==0 (3)
=0
This means that there are only (n + 1)2 — 1 independent differential forms. This is precisely the
dimension of the projective group of P*. By writing that the second differentials of forms dA; are
zero we obtain n + 1 additional relations which must be satisfied by the forms w;;. In effect, from
well-known properties of exterior differentiation, these relations can be written

d(dA.) = z”:(dAj Awg; + dw;,-A,') =0 (4)
5=0

If we replace dA; in this equation by that given in (2) , we obtain the following relations

Zdw,, Zw,k/\wk,)A, i=0,---,n
j=0 k=0

and since the points A; form a projective frame, we deduce

dwi; =Y wik A wij ()
k=0
These equations, called the structure or Cartan equations, are fundamental for the study of projective
curves and surfaces.

2.3 Cartan equations: Affine and Euclidean cases

This is a specialization of the previous ideas to the affine and Euclidean cases. We will need coor-
dinates and we denote by =zo,---,z, the coordiantes of a point of P". In the first case, we choose
a particular hyperplane H of P™ to which we can give an affine space structure as the hyperplane
at infinity of space P™. The affine transformations constitute the subgroup of the projective group
that leaves H invariant. The points of H represent the directions of the affine space .A™ thus con-
structed. If we choose for H the hyperplane of equation z,, = 0, then a point of A™ with coordinates
T, -, Tn_1 corresponds to the point of P® with coordinates zg,---,z,_-;,1 and a vector v of R"®
corresponds to the point of H with coordinates [vT, 0], to within a nonzero scalar.
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An affine frame consists of a point A, the origin of the frame, and n vectors of R™ written
e;,i =1,---,n. We suppose that these vectors are linearly independent, i.e.,

det(e;) # 0 (6)

An affine frame can thus be considered as a particular projective frame for which A is in P*\H
and the A;,i = 1,---,n are in H. Condition (6) implies that the set of affine frames is an open
set U of R*»*1) A and e; are thus differentiable functions U — R™. As in the projective case,
we can consider an affine frame r which depends on one or more parameters. This frame is called
moving frame. Using reasoning similar to the projective case allows us to write the differential forms

dA, de,,---, de, as linear combinations of vectors e;
n
dA = Z W€
=1

n
de; = ) wije;
i=1

In effect, we have the pa.rticular case Ag = [AT,1]T, A, = [e],0]T,i = 1,---,n, thus dA and de;
only depend on e;,t =1,---,n.
Equations (5) are still va.hd

dw; = Y wpAwi (7)
k=1

dwij = Ewikf\wkj ivj=1""1n (8)
k=1

If we consider the subset of affine frames such that det(e;) = det(Ag,---,A,) = 1, we must add an
equation similar to equation (3)

n

Zw,',' =0 (9)

=1
Corresponding to this restriction on frames is a restriction on the group of transformations of the
space in which we are interested. Here we consider the unimodal subgroup of the affine group. This
subgroup is defined as follows. The transformation M’ of a point M of .A™ by an affine tranformation
is given by the relation

M=HM+b

where H is a matrix of size n x n such that det(H) # 0, and b is a vector of size n. The unimodal
subgroup is the one for which we have det(H) = 1. The unimodular affine group depends upon
n? — 1+ 1 parameters which, according to (9 is precisely the number of independent differential forms
Wy and Wiy .

We consider the Euclidean case similarly by introducing Euclidean frames which are affine frames
such that the matrix of the vectors e; is orthogonal. We express it in the form

€; - ej = 6.'1'



and by differentiating these relations, we obtain
e;-de;+de;-e; =0
We deduce by replacing the differentials with respect to w;;
wij +wi =0 3,5=1---,n

and thus we have in particular

Wy = 0 Vv:

The euclidean group depends upon ¢ = "z—im parameters which, according to our analysis, is precisely
the number of independent differential forms w; and w;;.

2.4 Introduction to the method of moving frames

We will consider a set D of points operated on by a finite and continuous group G with g parameters.
In practice, D will be a Euclidean, affine, or projective space and G will be one of the groups
previously studied. In this section, we note w,,---,w, the differential forms attached to a general
frame.

We will consider manifolds of dimension A in D. In practice, we have A = 1 or 2, i.e., we will
study curves or surfaces. To a point A of manifold V), we attach two types of elements

Frames : an infinity of inclusive families of frames: frames of order 0, - - -, frames of order P.

Integers : pg, the number of invariants of order 0, - - -, up — pp_1, the number of invariants of order
P.

We then define the contact element of order P of the point A of V) as the family of frames of order
P of this point and by the set of invariants of order < P of this point. Note that the transformations
of these frames into each other constitute a subgroup Gp of G, called the subgroup of order P of the
contact element considered.

In other words, each contact element is characterized by a family of frames relative to which it
occupies the same position, and by a system of numbers concerning its “form”, the invariants. This
notion of families of included frames is interesting for many reasons. One of them is that it will allow
us to compare the Frenet frames obtained for groups of included transformations: the Frenet frame
for the Euclidean group will be a particular frame of order three for the affine group. Similarly, the
affine Frenet frame is a particular frame of order 3 for the projective group.

Let us take a contact element of order P; its most general frame of order P depends on vp
parameters, which we call secondary parameters of order P and write 3, -+, z,,. These parameters
are different from the A parameters, called principal parameters, on which depend the points of the
manifold V), and which are written t;,---,%5. Note that the frames of a contact element correspond
to constant values of principal parameters since the origin A of the frame is fixed. We can show
that infinitesimal translations of this frame are characterized by the property that ¢ — vp linear
combinations of the w; components disappear. More precisely, infinitesimal translations of the most
general frame of order P — 1, attached to the contact element being considered, eliminate ¢ — vp_,



independent linear combinations of wy,---,wy. In effect, for a frame of order P — 1, the forms

wy, - - ,w, depend on A + vp_; parameters and we can write
A vp-1
w; = Z a,'jdtj + Z birdzy
j=1 k=1
where a;; and by are functions of ¢;,---,tx,21,++,%,,_,. By eliminating the vp_, forms dz; from

among the ¢ forms w;, we obtain ¢ — vp_; linear combinations of the ¢ forms w; which are expressed
as linear combinations of the A forms dt; and which disappear when the principal parameters are
constant, that is for a frame belonging to a contact element of order P — 1, or in fact, to a contact
element of any order higher than P — 1.

The infinitesimal translation of a frame of order P eliminates these ¢ — vp_; linear combinations
and vp_; — vp others that we will call principal components of order P. We note them 7,,a =
q—Vp + laq — Vp.

Let us now consider the most general contact element of order 0, i.e., any point A of D and vertex
frames of this point. Reasoning similar to the above shows that the principal parameter differentials
are linear combinations of A forms suitably chosen among the principal components of order 0. We
assume in the following, to simplify without loss of generality, that these A forms are the first A
principal components of order 0, of which there are g — vy, i.e., my,-- -, m).

A frame which varies while always remaining of order P depends on the A principal parameters of
Vy and on vp secondary parameters of order P. By definition, its principal components of orders < P
are independent of the differentials of the secondary parameters; these are thus linear combinations
of m,---,my. Therefore, we have the following proposition

Proposition 2.1 The principal components of orders < P of the frames of order P of V) are liricar
combinations of my,- -, s with coefficients in terms of invariants of order < P.

