N

N
N

HAL

open science

Implicit induction in conditional theories
Adel Bouhoula, Michaél Rusinowitch

» To cite this version:

Adel Bouhoula, Michaél Rusinowitch. Implicit induction in conditional theories. [Research Report]

RR-2045, INRIA. 1993. inria-00074627

HAL 1d: inria-00074627
https://inria.hal.science/inria-00074627
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074627
https://hal.archives-ouvertes.fr

v/

=1

L2

»|

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Implicit Induction
in Conditional Theories

Adel BOUHOULA
Michaél RUSINOWITCH

N° 2045
Septembre 1993

PROGRAMME 2
Calcul symbolique,

programmation
et génie logiciel

apport
de recherche

1993

Implicit Induction in Conditional Theories*!!

Adel Bouhoula and Michaél Rusinowitch
CRIN & INRIA-Lorraine
BP 239, 54506 Vandoeuvre-lés-Nancy, France
email: {bouhoula,rusi}@loria.fr

September 18, 1993

Abstract

We propose a new procedure for proof by induction in conditional theories where case analysis
is simulated by term rewriting. This technique reduces considerably the number of variables of a
conjecture to be considered for applying induction schemes (inductive positions). Qur procedure
is presented as a set of inference rules whose correctness has been formally proved. Moreover,
when the axioms are ground convergent it is possible to apply the system for refuting conjectures.
The procedure is even refutationally complete for conditional equations with boolean precondi-
tions over free constructors (under the same hypotheses). The method is entirely implemented
in the prover SPIKE. This system has proved interesting examples in a completely automatic
way, that is, without interaction with the user and without ad-hoc heuristics. It has also proved
the challenging Gilbreath card trick, with only 2 easy lemmas.

keywords: Theorem proving, Term rewriting systems, Implicit induction, Conditional theories.
Induction Implicite dans les théories Conditionnelles

Résumé

On propose une nouvelle procédure de preuve par induction dans les théories conditionnelles
ou ’analyse par cas est simulée par la réécriture. Cette technique réduit considérablement le
nombre des variables d’une conjecture a considérer pour P’application des schémas d’induction
(positions inductives). Notre procédure est présentée par un ensemble de regles d’inférence dont
la correction a été formellement prouvée. De plus, si les axiomes sont convergents sur les termes
clos alors il est possible d’appliquer le systéme pour réfuter des conjectures non valides. La
procédure est aussi réfutationnellement compléte pour les équations conditionnelles avec précon-
ditions booléennes sur des constructeurs libres (sous les mémes hypothéses). Notre méthode est
entierement implémentée dans le prouveur SPIKE. Ce systeme a prouvé des exemples intéres-
sants d’une maniére automatique, i.e. sans interaction avec ’utilisateur et sans heuristiques. Par
exemple, 2 lemmes suffisent pour prouver le tour de cartes de Gilbreath.

mots clés: Preuve automatique, Systeme de réécriture, Induction implicite, Théorie condition-
nelles.

*This is an extended version of a paper presented at the International Joint Conference on Artificial Intelligence,
Chambéry (France), 1993.

tWe thank our colleagues from the IndusMind group for stimulating discussions.

!Partly supported by the PRC mécanisation du raisonnement and the Esprit BRA workshop COMPASS

1 Introduction

Formal methods are more and more frequently adopted by industry for hardware and software
verification. They require efficient automatic tools to relieve designers and programmers of the
related proof obligations. Mathematical induction is essential as a technique for building formal
proofs in this context. Its power is expressed by the successes of Nqthm [Boyer and Moore,
1979] that has been for many years the only significant automated theorem proving system for
induction. However Nqthm requires a lot of interaction with the user. For instance many lemmas
need to be given to Nqthm as milestones even for simple proof tasks.

Another direction for automating induction was proposed in the early eighties, the induction-
less induction technique [Musser, 1980; Huet and Hullot, 1982; Kapur and Musser, 1987] whose
principle is to simulate induction by term rewriting. This method is refutational and does not
require human interaction. While very limited at the beginning, its domain of application has
widened considerably, thanks to the contributions of [Jouannaud and Kounalis, 1986) who relaxed
the conditions on constructor symbols and of [Fribourg, 1986] who showed that only linear deriva-
tions were needed (see also [Bachmair, 1988]). More recently the method has been completely
freed from the completion framework [Kounalis and Rusinowitch, 1990a; Reddy, 1990)]. It has now
become possible to apply it to conditional equational theories [Kounalis and Rusinowitch, 1990b;
Bouhoula et al., 1992a). Inductionless induction in our new setting reduces to firstly instanciating
conjectures by induction schemes called test sets and secondly simplifying them by axioms, other
conjectures or induction hypotheses. Every iteration generates new lemmas that are processed in
the same way as the initial conjectures. The method does not require any hierarchy between the
lemmas. They are all stored in a list and using conjectures for mutual simplification simulates
simultaneous induction. The system SPIKE has been developed [Bouhoula et al., 1992b] on this
principle and incorporates many optimizations such as powerful simplification techniques. To
our knowledge, this system is the only one that can prove and disprove inductive theorems in
conditional theories without any interaction.

However computer experiments have convinced us of the necessity of introducing a proper
rule to perform case reasoning. Case analysis is a fundamental reasoning technique. A typical
instance of it is the cut rule that consists in splitting a goal formula A along another formula
C for generating two subgoals C = A and ~C = A. The main difficulty, already recognized
by logicians a long time ago, relies in the choice of the cut formula C. A natural solution
when dealing with theories axiomatized by Horn clauses (or conditional equations) is to use the
negative literals of the axioms as cut formulas. This approach is frequently used in the context of
conditional rewrite system when a conditional rule C = [— r may reduce a goal A to subgoals
C = A[r/l] (i.e. term [is replaced by r in A) and -C = A.

The problem is now that one of the subgoals is not smaller than the initial goal and a lot of
control is needed to avoid divergence of the process since a similar case analysis can be applied
again to =C = A. This has motivated us to introduce a new case analysis rule that allows one
to splitting a goal A into subgoals C; = A[l;/r;] and V;C;. Since in the context of conditional
rewrite system all subgoals are strictly smaller than the initial goal the search space is much
more controlled. Related approaches were proposed independently by [Bronsard and Reddy,
1990] and [Bevers, 1993]. However, since their inference systems are unable to handle non Horn
clauses, they cannot prove the V;C; formulas otherwise than by external means. On the contrary,
our proof technique applies to non Horn clauses as well. The disjunction V;C; is added to the other
conjectures and does not require particular treatment. Therefore our setting is very homogeneous
and permits one to extend our basic inference rules by various optimizations without loosing
correctness and completeness. In particular we have a notion of inductive positions defining
the subset of variables of a conjecture that can be instanciated by induction schemes and we
have proved that these positions are the only ones needed for completeness. The restriction
of induction to these positions reduces drastically the search space. The importance of such
restrictions was recognized a long time ago by [Boyer and Moore, 1979].

s

2

o

The paper is organized as follows. In Section 2 we introduce the basic definitions about term
rewriting. In Section 3 we define the notions of inductive theory and inductive rewriting, which
is a fundamental tool for proving inductive theorems. We define in section 4 inductive positions
and test sets. Section 5 presents our technique of simulating case reasoning by rewriting. This
technique reduces considerably the number of inductive positions to be considered. The strategy
can be embedded in a correct set of inference rules described in Section 6. When the axioms are
ground convergent and the defined functions are completely defined then it is possible to apply
the system for refuting conjectures (subsection 6.3). In Section 7, the strategy is even proved
refutationally complete for conditional equations with boolean preconditions (under previous
hypotheses). Some optimizations are given in section 8 and computer experiments with SPIKE
are discussed in Section 9.

SPIKE has proved the challenging Gilbreath card trick. The proof is based on 5 (2, with
H. Zhang’s formulation) lemmas that are easy to understand. This example was treated by B.
Boyer and H. Zhang. Unlike us, they require a lot of lemmas, some of them being non-obvious.
In appendix, we give a detailed account of SPIKE’s proof.

2 Basic concepts

We assume that the reader is familiar with the basic notions of rewrite systems. We introduce
the essential terminology below and refer to [Dershowitz and Jouannaud, 1990] for more detailed
presentations.

2.1 Terms and substitutions

A many-sorted signature X is a pair (5, F) where S is a set of sorts and F is a finite set of
function symbols. We assume that we have a partition of F' in two subsets, the first one, C,
contains the constructor symbols and the second, D, is the set of defined symbols.

Let X be a family of free sorted variables and let T'(F,X) be the set of well-sorted F-
terms. Var(t) stands for the set of all variables appearing in ¢ and §(z,t) denotes the number of
occurrences of the variable z in t. A variable z in t is linear iff §(z,t) = 1. If Var(t) is empty
then ¢ is a ground term. By T(F') we denote the set of all ground terms. From now on, we
assume that there exists at least one ground term of each sort.

For any term t, occ(t) C N* denotes its set of positions and the expression t/u denotes the
subterm of t at a position u. The root position is written €. We write ¢[s], (resp. t[s]) to indicate
that s is the subterm of ¢ at position u (resp. at some position). Also let t(u) denote the symbol
of ¢t at position u. A position u in a term ¢ is said to be a strict position if t(u) = f € F, a
variable position if t(v) = ¢ € X and §(z,t) = 1, a non-linear variable position if t(u) =z € X
and §(z,t) > 1. We use sdom(t) to denote the set of strict positions in ¢. If u is a position, then
|u| (the length of the corresponding string) gives us its depth.

A ¥ — substitution assigns ¥ — terms of appropriate sorts to variables. Composition of
substitutions o and 7 is written by on. The ¥ — term t5 obtained by applying a substitution 7
to t is called an instance of t. If is a ground substitution (i.e. zn is ground for every z), we say
that tn is a ground instance of t.

2.2 Conditional Equations and Clauses

Let ¥ = (S, F) be a signature. A Y-equation is a pair e = ¢’ where e, ¢ € T(F,X) are terms
of the same sort. A conditional L-equation is either a Y-equation or an expression of one of
the following forms: (e; A...Ae, = e), or (e A ... A e, =), or (=) where ¢,¢;,...¢, are
Y-equations. e1,...e, are the conditions and e is the conclusion. A X-clause is an expression of
the form —e; V —ea V ... V —-e, V €] V ... V e/.. When X is clear from the context, we
omit the prefix ¥. We identify a conditional equation and its corresponding representation as a

Horn clause. A clause is positive if —= does not occur in it. Let ¢; and ¢; two clauses such that
¢10 is a subclause of ¢, for some substitution o, then we say that ¢; subsumes c,.

In this paper, axioms are built from conditional equations and goals to be proved are clauses,
i.e. disjunction of equational literals, since = is the only predicate . The symbol = is used for
syntactic equality between two objects.

2.3 Rewrite Relations
2.3.1 Preliminaries

Given a binary relation —, —* denotes its reflexive and transitive closure. Let a and b be
two terms, we write a | b, if there exists ¢ such that a —* ¢ and b —* ¢. A relation — is
noetherian if there is no infinite sequence t; — t3 — In the following, we suppose given a
reduction ordering > on the set of terms, that is a transitive irreflexive relation that is noetherian,
monotonic (s > t implies w[s] > w{t]) and stable (s > t implies so > to). We also assume that
the ordering > can be extended consistently when adding new constants to the signature. The
multiset extension of an ordering > will be denoted by >. Given a congruence relation = on
terms that is stable (s =~ t implies so = to) and compatible with > (s > t,s = s/, ~ ¢’ implies
s’ > t') we define > as > U ~. We write s % ¢ when s ¥ t and t ¥ s.

A conditional equation a; = b, A ...a, = b, = s =t will be written asa; = b, A...Aa, =
b, = s — tif {so} > {to,a10,b10,...,a,0,b,0} for all ground substitutions o; in that case we
say that ay = b1 A...an, = by, = s — t is a conditional rule. The term s is the left-hand side of
the rule. A set of conditional rules is a rewrite system.

2.3.2 Conditional Rewriting

The idea of rewriting is to impose a direction when using equations in proofs. This direction
is indicated by an arrow when it is independent from the instantiation: ! — r means that we
can replace | by r in any context. When an instance of a conditional equation is orientable and
has a valid conditional part it can be applied as a rule. The conditions are checked recursively.
Termination is ensured by requiring the conditions to be smaller (w.r.t. the reduction ordering
>) than the conclusion.

Definition 2.1 (Conditional Rewriting) Let R be a set of conditional equations. Let a be
a term and u a position in a. We write: a[so], —pr a[to]. if there is a substitution o and a
conditional equation A, a; = b; = s =t in R such that:

1. sg > to.
2. Vi € [1..n] a0 |R bio.

3. {a[sol.} > {a10, byio, ... ,an0, b0}

A term t is reducible w.r.t. to — g if there is a term ¢’ such that t =g t/. Otherwise we say t
is R-irreducible. The system R will be qualified as ground convergent if for all a,b in T(F)

REa=0bimpliesa |gb

Note that when R is a rewrite system the relation — g is similar to the notion of decreasing
rewriting of Dershowitz, Okada and Sivakumar [Dershowitz et al., 1988].

M1t is straightforward to extend the following results to signatures with other predicates than equality.

&4

<)

L4

2.3.3 Sufficient completeness

When for all possible arguments the result of a defined operator can be expressed with con-
structors only, we say that this operator is completely defined w.r.t. the constructors. This
requirement is very natural when building specifications in a structured way [Guttag, 1978).
Here is a more formal definition:

Definition 2.2 Let R be a rewrite system, let C be a set of constructors and D be a set of
defined operator. The operator f € D is completely defined w.r.t. C iff for all ty,...,t, in T(C),
there exists t in T(C) such that f(t1,...,tn) =R t.

Although this property is in general undecidable, our system SPIKE offers facilities to check
and complete definitions. The program builds a pattern tree for every defined operator f
(see [Kounalis, 1990]). The leaves of the tree give a partition of the possible arguments for
f. Then if all the leaves are reducible, the answer is affirmative. If one of the leaves is not re-
ducible then SPIKE suggests a new rule for completing the specification. This rule is not entirely
determined but rather a possible schema for it is proposed, namely: (condition, left-hand-side).
Once the user has chosen the new rule, usually by simply giving its right-hand side, SPIKE
replays the test.

Example 2.1 Consider the specification of lists of natural numbers with an “insert” operation
and a “sorted” predicate on lists that is true iff a list is ordered. We have C = {0, s, True, False,
cons, Nil} and D = {<, sorted, insert}.