Since the invariants are functions of the principal parameters only, we can also state the following
proposition

Proposition 2.2 The differentials of invariants of orders < P are linear combinations of 7y, -- -, m)
with coefficients which are functions of the invariants of orders < P. The differentials of the invari-
ants of order P and the principal components of order P of the frames of order P are thus linear

combinations of my,- -,y with coefficients in terms of the invariants of order < P
A
dko =) b pp_1<a < pp (10)
=1
A
Ta=3 bl q—vp1<a<gqg-—vp (11)
=1

The coefficients b,; and b, are functions of the invariants of order < P and of the secondary param-
eters of order P. They are called coefficients of order P. The fundamental idea of the method of
moving frames is to study how the group Gp affects coefficients of order P.



Let m;,i = 1,---,q — vp be the ¢ — vp principal components of order P which are linear combi-
nations of ¢ forms w;

q
m=3 asw i=1,,q—vp (12)
i=1

The coeflicients a;; are either constants or functions of invariants or order < P. Let us compute the
exterior differentials of the ;

q 9
dmi =3 daij Awj + 3 aiidw; (13)
i=1 i=1

Differentials of a;; can be written in the form
pP
daij = Y Dijmdkm (14)
m=1

and we know the structure equations of group G

dwp =Y Cpsts A wy

a,t

To simplify the developement we then suppose that the rank of the first square submatrix of size
q — vp of the matrix [a;;] equals ¢ — vp which allows us to compute w;,i = 1,---,q — vp with respect

to m;
q—-vp

vp
Wi = Z azj"rj + Z dinWg-vp4a t=1,""",q~vp (15)
]=1 ﬂ=1
If we now consider the differential system
7[’1:0 cee Wq_vp =0

this system is completely integrable when the principal parameters are constant. Therefore, according
to Frobenius’s theorem, we have the following relations

dmiAmA-- Amg_yp=0 i=1,---,q—vp
By replacing dr; by its value (13) in this expression we obtain the relations

Jq~=1 da,~,~ /\wj ATLA--- /\Wq_yp +2"‘(2:‘=1 a;,-c,-,g)w, A ATLA:-- /\’ﬂ'q_up =0
1= 1,"'aq_VP

The first part of this relation including the terms in da;; identically equals zero, by (14) and (10).
The other part will contribute to eliminating all terms containing factors w, Aw; with s and t > q¢—v,.
We can thus write

d?l’,' = :11-’-;:1 Ciaﬂ"ra A 7l'p + 24’;-_.:.;.? :P=l Aina"ra A wq—vp+n + Et‘n":l E?x;llllp Dimadkm A Ta

, 1
+ '1::-’:1 :21 Bimndkm A wq—vP+n 1= 1, g —Vp ( 6)



We now reach the climax of the plot. Let us take the exterior differentials of equations (10) and

(11)

0= Zdba,Ar,+Zba.Ad1r, pp-1 < a < pp (17)

=1 =1

A A
=Zdb:n-/\1r.~+zb;i/\d7r,~ g—vp1<a<q-—-vp (18)

and make two substitutions.

The first substitution consists of replacing the vp — vp_; principal components 7, of order P in
the equations (16) by their values given by (11), thus depending on coefficients of order P which we
represent as the vector b’ of size A(vp — vp_1), the ¢ — vp_; principal components of order < P by
their values with respect to my, -, 7y and coefficients of order < P. Similarly, let us replace in these
equations the differentials of the up — pp_; invariants of order P by their values taken from (10),
that is with respect to coefficients of order P which we represent as the vector b of size A(pp — pp_1),

and the up_, differentials of invariants of order < P by their expressions with respect to my,---, T
and coefficients of order < P. We thus obtain
20»3 1 'Oﬂ(b/\b’)"rc‘ A LJ: + EA—I E (b,)ﬂ'a A Wy—vp4nt
Ya=1 Lat1 Bign(b)ma A wq~le+n
or A
Z ‘Qp(b bl 7l’o, /\ 7(’,3 + Z Z taﬂ b’)"ra /\ wq-,,P+,. i = 1’ sy q —_ VP
a,f=1 a=1n=1

The second substitution consists of replacing the dm; by their values in equations (17) and (18). We
then obtain .

A vp
Z Z faJ'n b bl)“’q—v;+n + Z Tah(b b )7rh) A 7(" = 0
" v
Z (dbg; Z Jajn(D, b )wg_rptn + Z r (b, bYm) A =0
= ﬂ— h_

From these relations we deduce that

Z Sajn(D, b )werpin + E Tan(b, b))

ﬂ_

and
vp A
db:xj - Z ajn(b, bl)“’q-w’+n + Z rf,,,(b, b’)"'h
n=1 h=1
are linear combinations of A differential forms ;. If we denote by €, the restriction of the dif-
ferential form w,_,,;» When the principal parameters are constant and the principal forms my,---, 7y



of order 0 disappear, we finally obtain differential equations yielding the action of the group Gp on
coefficients of order P

vp
dbaJ' = Z fajﬂ(b’ b,)eq—vp+n

n=1

(19)
vp
db:l] = z:lgaj"(b, b’)eq—l’}"*'“

Let us examine in more detail how this leads to an algorithmic method for computing the different
classes of frames. At the beginning of step P + 1, we assume known

1.

2.

The number of invariants of order 1, 2, ---, P;

The definition of frames of order 1, 2, - -+, P;

. The definition of principal components of orders < P of frames of order P, their expressions in

terms of m,- -, 7, and invariants of orders < P;

The expressions of differentials of invariants of orders < P with respect to my,---, 7\ and
invariants of orders < P,

We then obtain the information at order P + 1 as follows

1.

If necessary, we orientate the contact element of order P in order for the family of frames of
order P to be continuous

. We define the principal components of order P. To do so, we deduce, from the tables of

secondary coefficients of orders P and P — 1, a system of vp_; — vp principal components of
order P (equations (12)).

. We compute their exterior derivatives (16).

Using formulas (10) and (11) we define coefficients of order P and compute infinitesimal trans-
formations (19) of the group Gp taken as operating on these coefficients.

Considering the space Wp of these coefficients, we then determine orbits of points of Wp under
the action of Gp.

. We then trace in Wp as simply as possible ! a manifold wp which intersects each orbit in one

and only one point. Thus each point of Wp has one and only one homolog on wp. Choosing a
point of wp amounts to choosing an orbit of Wp.

As frames of order P + 1 we choose frames of order P to which corresponds a point of wp. We
choose as invariants of order P + 1 parameters which allow us to distinguish the point of wp.
In the very important special case when Gp operates transitively on Wp, wp is reduced to one
point and there are no invariants of order P + 1. ‘

'This is all a matter of flair and insight!
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When point B is on wp, equations (10) and (11) yield the expressions of differentials of invariants
of order P and principal components of order P in terms of 7y,---, 7, and the invariants of order
P + 1. Gpy4, is the subgroup of Gp which leaves point B fixed. The table of secondary components
of order P + 1 is obtained from the table of order P by linking differential forms e, with the relation
(19) where we take db,; = dbj,; = 0. These relations supply the principal components of order P + 1
since it is precisely the linear combinations of forms w; which disappear for all frames of order P + 1
with fixed origin.

We will show by the example of plane curves how the ideas developed above are applied in the
case of the projective, affine and Euclidean geometry.

3 Curves in the Euclidean Plane
This well-known case will allow us to explain the method of moving frames. We consider Euclidean

frames in the plane (A,e;,e;). From what we have seen above, the equations of the most general
moving frame are written

dA = wie; + wrey
de;, = wpe;
de; = —wpe

These frames thus depend on ¢ = 3 parameters which is the number of parameters of the plane
Euclidean group. Cartan’s structure equations are very simple

doy = —waAwn (20)
d(dz = wlAwlz (21)
dw = 0 (22)

We now consider a curve (c) of class C2 which we will assume parametrized by t. We will consider
the set of frames whose origin is at a point of the curve (¢). This is a family of frames with two
parameters, the parameter ¢, called the principal parameter, and the orientation # of e, with respect
to the horizontal, called the secondary parameter.

3.1 Frames of order 0

A contact element of order 0 consists of a point A and all the euclidean frames having origin A4 .
Frames of order 0 are characterized by the fact that point A is fixed. These frames depend on only
one parameter 6, and we thus have, according to the notation of the previous section, vy, = 1. Also
according to that section, we must find that ¢ — 1 independent linear combinations of w;, w, and
wz disappear when we restrict them to this subclass of frames.

In effect, the three forms w;, w2 and wy; are linear combinations of the forms dt and df. They
are thus not independent. If we eliminate df within these three forms, we will obtain two two linear
combinations depending only on dt. A linear combination of these three forms containing only dt
disappear for dt = 0, i.e., when varying the frame in the family with one parameter 6 relative to
point A. Let us find these two linear combinations.

11



Since frames of order 0 are characterized by the fact that the point A is fixed, we have dA = 0.
We will call secondary coefficients, denoted by e; and e, the differential forms induced by w; and w,
on this subfamily of frames, (similarly, we denote by e;;, the restriction to the subfamily of frames
under consideration of the differential form w;;). The condition dA = 0 implies that the secondary
coefficients e; and e; equal zero. We have thus found our two linear combinations of the forms w,, wo
and wy2 which disappear along with dt: they are clearly w; et wy ! We call them principal components
of order 0 and, according to the previous section, we denote them by m; = w; and 1y = wy. It is
useful to visualize in table form, called the table of secondary components of order 0, the differential
forms which disappear on the subfamily of frames being considered, and the relations between the
others. We obtain

0 0
0 e
—~€12 0

The principal components of frames of order 0 are

Order 0
Wy, W2

3.2 Frames of order 1

Accordiug to the above section, we have two principal components of order 0 which are w; and ws.
In proposition 2.1 of the previous section, these principal components are linear combinations of m,
which is equal to w,. We thus have w; = aw; and a is called the coefficent of order 0. We have to
determine how this coefficient depends on secondary parameters of order 0, i.e., on 6.

In order to do this, given (A, e;,e2) and (B, f, f2), two frames of order 0, and given 8 and 6, the
corresponding secondary parameters, we thus have the relations

A=B
f; = e, cos(d — 9) + e;sin(d — 0)
f2 = —€; 8111(6 - 0) +e; cos(a - 0)

and we have two ways of evaluating dA
dA = wye; +wrey = hfy +Wof; = (Ul cos(a - 0) — Wy sin(? - 0))61 + (Ul sin(@ - 0) + Wy COS(_o_ - 0))62
from which we can deduce that

wy = @y cos(B — ) — W sin(f — 6)
wg = @ sin(f ~ ) + @, cos(8 — 6)
We thus have o _ _ _ _
_wy _ sin(0—0)+ 22 cos(d — 0)  sin(f — ) + @cos(d — 6)
~wr cos(d—6) — Zsin(f—08)  cos(d — ) — @sin(f - 6)
Let us extract from the family of frames of order 0 attached at any point of (¢) the family characterized

by the fact that the ratio % has a fixed value (e.g., 0). This will define a subclass of the frames of
order 0, the frames of order 1.
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Given now two frames of order 1. From the above we have a = @ = 0, therefore sin(d — §) = 0.
This shows that the family of frames of order 1 contains two elements corresponding to values 8 and
7 + 6 of 8. These two values give different orientations of the curve (c). Since 8 is fixed to within
7, frames of order 1 no longer depend on any secondary parameter. We have obtained the Frenet
frames of the curve.

If we consider a frame of order 1, we see that dA = wye; and thus e; is tangent to the curve
at each point. According to the first structure equation, the form w; satisfies dw; = 0 for a frame
of order 1. This is thus an exact form and we let w; = ds where s is the arc length of the curve
(c). The second structure equation shows that for frames of order 1, we have w; A wy; = 0 i,
w12 = kwy = Kds. This ratio x = %2 is a metric invariant of the curve, its curvature at the point A.

The previous method is rather heavy-handed, but can be lightened and automated as follows.
We consider a frame which varies while always remaining of order 0 ( its origin is fixed at a point of
the curve). From the above, its principal components of order 0 are w; and ws, which introduces a
secondary coefficient a of order 0, such that

Wy = an

a is a function of the secondary parameter 8 and of the principal parameter ¢. Let us compute the
exterior differential of w,, using on the one hand the previous expression, and on the other hand the
structure equations (8)

dwy =daAw;+adw =wy Awyz

Let us use the fact that dw; = —w; A w12 = —aw; A wy2. We obtain
wi A (da+wi(1+4%) =0
We thus have da + wi2(1 + a?) = awy, and since w; = 0 for frames of order 0, we finally obtain
da = —(a® + 1)exp

The group G, operates transitively on a and we can choose a subset such that a = 0 from the class
of frames of order 0. These frames are called frames of order 1. They therefore satisfy the condition
we = 0. The vector e, is thus tangent to the curve. According to the previous equation, this implies
€12 = 0. Frames of order 1 do not depend on any secondary parameter and we thus have v, = 0.
From the previous section, an infinitesimal translation of the frame of order 1 zeros ¢ — vy = 2 linear
combinations of wi,ws, w2 (w1 and we) and ¥y — v; = 1 new one, which is consequently ws.

Thus the table of secondary components of order 1 is

00
00
00

The principal components of frames of order 1 are

Order 0 Order 1
wy, wo(=0) | wip

13



We find here again that the secondary coeflicient of order 1, the ratio ¢z is an invariant of order 2
which we identify as the curvature k. We have the classical Frenet formulas

A _
ds ~ !

de1

2 = ke (23)
d62 _

ds ke

3.3 Application to the evolution of curves

We are now going to consider the case of a family of curves. In order to deal with this problem,
we change our notation slightly and consider a closed embedded smooth curve (i.e. a curve with
no self-intersections). We denote by p the principal parameter. The curve can be considered as a
mapping A : S! — R? where S? is the unit circle. We now consider smooth embedded plane curves
deforming in time. Let A(p,t) : S! x R — R? be a family of such curves where p parametrizes
the curve and t represents the time. Let s be the euclidean arc-length along a curve of the family, a
function of p and t. We now propose to study the following evolution equation:

At = Au (24)

in which the partial with respect to t is taken at p constant and the partials with respect to s are
taken at t constant. This equation can be thought of as a heat equation (because of the formal
similarity with the usual heat equation) which is intrinsic to the curve. It has been studied by Gage
and Hamilton (8, 9, 10] who proved that a planar convex embedded curve converges to a round point
when evolving according to (24) and Grayson [11] who proved that a planar embedded nonconvex
curve converges first to a convex one and then to a round point.