True = False = (1)

0<z — True (2)

s(z)£0 — False (3)

s(z)<s(y) — z<y (4)

sorted(Nil) — True (5)

sorted(cons(z, Nil)) — True (6)

z < y = False = sorted(cons(z,cons(y,2))) — False (7)
z < y = True = sorted(cons(z,cons(y,z))) — sorted(cons(y,z)) (8)
insert(z,Nil) — cons(z, Nil) 9)

z < y = True = insert(z,cons(y,z)) — cons(z,cons(y,z)) (10)

r <y = False = insert(z,cons(y,z)) — cons(y,insert(z,z)) (11)

All defined symbols are completely defined:

x1<=x2
0<=x2 ok
S(x3)<=x2
S(x3)<=0 ok
S(x3)<=S(x1) ok

sorted(x1)
sorted(Nil) ok
sorted(Cons (x2,x3))

sorted(Cons(x2,Nil)) ok

sorted(Cons(x2,Cons(x1,x4))) ok
(x2<=x1)=False: :False
(x2<=x1)=True: :sorted(Cons(x1,x4))

insert(x1,x2)
insert(x1,Nil) ok
insert(x1,Cons(x3,x4)) ok
(x1<=x3)=True: :Cons(x1,Cons(x3,x4))
(x1<=x3)=False: :Cons(x3,insert(x1,x4))

---> every defined symbol is completely defined.

3 Induction

3.1 Inductive theory

Given a set of Horn clauses Az on the signature ¥, we recall that a Herbrand (or term-generated)
model of Az is a model of Az whose domain is the set of ground terms (axioms for equality are
implicitly assumed to be valid, too). A formula F is a deductive theorem of Az if it is valid in any
model of Az. This will be denoted by Az |= F. Deductive theorems can be proved by refutation,
by deriving a contradiction from —-F A Az. Usually —~F is transformed into a universal sentence
U by introducing skolem functions. Hence the signature ¥ has to be extended.

The theory of Az, which is the one we are interested in, is the class of sentences that are true
in the minimal Herbrand (or initial) model of Az. For detailed definitions of initial models see,
for instance, [Padawitz, 1988]. Every element in the domain of a Herbrand model is denoted by
a ground term built on the signature of Az. But since ground terms can easily be well-ordered,
induction is available as a natural technique to prove sentences in these models. This is why we
shall call inductive theory of Az the class of sentences that are valid in the minimal Herbrand
model of Az:

Definition 3.1 Let Az be a set of Horn clauses on the signature ¥. A clause e is an inductive
consequence of Az if it is valid in the minimal Herbrand model of Ax. This will be denoted by
Az Eing €.

The following proposition gives us a useful characterization of inductive consequences:

Proposition 3.1 A clause -C;V...V-~C,V PV ...V P, is an inductive consequence of Az
if and only if for any ground substitution o,

(for all i: Az = Cio) implies (there exists j such that Az | Pja)

a@

a)

)

For clauses validity in all Herbrand models differs, in general, from validity in the initial
model. However, these two notions of validity coincide for unconditional equations [Padawitz,
1988].

3.2 Inductive rewriting

To simplify goals, we extend the conditional rewriting relation definition 2.1, so that we can check
the conditions of a rule to be applied to a clause C with inductive hypothesis, other conjectures
and the premisses of C, considered as an implication formula.

Let us first introduce a few notations. Let C = ~(a; = b)) V...V =(ap = by) V (a1 =
d1)V...V(em = dn). Then we denote by prem(C) the set of negated atoms of C: {a; = b;}i=1 .
The expression (a = b)° denotes the literal a = b if € = + and the literal ~(a = b) if ¢ = —. The
skolemized clause C of C is the clause obtained by substituting every variable of C by a new
constant. We recall that > can be extended consistently to terms with new symbols.

Definition 3.2 (Inductive rewriting) Let R and W be two sets of conditional equations.
Consider a clause C = (a = b)* V r and its skolemized version C = (@ = b)* VF. We write:
a —pwiyr @ ifa > a and:

either @ = prem(7) ?,

or there ezists a position u in a, a substitution o and a conditional equation A a; = b; => s =t
in R such that:

1. a = a[so]y and d' = alto],.
2. {a[so)y} > {a10, byo, ... ,a,0, byo}.

| 3. Vi€ [l.n] 3cj,d; such that a;o —h (4, ¢ and bio ~h,y (). di and ¢ =prem(®) -
where =,,.m(7) is the congruence generated by prem(T).

The set W in the definition is intended to contain induction hypotheses in the proof system
described below. Inductive rewriting can be viewed as a generalization of both the rewriting
relation defined in [Kounalis and Rusinowitch, 1990b] and contextual rewriting [Zhang, 1993).

Example 3.1 With R as in ezample 2.1, here is an example of a clause which is inductively
rewritten by its own conditions:
Simplification of:
s(x2)<x3 = False =>
x1<¢x2 = True, s(x1)<x3 = True, False = sorted(Cons(s(s(x2)),Cons(s(x3),Nil)))
by R[J;r:
5(x2)<x3 = False => x1<x2 = True, s8(x1)<x3 = True, False = False

In this ezample we have:
sorted(Cons(s(s(22)), Cons(s(z3), Nil))) = Rr{ };{s(x2)<z3=False} False

Example 3.2 The following rules define odd and even for nonnegative integers:

even(0) — True (12)

even(s(0)) — False (13)

even(s(s(z))) — even(z) (14)

even(z) = True = odd(z) — False (15)
even(z) = False = odd(z) — True (16)
True = False = (17)

We consider the following conjectures (+ is defined as usual):

EO={odd(s(x+x))= True, odd(x+x)=False, even(s(x+x))=False, even(x+x)=True}

We show an example where a clause is inductively rewritten with a conjecture from the initial
set Eg (HO the initial set of inductive hypothesis is empty):

Simplification of:
odd(s(x1+x1)) = True by R[HO U EO]:
True = True

Simplification of:
odd(x1+x1) = False by R[HO U E0]:
False = False

» Remark that inductive rewriting possesses a kind of stability in the sense that for any term
s, t, any clause r and substitution 7, s = g[w);r ¢ implies s7 —RW}irr t7. If W is empty, — piwy;r
will be denoted by —g.,.

Lemma 1 For all substitutions 7: s v gy}, t implies ST — gwy;rr 7.

proof: We have two cases:

1. W = 0 then a proof is done by noetherian induction on s with >. We have s > t then
sT > tr. Now, we consider two cases:

(a) s =Ry t With S .07 1, then 3T o) IT.
(b) There exists a conditional equation A; a; = b; = [= r of R such that:
i. s/u = lo for a position u in s and a substitution o, then we have also: sr/ﬂ =lor.
ii. t = s[ro),, clearly: tr = sr[ro7],.
il {a} > {ay0,...,by0} implies that {ar} > {ajor,...,bs07}.
iv. Vig [l...n]:
A. aqio —Rir c}, since s > a,;0, by the induction hypothesis: a;o7 —Rirr cir.
B. bjo =g, d;, since s > b;o, by the induction hypothesis: b;o7 —5.,, dir.
C.c =prem(7) d! which implies: ¢/t =prem(7r) diT- '

All this implies: sT — R,y tT.

2. W # 0. Using 1. the proof is obvious.

4 Selection of Induction Schemes

To perform a proof by induction, it is necessary to provide some induction schemes. In our
framework these schemes are defined first by a function which, given a conjecture, selects the
positions of variables where induction will be applied and second by a special set of terms called
a test set. In general the selection of good inductive positions leads to drastic improvements.

Let us consider first the problem of choosing the positions where variables need to be instan-
ciated by induction schemes. In order to define the set of these variables, we introduce V' L(s),
the set of linear variables of a term s and Def(f), the set of terms with root symbol f.

Definition 4.1 Given a rewrite system R on T(F, X) the set of inductive positions for a function
symbol f is: Occind(R, f) = {u/ there erists p = ¢ — d € R such that g € Def(f), u €

Occ(g)\ {¢} and g/u & VL(g)}.

-)

We say a variable z is nullary if there are only finitely many ground constructor terms with
the same sort as ¢ 2. Given a term s, an induction variable of s is a variable that is nullary or
that occurs at a position u.v of s such that v is an inductive position of the root of s/u (if s is a
variable then it is considered as an induction variable). Given a term s and a set of terms T'S, o
is a TS-substitution for s, if it maps any induction variable of s to an element of T'S of the same
sort and any other variable to itself.

A rewrite rule ¢ = s — r is left-linear if s is linear. A rewrite system R is left-linear if every
rule in R is left-linear, otherwise R is said to be non-left-linear. A term is strongly R-irreducible
if none of its non-variable subterms matches a left-hand side of R. If ¢ is a term, then the depth
of t is the maximum of the depths of the positions in ¢ and denoted depth(t) or abusively [t|. The
strict depth of t, written as sdepth(t), is the maximum of the depths of the strict positions in t.
The depth of a rewrite system R, denoted depth(R), is defined as the maximum of the depths of
the left-hand sides of R. Similarly, the strict depth of R, written a sdepth(R), is the maximum
of the depths of the strict positions in the left-hand sides of R. We define the number D(R) to
be depth(R) — 1 if sdepth(R) < depth(R) and R is left linear, depth(R) otherwise.

Instead of mapping induction variables to any terms we plan to instanciate them by some
well-chosen elements that we call test-sets. A definition of test-sets for conditional theories was
introduced in [Bouhoula et al., 1992a). It is possible to compute test sets for equational theories
(see [Kounalis, 1990; Huber, 1991])). Unfortunately no algorithm exists for the general case of
conditional theories.

Here we give a simpler definition of test-sets that will be sufficient for our purpose (we take
advantage of the separation of symbols between defined and constructor operators).

Definition 4.2 If R is a set of conditional rules then a test-set S(R) for R is a finite set of
R-irreducible constructor terms that has the following properties:

a. for any R-irreducible ground term s there ezists a term t in S(R) and a ground substitution
o such that to = s;

b. any non-ground term in S(R) admits only non nullary variables and they may occur only at

depth greater or equal than D(R).

The first property allows us to prove theorems by induction on the domain of irreducible
terms rather than on the whole set of terms. Sets of terms with the property a. are usually
called cover sets in the literature [Reddy, 1990; Zhang et al., 1988]. However they cannot be
used to refute theorems. The second property b. of test sets is fundamental for this purpose. It
ensures that when an instance of a clause by an S(R)-substitution does not match any left-hand
side of R this reveals an inconsistency (under some additional conditions to be detailed later).

The properties of test-sets that we shall need later on are listed in the next proposition.

Proposition 4.1 We assume here that the constructors are free. For any term t and o, S(R)-
substitution for t we have:

a. to does not contain an induction variable.

b. if to is strongly R-irreducible then there exists T such that tot is ground and strongly R-
irreducible.

proof:

a. Without loss of generality, we can assume that ¢ is a term f(¢y,...,t,) where f is a defined
operator and the t; are elements of T(C, X). Let | be depth(t) and let z be a variable in to at
occurrence u. We can assume that z does not occur in ¢, then by definition of test-sets we have
|u| > D(R). There are two cases to consider:

2this property can easily be decided when the constructors are free

o if R is left-linear and sdepth(R) < depth(R). Then |u| > depth(R). If u is an inductive
position of f then there is a left-hand side of a rule where a function symbol occurs at
position u. Since sdepth(R) < depth(R) there is a rule whose left-hand side g satisfies
depth(g) > |u| and this contradicts |u| > depth(R). Hence z cannot be an inductive
variable of to.

e otherwise |u| > depth(R). Hence u cannot be an occurrence of a left-hand side of a rule.

b. It is enough to prove the Claim: let ¢ be a strongly R-irreducible term that does not contain
any induction variable then there exists a ground instance t¢ that is strongly R-irreducible.
Assume that Var(t) = {z1,...,z«} and consider a ground substitution ¢ such that any ¢(z) is
strongly R-irreducible and:

a.Vie[l.. k] |zig > |t
b.Vi,je(l...kl,i#], |lwid| - |z dll > |t

Since the variables z; are not nullary it is possible to build such a substitution by choosing the
¢(z;) among the terms built from constructor symbols only. Assume now that t¢ contains an
instance of a left-hand side g of a rule in R. Now, since any ¢(z;) is strongly R-irreducible, there
is a strict position » in ¢ such that ¢/ is an instance of g. Let v be a position of ¢ such that g/v
is a function symbol. ¢/uv is a function symbol since ¢ does not contain any induction variable.
We consider two cases:

e Assume that g is linear. We can define a substitution o such that for every variable z that
occurs at position w of g we have o(z) = t/uw. Such a substitution exists by linearity of
g. We then have t/u = go which is a contradiction with the assumption that ¢ is strongly
R-irreducible.

¢ Assume that ¢ is non linear. Since ¢ is not an instance of ¢ (and t/uw = g/w for every
strict position w of g) there exist two occurrences u; and u; of a variable z in g such that:
t/uuy # t/uug and té¢/uuy = t¢/uu,. There are three cases to be considered:

a. if t/uu; and t/uu, are ground. In this case t/uu; = t¢/uwy and t/uu, = td/uu,.
Therefore t/uuy = t/uuy, contradiction.

b. if t/uu, is ground and t/uus non ground. Then some z; occurs in #/uu;. We have
|z;¢| > |t| by construction of ¢ and therefore |t¢/uuz| > |t|. On the other hand
[tp/uug| = |tdp/uus| = |t/uuy| < |t|. Contradiction.

c. if t/uu; and t/uu; are non ground. Then there is an occurrence v and a variable zj
such that t/uu;v = z¢ and t/uugv # k. If t/uugv is ground the proof is similar to b..
If t/uusv is non ground let Var(t/uuyv) = {z4,...,2i,}. If 2k € Var(t/uuyv) then
[to/uuyv| < |té/uugv| and therefore we cannot have t¢/uu; = t¢/uu,, contradiction.
If zx € Var(t/uuyv) then let z; be the variable in Var(t/uugv) such that |z;¢| =
mazi=1,..,m|%; ¢
If |oxg] > l2;0l + 1t then |td/uurs] = |axd| > |z;0] + |0] > |td/unzo 1f |a;0] >
|zk@| + [t| then |td/uugv| > |z;¢| > |zkd| + |t| > [td/uuiv] = |zxp| and we derive a
contradiction, too.

It is easy to compute test-sets in the case where all functions are completely defined:

Proposition 4.2 If all defined operators are completely defined over free constructors then the
set T of constructor terms (up to variable renaming) of depth < D(R) where not nullary variables
may occur only at depth D(R) is a test-set for R.

10

[3}

o

proof: since the defined operators are completely defined any ground irreducible terms is built
only with constructors and therefore is an instance of an element of T. The second property of
the definition is trivially verified.

The role of test sets for refutation is shown by the following definition that gives a falsity
criteria for positive clauses:

Definition 4.3 Suppose that we are given a rewrite system R and a test set S(R). Then a clause
C =gy =d\V...Vgn = dy, is quasi-inconsistent with respect to R if there is a S(R)-substitution
o of C such that for all 1 < j < n, g;o0 # djo and the mazimal elements of {g;0,d;jo} w.r.t. >
are strongly R-irreductble.