Since a curve in the euclidean plane is defined up to a rigid transformation by its arclength and
curvature, it is natural to establish how they evolve in time when the curve changes according to
(24). The key is of course to use the Frenet equations (23).

We first derive a general result which we will use also in later sections. It is related to the fact
that the operators of partial derivative with respect to ¢t (at p constant) and with respect to s (at ¢
constant) do not commute since 3 is a function of p and ¢. Let then g equal %‘;, it is easy to show

that the Lie bracket [, %] is equal to

08, 8 & _ g8
5 35 = 185 855t = "9 05 (25)

5052~ lglas X0t ositn (26)

and ‘
88 _ 9.0 y® 08 &0 (27)
g ' 0s? gosd  0s30t
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Similarly, we will need the following expressions of the higher order derivatives of A with respect to
the arclength s which we obtain from the Frenet formulae:

As = —K2e1 + K €5 (28)
Ay = —3k,ke; + (K., — £%)ey (29)
Ag = (k' — 3k ~ 4k,,k)e; + (K, — 6k,K%)e; (30)

3.3.1 Evolution of arc-length

It is now easy to characterize the evolution of arc-length. We use the relation

e;-e =1
which can be rewritten as
A,-A, =1
and take its derivative with respect to t:
Ay A, =0

We then use equations (25) and (24) to rewrite
Ay = —%A, +A,

Using equation (28) we finally get

9 = —K’g (31)

3.3.2 Evolution of curvature

The principle of the method is to use a differential equation that is satisfied by each curve of the
family. Using the Frenet equations and equation (28) we obtain

KAp — KAy +K3A, =0
We take the derivative of this equation with respect to t:
KAy + KAy — KA — KAy + 3Kk% A, + KAy, =0
We then use equations (25)-(27), the Frenet equations and equations (28)-(30) to obtain the equation
P(K, Kty Kyy Kg2)€1 + Q(K, Key Kyy Kyzy Ky3y Kis )2 = 0
This implies P = Q = 0. The first équation yields the sought for evolution equation:
Kt = Kyy + K (32)

We then replace ¢, by —Z£, + K, in @ thanks to equation (25), use equation (32) and find that Q
is identically 0. Equation (32) is an example of a special kind of partial differential equation called
a reaction diffusion equation. These equations have been studied quite extensively in mathematics

(see for example [22]). In fact we have here a system of two coupled pde’s (equations (31) and (32))
which must be studied as such.
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4 Affine unimodal bidimensional geometry

We will consider the affine frames of the plane (A, e;,e2). In section 2, the equations of the most
general moving frame are written

dA = wye; +wrey
de; = wje; +wpe;
de; = wpe —wpe;

-Thus these frames depend on ¢ = 5 parameters which is the number of parameters of the plane
unimodular affine group.

4.1 Frames of order 0

A contact element of order 0 consists of a point A and all the affine frames of origin A. Frames of
order 0 are characterized by the fact that the point A is fixed, thus dA = 0, which implies that
the secondary coefficients e; and e; equal 0: ¢ — vy = 2. Thus frames of order 0 depend on vy = 3
parameters. We have two principal components of order 0, 7; = w; and 72 = ws. As mentioned
above, it is convenient to set the differential of the principal parameter which defines the position
of a point of the curve equal to the first principal component, i.e., to w;. The table of secondary
components of order 0 is given by

0 0
€11 €12
€21 —€n

The principal components of frames of order 0 are

Order 0
Wy, W2

4.2 Frames of order 1

Given a frame which varies while always remaining of order 0 (its origin is fixed at one point of the
curve). According to the above, its principal components of order 0 are linear combinations of m,
which introduces a coefficient a of order 0, such that m; = am, i.e.,

Wy = A

Let us compute the exterior differential of w, using on the one hand the previous expression, and on
the other hand the structure equations (8)

dw2=daAw1+adw1

Using the facts that dw; = wy Awyy +we Awgy = wy A (w1 + awsy) and dws = wy A wyg + wa Awes =
w A (w12 + awsy), we obtain

w1 A (da + wy2 + a(wez — wyy) ~ azwgl) =0
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Therefore we have da + wyz + a(wee — wi1) — a*wy = ows, and as wy) = 0 for frames of order 0, we
obtain

da = —€12 — a(e22 - 611) + 0.2621

The group Gy thus operates transitively on a. We can choose a subset such that a = 0 from the
class of frames of order 0. These frames are called frames of order 1. They thus satisfy the condition
wy = 0. The vector e, is therefore tangent to the curve. According to the equation shown above,
this implies ;5 = 0.

We thus have a principal component wqg of order 1. Thus vy — 4 = 1 and frames of order 1
depend on v; = 2 secondary parameters. The table of secondary components of order 1 is given by

0 0
€11 0
€21 —én

The principal components of frames of order 1 are

Order 0 Order 1
Wy, w2(= 0) wy2

4.3 Frames of order 2

Given a frame which varies while always remaining of order 1 (its origin is fixed at a point of the
curve and the vector e, is tangent to the curve). According to the above, its principal components of
order 1 are linear combinations of 7;, which introduces a coefficient a of order 1, such that w3 = aw;.
Let us compute the exterior differential of w;; using on the one hand the previous expression, and
on the other hand the structure equations (8)

Since wy = 0, we have dw; = w; A wy1. Moreover, dwya = wyy A w2 + Wiz A wee = aw A (W — wny)
and we can deduce that
da + 3aw;; = aw;

Since we took into account the relation wey = —wy; and since wy = 0, we have
da = —30.811

The group G; operates transitively on a. We can choose a subset such that a = 1 from the class of
frames of order 1. These frames are called frames of order 2. They satisfy the condition w3 = w; and
the coefficient e;; equals zero. We thus have a principal component w; of order 2, and v; — 1, = 1.
Frames of order 2 depend on 1, = 1 parameter. The table of secondary components of order 2 is

0 0
00
€21 0

The principal components of frames of order 2 are

Order 0 Order 1 | Order 2
wy, wa(= 0) | wia(= wy) wi1
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4.4 Frames of order 3

Given a frame which varies while always remaining of order 2. According to the above, its principal
components of order 2 are linear combinations of 7;, which introduces a coefficient a of order 2, such
that wy; = aw;. Let us compute the exterior differential of w;; using on the one hand the previous
expression, and on the other hand the structure equations (8)

dldu =daA wy + adwl
We still have dwy = wy A wyy and dwyy = w2 A wey = wy A wyy. Hence we can easily deduce
da = —ep

Thus the group G2 operates transitively on a. Its action consists in adding any constant to a. We
can choose a subset such that a = 0 from the class of frames of order 2. These frames are called
frames of order 3. They satisfy the condition w;; = 0 and the coefficient e;; equals zero. We thus
have a principal component wo; of order 2 and v, — 13 = 1. The frames of order 3 do not depend on
any parameter. The principal components of frames of order 3 are