The next theorem is analogous to one from [Kounalis and Rusinowitch, 1990a].

Theorem 4.1 Let R be a ground convergent rewrite system with free constructors. If a positive
clause C is quasi-inconsistent, then C is not an inductive consequence of R.

proof: it is a direct consequence of proposition 4.1.

The following example was suggested by E. Kounalis:

Example 4.1 Consider the “union” operator defined on lists of natural numbers built with con-
structors {cons, Nil}:

union(Nil,Nil) — Nil
union(cons(z, Nil), Nil) — cons(z,Nil)
union(Nil, cons(z,l)) — cons(z,l)
union(cons(z, 1), cons(y,l')) — cons(z, cons(y, union(l,l')))

R is ground convergent and S(R) = {Nil, cons(z,!),0,s(z)}. Consider the conjecture union(l,l’)
= union(l’',l). Among the test instances, we have: union(cons(z,l),cons(y,!’)) = union(cons(y,
"), cons(z,l)) which simplifies to cons(z,cons(y,union(l,))) = cons(y, cons(z,union(l,!))).
Among the test instances of this last conjecture we have: cons(z,cons(y,union(Nil,Nil))) =
cons(y, cons(z,union(Nil, Nil))) which simplifies to cons(z,cons(y,Nil)) = cons(y,cons(z,
Nil)), which is quasi-inconsistent (Both members are distinct, R-irreducible and do not con-
tain any induction variable). So union(l,1") = union(l',1) is not an inductive consequence of R.
Note that with test sets, we can easily refute false conjectures with variables.

5 Automatic Case Analysis

We shall introduce now the Case rewriting relation that allows one to reduce goals with condi-
tional rules without attempting to check their preconditions. The preconditions are appended to
the goal as a context. Case rewriting can be viewed as an implementation of case analysis that
is well adapted to the given conditional axioms. We have found this rule absolutely necessary
for proving non trivial conjectures with our automatic system. Moreover it is the basis of a
refutationally complete system for boolean systems. In this section we first discuss the problems
with a former definition of case rewriting. Then we propose a new definition of case rewriting
that is easier to automate and has given much better results on experiments. A first version of
case rewriting was proposed in [Kounalis and Rusinowitch, 1990b]. Given a term [and a rule
p = g — d such that g matches a subterm of ! with substitution o, this rewriting is expressed
by the following inference rule:

llgo)uvr t lldo),V -poVr, llgol,VpoVr

11

However an important control problem with this technique lies in the choice of the rule to apply
during the proof by induction. This can be illustrated by the next example.

Example 5.1 With R as in ezample 3.1. A test set here is {0, (0), s(s(z)),True, False}. Let
us prove:

even(s(z)) = TrueV odd(z) = False (18)

by the case rewriting rule above. Clause 18 can be split according to axiom 15 in the two following
clauses:

even(z) = True = even(s(z)) = True V False = False (19)
—(even(z) = True) = even(s(z)) = True V odd(z) = False (20)

19 is a tautology and 20 is equivalent to:

even(z) = True V even(s(z)) = True V odd(z) = False (21)
Now splitting clause 21 with axiom 16 yields:

even(z) = False = even(z) = True V even(s(z)) = TrueV True = False (22)
—~(even(z) = False) = even(z) = True V even(s(z)) = True V odd(z) = False (23)

22 simplifies to:

even(z) = False = even(z) = TrueV even(s(z)) = True (24)

that can be proved an inductive consequence of R. Clause 23 is equivalent to:

even(z) = FalseV even(z) = True V even(s(z)) = True V odd(z) = False (25)

Note that the same case analysis can be applied infinitely often to 25. A possible way to
avoid divergence is to limit application of the case analysis rule. Case rewriting in [Kounalis
and Rusinowitch, 1990b] is controlled by conditions for avoiding infinite applications of the same
rule. However, even when adding these technical conditions the proof of 25 diverges.

These problems motivated us to introduce a new case rewriting technique that rewrites a term
¢t simultaneously to several terms t;,...,t, each reduction being respectively valid in different
contexts ¢j,...,c,. In other words, given a term t, we consider all the ways to rewrite it w.r.t.
to axioms and positions. We must then prove that the disjunction DP of the conditions of the
applied rules is inductively valid. Note that DP is usually a non Horn clause. Our approach to
inductive proofs is non hierarchical: we can prove D P by simply adding it to the set of conjectures
to be further processed. In the following definition C N F is a function that returns a conjunctive
normal form of a universal formula. For instance, CN F(P(z) A Q(z)) = {P(z),Q(z)}.

Definition 5.1 (Case rewriting) Let R be a rewrite system and C = (a = b)* V r be a clause.
We define G as the set {< aldo}y, Po >; there exists P = ¢ — d in R, a position u in a
such that a/u = go, go is R-irreducible and does not contain an inductive variable}. Then
Case_rewriting ((a = b),r) is the following set of clauses:

{~PVv(d=bVvr <d,P>€G}UCNF(\/ P)
<a',P>€G

Case rewriting can be applied with lemmas too. Note also that the conditions on go in the
definition of G are only required for the completeness of the procedure.

12

o}

-

A

Example 5.2 (example 5.1 continued) With our method, the proof of 18 is as follows: we
apply case rewriting to get:

even(z) = True = even(s(z)) = True V False = False (26)
even(z) = False = even(s(z)) = TrueV True = False (27)

We must prove:
even(z) = TrueV even(z) = False (28)

26 is a tautology, 27 is simplified by R into:

even(z) = False = even(s(z)) = True (29)

Instanciating z in 29 by elements 0 and s(0) from the test set, yields clauses that are simplified
by R and subsumed by an axiom. The instance of z in 29 by s(s(y)) gives a clause that is
simplified by R and subsumed by 29, which becomes an induction hypothesis. In the same way
28 can easily be proved.

Example 5.3 Consider the system R:

»(z,0,z) — True

p(z,s(y),z) — p(z,y,2)
p(y,z,2)=True = f(z,y,2) — 0

To prove f(z,y,z) = 0 with the method of [Kounalis and Rusinowitch, 1990a/, we instanciate
z,y and z by 0 and s(z') (from S(R)) in all possible ways. We obtain 8 equations and the proof
of some of them diverges. With the method presented here, thanks to case rewriting, we do not
need to consider all these inductive positions. We have: Oce_ind(p) = {2} and Occ-ind(f) = 0.
To prove f(z,y,2) = 0, we apply case rewriting to get p(y,z,z) = True = 0 = 0 and p(y,z,2) =
True. The first clause is a tautology and the second one is proved by instanciating x by 0 and

s(z).

Other authors have applied case rewriting techniques for inductive theorem proving. Among
them [Bronsard and Reddy, 1990] and [Bevers, 1993] propose an approach related to ours but
their methods cannot be considered as automatic, since they cannot check the applicability of
case rewriting rules due to the fact that their provers are restricted to Horn clauses.

To conclude, our new case rewriting rule avoids many drawbacks of the previously defined
ones and it allows to prove a larger class of theorems.

6 A Proof Procedure for Conditional Theories

6.1 Inferences rules

We present our procedure for proof by induction as a set of inference rules to be applied fairly
to the goals. Let R be a rewrite system for the set of axioms Az, we suppose that any defined
function is completely defined. The procedure modifies incrementally two sets of clauses F and
H, where F contains the conjectures to be checked and H contains clauses, previously in E,
that have been reduced and can therefore be used as inductive hypotheses. This procedure is
refutational in essence, and performs implicit induction w.r.t. to >. Its correctness is obtained
by very simple arguments about the existence of a minimal counterexample. We think that
our correctness proof is much simpler than the related ones [Reddy, 1990]. As a consequence it

13

generate: (EU{C},H) +; (EU(U,E,),HU {C})

if C = (a =b)°Vr and for every S(R)-substitution o of C:
either Co is a tautology and E, =0
OT 40 = RIHUE)re @ and E, = {(a’ = b0)°V ro}
otherwise E, = case_rewriting((a = b)°o,r0)

case simplify: (FU{(a=b) v r},H) +; (EUE',H)

if E' = case_rewriting((a = b)%,r)

simplify: (EU {(a=b)Vr},H) by (EU{(d'=b)Vr},H)

if a " R[HUE);r a’ or a‘[s]u " HUE(R];r d = a‘[t]u and u 76 €

complement: (EU {~(ac = bo)Vr},H) by (EU{(ac =bo)Vr},H)
if~(b=b)e R, a=bva=b¢€ EUH and bo > bo.

delete: (EU {C},H) F; (E,H)

if C is a tautology.

fail: (FU{C},H) +; O
if for any (E',H"), (E,H) 1 (E', H') implies C € E’

Figure 1: Inference System I

was easy for us to add many optimizations to the procedure and show that they do not affect
correctness. The inference system for induction I contains the rules given in figure 1.

The generate rule allows to derive lemmas and initiates induction steps. The case simplify
rule simplifies a conjecture with conditional rules and adds to the result the contexts where
the respective reductions are valid. The simplify rule reduces a clause C with axioms from R,
induction hypotheses from H and other conjectures (therefore we can simulate simultaneous in-
duction). The premisses of C considered as a conditional axiom can also help to check that the
preconditions of a rule being applied to C are valid. The complement rule transforms negative
clauses to positive clauses that are easier to refute. The role of deletion is obvious. The fail rule
is applied to (F, H) if no other rule can be applied to C € F.

An I-derivation is a sequence of states:
(Eo,0) b1 (Ev, Hy)bpoo bp (B Ha) by e

An I-derivation fails if it terminates with the rule fail

In our former procedure of (Bouhoula et al., 1992a] the generate rule was conditionned by
ordering restrictions. The term a was bound to be a maximal member of an equation (w.r.t. >).
The same restriction is valid in the actual setting and was omitted for clarity of presentation.
Moreover the induction variables that have to be considered for building S(R)-substitutions can
be selected out from maximal members of literals of the clauses. These additional constraints
are crucial for avoiding divergence in many cases.

14

-y

6.2 Correctness of the procedure

The correctness of I is obtained by defining a well-founded ordering on clauses and a notion
of fair derivation. Fairness roughly means that every clause in the set of conjectures will be
eventually modified by some inference.

Then we reason by contradiction: if a non valid clause is generated in a non failed derivation
then a minimal one is generated too. We show that no inference step can apply to this clause.
In other words, this clause persists in the derivation. This is a contradiction with the fairness
hypothesis. The well-founded ordering on clauses is defined by first introducing the complexity
of an equation. The complexity of an equation g = h is defined as:

({g},{h}) if g>h
Clg=h) = { ({r},{9}) if g=<h
({g,h}, L) otherwise

where the new symbol L is taken to be minimal in <. We define an ordering on equations
as follows: (a = b) <. (¢ = d) iff C(a = b) is smaller than C(c = d) for the lexicographic
composition of <« on the first and second components of the complexity. The multiset extension
of <. will be denoted by <.

Let C be a clause of type Aja; = b; = Vjc; = d;. We define Rep(C) = {C(a; = b;)}sU{C(c; =
d;)};. Given two clauses Cy, Ca, we say that C <. C; if lexicographically Rep(C;) <. Rep(C?)
or nln(Cy) < nin(C,), where nin(C) is the number of negative literals of C.

Example 6.1 Let Cy = ~(c=d)Va=bandC2=d' =bVvc =d witha % b, a % d, d' <
b, c>d,c’ = d' and ¢' < ¢ then Cy <. C;.

The correctness of a procedure based on our inference system relies on a fairness assumption:
every conjecture to be checked must be considered at some step. More formally, a derivation
(Eo, Ho) b1 (E1,Hy) by ... is fair if either it fails or it is infinite and the set of persisting clauses
(U,‘ZO Nj>i EJ) is empty.

Lemma 2 Let (Eo,0) 1 (Ey,Hy) by ... be a fair I-derivation such that R ;.4 Eo then there
erists i such that the rule fail applies to (E;, H;).

proof: Let C6 be a minimal element w.r.t. <. of the set {Do/D € U;E; and there is a ground
R-irreducible substitution o such that R ;g Do}. C exists since R ing Eo and <. is well-
founded. Assume that C € E;. Then there exists k > j such that the rule fail applies to (Ey, Hy).
It is sufficient to check that C' cannot be simplified nor deleted, and that neither generate nor
complement apply to C. As a consequence fail applies since the clause C must not persist in the
derivation by the fairness hypothesis. The detailed proof is found in Appendix 2.

The next theorem is a straightforward consequence of the above lemma:

Theorem 6.1 (correctness) Let R be a rewrite system and let (Eo,0) 7 (Ev, H1) by ... be a
fair I-derivation. If it does not fail then R f=inq Eq.

Since every I-derivation from (E,0) to (@, H), where H is some set of clauses, is fair then

the conjectures of E are inductive consequences of R. This remark is important from a practical
point of view. Note also that Ej is valid even when the derivation is infinite.

15

6.3 Refutation of conjectures

From now on, we assume that R is a ground convergent rewrite system such that all its defined
symbols are completely defined. Moreover, if the defined function g appears in a Lh.s. of a
conditional rule, then every rule that contains g in its l.h.s. is linear. Finally, we assume that
every left-hand side of a conditional rule has a defined symbol. Let us call J the set of inference
rules obtained by adding to I the rule:

disproof: (FU{C},H) t; Disproof if C is quasi-inconsistent.

A J-derivation fails if it ends with fail. If disproof is applied then a quasi-inconsistent clause
is detected and therefore, from theorem 4.1, we can conclude that some conjecture is false:

Corollary 1 Let (Ey,0)Fy (E1, H1) by ... be a J-derivation. If there is a k such that disproof
applies to (Ej, Hy) then R fina Ex.

If at step k, we find that R g Ex, we can conclude that Eg is not valid either in R. This
is a consequence of the next result:

Lemma 3 Let (Ey,0)Fy (Ey,H)ty ... be a J-derivation. If for all j such that j < i we have
R Eing E; then R }=ind E;.

proof: If (Ex_1, Hk-1) by (Ek, Hi) by generate on C, consider Co which is an instance of C by
a S(R)-substitution. If Co is simplified then every auxiliary equation which is used for rewriting
is either in R or Ej (j' < k) and hence E is valid in R. If case_rewriting is applied to Co
then Ej is valid in R since all defined symbols are completely defined, by hypothesis. For case
simplify the argument is the same as above.

If (Ex—1,Hg—1) b (Ek, Hi) by simplify then the equations which are used for simplification
occur in some E; (j < k) and therefore are valid in R by hypothesis. Hence, Ey is valid too in
R.

If (Ex_1,Hk-1) by (Ex, Hi) by complement. Suppose that complement is applied to C =
~(af = bf) V r to obtain C’ = (af = ') vV r. We can show that R |=ing C’. The detailed
proof is found in Appendix 2.