Order 0 Order 1 | Order 2 | Order 3
wy, wa(=0) | wiz(= w1) | wi(=0) woy

The form w, satisfies dw; = 0 and is therefore exact. We let

w = do

where o is called the affine arc length parameter. We have an invariant of order 4, the ratio 22, which
is the affine curvature k. Frames of order 3 are Frenet frames and we have the following equations

dA o

do ~

de

-d—al = €2 (33)

dez

— f— k

do @

4.5 Analytic determination of arc length and affine curvature
Supposing the curve parametrized by any parameter ¢ and using the Frenet formulas, we have

dA _dAdo  do

dt  do dt ‘E
d2A d20

aa 2
az =g tely )
Taking the vector products and with e; x e; = 1, we obtain

do_ dA @A,

@ - Va X e (34)
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This equation will allow us to compute the affine arc length parametrization from any parametization
of the curve. Pushing the derivative further will enable us to compute the affine curvature. In effect

do d20e
dt de ’

d3

(( )3 )el 3—

dt3

Taking the vector product with %;‘- and extracting k yields

dio d?o\2 3
1 &2 d’A
lc=—§,r+3(d‘,)4 s l:x 3
(&P (@t (Frda  d
This expression is true for any parameter t.In the case where ¢t = é, the Euclidean arc length, we
have

(35)

dA PA _n $A ¢ R
G-t @ Tr - TR RS
do _ o1 By _ _1arp-3 @0 _ 1R s 4dR,, 1
ds‘R’ & = "3uk ds3 3 ds? 9ds)R’

By replacing these terms with their values in equation (35), we obtain

1d?R 1Ry, g
=R +357R3 - 5(3)'R

We recognize the common term %dzdf} in the last two terms of the right-hand side, and we obtain

this handsome formula

g 1 dq R’
2 ds?

Note that we have obtained the relation between the affine arc length parameter o and the Euclidean

arc length parameter s

k=—-R"3

(36)

% =K} (37)

where k is the Euclidean curvature. This, naturally, also yields the Euclidean norm of the affine
tangent e;

dA dA ds 1
= T dhde
so that
ey |=|RJ} =[x} (38)

We can continue and compute the components of the affine normal e; in the basis (t,n)

The component of the affine normal on the Euclidean normal is therefore equal to x%. This remark
turned out to be of great importance in the affine “scale-space” analysis (19, 18, 20, 1].
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4.6 Geometric interpretation

We take two points A and B, and two line directions d and d' represented by two vectors that we
denote A’ and B’. These four elements determine a triangle ABAg,, where Ay, is obtained as the
intersection of the lines passing through A parallel to A’ and through B parallel to B'. It is easy to
show that the area S of the triangle ABA; is given by the following formula

_1(A’xBA)-(BA xB))
~ 2 A x B

The quadruple A, B, A’ and B’ also determines in a unique way a parabola passing through A and
B, and tangent to (A, Ag;) and (B, Ag;). The equation of this parabola is written

S

(39)

t2

A(t) = Ag +tAy + 5

A (40)
with
Ap=A(t))=A(0)=A A;=A(t)=B
%— le=t, XA’ =0 A}, xB'=0
Let us compute the area of the triangle ABAy, in terms of ¢;. We use (39) to write
_ 1(AG X AgA,) - (AoA; x AY)
2 Aj x A

S(t1)
We replace AgA; in the previous equation by t; Ay + 3;—’A3 and A} by A} +t,Ay, and we obtain

1 ;
S(tr) = SHAG x Ag

The area of the triangle defined by two points of the parabola at parameters ¢, and ¢, is thus given
by the formula
1 "
S(tl,tz) = g(tz - tl)aA:) X AO
From which we deduce the following addition law
S(to,tl)% + S(tl,tz)% = S(to,tz)é

which was already known to Mdbius (see figure 1).
Let us demonstrate that this law is nothing but the addition law of affine arc length along the
parabola. In effect, according to the equation (34), we have

_‘%Z—- d_Ax i‘z_A)I/:’

dt ~ ‘dt = dt?

so that, according to (40)

dU ”
T (A X Ao)é

We can conclude that o(t) = 25(t)3, which gives the addition formula.
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A
o Bt=t,

Ag2 A, » Ct=1t,

Figure 1: We have the curious relation Area(ABAg)} + Area(BCAyp)s = Area(AC Agy)}

4.7 The affine group

It is interesting to make a table of the dimensions of the various elements involved with affine curves.

A
1

ATATA [ k [¥
1| —1[2

foing Q
e
po 14

This table is used in the following manner. If we multiply the lengths by A, then the arc length
parameter ¢ is multiplied by A3, etc.
We can see, in particular, that the integral

/|k|%da

is invariant by the affine group.

4.8 Application to the evolution of curves

Similarly to the euclidean case (see section 3.3), we are now going to consider the case of a family
of curves. We use the same notations as in this section and consider smooth embedded plane curves
deforming in time. Let A(p,t) : S* x R — R2 be a family of such curves where p parametrizes the
curve and ¢ represents the time. Let o be the affine arc length along a curve of the family, a function
of p and t. We now propose to study the following evolution equation:

Ag - A,, (41)

in which the partial with respect to ¢ is taken at p constant and the partials with respect to o are
taken at t constant. This equation, as (24), can be thought of as a heat equation (because of the
formal similarity with the usual heat equation) which is intrinsic to the curve. It has been studied by
Sapiro and Tannenbaum (19, 18, 21, 20] who proved that a planar convex embedded curve converges
to an elliptic point when evolving according to (41) and that a planar embedded nonconvex curve
converges first to a convex one and then to an elliptic point.

Since a curve in the affine plane is defined up to an affine transformation by its arc length and
curvature, it is natural to establish how they evolve in time when the curve changes according to
(41). The key is of course to use the Frenet equations (33).
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We use the equations (25), (26), (27) which are unchanged in the affine framework. We will also
need the following expressions of the higher order derivatives of A with respect to the arc length o
which we obtain from the Frenet formulae:

Ay = ke (42)
A,4 = k,e1+ke2 (43)
Ay = (K2 + ke, + 2x,e, (44)

4.8.1 Evolution of affine arc length

It is now easy to characterize the evolution of arc length. We let g = % and use the relation
ey Ney; = 1

which can be rewritten as

A, NA,, =1

and take its derivative with respect to t:
Ay A Aao + Aa AAo =0

We then use equations (25) and (41) to rewrite
Ay, = —%A, +A,

Using equation (42) we obtain

AwAAg=(k—T)A AN, =k -2
. 9 9
Similarly, using equations (26) and (43), we obtain
Ao A Ao =(k—22)A, A A,, =k 2%
g g
and finally 0
9t = —-ékg (45)

which is the affine analog of (31).

4.8.2 Evolution of affine curvature

The principle of the method is to use a differential equation that is satisfied by each curve of the
family. Using the Frenet equations and equation (42) we obtain

Ays—-kA,=0
We take the derivative of this equation with respect to ¢:

Ata-” - ktAo - kAta =0
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We then use equations (25)-(27), the Frenet equations, equations (42)-(45) to obtain the equation

1 4
(gka, - é‘kz - k,)el =0

This yields the sought-for evolution equation:

kt = "kaa - _k2 (46)
which is the affine analog of (32).