Theorem 6.2 Let R be a ground convergent rewrite system such that every defined symbol is
completely defined and let (Fo,0) &y (E1, Hi) FJ ... be a J-derivation. If there exists j such that
disproof applies to (E;, H;j) then R}~ Eq.

proof: Let (Ey,0) F; (Ey,Hy) by ... be a J-derivation. Assume that there is j such that
disproof applies to (E;, H;j). It is clear from corollary 1 that R [£inq E; and by lemma 3, we
have R Fing Eo.

7 A refutationally complete procedure for theories with boolean
preconditions

In this section we shall consider axioms that are conditional rules with boolean preconditions
over free constructors. To be more specific, we assume there exists a sort bool with two nullary
free constructors {True, False}. Every rule in R is of type: A%, p; = p} = s — t where
for all in [1...n], p! € {True, False}. Such a system R is called a boolean rewrite system.
For a € {True, False} we denote by a~ the complementary bool symbol of a. Conjectures

16

Rad)

will be boolean clauses, that is clauses whose negative literals are of type —(p = p') where
p’ € {True, False}.
We also assume that any function symbol p with boolean values is completely defined. In
other words, the following is inductively valid:
p(Z) = TrueV p(Z) = False
Therefore, the following propositions are also valid and they can be used to eliminate negations:

~(p(Z) = True) & (p(£) = False), -(p(Z) = False) & (p(T) = True)

We can then define a new inference system K from I by reformulating complement as follows:

complement: (EU{-~(a=a)Vr},H) Fxk (EU{(a=0a")Vr},H) if a € {True, False}.

and replacing the fail rule by:

disproof: (EU{C}, H) btk Disproof if for any (E',H’), (E,H)VFg (E', H') implies C € E'.

A K-derivation fails if it ends with disproof. The inference system K allows to refute false
conjectures, thanks to the following results:

Lemma 4 Let C = (a =b)°*Vr. If a contains a defined symbol then generate can be applied to
(Eu{C}, H).

proof: Let C = (a = b)°*V r and let o be an S(R)-substitution of C. The term a contains a
term s of the form f(¢1,...,¢,) where f is a defined symbol and for all 7, ¢; is in T(C, X). The
term so matches a left-hand side of R, otherwise there exists a substitution 7 such that sor
is ground and strongly irreducible by R, by using clause b. of proposition 4.1 . This leads to
a contradiction since we have assumed that f is completely defined. On the other hand, o is
an S(R)-substitution of C, therefore so does not contain an inductive variable. So either some
inductive rewriting or some case rewriting can be applied to Co and therefore generate can be
applied to C'. This ends the proof of lemma 4.

If disproof is applied in a K-derivation, then there exists a boolean clause C such that generate
cannot be applied to C. Therefore there exists a S(R)-substitution ¢ such that Co is not a
tautology. Moreover by lemma 4, Co cannot contain a defined symbol. Hence it only contains
constructor symbols and therefore, since constructors are free by hypothesis, it is strongly R-
irreducible. As a consequence, C is a quasi-inconsistent clause.

Note now that the only rule that permits to introduce negative clauses is case_rewriting. Let
us assume that Eg only contains boolean clauses. Since the axioms have boolean preconditions,
all the clauses generated in a K-derivation are boolean. So the new inference system K can be
proved refutationally complete for boolean clauses as well.

Theorem 7.1 Let R be a ground convergent boolean rewrite system such that every defined

symbol is completely defined and let (Eo,0) bk (Ev, H1) Fk ... be a fair K-derivation such that
Ey only contains boolean clauses. Then R |Eind Eo iff the derivation fails.

17

8 Optimizations

In this section, we shall enhance our inference system J by new simplification rules to handle
non orientable equations and gain efficiency. In particular, we allow under some conditions a
term s to be rewritten to another one that is not comparable with s. For this purpose we define
a new rewrite relation that we call relazed inductive rewriting :

Definition 8.1 (relaxed inductive rewriting) Let R and W be two sets of conditional equa-
tions. Consider a clause C = (a = b)*Vr and its skolemized version C = (@ = b)* V7. We write:
a~pgw; @ if:

either @ — ... (7) a’ and a > o,

or there ezists a position u in a, a substitution o and a conditional equation ANI—; a; = b; = s =1
in R such that:

1. a = a[so), and @’ = a[to],.
2. {a[solu} > {a10, bio, ... ,an0, byo}.
3. Vi€ [l.n] 3¢}, d; such that a;o0 =g,y (., ¢ and bio —p (1, di and ! =prem(r) .-

Note that lemma 1 remains valid if we replace — piwy;r by ~ riw);r-

Consider now the inference N obtained by adding to J the following rules:

right simplify of constructors: (EU {f(8) = f({)vr},H) tn (EU(Ui{s; =t; V1)), H)

if f is a free constructor.

left simplify of constructors: (EU {-f(8) = f(()Vr},H) tn (EU{Vi~(si = ti_) v}, H)

if f is a free constructor.

subsumption: (EU {C},H) Fy (E,H)
if C is subsumed by another clause of RU H U F.

and replacing the simplify rule by:

simplify: (EU{(a=0b8)*Vr},H) bx (EU{(d’ =b)*V T}, H)

if @ ~piruE)r @ Or a[sly = HuElR)r @ = ofth, u# €and @’ =b <. a=b.

Simplify makes possible to simplify non orientable equations derived in H or E, such as
commutativity, when standard inductive rewriting fails. Left simplification of constructors and
right simplification of constructors take advantage that constructors are free to decompose terms.
Subsumption delete clauses C subsumed by an element of R or H U (E \ {C}).

Note that lemma 2 remains true when we replace I-derivations by N-derivations. Therefore
theorem 6.1 is valid and the inference system N is correct. Refutational completeness is also
preserved for boolean systems. The detailed proof is found in Appendix 2.

18

-

ey

9 Computer Experiments

Our prototype SPIKE (written in Caml Light) is designed to prove the validity of a set of clauses
in a conditional theory. The first step in a proof session is to check if all defined functions are
completely defined. If this step is successful then we can use a more efficient version of the case
rewriting rule. The second step is to check the ground convergence of the set of axioms. If the
first two steps are successful then we can refute false conjectures. The third step is to compute
test sets and inductive positions. After these preliminary tasks, the proof starts.

Example 9.1 Consider ezample 2.1 and let us prove the conjecture sorted(insert(zl,z2)) =
sorted(z2). Note that RRL [Zhang et al., 1988] is unable to succeed with this example unless the
user suggests some well-chosen lemmas.

All functions are completely defined;
R is ground convergent;
test set of R:

-> nat = {0, 8(0),s(s(x1))}
-> list = {Nil, cons(0,Nil), cons(a(x1),Nil), cons(0,cons(x1,x2)), cons(s(x1),cons(x2,x3))}
-> bool = {True, False}

induction positions of functiomns:

-> sorted: [[1};[1;2]]
-> insert: [[2]]
-> <=: [[1];[2]]

EO = {sorted(insert(x1,x2)) = sorted(x2)}
HO = {}

Application of generate on:
sorted(insert(x1,x2)) = sorted(x2):
1) True = sorted(Nil) ;
2) x1<¢=0 = True => sorted{(Cons(x1,Cons(0,Nil))) = sorted(Cons(0,Nil)) ;
3) x1<=0 = False => sorted(Cons(0,insert(x1,Nil))) = sorted(Cons(0,Nil)) ;
4) x1<=S(x2) = True => sorted(Cons(x1,Cons(S(x2),Nil))) = sorted(Cons(S(x2),Nil)) ;
5) x1<=S(x2) = False => sorted(Cons(S(x2),insert(x1,Nil))) = sorted(Cons(S(x2),Nil)) ;
6) x1<=0 = True => sorted(Cons(x1,Cons(0,Cons(x2,x3)))) = sorted(Cons(0,Cons(x2,x3))) ;
7) x1<=0 = False => sorted(Cons(0,insert(x1,Cons(x2,x3)))) = sorted(Cons(0,Cons(x2,x3))) ;
8) x1<=S(x2) = True =>
sorted(Cons(x1,Cons(8(x2),Cons(x3,x4)))) = sorted(Cons(S(x2),Cons(x3,x4))) ;
9) x1<=S(x2) = False =>
sorted(Cons(S(x2),insert(x1,Cons(x3,x4)))) = sorted(Cons(S(x2),Cons(x3,x4)))

Delete

x1<=8(x2) = True => sorted(Cons(x1,Cons(S(x2),Cons(x3,x4)))) = sorted(Cona(S(x2),Cons(x3,x4)))
it is subsumed by:

x1<=x2 = True => sorted(Cons(x1,Cons(x2,x3))) = sorted(Cons(x2,x3)) of R

E17 = {x1<=S(x2) = True, S(x2)<=x1 = True ;
x1<=0 = True, sorted(Cons(x2,insert(x1,x3))) = sorted(Cons(x2,x3)), x1<=x2 = True ;

19

x1<=8(x2) = True, sorted(Cons(S(x2),

Cons(x3,insert(x1,x4)))) = sorted(Cons(S(x2),Cons(x3,x4))), x1<=x3 = True ;
x1<=8(x2) = True, x1<=x3 = False,

sorted(Cons(x3,x4)) = sorted(Cons(S(x2),Cons(x3,x4))), S(x2)<=x1 = False}

H17 = {sorted(insert(x1,x2)) = sorted(x2)}

Application of case rewriting using R on:
x1<=8(x2) = True, x1<=x3 = True,
sorted(Cons (S(x2),Cons(x3,insert(x1,x4)))) = sorted(Cona(S(x2),Cons(x3,x4))):
1) S(x2)<=x3 = False => x1<=S(x2) = True,
x1<=x3 = True, sorted(Cons(S(x2),Cons(x3,insert(x1,x4)))) = False ;
2) S(x2)<=x3 = True => x1<=5(x2) = True, x1<=x3 = True,
sorted(Cons (S(x2),Cons(x3,insert(x1,x4)))) = sorted(Cons(x3,x4))

Simplification of:

S(x2)<=x3 = True => x1<=5(x2) = True, x1<=x3 = True,
sorted(Cons (S(x2),Cons(x3,insert (x1,x4)))) = sorted(Cons(x3,x4))
by R[H20 U E20];r:
x1<=S(x2) = True, S(x2)<=x3 = False,
x1<=x3 = True, sorted(Cons(x3,insert(x1,x4))) = sorted(Cons(x3,x4))

E249 = {}
The initial conjectures are inductive consequences of R

The following sub lemmas have been generated automatically during the proof and have played
a role in it:

{x1<=x2 = True, S(x1)<=x3 = False, x2<=x1 = False, S(x2)<=x3 = True ;
x1<=x2 = False, x3<=S(x1) = False, x3<=S(x2) = True, S(x1)<=x3 = True ;
sorted(Cons (x1,insert(S(S(x2)),x3))) = sorted(Cons(x1,x3)), S(S(x2))<=x1 = True ;
sorted(Cons(x1,insert(8(0),x2))) = sorted(Cons(x1,x2)), S(0)<=x1 = True ;
x1<=x2 = True, x2<=x1 = True ;
x1<=5(x2) = True, x1<=x3 = False,

S(x2)<=x1 = False, sorted(Cons(x3,x4)) = False, S(x2)<=x3 = True ;
x1<=8(x2) = True, x1<=x3 = True,

sorted(Cons (x3,insert(x1,x4))) = sorted(Cons(x3,x4)), S(x2)<=x3 = False ;
x1<=0 = True, sorted(Cons(x2,insert(x1,x3))) = sorted(Cons(x2,x3)), x1<=x2 = True ;
x1<=8(x2) = True, S(x2)<=x1 = True ;
sorted(insert(x1,x2)) = sorted(x2)}

10 Conclusion

We have proposed a new procedure for proof by induction in conditional theories. Qur procedure
relies on the implicit induction paradigm and puts the stress on simplification and case analysis.
As our previous procedure [Bouhoula et al., 1992a], it allows simplification of conjectures by
conjectures and has been extended to handle non-orientable equations. It can also refute non
valid conjectures. A main contribution of this paper is that our strategy is refutationally com-
plete for a class of rewrite systems that can specify numerous interesting examples. This class
contains the boolean ground convergent rewrite systems with completely defined functions over
free constructors. In other words with our procedure every false conjecture will be disproved
in finite time. However, our method remains valid even when the functions are not completely
defined. Note that our correctness and completeness proofs do not require an elaborated notion
of fairness.

20

"

We plan to enhance the system with generalisation techniques for suggesting lemmas, as the
one proposed in [Basin and Walsh, 1993}, since for many examples the ”Generate” rule is not
sufficient for deriving the lemmas needed for achieving a goal. Also extension of the method
to parametrized specifications should lead to shorter and structured proofs. The format of
implicit induction is not user-friendly. Therefore, some effort should be devoted to understand
the relationship between our method and explicit induction (in particular, in the case of mutual
induction [Walther, 1993]). We shall explore the possibility of translations between the two
frameworks. If such a translation is available then we should benefit from recent promising
works on proof planning [Ireland, 1992].

An extension to theories that are presented by stratified sets of clauses should also follow
easily from our work.

Acknowledgements: We thank Emmanuel Kounalis, Hélene Kirchner and Maria Huber for
their valuable comments.

References

[Bachmair, 1988]) L. Bachmair. Proof by consistency in equational theories. In Proceedings 3rd
IEEFE Symposium on Logic in Computer Science, Cambridge (Mass., USA), pages 228-233,
1988.

[Basin and Walsh, 1993] D. Basin and T. Walsh Difference Unification. In Proceedings of 13th
IJCAI Morgan Kaufmann Publishers, volume 1, pages 116-122, 1993

[Bevers, 1993] E. Bevers. Automated Reasoning in Conditional Algebric Specifications: Termi-
nation and Proof by Consistency. PhD thesis, Katholieke Universiteit Leuven, Belgium,
1993.

[Bouhoula et al., 1992a] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathemat-
ical induction. Technical Report 1636, INRIA, 1992.

[Bouhoula et al., 1992b] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Spike: an automatic
theorem prover. In Proceedings of LPAR’92, volume 624 of LNAI, Saint Petersbourg, Russia,
July 1992. Springer- Verlag.

[Boyer and Moore, 1979] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press,
New York, 1979.

[Bronsard and Reddy, 1990] F. Bronsard and S. Reddy. Conditional rewriting in focus. In S. Ka-
plan and M. Okada, editors, Proceedings of the 2nd Workshop on Conditional and Typed
Rewriting Systems, volume 516 of LNCS. Springer-Verlag, 1990.

[Bundy et al., 1989] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to the
rippling-out tactic for guiding inductive proofs. In M. E. Stickel, editor, 10th International
Conference on Automated Deduction, volume 449 of LNAI pages 132-146. Springer-Verlag,
July 1989.

[Chadha and Plaisted, 1992] R. Chadha and D.A. Plaisted. Mechanizing mathematical induc-
tion. Presented at the Second International Symposium on Artificial Intelligence and Math-
ematics, Fort Lauderdale, Florida, 1992.

[Dershowitz and Jouannaud, 1990] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In

J. van Leuven, editor, Handbook of Theoretical Computer Science. Elsevier Science Publish-
ers North-Holland, 1990.

21

[Dershowitz et al., 1988] N. Dershowitz, M. Okada, and G. Sivakumar. Canonical conditional
rewrite systems. In Proceedings 9th International Conference on Automated Deduction,
Argonne (Ill., USA), volume 310 of LNCS. Springer-Verlag, May 1988.

[Fribourg, 1986] L. Fribourg. A strong restriction of the inductive completion procedure. In Pro-
ceedings 13th International Colloguium on Automata, Languages and Programming, volume
226 of LNCS, pages 105-115. Springer- Verlag, 1986.

[Guttag, 1978] J. Guttag. Abstract data types and software validation. Communications of the
ACM, volume 21, pages 1048-1064, 1978.

[Huber, 1991] M. Huber. Test-set approaches for ground reducibility in term rewriting systems,
characterizations and new applications. Master’s thesis, Technische Universitat Berlin, 1991.

(Huet and Hullot, 1982] G. Huet and J.-M. Hullot. Proofs by induction in equational theories
with constructors. Journal of Computer and System Sciences, 25(2):239-266, October 1982.

[Huet, 1991] G. Huet. The Gilbreath trick: a case study in axiomatisation and proof development
in the coq proof assistant. Technical Report 1511, INRIA, 1991.

[Ireland, 1992] A. Ireland. The use of planning critics in mechanizing inductive proofs. In Pro-
ceedings of the International Conference on Logic Programming and Automated Reasoning,
volume 624 of LNAL Springer-Verlag, 1992.

[Jouannaud and Kounalis, 1986] J.-P. Jouannaud and E. Kounalis. Proof by induction in equa-
tional theories without constructors. In Proceedings 1st IEEE Symposium on Logic in Com-
puter Science, Cambridge (Mass., USA), pages 358-366, 1986.

[Kapur and Musser, 1987] D. Kapur and D. Musser. Proof by consistency Artificial Intelligence,
volume 31(2), pages 125-157, 1987

[Kounalis and Rusinowitch, 1990a] E. Kounalis and M. Rusinowitch. A mechanization of con-
ditional reasoning. In First International Symposium on Artificial Intelligence and Mathe-
matics, Fort Lauderdale, Florida, January 1990.

[Kounalis and Rusinowitch, 1990b] E. Kounalis and M. Rusinowitch. Mecha.nizi.ng inductive
reasoning. In Proceedings of the American Association for Artificial Intelligence Conference,
Boston, pages 240-245. AAAI Press and MIT Press, July 1990.

[Kounalis, 1990] E. Kounalis. Testing for inductive (co)-reducibility. In A. Arnold, editor,
Proceedings 15th CAAP, Copenhagen (Denmark), volume 431 of LNCS, pages 221-238.
Springer-Verlag, May 1990.

[Musser, 1980] D. R. Musser. On proving inductive properties of abstract data types. In Proceed-
ings Tth ACM Symp. on Principles of Programming Languages, pages 154-162. Association
for Computing Machinery, 1980.

[Padawitz, 1988] P. Padawitz. Computing in Horn Clause Theories, Springer Verlag, 1988.

[Reddy, 1990} U. S. Reddy. Term rewriting induction. In M. E. Stickel, editor, Proceedings 10th
International Conference on Automated Deduction, Kaiserslautern (Germany), volume 449
of LNCS, pages 162-177. Springer-Verlag, 1990.

(Walther, 1993] C. Walther. Combining Induction Azioms By Machine. In Proceedings of 13th
IJCAI, Morgan Kaufmann Publishers, volume 1, pages 95-100, 1993

22

[Zhang et al., 1988] H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction
principle for equational specifications. In E. Lusk and R. Overbeek, editors, Proceedings
9th International Conference on Automated Deduction, Argonne (Ill., USA), volume 310 of
LNCS, pages 162-181. Springer-Verlag, 1988.

(Zhang, 1993] H. Zhang Implementing Contextual Rewriting Proceedings of the 3rd CTRS
Workshop, volume 656 of LNCS. Springer-Verlag, 1993.

23

Appendix 1: The Gilbreath Card Trick

A Introduction

Suppose you have a deck of cards of even length. Suppose the cards alternate between red ones
and black ones. Cut the deck into two piles, a and b. Shuffle a and b together. Then the following
is true of the shuffled deck. If the bottom-most cards in a and b are of different color, then when
the cards of the shuffled deck are taken from the top in adjacent pairs, each pair contains a card
of each color. On the other hand, if the bottom-most cards in a and b are the same color, the
above pairing property holds after rotating the shuffled deck by one card, i.e., moving the bottom
card to the top.

An interactive proof of Gilbreath Cards Trick was first given by G. Huet [Huet, 1991] using
the COQ proof assistant. B. Boyer has used NQTHM to derive another proof. A similar but
much faster proof was obtained by H. Zhang with RRL. These two automatized proofs require
many lemmas, some of them being non-obvious. For instance, B. Boyer introduces a predicate
"silly” that is ”only defined to force a certain weird induction” (here we quote B. Boyer). The
same predicate appears in Zhang’s experiment. On the other hand, our proof is based on 5
lemmas easy to understand. These lemmas have been suggested by a first unsuccessful proof
attempt with SPIKE. The source of failure was identified by the impossibility of reducing a
family of patterns. Hence we have introduced the adequate lemmas for simplifying them. This
was enough to derive a proof. Note that if we use the same formulation as H. Zhang, our system
needs only 2 lemmas to prove the Gilbreath Cards Trick (see section D).

The proof has taken more CPU time than Boyer’s (and Zhang’s). However, it is difficult to
compare these approaches from the efficiency point of view, since our we have spent very few time
to get the right lemmas. On the other hand, the differences between programming languages
lead also to some discrepancy in the performance.

The following array compare users inputs for the proof of Gilbreath Card Trick with NQTHM,
RRL and SPIKE:

NQTHM | RRL | SPIKE
Definitions ? 1011079110
Induction scheme definition | 1 1 |10 {0]0
Lemmas 17 2318 [5]2

In chronological order we have: NQTHM, first column of RRL, first column of SPIKE, second
column of RRL, corresponding, to more recent experiments obtained after modification of the
code of RRL, second column of SPIKE corresponding to same inputs as RRL.

B Formulation of the problem in SPIKE

In this section, we define in SPIKE various predicates and functions to formulate the Gilbreath
Card Trick:

There are two kind of cards: R=red and B=Dblack.
R :— card
B :— card

The constructors for lists of cards:
Null :— list

Cons : card x list — list

The constructors for boolean:

24

True :— bool
False :— bool
We suppose that True <> False:
True = False =
[neg : card — card] The negation function maps R to B and conversely:
neg(R) = B
neg(B) = R
[paired : card x card — bool] paired(z,y) = true iff z and y are cards of opposite color.
paired(R, B) = True
paired(B, R) = True
patred(z,z) = False
[append : list x list — list] appends two lists.
append(Null,y) =y
append(Cons(z,y), z) = Cons(z, append(y, z))
[rotate : list — list] rotate the first element to the end of a list.
rotate(Null) = Null
rotate(Cons(z,y)) = append(y, Cons(z, Null))
[even : list — bool] even(z) = true iff z is of even length.
even(Null) = True
even(Cons(z, Null)) = False
even(Cons(zl, Cons(z2,y))) = even(y)

[opposite : list x list — bool} opposite(x,y) = true iff the first cards of z and y, respectively, are
of opposite color.

opposite(Null,y) = False
opposite(z, Null) = False
opposite(Cons(zl,y1), Cons(z2,y2)) = paired(z1, z2)

[pairedlist : list — bool] pairedlist(z) = true iff z is a list of cards such that if we repeatedly
take two cards from its top, the two cards are found to be of opposite color.

pairedlist(Null) = True
pairedlist(Cons(z, Null)) = True
patred(zl, z2) = True => pairedlist(Cons(zl,Cons(z2,z))) = pairedlist(z)
paired(zl,z2) = False = pairedlist(Cons(z1,Cons(z2,z))) = False

[alter : list — bool] alter(z) = true iff z is a list of cards whose colors alternate.
alter(Null) = True
alter(Cons(zl, Null)) = True
patred(zl, z2) = True = alter(Cons(z1,Cons(z2,z))) = alter(Cons(z2,z))
paired(zl,z2) = False = alter(Cons(zl,Cons(z2,z))) = False

[shuffle : list x list x list — bool] shuf fle(z,y,z) = true iff z is a merge of z and y.
shuf fle(Null, Null, Null) = True

%% shuffle(z, Null,z) & (z = 2)

shuf fle(Null, Null,Cons(z3,y3)) = False

shuf fle(Cons(zl,yl1),y2, Null) = False

paired(z1,z3) = True => shuffle(Cons(z1,y1), Null, Cons(z3,y3)) = False

paired(z1,z3) = False = shuffle(Cons(z1,yl), Null,Cons(z3,y3)) = shuf fle(yl, Null, y3)
%% shuffle(Null,z,z) & (z = 2)

shuf fle(yl, Cons(z2,y2), Null) = False

25

pasred(z2,z3) = True = shuf fle(Null,Cons(z2,y2), Cons(z3,y3)) = False
paired(z2, £3) = False = shuf fle(Null,Cons(z2,y2),Cons(z3,y3)) = shuf fle(Null,y2, y3)

%% shuf fle(Cons(zl,yl),Cons(z2,y2),Cons(z3,y3)) &
%% ((x1 = £3) and shuf fle(yl, Cons(z2,y2),y3)) or ((z2 = z3) and shuffle(Cons(zl,y1),y2, y3))

paired(z1,z3) = False, shuf fle(yl, Cons(z2,y2),y3) = True =
shuf fle(Cons(zl,yl), Cons(z2,y2), Cons(z3,y3)) = True

patred(z2,z3) = False, shuf fle(Cons(z1,y1),y2,y3) = True =
shuf fle(Cons(zl,y1), Cons(z2,y2), Cons(z3,y3)) = True

paired(zl, z3) = True, paired(z2,z3) = True =
shuffle(Cons(zl,yl), Cons(z2,y2), Cons(z3,y3)) = False

shuf fle(yl,Cons(z2,y2),y3) = False, shuf fle(Cons(z1,yl),y2,y3) = False =
shuf fle(Cons(z1,y1), Cons(z2,y2), Cons(z3,y3)) = False

patred(zl, z3) = True, shuf fle(Cons(z1,y1), y2,y3) = False =
shuffle(Cons(z1,y1), Cons(z2,y2), Cons(z3,y3)) = False

paired(z2, 3) = True, shuf fle(yl, Cons(z2,y2),y3) = False =
shuf fle(Cons(x1,y1), Cons(z2,y2), Cons(z3,y3)) = False

The main theorem

Imagine x and y to be the two card stacks that result from cutting the original deck. The original
deck is thus "append(x,y)”. Suppose that the original deck is of alternating color and of even
length. Suppose further that z is a shuffle of x and y. If x and y start with cards of opposite
color, then z satisfies ”pairedlist”.

alter(append(u, v)) = True, even(append(u,v)) = True, opposite(u,v) = True, shuf fle(u,v,w) = True

= pairedlist(w) = True

On the other hand, if x and y start with cards of same color, then the result of moving the top
card of z to the end of z satisfies ”pairedlist”:

alter(append(u, v)) = True, even(append(u,v)) = True, opposite(u,v) = False, shuf fle(u,v, w) = True

= pairedlist(rotate(w)) = True

C Properties of the specification

C.1 Checking the completeness of the specification

SPIKE checks automatically if an operator f in a specification is completely defined. The
program builds a pattern tree for f. The leaves of the tree give a partition of the possible
arguments for f. Then if all the leaves are reducible, the answer is affirmative.

The test is successful on our axioms. This is shown during the first part of the proof session
which appears below.

>>> Display of pattern tree of neg <<«

neg(x1)
neg(R) ok
neg(B) ok

>>> Display of pattern tree of paired <<«

paired(x1,x2)
paired(R,x2)
paired(R,R) ok
paired(R,B) ok
paired(B,x2)

26

paired(B,R) ok
paired(B,B) ok

>>> Display of pattern tree of append <<<

append(x1,x2)
append(Bull,x2) ok
append(Cons(x3,x4) ,x2) ok

>>> Display of pattern tree of rotate <<<

rotate(x1)
rotate(Bull) ok
rotate(Cons(x2,x3)) ok

>>> Display of pattern tree of even <<<

even(x1)
even(Null) ok
even(Cons(x2,x3))
even(Cons(x2,Null)) ok
even(Cons(x2,Cons(x1,x4))) ok

>>> Display of pattern tree of opposite <«<

opposite(x1,x2)
opposite(Full,x2) ok
opposite(Cons(x3,x4),x2)
opposite(Cons(x3,x4),Null) ok
opposite(Cons(x3,x4),Cons(x1,x5)) ok

>>> Display of pattern tree of pairedlist <<«

pairedlist(x1)
pairedlist(Null) ok
pairedlist(Cons(x2,x3))
pairedlist(Cons(x2,Null)) ok
pairedlist(Cons(x2,Cons(x1,x4))) ok
! paired(x2,x1)=True::pairedlist(x4) !
! paired(x2,x1)=False::False !

>>> Display of pattern tree of alter <<<

alter(x1)
alter(Bull) ok
alter(Cons(x2,x3))
alter(Cons(x2,Null)) ok
alter(Cons(x2,Cons(x1,x4))) ok
¢ paired(x2,x1)=True::alter(Cons(x1,x4))
! paired(x2,x1)=False::False !

>>> Display of pattern tree of shuffle <<<

shuffle(x1,x2,x3)
shuffle(Bull,x2,x3)
shuffle(Full, Bull,x3)
shuffle(Null,Null ,Null) ok
shuffle(Bull ,Null,Cons(x1,x2)) ok
shuffle(Null,Cons(x1,x4),x3)

27

shuffle(Null,Cons(x1,x4),§ull) ok
shuffle(Null,Cons(x1,x4),Cons(x2,x5)) ok
! paired(x1,x2)=True: :False
¢t paired(x1,x2)=False::shuffle(Null,x4,x5)
shuffle(Cons(x4,x5),x2,x3)
shuffle(Cons(x4,x5),Hull,x3)
shuffle(Cons(x4,x5) ,Hull,Null) ok
shuffle(Cons(x4,x5),8ull,Cons(x1,x2)) ok
! paired(x4,x1)=True: :False
! paired(x4,x1)=False::shuffle(x5,§ull,h x2) !
shuffle(Cons(x4,x5),Cons(x1,x6),x3)
shuffle(Cons(x4,x5),Cons(x1,x6) ,§ull) ok
shuffle(Cons(x4,x5),Cons{x1,x6),Cons(x2,x7)) ok
paired(x4,x2)=False ~ shuffle(x5,Cons(x1,x6),x7)=True::True !
paired(x1,x2)=False ~ shuffle(Cons(x4,x5),x6,x7)=True::True !
paired(x4,x2)=True ~ paired(x1,x2)=True::False !
shuffle(x5,Cons(x1,x6),x7)=False =~ shuffle(Cons(x4,x5),x6,x7)=False::False !
paired(x4,x2)=True = shuffle(Cons(x4,x5),x6,x7)=False::False
paired(x1,x2)=True ~ shuffle(x5,Cons(x1,x6),x7)=False::False

=-=> every defined symbol is completely defined.