4.8.3 Evolution of euclidean curvature

It is interesting to look at the temporal evolution of the euclidean curvature when the curve evolves
according to (41). In order to do this, we use equation (38) which says:

~2
A”.szn 3

where « is the euclidean curvature. If we take the derivative of this equation with respect to time,
we obtain

1
Ata . Aa = -ngn—

From previous computation, we know that A,, = %kAo, where k is the affine curvature. Thus we
obtain

|

Kt = —ks (47)

This equation is interesting because it says that we can save one order of derivation by using the scale-
space defined by the curve evolution (41). Indeed, according to equation (36), the affine curvature
can be obtained from a second order dervative of the euclidean curvature with respect to euclidean
arc-length. But, according to equation (47), we can obtain the affine curvature from a first order
derivative of the euclidean curvature with respect to time.

5 Plane projective geometry

We will now consider projective frames in the plane (A, A;, A2). As in §2.2, the equations of the
most general moving frame are

dA = weoA + wp A + wp2As
dA; = wpA + wA; + wipAg
dA2 = wpA + wyA; + wnA,
with the relation
woo + wiy +wae =0

The most general moving frame thus depends on ¢ = 8 parameters, which is the number of parameters
of the plane projective group.
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The moving frame method can be applied in a straightforward fashion to this case and we do not
give the details here. The interested reader is referred to [4]. We find that, in order to get to the
Frenet frame, we have to consider frames of order up to 6.

The differential wy, is exact. Let wyy = do where o is called the projective arc length parameter.

The secondary coefficient 212 of order 6 is an invariant of order 7. We write

“Yio Yo _

o1 do
where k is the projective curvature. Frames of order 6 are the Frenet frames and we have the following
equations

dA

w - M

dA,;

— = ~kA+ A, (48)
dA,

— = —-A—-k

do A Ay

5.1 Geometric interpretation

We now give a useful geometric interpretation of the projective arclength. Let us consider two points
A and B on a curve (c), the tangent T4 to (c) at A, the tangent T to (c) at B and the chord (A, B).
We then consider the pencil of conics going through the points A and B and tangent there to T4
and Tg. The equation of each conic in this pencil can be written as

TaTp + M4, B)?

where A varies between —0o and oco. Indeed the degenerate conic (c;) composed of the two lines T,
and Tg of equation T4Tp = 0 and the degenerate conic (¢2) composed of the double line (A, B) of
equation (A, B)? = 0 both belong to the pencil, the first one being obtained for the value A; = 0
of A, the second for the value A\ = co. Among the conics of this pencil, there is one (c4) with a
contact of order 3 with the curve (c) at 4 and one, (cg) with a contact of order 3 with the curve
(c) at B. Let A4 (resp. Ap) the corresponding values of the projective parameter \. We consider
the cross-ratio of the four conics ((c4),(¢s),(c1), (c2)). It is a projective invariant equal to the ratio
Aa/Ap. We relate it to the projective arc-length g — 04 between the two points A and B on the
curve (c).

Let us consider the Frenet frame (A, A;, A2) at A. We represent each each point M of the
projective plane by its coordinates z, y in this coordinate system, i.e.:

M=A+zA; +yA,

Finally, we choose A as the origin of arclength 0. Let X(c),Y (o) be the coordinates of B and let us
compute the equations of T4, T, (A, B). Clearly, since T, = (A4, A,), the equation of T4 is simply
y=0. Since B= A+ XA;+YA;, we have B; = X'A;+Y'A, where ' indicates the derivative with
respect to arclength. Since T = (B, B;), the equation of Tp is (X — )Y’ + (y — Y')X’ = 0. Finally,
the equation of (A4, B) is yX — zY = 0. The equation of our pencil of conics can thus be written as:

(X -2)Y' +(y-Y)X)y+MyX —zY)2 =0 (49)
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Let us now compute A4 and Ag. To find A4, we rewrite (49) as:

— A _
y _A_ XY ~X'Y —zY'+yX' (yX ;, :c};l)z =
—xreoy WX — oY) (1 - St + -

expanding the square we find:
2Y?
XY' - XY
Since the reduced equation of the curve (c) is y = 523 + o(z*) ([4]), the conic (c4) of the pencil which
has a contact of order 3 with (c) at A is defined by:
_ XY - XY'
T2y? (50)
The Frenet frame at B is defined by B and B; which we have already discussed and B, whose
coordinates in the Frenet frame at A are X" and Y”. Thus the equation of the line (B, B,) is
(X-2)Y'+(y-Y)X"=0. Weletu=(X-2)Y"+(y-Y)X"andv= (X —z)Y'+ (y - Y)X".
The equation of (¢) in the Frenet frame (B, By, B;) can be written v = % + o(u?). A straightforward
computation shows that z and y can be expressed as functions of u and v as follows:

y=— 22 + azxy + By? + terms of higher degree in z and y

Aa

v X" —uX' vY" —uY’
z= X + YIIXI —_ YIXII y= Y + YIIXI — YIXII

This allows us to rewrite equation (49) as follows:

vY" —uY’ (XYY" - X"Y)+uw(X'Y -Y'X),

U(Y + YIIXI — YIXII) + A( YIIXI —_ YIXII )

from where it follows that:

A 2 2 2 1

v= —Y(Y”X’ Y X (v X'Y — XY')* + auv + v )1 y(}f,‘f;,__"}f,lx,,)

and therefore:
AMX'Y - XY' )2
—Y(YIIXI _ YIXII)Z

v =

u? + yuv + 8v® + terms of higher degree in u and v

Since the reduced equation of the curve (¢) is v = % + o(u?), the conic (cp) of the pencil which has
a contact of order 3 with (c) at B is defined by:
Y(Y"X' - lell)2

AB =~ XY XY (51

From this we write the ratio A4 /Ap:
)\_A (XY~ X'Y)?
A - Y3(YIIXI _ Yle/)z

2

L X +0(X7) (see for example [4]), we find that:

Considering the fact that we have Y =

A 11
log"*(32) = (3g)"/°X +o(X*)

Since X = o + O(0?) ([4]), we have obtained the following important result:
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Proposition 5.1 Let A and B be two points of a curve (¢) and o de the projective arc-length of
the portion of the curve between A and B. If we consider the four conics (cy),(cz),(ca),(cp) defined
above and belonging to the pencil of conics tangent in A to the tangent to (c) at A and in B to the
tangent to (c) at B, we can define their cross-ratio 7 = {(c1), (c2); (ca),(cB)}. We have the following
property:

fim log'/3t

o—0 o

11,13
This proposition gives a geometric interpretation of the projective arclength.