C.2 Check of ground convergence of the specification

Convergent systems of equations have the property that two terms are equal if and only if they
simplify to identical ones. To get convergence, SPIKE uses the saturation technique [Kounalis
Rusinowitch 87] which is a natural extension of Knuth and Bendix to conditional theories. This
technique is based on a set of inference rules which is refutationally complete for first order logic
with equality.

Fragment of the convergence proof is shown. Note that no completion is needed. The initial
axioms are already ground convergent.

(13) opposite(Null,x1) = False

(14) opposite(x1,Null) = False

(28) paired(x1,x2) = True => shuffle(Cons(x1,x3),Kull,Cons(x2,x4)) = False

(29) paired(x1,x2) = False => shuffle(Cons(x1,x3),full,Cons(x2,x4)) = shuffle(x3,NFull,x4)

(38) True = False =>

Right superposition of (13) into (14) at the position [1]:
(39) False = False

Delete (39)

Right superposition of (28) into (29) at the position [1]:

(43) paired(x5,x7) = False, paired(x5,x7) = True => shuffle(x6,Hull,x8) = False
Auto simplification of (43):

(43): paired(x5,x7) = True, True = False => shuffle(x6,Hull,x8) = False

Delete (43): (38) proper subsumes (43)

The set of axioms is saturated.

-> R is ground convergent.

28

C.3 Computing test sets for R

Test sets are special induction schemes that ensure that any false boolean conjecture will be
detected in finite time, given a convergent specification with completely defined functions.
The output of the SPIKE procedure that computes test sets is:

test set of R:

-> bool = {False ; True}
-> card = {B ; R}
-> list = {Bull ; Cons(B,Bull) ; Cons(R,Null) ; Cons(B,Cons(B,x2)) ;

Cons(B,Cons(R,x2)) ; Cons(R,Cons(B,x2)) ; Cons(R,Cons(R,x2))}
A proof has also been obtained using the following cover sets for the sort list

{Null, Cons(z, Null), Cons(z,Cons(y, 2))}

C.4 Computing inductive positions of functions

To prove a theorem, it is sufficient to apply induction schemes to variables that occur only at
special positions in a term f(z;,...,z,). This positions are called inductive positions of f.
The output of the SPIKE procedure that compute inductive positions of functions is:

induction positions of functions:
-> neg: [[1]]

-> paired: [[1];[2]]

-> shuffle: [[1];[2]; (3]}

-> append: [[1]]

-> rotate: [[1]]

-> even: [[1];[1;2]]

-> opposite: [[1];[2]]

-> pairedlist: [[1];[1;2])
-> alter: [[1];[1;2]]

D Lemmas
We provide the system with 5 easy lemmas to help the proof.

Lemma 1 Letzl and 22 two lists of cards. If £l is even, then append(z1, cons(z2,z3)) is even
iff cons(z2,23) is even.

even(x1) = True => even(append(x1,Cons(x2,x3))) = even(Cons(x2,x3))

Lemma 2 Let z1 and 22 two lists of cards. If z1 is odd, then append(z1,cons(z2,z3)) is even
iff 3 ts even.

even(x1l) = False => even(append(x1,Cons(x2,x3))) = even(x3)

Lemma 3 If Cons(zl,yl) is a list of cards whose colors do not alternate then Cons(z1,
append(yl,y2)) is a list of cards whose colors do not alternate either.

alter(Cons(x1,x2)) = False => alter(Cons(x1,append(x2,x3))) = False

Lemma 4 IfCons(zl,yl) is a list of cards whose colors alternate and yl is of odd length, then
Cons(zl,append(yl,y2)) alternate iff Cons(neg(zl),y2) alternate.

alter(Cons(x1,x2)) = True, even(x2) = False => alter(Cons(x1,append(x2,x3))) = alter(Cons(neg(x1),x3))

Lemma 5 If Cons(zl,yl) is a list of cards whose colors alternate and yl is of even length,
then Cons(z1, append(yl,y2)) alternate iff Cons(z1,y2) alternate.

alter(Cons(x1,x2)) = True, even(x2) = True => alter(Cons(xl,append(x2,x3))) = alter(Cons(x1,x3))

29

Remark

If we formulate the problem as Hantao Zhang in RRL that is with the help of a conditional
function”cond”, then two lemmas are sufficient for SPIKE to prove Gilbreath card trick, namely:

. alter(Cons(x1,append(x2,x3))) ==

. even(append(x1,Cons(x2,x3))) == cond(even(x1l) = True, even(Cons(x2,x3)), even(x3))

cond(alter(Cons(x1,x2))=False, False,
cond(even(x2)=True, alter(Cons(x1,x3)), alter(Cons(neg(x1),x3))))

Proof of lemmas

During a preliminary attempt of a proof, we have noticed that the pattern even(append(zl,
Cons(x2,23))) was a cause of divergence. This has motivated us to introduce lemmas 1 and
2. They allow to replace even(append(z1,Cons(z2,23))) by even(Cons(z2,z3)) if z1 is even,
and even(z3) if z1 is odd. In the same way, we eliminate aiter(Cons(z1,append(x2,23))), thanks to
lemmas 3, 4 and 5.
The 5 lemmas are proved in a single run. Below, we show partial transcripts of the proof
session:

EO = {alter(Cons(x1,x2))

alter(Cons(x1,x2))

True, even(x2) =
True, even(x2) = True => alter(Cons(x1,append(x2,x3)))

False => alter(Cons(x1l,append(x2,x3))) = alter(Cons(neg(x1),x3)) ;

alter(Cons(x1,x3)) ;

alter(Cons(x1,x2)) = False => alter(Cons(x1,append(x2,x3))) = False ;
even(xl) = True => even(append(x1,Cons(x2,x3))) = even(Cons(x2,x3)) ;
even(xl) = False => even(append(x1,Cons(x2,x3))) = even(x3)}

Since in our frameworks an atom is considered to be simpler than its negation, we simplify
clauses into positive ones.

Simplification of:
alter(Cons(x1,x2)) = True, even(x2) = False => alter(Cons(x1,append(x2,x3))) = alter(Cons(neg(x1),x3))
alter(Cons(x1,append(x2,x3))) = alter(Cons(reg(x1),x3)), alter(Cons(x1,x2)) = False, even(x2) = True

Simplification of:
alter(Cons(x1,x2)) = True, even(x2) = True => alter(Cons(x1,append(x2,x3))) = alter(Cons(x1,x3))
alter(Cons(x1,append(x2,x3))) = alter(Cons(x1,x3)), alter(Cons(x1,x2)) = False, even(x2) = False

Simplification of:
alter(Cons(x1,x2)) = False => alter(Cons(x1,append(x2,x3))) = False
alter(Cons(x1,append(x2,x3))) = False, alter(Cons(x1,x2)) = True

Simplification of:
even(x1) = True => even(append(x1,Cons(x2,x3))) = even(Cons(x2,x3))
even(append(x1,Cons(x2,x3))) = even(Cons(x2,x3)), even(x1l) = False

Simplification of:
even(xl) = False => even(append(xi,Cons(x2,x3))) = even(x3)

E1

H1

even(append(x1,Cons(x2,x3)))

{alter(Cons(x1,append(x2,x3)))
alter(Cons(x1,append(x2,x3)))
alter(Cons(x1,append(x2,x3)))

even(x3), even(xl) = True

alter(Cons(neg(x1),x3)), alter(Cons(x1,x2)) = False, even(x2) = True ;
alter(Cons(x1,x3)), alter(Cons(x1,x2)) = False, even(x2) = False ;
False, alter(Cons(x1,x2)) = True ;

even(append(x1,Cons(x2,x3))) = even(Cons(x2,x3)), even(xl) = False ;
even(append(x1,Cons(x2,x3))) = even(x3), even(xl) = True}

{}

To prove alter(Cons(z1,append(z2,23))) = alter(Cons(neg(z1),z3)), alter(Cons(z1,22)) = False, even(z2) =

True the induction will be done on z7, and will follow the scheme:

30

Application of generate on:
alter(Cons(x1,append(x2,x3))) = alter(Cons(neg(x1),x3)), alter(Cons(x1,x2)) = False, even(x2) = True:
1) alter(Cons(B,x2)) = False, even(x2) = True, alter(Cons(B,append(x2,x3))) = alter(Cons(R,x3)) ;
2) alter(Cons(R,x2)) = False, even(x2) = True, alter(Cons(R,append(x2,x3))) = alter(Cons(B,x3))

E2 = {alter(Cons(x1,append(x2,x3))) = alter(Cons{x1,x3)), alter(Cons(x1,x2)) = False, even(x2) = False ;
alter(Cons(x1,append(x2,x3))) = False, alter(Cons(x1,x2)) = True ;
even(append(x1,Cons(x2,x3))) = even(Cons(x2,x3)), even(xl) = False ;
even(append(x1,Cons(x2,x3))) = even(x3), even(x1) = True ;
alter(Cons(B,x1)) = False, even(xl) = True, alter(Cons(B,append(x1,x2))) = alter(Cons(R,x2)) ;
alter(Cons(R,x1)) = False, even(x1l) = True, alter(Cons(R,append(x1,x2))) = alter(Cons(B,x2))}

H2 = {alter(Cons(x1,append(x2,x3))) = alter(Cons(neg(x1),x3)), alter(Cons(x1,x2)) = False, even(x2) = True}

To prove alter(Cons(z1,append(z2,23))) = alter(Cons(z1,23)), alter(Cons(z1,22)) = False, even(z2) = False
the induction will be done on z2, and will follow the scheme:

Application of generate on:

alter(Cons(x1,append(x2,x3))) = alter(Cons(x1,x3)), alter(Cons(x1,x2)) = False, even(x2) = False:
1) alter(Cons(x1,Hull)) = False, even(Null) = False, alter(Cons(x1,x3)) = alter(Cons(x1,x3))
2) alter(Cons(x1,Cons(B,Null))) = False,

even(Cons(B,Null)) = False, alter(Cons(x1,Cons(B,x3))) = alter(Cons(x1,x3))
3) alter(Cons(xi,Cons(R,Bull))) = False, even{(Cons(R,Hull)) = False,

alter(Cons(x1,Cons(R,x3))) = alter(Cons(xi,x3))
4) alter(Cons(x1,Cons(B,Cons(B,x2)))) = False,

even(Cons(B,Cons(B,x2))) = False, alter(Cons(x1,Cons(B,Cons(B,append(x2,x3))))) = alter(Cons(x1,x3)) ;
5) alter(Cons(x1,Cons(B,Cons(R,x2)))) = False,

even(Cons(B,Cons(R,x2))) = False, alter(Cons(xi,Cons(B,Cons(R,append(x2,x3))))) = alter(Cons(xi,x3))
6) alter(Cons(x1,Cons(R,Cons(B,x2)))) = False,

even(Cons(R,Cons(B,x2))) = False, alter(Cons(x1,Cons(R,Cons(B,append(x2,x3))))) = alter(Cons(x1,x3)) ;
7) alter(Cons(x1,Cons(R,Cons(R,x2)))) = False,

even(Cons(R,Cons(R,x2))) = False, alter(Cons(x1,Cons(R,Cons(R,append(x2,x3))))) = alter(Cons(x1,x3))

The proof of alter(Cons(z1,Cons(B,Cons(B,z2)))) = False, even(z2) = False, alter(Cons(z1,Cons(B,
Cons(B,append(z2, £3))))) = alter(Cons(z1,z3)) is done by a case-analysis on whether paired(z1, B) =
True OT paired(zl, B) = False.

Application of case rewriting using R on:
alter(Cons(x1,Cons(B,Cons(B,x2)))) = False, even(x2) = False,
alter(Cons(x1,Cons(B,Cons(B,append(x2,x3))))) = alter(Cons(x1,x3)):
1) paired(x1,B) = True => even(x2) = False,
alter(Cons(x1,Cons(B,Cons(B,append(x2,x3))))) = alter(Cons(x1,x3)), alter(Cons(B,Cons(B,x2))) = False ;
2) paired(x1,B) = False => even(x2) = False,
alter(Cons(x1,Cons(B,Cons(B,append(x2,x3))))) = alter(Cons(x1,x3)), False = False ;

E60 = {even(x1l) = False, alter(Cons(B,append(x1,x2))) = alter(Cons(B,x2)),
alter(Cons(B,x1)) = False, True = False}
H60 = {alter(Cons(x1,append(x2,x3))) = alter(Cons(x1,x3)), alter(Cons(x1,x2)) = False, even(x2) = False ;

L)

Delete even(x1l) = False, alter(Cons(B,append(x1,x2))}) = alter(Cons(B,x2)),

alter(Cons(B,x1)) = False, True = False
it is subsumed by:
alter{Cons(x1,append(x2,x3))) = alter(Cons(x1,x3)), alter(Cons(x1,x2)) = False,

even(x2) = False of H60

E61 = {}

The initial conjectures are inductive consequences of R

The following sub lemmas have been generated automatically during the proof and have played
a role in it:

31

{even(append(x1,Cons(x2,x3))) = even(x3), even(x1) = True ;

alter(Cons(x1,append(x2,x3))) = False, alter(Cons(x1,x2)) = True ;

even(append(x1,Cons(x2,x3))) = even(Cons(x2,x3)), even(xi) = False ;

alter(Cons(B,x1)) = False, even(xl) = True, alter(Cons(B,append(x1,x2))) = alter(Cons(R,x2)) ;
alter(Cons(R,x1)) = False, even(x1) = True, alter{(Cons(R,append(x1,x2))) = alter(Cons(B,x2))
alter(Cons(x1,append(x2,x3))) = alter{(Cons(x1,x3)), alter(Cons(x1,x2)) = False, even(x2) = False}

E The main theorem

Below, we show partial transcripts of the proof session, to illustrate the main steps of the proof:

EO = {alter(append(x1,x2)) = True, even(append(x1,x2)) = True,
opposite(x1,x2) = True, shuffle(x1,x2,x3) = True => pairedlist(x3) = True ;
alter(append(xt,x2)) = True, even(append(x1,x2)) = True,
opposite(x1,x2) = False, shuffle(x1,x2,x3) = True => pairedlist(rotate(x3)) = True}

L = {alter(Cons(x1,x2)) = True, even(x2) = False => alter(Cons(x1,append(x2,x3))) = alter(Cons(neg(x1),x3))
alter(Cons(x1,x2)) = True, even(x2) = True => alter(Cons(x1,append(x2,x3))) = alter(Cons(x1,x3)) ;
alter(Cons(x1,x2)) = False => alter(Cons(x1,append(x2,x3))) = False ;
even(xi) = True => even(append(x1,Cons(x2,x3))) = even(Cons(x2,x3)) ;
even(xl) = False => even(append(x1,Cons(x2,x3))) = even(x3)}

Simplification of:
alter(append(x1,x2)) = True, even(append(xi,x2)) = True,
opposite(x1,x2) = True, shuffle(x1,x2,x3) = True => pairedlist(x3) = True
pairedlist(x3) = True, alter(append(x1,x2)) = False,
even(append(x1,x2)) = False, opposite(xl,x2) = False, shuffle(x1,x2,x3) = False

Simplification of:
alter(append(x1,x2)) = True, even(append(x1,x2)) = True,
opposite(xi,x2) = False, shuffle(x1,x2,x3) = True => pairedlist(rotate(x3)) = True
pairedlist(rotate(x3)) = True, alter(append(x1,x2)) = False,
even(append(x1,x2)) = False, opposite(x1,x2) = True, shuffle(x1,x2,x3) = False

El = {pairedlist(x1) = True, alter(append(x2,x3)) = False,
even(append(x2,x3)) = False, opposite(x2,x3) = False, shuffle(x2,x3,x1) = False ;
pairedlist(rotate(x1)) = True, alter(append(x2,x3)) = False,
even(append(x2,x3)) = False, opposite(x2,x3) = True, shuffle(x2,x3,x1) = False}

H1 = {}

The next case-rewriting step eliminate alter(Cons(B,append(z1,Cons(B,Cons(B,z2))))). Several clauses
are generated by this inference step. Some of them are shown below:

Application of case resriting using L on:
alter(Cons (B, append(x1,Cons(B,Cons(B,x2))))) = False,
even(append(x1,Cons(B,Cons(B,x2)))) = False,
shuffle(Cons(R,Cons(B,x1)),Cons(B,Cons(B,x2)),Conas(B,Cons(B,x3))) = False:

1) alter(Cons(B,x1)) = True, even(xl) = False => even(append(xi,Cons(B,Cons(B,x2)))) = False,
shuffle(Cons(R,Cons(B,x1)),Cons(B,Cons(B,x2)),Cons(B,Cons(B,x3))) = False,
alter(Cons(neg(B),Cons(B,Cons(B,x2)))) = False

2) alter(Cons(B,x1)) = True, even(x1l) = True => even(append(x1,Cons(B,Cons(B,x2)))) = False,
shuffle(Cons(R,Cons(B,x1)),Cons(B,Cons(B,x2)),Consg(B,Cons(B,x3))) = False,
alter(Cons(B,Cons(B,Cons(B,x2)))) = False ;

3) alter(Cons(B,x1)) = False => even(append(x1,Cons(B,Cons(B,x2)))) = False,
shuffle(Cons(R,Cons(B,x1)),Cons(B,Cons(B,x2)),Cons(B,Cons(B,x3))) = False, False = False

Application of inductive rewriting to eliminate even(append(z1,Cons(R,Cons(B,z2)))).

E191 = {even(append(x1,Cons(R,Cons(B,x2)))) = False,
shuffle(Cons(R,Cons(B,x1)),Cons(R,Cons(B,x2)),Cons(R,Cons(B,x3))) = False,
pairedlist(Cons(B,append(x3,Cons(R,Hull)))) = True, alter(Cons(neg(B),Cons(R,Cons(B,x2)))) = False,
alter(Cons(B,x1)) = False, even(xl) = True ;

32

even(append(x1,Cons(R,Cons(B,x2)))) = False,
shuffle(Cons(R,Cons(B,x1)),Cons(R,Cons(B,x2)),Cons(R,Cons(B,x3))) = False,

pairedlist(Cons(B,append(x3,Cons(R,Null)))) = True, alter(Cons(B,Cons(R,Cons(B,x2)))) =

alter(Cons(B,x1)) = False, even(xl) = False ;

)

H191 = {pairedlist(rotate(x1)) = True, alter(append(x2,x3)) = False,
even(append(x2,x3)) = False, opposite(x2,x3) = True, shuffle(x2,x3,x1) = False ;
pairedlist(xi) = True, alter(append(x2,x3)) = False,
even(append(x2,x3)) = False, opposite(x2,x3) = False, shuffle(x2,x3,x1) = False}

Simplification of:
even(xl) = False => even(append(x1,Cons(R,Cons(B,x2)))) = False,
shuffle(Cons(R,Cons(B,x1)),Cons(R,Cons(B,x2)),Cons(R,Cons(B,x3))) = False,
pairedlist(Cons(B,append(x3,Cons(R,Null)))) = True, alter(Cons(neg(B),Cons(R,Cons(B,x2)))) =
alter(Cons(B,x1)) = False by R U L[H191 U E191]:

even(x1) = False => even(Cons(B,x2)) = False,
shuffle(Cons(R,Cons(B,x1)),Cons(R,Cons(B,x2)),Cons(R,Cons(B,x3))) = False,

pairedlist(Cons(B,append(x3,Cons(R,Bull)))) = True, False = False, alter(Cons(B,x1)) = False

Simplification of:
even(xi) = True => even(append(x1,Cons(R,Cons(B,x2)))) = False, shuffle(Cons(R,Cons(B,x1)),
Cons(R,Cons(B,x2)),Cons(R,Cons(B,x3))) = False,
pairedlist(Cons(B,append(x3,Cons(R,Null)))) = True,

False,

False,

alter(Cons(B,Cons(R,Cons(B,x2)))) = False, alter(Cons(B,x1)) = False by R U L{H191 U E191]:

even(x1) = True => even(x2) = False, shuffle(Cons(R,Cons(B,x1)),Cons(R,Cons(B,x2)),
Coics(k,Cons(B,x3))) = False, pairedlist(Cons(B,append(x3,Cons(R,HBull)))) = True,
alter(Cons(B,x2)) = False, alter(Cons(B,x1)) = False

Application of a case rewriting to simplify shufle(Cons(R,Null),Cons(B,Null),Cons(R,Cons(B,z1))):

Application of case rewriting using R on:
shuffle(Cons(R,Hull),Cons(B,Hull),Cons(R,Cons(B,x1))) = False, pairedlist(x1) = True:
1) paired(R,R) = False, shuffle(Hull,Cons(B,Bull),Cons(B,x1)) = True => pairedlist(x1)
2) paired(B,R) = False, shuffle(Cons(R,Null),Bull,Cons(B,x1)) = True => pairedlist(x1)
3) paired(R,R) = True, paired(B,R) = True => pairedlist(x1l) = True, False = False ;
4) shuffle(Null,Cons(B,Null),Cons(B,x1)) = Falsa,
shuffle(Cons(R,Null) ,Hull,Cons(B,x1)) = False => pairedlist(x1) = True, False = False ;

5) paired(R,R) = True, shuffle(Cons(R,Hull),Bull,Cons(B,x1)) = False => pairedlist(x1) = True, False =

True, True
True, True

False ;
False ;

False ;

6) paired(B,R) = True, shuffle(Null,Cons(B,Null),Cons(B,x1)) = False => pairedlist(x1) = True, False = False

E912 = {}
The initial conjectures are inductive consequences of R

37 lemmas were generated automatically to prove the conjectures, for example:
pairedlist(x1) = True, shuffle(Null,Null,xt) = False ;

pairedlist(x1) = True, alter(Cons(R,x2)) = False, even(x2) = True, shuffle(x2,Cons(R,Null),x1) = False ;

alter(Cons(R,x1)) = False, even(x1) = False, shuffle(Bull,x1,x2) = False,
pairedlist(Cons(R,append(x2,Cons(B,Null)))) = True ;

even(Cons(B,x1)) = False, pairedlist(x2) = True, alter(Cons(B,x1)) = False,
alter(Cons(R,x3)) = False, even(x3) = True, shuffle(Cons(R,x3),Cons(B,x1),x2) = False ;

F Refutation of conjectures

R is a boolean ground convergent rewrite system with completely defined functions. Under these
hypotheses SPIKE can refute any false boolean conjecture in finite time. Here is an example of

33

a refutation of a false conjecture.

EO = {alter(append(x1,x2)) = True, even(append(x1,x2)) = True,
opposite(xl,x2) = True, shuffle(x1,x2,x3) = True => pairedlist(x3) = False}

Simplification of:
alter(append(x1,x2)) = True, even(append(x1,x2)) = True, opposite(x1,x2) = True,
shuffle(x1,x2,x3) = True => pairedlist(x3) = False
pairedlist(x3) = False, alter(append(x1,x2)) = False,
even(append(x1,x2)) = False, opposite(x1,x2) = False, shuffle(x1,x2,x3) = False

El = {pairedlist(x1) = False, alter(append(x2,x3)) = False,
even(append(x2,x3)) = False, opposite(x2,x3) = False, shuffle(x2,x3,x1) = False)}

H1 = {}

E144 = {pairedlist(xl) = False, shuffle(Null,Null,x1) = False ;

)

H144 = {pairedlist(xi) = False, alter(append(x2,x3)) = False,
even(append(x2,x3)) = False, opposite(x2,x3) = False, shuffle(x2,x3,x1) = False}

Application of generate on:

pairedlist(x1) = False, shuffle(Null,Null,x1) = False:
1) shuffle(Null,Bull,Null) = False, True = False ;
2) shuffle(Null,Null,Cons(B,Null)) = False, True = False ;
3) shuffle(Null,Null,Cons(R,Null)) = False, True = False ;

4) shuffle(Null,¥ull,Cons(B,Cons(B,x1))) = False, False = False
§) shuffle(Null,Full,Cons(B,Cons(R,x1))) = False, pairedlist(x1)
6) shuffle(Null,Null,Cons(R,Cons(B,x1))) = False, pairedlist(x1l)
7) shuffle(Null,Null,Cons(R,Cons(R,x1))) = False, False = False

False
False ;

Simplification of:
shuffle(Null,Bull,Null) = False, True = False by R U L[H146 U E146]:
True = False

The quasi-inconsistant clause True = False is generated.

E149 = {True = False}

H149 = {pairedlist(x1) = False, shuffle(Null,Null,x1) = False ;
pairedlist(x1) = False, alter(append(x2,x3)) = False,
even(append(x2,x3)) = False, opposite(x2,x3) = False, shuffle(x2,x3,x1) = False}

Hence:

The initial conjecture is not an inductive consequence of R.

34

Appendix 2: Proofs

Here we prove the lemmas 2 and 4 for the inference system N:

Proof of lemma 2: Let & = ming {Co/C € U;E; and there is a ground substitution o
irreducible by R such that R [£;ng Co}. & # 0 since R g Eo and <. is well-founded.
Consider a clause C = A, ax = by = V; ¢ = d; which is minimal in & with respect to the
subsumption ordering. It is sufficient to prove that C cannot be simplified nor deleted, and that
neither generate nor complement can be applied to C; this shows that fail applies since the clause
C must not persist in the derivation by the fairness hypothesis.

Hence let us assume that C € E; and (Ej, H;) Fn (E;41, Hj+1) by some rule applied to C.
We discuss now the situation according to which rule is applied. In every case we shall derive a
contradiction. In order to simplify the notations we write E for E;, H for H; and P for Co.

Since o is a ground substitution that is irreducible by R, there exists a test substitution og
of C and a ground substitution 8 such that o = 048. Before proving the lemma we show the
following claim:

claim 1

1.1 If there is i such that Cla;)] ~gryuE);r C' where r is the subclause of C such that
= -(ai, = biy) V 1, then R [fing C'o.
1.2 If there is ig such that Coola;,00] ~ g[HuE);r0, C' Where 7 is the subclause of C such that
C = 'ﬂ(a,'o = bio) V 7, then R [ng C'e.
1.3 The application of case_rewriting to C generates a clause Cj such that R ;g Cro and
Cra < Co.
1.4 The application of case_rewriting to Cop generates a clause Cj such that R [~;,q Cr6 and
Ci0 < Co.

proof: We prove only 1.1 and 1.3 since the proof of 1.2 and 1.4 are similar respectively.

1.1 If there exists i such that a;, ~ gruEg);, afo,
There are two cases to consider:

If @i0 = prem(ro) 8i,0, then R = ai 0 = @] o since R fing Co.

Otherwise, there exists D = A; a{ = b} = ¢’ — d’ € R such that: a;,0 = a;,0[c'7], al 0 =
ai,old'r] and:

we also have by lemma 1, a;,0 ~ piyug)ro @, 0.

H y H ! 1 . / * /! / * "
i. for all ¢ there exist e}, € such that: a;7 =R, gug,, € > BT “hunugr. € and

! "
€, =prem(ro) & -
0 ’ / / /
11, {a,'od} > {017', b17', cee 5 QnT, bnr}'

Let us show that for all ¢, R [alr = biT:
We first prove that a;7 =g gyE.., € implies R | ai7 = €] by induction on a;7 w.r.t. >.
We have a;7 —hugug.ro €- Let ¢[gA] — c[hA] be one of the proof step of this derivation.
If ¢[gA] = prem(ro) €[RA], we have R = c[gA] = c[hA].
Otherwise, suppose there is Q@ = A; g; = h; =>¢g=h € RU H U E such that:

1. gA > hA.
2. Vi af:’ ftll such that g'/\ H‘RUHUE;TU ftl’ h"\ H;?UHUE;NI ftll and f‘l/ =prem(ro) fi”'
3. c[gA] = {@1 A, haA. .. g, hpA}
We have: g;A < c[gA] =% ai7, Hence by induction hypothesis we deduce that R = g;A = f]. In

the same way R = h;A = f. On the other side R = f! = f! (since R {£ina Co). This implies
that for all , R = ¢g;A = h;A. On the other hand we have : ¢g;A < alt < a;,0, b\ < a,,0,

35

g\ X alt < a;0 and hA < gA < @;,0. Hence QA <. P and by hypothesis QA is valid in R. We
therefore have R |= ¢[g)\] = c[h)] and as a consequence R k= ait = el.

In the same vein we have R |= bir = e!. On the other side R |= ¢} = €. From the previous
results we deduce that for all 1, R |= al7 = blr.

Since D € R wehave R |= ¢'r = d'r. This implies that R |= a} 0 = b;,0 since R |= a;,0 = b;,0
(R [ring Co by hypothesis) and R |- a;,0 = a{ o (see above)

Therefore we have R {£ina (Aigi, i = b; Aal = bj, = Vjc; = d;)o. This shows a contra-
diction since it proves that we can find an instance of a clause in E;;; which is not valid and
smaller than Co.