5.2 Analytic determination of the arc length parameter and projective
curvature

We shall use a method which is somewhat different from the affine case, i.e., the method of differential
equations. This gives a complementary insight, even if the moving frame theory is more geometrical.
We thus consider a point A of a plane curve (¢) parametrized by ¢ with projective coordinates
zo(t), z1(t), z2(t). Welet A = [zo(2), z1(t), z2(t)]T. The coordinates z; of A all satisfy the same third
order differential equation obtained by setting the determinant of order 4

0", 0" 0’ o
AIII A" Al A

to 0 (take 6 = z;, ¢ =0, 1, 2).
We write this equation in the following form

0" +p0" +q¢ +76=0 (52)
by letting
~ [A’" A" A| A" A A | A" A" A'rl
p_—|A" A A q—|A" A" A r__IA" A A

and excluding the points of inflexion for which
| A" A" A|=0

Equation (52) defines a class of curves projectively equal to each other and to the curve (c), but it does
not necessarily give all curves projectively equal to (c). In effect, if we change A into A = A(t)A, we
obtain a new equation (52) which, from the same curve (c), also defines curves that are projectively
equal to it. This also applies to the change of parameter t — £ = f(t).This indeterminacy allows
us to simplify the equation (52). We look for two functions A(t) and f(¢) in order to eliminate the
terms in @' and 6" in the equation. We shall see that there are infinitely many possible ways, as 7 is
only defined up to homography.
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5.2.1 Reducing the differential equation

We thus want to convert the equation

d*A d’A  dA
d——+ dt2 +th+A—0 (53)
to the form K
+7A =0 54
= (54)
by means of the transformations
A = \HA
t = f(t)

In the following, we represent derivatives in t by superscripts. We easily compute the following
expressions

dA _dA dt XN

— - _ [
- @ & ﬂA+fA |
LK AN 2N AS" ]
22 - (A -2 )A+ A+ —A ,
d—t-Z (f2 3 ) ( f ) f
3_ " 1 1" ’ 112
R &= 3Af Af W2 A

J I I A
3" 6XNfT AT 3af?
+( 13 - f'4 - IL + f'5

3AI 3Af A m !
+(F )A f .

Thus in order to determine 7(t), A(t), f(t) we obtain the system of three equations

&

JA’

3—X 3f”
A f!
3A" 6AI f" f’" 3f”2
DI A
A’” 3A" f” A’ f”’ 3AI f”2 _
T__’F_X?+_f2+rf = r
The first equation gives the ra,tio ‘

X
hence the ratio '\T by derivation. If we replace these two ratios by their expressions in the second
equation after simplifying, we obtain

17 _3r5°
25 " af2- 12°P 71

X " p
3 (55)

1H 3 f”2 _ 1 2 1 1

p+4 (56)
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The first member of this equation is the Schwarzian of t with respect to t. Once f is known we deduce
A by means of (55).
We easily see that ? is defined only up to homography. In effect we have the following proposition

Proposition 5.2 If we consider two functions f(t) and F(t) of the same variable t, then a necessary
and sufficient condition for F' and f to be related by a homographic relation with fized coefficients

_af(t)+b
F(t) = cf(t)+d

is that the Schwarzians {F}; and {f}; are equal.

Proof : The proof involves eliminating the three unknown parameters defining the homographic
transformation by successive derivations. We first obtain

.o (ad—be)f()
FO =i+ ap

and the logarithmic derivative of both sides of this equation gives

F'(t) _f'(8) _ 2f()
Fi(t) — f(t)  f()+4

A further derivation eliminates the constant g giving the equation

F'() 3F%) _ () 317
F) 2FA) P02

i.e., as required
{F}e = {f}
O
It follows that if we consider the cross-ratio of the four values of f corresponding to any four points
of (¢), this ratio does not depend on the particular choice of t. This is an invariant for the four point

system. We shall call it the four point cross-ratio on (c). It is the analog of the ratio of the affine
arc length parameters of three points in the case of the affine group in section 4.7.

5.2.2 Projective arc length parameter
If we take into account the expressions of ¢ and of A(t) in the last equation of the previous system,
this reduces to 1 5 1 ! ]
Ffl=r—2 —pP— g +pp+=p = H(t 57
ST =T gpat P =50 +gpp P (t) (57)

which can also be written
Fdt = Hd

Thus whatever the choice of I as the solution of the Schwarz equation, the expression of 7di° always
has the same value. We obtain the differential do of the arc length parameter by letting

dod® = 7dt® = Hdt3
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Thus we have . 1
do =73dt = H3dt (58)

Since H involves derivatives of the fifth order, we find that the differential of the projective arc length
parameter is an invariant of (c) of the fifth order.
5.2.3 Projective curvature

Using o to parametrize (c), equation (53) has no terms in ‘f‘—i%— and is written in the form

d*A dA

The quantities » and k are invariant by a projective transformation on (c), but they are not inde-
pendent since, for any parameter t, we must have

do® = Hdt?

In particular, if we have dt = do, we have H = 1 which, taking into account equation (57) enables
us to write

h—-k =1
When parametrized by its projective arc length, the differential equation of the curve is written in
the form BA JA
— +2k—+(K+1)A=0
P + Io + (K" + 1) (59)

This leaves only one invariant k in the equation, and it is the projective curvature introduced previ-
ously. As o is the chosen parameter, we can compute the projective curvature, and

t=0 p=0 ¢q=2k r=Fk+1

The Schwarzian {t}, of ¢ with respect to o is given by (equation (56))
- 1
t}, = =k
T =1

and we can deduce
k = 2{t},

To determine k we need the following theorem

Theorem 5.1 Given two functions z(t) and y(t) of the same variable t, we have

{y}.dz? = [{g}: — {}:]dt?
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Applying this theorem to z(t) = o(t) and y(t) = #(t), we obtain

{t}odo® = [{t}: — {o}:]at®

hence, taking into account the expression of k, we have

We know {t}; and we need to compute {o},. We have

d('f 1

@ =
Deriving logarithmically

o _1H

o 3H

and a further derivative yields

oo 1L
o o2 3H 3H?
From these two relations we immediately deduce
1 alll 3 0"2 1 Hll 7 le
{U}g=——,——-,—2=——————?
20 40 6 H 36H
Hence by replacement in the expression of k

1 1 1H" 7 H?
k=H”§[—§p'-——p2+lq——H

6 2 37T+T§F] (60)

5.2.4 Relation with unimodal affine geometry

Let us suppose that the curve (c) is

parametrized by its affine arc length o,. The affine Frenet frame is a special case of the projective
frame where the vectors e; and e; represent A; and A,, two points of the line at infinity, whose
projective coordinates are A; = [ef, 0]T,i = 1,2. Also, the origin A, of the frame defines a
projective point A, with coordinates A, = [AT, 1]T. According to the affine Frenet equations (33),
the point A(o,) satisfies the differential equation

0"! 0” 0, 0
ke, e e A, |=0
0 0 0 1
written in the form
6" — k.0 =0

where k, is the affine curvature. We thus have

p=0 g=-k, r=0
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The differential equation that gives the projective parameter f (equation (56)) is

- 1
t}e. = ——ke
G
As for the projective arc length o, (equation (57)), we have

1dk,
2do,

H(o,) =

By making this equation closer to the equation (60) we obtain the relation between the projective
curvature k, and the affine curvature

ke 1K TR
b= 5 -3 () (61)

where ' indicate a derivative in o,. We also obtain the relation between the projective arc length
and the affine arc length
do. 1dk, .1
P _ (2 )3
do, 2do,
We can also consider the scale factor A, a function of o,, which enables us to transform from the:
affine point A, to the normalized point of the projective Frenet frame. We write that A = AA, and
we determine A so that | A A A | = 1. We then apply the affine and projective Frenet formulas

(62)

A, =NA, +)\‘f’z‘f:e1
Ar =(V4+IR)A, +(2Vs £ 2AL%)e; 4A(8)2k e, (63)
where ' indicates a derivative in o, and we find
|A A A, |=A3(%)3=1
do,
Hence, given the equation (62),
k, 1 dO’
A=(=2); = P
(2 =2 (64)

where the ' indicates a derivative in o,.