1.3 Assume that the rule case_rewriting can be applied to C. Then we have: C = —(ak[s1A1]y, =
bi)vVr=...= o(ak[siAi]y, = b)) Vr with {P, = 51 = t;, ..., P, = s; = t;} C R. The result
is: {C'l = ﬂ(ak[tl/\l]ul = bk) VaPA\Vvre. .., C = "'(ak[tl/\l]u, = bk) VaPAV 7‘} U CNF(PI/\I \%
...V P with PoA; <« {s;\;} for all i. Hence any clause in CNF(PiA; VvV ... V PA)o is K
{akxo}. This implies that any clause in CNF(PA, V ... V PA)ois <. P. As a consequence
there exists 7 € [1,..,1] such that R '=t'nd P A;o. Let C; be ﬁ(aka’[t,’/\,‘]u‘ = bk) VaFBA Vr.
We have PAjo < {si\jc} and then Po < {aio[s;)io]}. Since t;A; < s;A; we also have
arolt; o] < axo[s;Aa]. Finally, C; <. P. On one hand R }£i.g Co and therefore R inq ro.
On the other hand R |=inq (Pi = si — t;)A\io, R |Eing Pi)io and therefore R = s;\;0 = t;A;0 and
also R = axo[t; o], = bko. Putting everything together we get R [£;,4 Cio. A contradiction
raises from the generation of a non valid (instance of a) clause smaller than C'o. The claim is
proved.

We show now that whatever rule is applied to C, we obtain a contradiction:
generate: There are two cases:

A. generate applies to C = —(ag = bx) V r. Note that Co cannot be a tautology. We have
again two possibilities:

a. there exists ag such that ax00 — R[HUE]};ro, %0+ Let @ = —(ag = broo)Vrao, @ € UE;.
From Claim 1.2, R [£ing @8- On the other hand Q8 <. P since ayf = bro <. a0 =
bio, which is absurd.

b. If case_rewriting applies to Cag, then from Claim 1.4, there is a clause C’ € U; E; with
R [Find C'0 and C'8 <. P. This is also absurd.

B. generate applies to C = ¢, = di V 7/, This case is similar to A.

case simplify Since case simplification applies to C then by Claim 1.3 there is a clause C’ € U; E;
with R &4 C'o and C'o <, P, contradiction. The proof is similar whether we use R or L for
case simplification.

simplify: If simplify applies to C, there are two cases:

A. Simplify applies to C = ~(ax = bk) V r. there are again two possibilities:

Al. a; = puE)y @ Let €' = ~(a’ = b;) Vr. By Claim 1.1 R £in4 C'o and on the other hand
C'o <. P, contradiction.

A2. ar ~pgugR)- @, we also have axo ~ gyg(R);re @'0. There are two cases:
If axo = prem(ro) a'o, then R = aro = a’o since R g Co.
Otherwise, there exists D = A; s; =t; = s =1t € H U E such that: ayo = aro[s7] and
a'c = agoftr]. Let C' be =(a’ = b) V r. Then:

i. either R = st = t7. Then R {£nqg C'o and C’o < P, contradiction.

36

il. or R sT =11
Let us show that R [£inq Cs7. We have:

- {aro} > {s17, t17, ... 8,7, taT}

- Vi 3Jel, e such that : s;7 S RUHUE o € » LT = RUHUE:re el et e} =prem(ro) €5 -
Let us prove that for all i R |= s;7 = t;7: We begin by proving that R | s;70 = €] by
induction on s;To w.r.t. »: We have 8;7 =g yuE..o €- Let ¢[gA] = c[hA] be one of the
proof step of this derivation.

If ¢[gA] = prem(ro) c[RA], we have R |= c[gA] = c[h)].
Otherwise, suppose thereis Q = A; g;=h; =>g=h € H U FE such that :

1. gA > hA.

2. Vi 3f!, f! such that g;A > RUHUE:ro fl, hid > RUHUE o fllet f! =prem(ro) 1.

3. c[gA] > {14, shiA ... g, RpA}
We have: ¢giA < c[gA] =X s;7 and, by induction hypothesis, also: R |= ¢g;A = f!. Similarly
hiA < s;7 and therefore R |= h;A = f!. Since R | f! = f! which implies that Vi R =
gid = h;A. We also have: g;A < 8,7 < aro, A < 8;7 < aro, gA < arxo and hA < apo.
Hence QXA <. P and R k= ¢[gA] = c[hA]. It follows that R }= s;7 = ei. In the same way
we can verify that R | t;7 = €/. On one hand, R |= ¢! = €/, hence Vi R E s;7 = t;7,
on the other hand R }£ st = tro hence R [ing Co7. This yields the contradiction since
C, € U;E; and C,r <. P.

B. the case where simplify applies to C = ¢ = di V 7’ is similar to A.

right simplify of constructors: Assume that the rule right simplify of constructors applies to
C = f(s1y---y82) = f(t1,...,tn) V7. Then we have R £ f(s1,...,8:)0 = f(t1,...,tn)0. Since
f is a free constructor there exists 7 such that R }£ s;0 = t;0. Let Q = s; = t; Vr. Note that
Q € U;E;, R [£ing Qo and Qo <. P, contradiction.

left simplify of constructors: Assume that the rule left simplify of constructors applies to
C = ~(f(s1,---182) = f(t1,...,tp)) V7. Then we have R | f(s1,...,8.)0 = f(t1,...,tn)0.
Since f is a free constructor for all i, R = s;0 = tio. Let Q@ = V;~(s; = t;) Vr. Then Q € U, E;,
R Wing Qo and Qo <. P, contradiction.

deletion of a trivial clause: Since R [£;,q4 Co, C is not a tautology and this rule need not be
considered.

subsumption: Since R [£ing Co, C cannot be subsumed by an axiom from R. If there is
C' e HU(E\ {C}) such that C = C't Vr, we have R |£ing C'to sor = and 7 = 7 since C is
minimal in § w.r.t. the subsumption ordering. As a consequence C' ¢ (E\ {C}). Assume that
C’' € H. Hence generate has been applied to C'. Therefore generate can be also applied to C in
contradiction with a previous case.

complement: Assume that C = ~(axT = bg7) V r. Complement generate Q = axr = bt V r.
But R | (axt)o = (b'1)o since ~(bx = b’) € R. Hence R [£inqg Qo. Either we have b'r < b7 and
also Qo <. P, absurd. Or b'r = by7 and Qo <. P again since nin(Qo) = nin(Co) — 1. This is
also impossible.

Proof of lemma 4: Let R be a convergent rewrite system such that all defined symbols are
completely defined. Let C be the clause A; a; = b; = V; ¢; = d; € E; and assume that
(E;,Hj) br (Ej41,Hjp1) by application of an inference rule on C. Let us show that Vi <

j R Eind E; implies R |zing Ejq1.

Let us first prove the following claim:

37

claim 2

2.1 if there exists 4o such that C[ai,] ~c,[rub,uE;);r C' Where 1 is the subclause of C such that
C = -1(a,~o = b,'o) Vrand C, € RU H_,' U EJ'. then R '=ind C'.

2.2 if case_rewriting applies to C the derived clauses are inductive consequences of R.

proof:

2.1 If a;; ~c,[RuH,UE,];r ai,, then let C’ be the clause —(a] = b;,) vV r. Consider C'6 a
ground instance of C’. We can assume that for all ¢ # i, R }= a;0 = b0, R £ a0 = b;,0
and for all j R [¢;6 = d;6 (otherwise the conclusion is immediately derived). We have
@io0 ~¢,[RUH;UE;}ir8 %y 8- If @i, = prem(ro) @i 0 then immediately R | a;,6 = af 6.

Otherwise a;,0 = a;,0[c'T], a; 0 = a;,0{d'T] where Cs = A; a} = b, = ¢/ = d’, hence:

y H ! " / * / / * 1 /I —
1. for all there exists e;, €] such that a7 —=h g UE,;re € UiT S RUH,UE,;r0 € 304 € =prem(r0)
4
€, .
T

2. a;y0 > {ajT, biT,...,a,T,byT}.

Let us show that for all i R | alr = bir: We first prove that alr " huH,uE,;r¢ € implies
R | alr = e! by induction on a7 w.r.t. >. Let ¢[gA] — c[hA] be one of the proof step of this
derivation.

If c[gA] = prem(ro) clhA], we have R |= c[gA] = c[hA].

Otherwise, suppose thereis Q = A; gi=hi =>g=h € RUH; U E; such that:

1. gA > hA. 4
2. Vi 3f], f{ such that g;A = RUH,UE; ;78 fis hid = RUH,UE;;r6 fi' and f] =prem(ro) fi'-
3. C[g’\] > {gl’\a vhl’\ .. °’gn/\’ hn’\} ‘

We have: g;A < c[gA] < alr and by induction hypothesis we conclude that R |= g;A = f/. In
the same spirit we have h;A < a7 and R | ;A = f'. We also have R = f/ = f!'. Everything
put together we get for all ¢ R | ¢g;A = h;A. As a consequence: R | c[g\] = c[hA] since
R Eind @, and therefore R |= a7 = e;. In the same manner we can check that R | bir = ¢/
and R [€} = €. From these remarks we derive for all ¢ R |= a7 = bi7. Hence R = ¢/t = d'r
since R |=ing Cs. This implies successively that R |= a;,0 = a8, R |~ a{ 8 = b;,0, R }=ina C'6.

2.2 If the case-rewriting rule applies to C, then we have: C = —(ag[s1A1]y, = bk)Vr=...=
~(ak[siMi]y, = bk) V r with R’ the following set of rules {P; = sy = 1, ..., P => s> i} CR
et Vi s;)\; is irreducible by R and does not contain induction variables. The derived clauses are:
{Cl = ﬂ(ak[tlf\llul = bk) VoPAVrE...,C = "l(ak[tl)q]u‘ = bk) vV -PAV 7‘} U CNF(P1/\1 \Y%
...V P with PA; < {s;A;} for all 4. Let us show that R ;g PAA; V...V PA;. Assume
that there exists a ground R-irreducible substitution 7 such that R £ PoA;T V...V P\ and
consider a term ¢ = s;,A;, such that no proper subterm of t matches the left-hand side of a rule
(just take for ¢t a subterm ax occurring at a maximal occurrence u; w.r.t. length). The term
t7 is irreducible at the root since R £ PiA\TV ...V PA;r. Assume otherwise that there exists
a rule r € R — R’ with left-hand side g that applies to t7 and tr = go. Note that every non
variable position of ¢ is a non variable position of ¢ since ¢ does not contain induction variables.
In particular ¢ is not an instance of g. Since g is linear we can define a substitution by p(z) = t/w
for every variable x that occurs at some position w of g. We have then t = gp, in contradiction
with the assumption that R’ contains all the rules whose lhs matches ¢ .

If the strict subterms of ¢ do not contain defined operators then {7 cannot be reduced to a
non root position since the constructors are free. This is a contradiction with the fact that all
defined symbols are completely defined. :

If ¢ contains a strict subterm s = f(;,...,t,) with a defined operator f and for all i,
ti € T(C,X), then s is strongly irreducible (otherwise st is reducible) and does not contain
induction variables (by definition of case rewriting). Hence by proposition 4.1. b) there exists a

38

ground instance t¢ of t that is strongly irreducible by R. These remarks implies a contradiction
since t¢ contains a defined operator and all defined operators are completely defined. As a
consequence, R =g PAA V...V P

Assume that there exists ¢ such that: R [£ng Ci. In other words there is a ground in-
stance C;0 (we can assume that C6 is ground without loss of generality) such that: R [£nq 76,
R |= arb[ti i)y, = bkf and R |Eing PiAif, so R |= s;Aif = t;7;0. Therefore R |= ax[s; ;0] = bi6.
This implies that R [£inq C0, absurd. The claim is proved.

We show now that the application of an inference rule on C generates only inductive conse-
quences of R.

generate: There are two cases:

A. generate applies to C = ~(ag, = bi,) VT, Let 09 be a S(R)-substitution of C. If Coyg is not
a tautology then again there are two cases:

a. If there exists ag such that ax,00 —R{H,UE,}ire G0, then by claim 2.1, R |=ing —(ag =
bk, 00) V rog.

b. if case_rewriting applies to C'gg then by claim 2.2. the resulting clauses are inductive
consequences of R.

B. case_ezpand applies to C = gy = dké v 7/, This case is similar to A.

case simplify: If case simplify applies to C the from claim 2.2, only inductive consequences of
R are generated.

simplify: If simplify applies to C then there are two possibilities:

A. Simplify applies to C = ~(ak, = by,) V r. In this case we have ax, ~¢,[run,uE,}ir G0 With
R k=ind Cs. From claim 2.1 we deduce R ing ~(a§ = bi,) V r.
B. Simplify applies to C = ¢y = dpy V r'. Similar to A.

right simplify of constructors: If right simplify of constructors applies to C = f(s1,...,8,) =
f(t1,...,tx) V r. then consider is a ground substitution o. Since R |Eing Co we have either
R Einda ro or R | f(81,...,82)0 = f(t1,...,tn)0. The first possibility gives immediately the
desired conclusion. Hence let us assume the second one. Since f is a free constructor then
Vi R [sio = t;o. Therefore every clause Q; = s; = t; V r verifies R g Qi0.

left simplify of constructors: If left simplify of constructors applies to C = ~(f(s1,...,8n) =
f(t1,...,tn)) V r. Let o be a ground substitution and let us assume that R £ f(s1,...,8,)0
= f(t1y...,tn)0. Since R [ing Co we have either R iy ro or R [f(s1,...,80)0 =
f(t1,...,tn)o. The first possibility gives immediately the desired conclusion. Hence let us
assume the second one. Since f is a free constructor there exists ¢ such that R [£ s;oc = t;o.
Therefore R = (V;-(s; = t;) vV r)o.

deletion of a trivial clause and subsumption: If C is deleted then R =g E;41 since
F;+1 C E; in this case.

complement: Assume that complement applied to C = —(ard = bf) V r gives C’' = aif =
6’6 v r. Let us show R |Einqg C’. By contradiction assume that C’'r is a ground instance of C’
such that R fsing C'r. We can also assume that C'7 is ground without loss of generality. Then
R Wing 7 and R} arfr = b'0r. But we also have ax = by V ar =0 € E U H. Therefore
R Eind ap = b V ar = b’ and it follows that: R |= axfr = bif7. This imlpies that R [Eing CT
which is absurd.

39

Unité de Recherche INRIA Lorraine
Technopdle de Nancy-Brabois - Campus Scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)

Unité de Recherche INRIA Rennes [RISA. Campus Universitaire de Beaulicu 35042 RENNES Cedex (France)
Unité de Recherche INRIA Rhone-Alpes 46. avenue Félix Viallet - 38031 GRENOBLE Cedex (France)
Unité de Recherche INRIA Rocquencourt Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)
Unité de Recherche INRIA Sophia Antipolis 2004, route des Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Cedex (France)

EDITEUR
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

i