5.3 Application to the evolution of curves

Similarly to the euclidean and affine cases (see sections 3.3 and 4.8), we are now going to consider
the case of a family of curves. We use the same notations as in these sections and consider smooth
embedded plane curves deforming in time. Let A(p,t) : S! x R — P? be a family of such curves
where p parametrizes the curve and t represents the time. Let o be the projective arc-length along a
curve of the family, a function of p and ¢. We now propose to study the following evolution equation:

A= Aaa (65)
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in which the partial with respect to t is taken at p constant and the partials with respect to o are
taken at t constant. This equation, as (24) and (41), can be thought of as a heat equation (because
of the formal similarity with the usual heat equation) which is intrinsic to the curve. It has been
studied by this author [5, 6].

Since a curve in the projective plane is defined up to an projective transformation by its arclength
and curvature, it is natural to establish how they evolve in time when the curve changes according
to (65). The key is of course to use the Frenet equations (48).

We use the equations (25), (26), (27) which are unchanged in the projective framework. We will
also need the following expressions of the higher order derivatives of A with respect to the arc-length
o which we obtain from the Frenet formulae:

Ay = —2kA, — (1+k,)A (66)
Ap = (—kor +2K")A — (14 3k,)AM) — 2kA® (67)
Ays = (koo + Thk, + 3k)A + 4(k? — k,2)A® — (1 + 5k,)A® (68)

In these equations, we have written A and A instead of the usual A; and A, to avoid problems
with partial derivatives.

5.3.1 Evolution of projective arc-length

It is now easy to characterize the evolution of arc-length. We use the relation
|A AD A® | =1
and take its derivative with respect to t:
| A A® A® | ={AADA® |+ | AAPAD | +| AADAP =0 (69)

According to the equations (65) and (48) the first determinant is equal to —k. According to the
equations (25), (66) and (48) we have
_%

g
and thus the second determinant of the right-hand side is equal to —(-"; + 2k). Similarly, the second
Frenet equation allows us to write

AV =A, =-ZAW 4 A, = —(% +2)AW — (1 4+ k,)A

A£2) — gt_(kA + A“’) =kA+kA,, + Ao

Using equations (26) and (67), we can compute the coefficient of the term A(® in that expression
which yields —(2-‘1; + k) for the value of the third determinant in the right-hand side of equation (69).
Adding these three values and equating them to zero, we obtain

Ata/\Aoa=(k—‘g—t')Ao/\Aaa= —&
9 g
Similarly, using equations (26) and (43), we obtain
4
9: = —3kg A (70)

which is the projective analog of (31) and (45).
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5.3.2 Evolution of projective curvature

The principle of the method is once again to use a differential equation that is satisfied by each curve
of the family. We can write equation (66) as

A, +2kA, = —(1+k,)A

The two sides of this equation represent the same projective point., i.e. A. The projective point
represented by the left-hand side follows the same curve, for a constant value of p, as the point A.
This implies that the tangents must be the same, and therefore that the two vectors A A A, and
AA -‘g—t(A,a + 2kA,) are parallel. Using equations (65) and the Frenet equations, it is easy to show
that

ANA;=ANAD (71)

In order to compute Z:(A,s + 2kA,) we use equations (25), (27) et (68) to obtain

AA ‘%(A,a + 2kA,) = (2k, — 4k,z + 4k% - [%],:)A AAD — (1 + 5k, + 3[%],)1\ AAD  (72)

The condition that the two vectors are parallel is thus equivalent to the two equations

2k, — 4k,2 + 4k§- - [%],z =0
14 5k, +3[2], = a

where a is a function that is equal to 1 + k, according to the equation (70). Replacing in the first
equation the value of 2 and of its second order derivative with respect to o computed from the
second equation, we obtain the sought-for evolution equation:

4
ky = §(k,,z + 2k?) (73)

which is the projective analog of (32) and (46).

5.3.3 Evolution of the affine arc-length and curvature

We now relate the previous results to affine geometry for two reasons. The first reason is that the
analog of equation (65) has been studied in the affine case and therefore it is interesting to compare
the evolutions of the curve in the two cases. the second reason is that, in some sense, the affine
results will shed some light on the projective ones.

Let then E;,i = 1,---,4 be the standard projective basis of P? which is represented by the
standard basis of R® and the vector [1,1,1]7. The set P?\(E), E;) i.e. the projective plane minus
the "line at infinity” is isomorphic to the affine plane A2%. This identification allows to define a family
of curves embedded in A? from a family of curves embedded in P2.

Let X,Y and Z be the coordinates of the vector A representing the projective point A belonging
to one the curves in the family. Since we are interested in the part of the curve included in A%, we
can assume that Z # 0. Leta = %A be the representative of the point A in .A%2. At each time instant
t, we can assume that this point is parametrized by its projective arc-length o,. From section 4 we
know that we can define an affine arc-length as

do,
2o, =| E3,a,,,24,, |}
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if we stay away from the inflection points where a,, A a,,,, = 0. We use the affine Frenet equations
(33) in

o, — &
dep __

o, — ©2
de _

= = kier

We consider the vectors e, and e, as vectors of R® whose last coordinate is 0 to be compatible with
our study of P2. The vectors e; and e; are related by

ethe; =E;3 (74)

We have also derived in a previous section the following relations between the affine and projective
Frenet frames (equations (63)) »

do,
A(l) = Za,,a'*'Z'd_el

Tp
do d%o do
2 — a “ Y a\2
A( ) = (Z‘,’,’ + ka)a-i- (2Z0'F% +2Z daf, )el + Z(dUp) e
and (equation (64))
doy
Z = K
If we now consider for convenience the quantity
1dk,
- §da,, (75)
we can prove (see [5, 6] for details) the following two results
Proposition 5.3 Let h = “7"; , the temporal evolution of the affine arc-length is
h _2 Aa,o, Ao.
he = =2 (4kp + A7 (== = (2)%) (76)
and
Proposition 5.4 The function A evolves according to the equation
1 Aa,a. Aa. 1
A= AH[E5E — (S0 = Aflog | A e ()

Moreover, if we perform the change of variable V = %log A%, V evolves according to the equation

‘/t = C-VVo.aa ) (78)
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Looking back at equation (61) giving the relation between the projective and affine curvatures, we see

that equation (77) allows to compute the ratio ’;, = ﬁxﬂ which involves a third order derivative of
the affine curvature with respect to the affine arc length as a function of the second order derivatives
of the affine curvature with respect to the affine arc length and the time parameter of the projective
evolution equation (65). Thus, just as in the affine case we gain one order of derivation if we trade

space (arc length) for time (scale).

6 Conclusion

This article is a general introduction to Cartan’s moving frame method which is elegant, simple, and
of an algorithmic nature. We have demonstrated how to use it systematically on three examples
relevant to computer vision, curve in the euclidean, affine and projective planes, and derived the
corresponding Frenet equations. We have then used these equations to show that the analysis of
the deformation of plane curves according to an intrinsic heat equation could be done in a common
framework, yielding very similar expressions for the evolution of the three curvature invariants.
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