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Un systeme de preuve de sécurité pour
Réseaux de processus communicants

Résumé : Les mécanismes de controle de flux d’informations ont pour
role de détecter d’éventuels transferts d’information pouvant compromettre
la sécurité attendue d’un systeme. Nous examinons ici le probleme de controle
de flux dans les systemes de processus paralleles communicants. Le langage
support de I’étude est CSP. Nous donnons une sémantique ”sécuritaire” de
CSP et montrons sur quelques exemples comment cette sémantique peut étre
utilisée pour construire des preuves de sécurité.

Mots-clé: flux d’information, parallélisme, sémantique axiomatique, preuves
de sécurité, processus communicants.
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1 Introduction

The most important aspect of computer security is the non-disclosure, or
secrecy, of the information stored in a system. [Saltzer & Schroeder.75] define
a secrecy violation as occurring when

7 An unauthorised person is able to read or take advantage of
information stored in the computer”

Ensuring secrecy is equivalent to saying that certain information transmis-
sions, or flows, between system objects must be prohibited. There are many
examples of this: a tax programme must not leak (let flow) the private infor-
mation it accesses to unauthorised processes in the system. A bank applica-
tion has particularly strict secrecy requirements: information about a client’s
account may flow to the teller objects but not to other clients.

So what kind of mechanisms are needed to achieve information secrecy?
Consider a mail application; each user process has a letter box object. One
might consider two secrecy policies. Firstly, only the owning user is allowed
to retrieve the contents of his letter box. Secondly, if a user A sends a message
to user B marked FYEO (signifying For Your Eyes Only), then B must not
be able to forward the contents of that message to some other user.

Access controls are universally used to reduce the information flows in a
system [Lampson71,74, Neuman91]. To execute an operation on an object,
the calling process must possess a key for the operation. Each process is given
a set of keys, one for each of the operations in the other objects that it may
legally invoke. All operating systems use this abstraction. In Unix, the key
abstraction is implemented with access control lists. If a user’s process has a
read key for a file then the r mode bit for the file will be set for "world” or for
that user’s group. Capability based systems are a more direct implementation
of the key abstraction [Levy84].

Going back to the mail application example, access controls can be used to
enforce the secrecy requirement that only the owning user reads his own letter
box, by only granting that user a key for the retrieve operation on the letter
box. However, the problem arises with the second secrecy requirement. A user
might receive a FYEO message and forward the contents in another message
to some other user. Access controls do not understand how information flows
in a system. The only way that access controls can stop a user A illegally
forwarding a message to user B directly, or indirectly via other user objects,
is to ensure that there is no sequence of user processes in the system starting
with A and finishing with B such that all members of the sequence have a
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send key for the next member’s letter box. Unfortunately, this solution would
prohibit A from sending anything to B; hence, the access control solution
is insufficient.

We need some other approach for preventing undesired transmission of
information between programme objects. An information flow mechanism
must tag each variable with the set of variables from which it has received
information flows, the effects of which have not been lost due to subsequent
flows. The flow security of the system can then be determined from these
tags. Such a mechanism requires that the behaviour of each construct of the
language used to programme the system be precisely defined with respect to
the information flows it generates. One can use the resulting semantics to sta-
tically analyse the programme text for flows and reject the programme if any
of these flows violate the security constraints placed on the programme. This
analysis can be done by hand or automatically (by a compiler for example) if
enough information is available. Alternatively, the semantics can be used to
specify a dynamic mechanism. This consists of extra programme instructions
that a compiler inserts so that the programme information flows are logged
at runtime. The approach supposes that an attacker has the programme text;
he/she thus understands the expected behaviour of the programme and so
may be able to deduce information by examining the value of some variable.

Information flow control mechanisms have traditionally used security levels
[Denning75, Reitman78, Mizuno & Oldehdeft.88]. Each variable is assigned
a level denoting the sensitivity of the information it contains. After an ope-
ration, the level of the variable which received the information flow must
be no less than the level of the flow source variables. However, the security
level approach severely restricts the range of policies that one might like to
support. A flow mechanism should log the variables that have flown to each
variable rather than the level of the data. [Jones & Lipton.75)’s surveillance
set mechanism is in this spirit and has some similarities with the mechanism
proposed here this paper. The differences will be discussed later.

This paper considers information flow control in systems of parallel com-
municating processes. We concentrate primarily on a static flow control me-
chanism in the form of a proof system. The goal is to be able to formally
verify information flow properties from the programme text. CSP [Hoare78]
is chosen to illustrate the approach since it seems a good vehicle for des-
cribing systems. The layout of the paper is as follows. A brief overview of
CSP is presented in the next section. Section 3 looks at the information flow
analysis of the sequential CSP language constructs and parallel composition
is studied in section 4. In both sections, each command is analysed for flows
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and the (axiomatic) semantics of the command regarding how it effects infor-
mation flows is presented. This enables flow security proofs, that is, for any
policy which the programmer may care to define, the proof system can be
used to determine if the programme state at some point satisfies this policy.
In particularly, after considering how a process observes a remote process’
variables, we will use a weaker information flow consistency to capture inter-
process information flows. Section 5 shows the unification of our approach
and the traditional security level approach to information flow and also that
flow policies may be expressed in coarser terms than inter-variable transmis-
sions. The paper’s conclusions are contained in section 6 along with a look at
related work. A formal justification of the semantics is given in the appendix.

2 Communicating Sequential Processes

CSP [Hoare78] is the parallel programming language which is analysed for
information flow in the following discussion. The main declarations are given
in the following table.

Prog = [label::Process // ...... // label::Process | program
Process ::= Decl <; Decl »; Cmd <; Cmd > process

Decl = wvar v |array v declarations
Cmd = Comms | Alt | Rep | skip | v := E | Cmd; Cmd  commands
Comms = send | receive communication
send = label ' E send

receive = label 7 v receive

Alt = [guard — Cmd < ; O guard — Cmd > ] alternative
Rep = *[ guard — Cmd < ; O guard — Cmd > ] repetitive
guard m= B | Comms guard

where <> signifies zero or more repetitions of the enclosed syntactical
units, v’ stands for a variable or a list of variables, "E’ for an integer expres-
sion and 'B’ for a Boolean expression.

A CSP programme contains a fixed number of processes, each identified by
a character string 'label’. This ’label’ may also be an array where the entry
label[7] names a process which has the same code as the other processes
named in the array. Processes communicate by two-way rendezvous: each
process names the process that it wants to communicate with; when one
party in the communication executes its communication command, it blocks
until the partner process is ready to execute its communication. The effect of
the communication is to assign the value of the expression evaluated in the
sending process to the variable in the receiving process named in the receive
command.
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The alternative and repetitive commands consist of one or more guard
branch pairs. A guard is a Boolean expression, a communications command
or a Boolean expression followed by a communication. A guard is passable
if, for an expression, it evaluates to true, and for a communication, the pro-
cess named in the command is ready to communicate. For guards consisting
of both a Boolean expression and a communications command, the expres-
sion must be true and the process named in the guard must be ready to
communicate for the guard to be passable.

When an alternative command is executed, a branch whose guard is pas-
sable is chosen. If more than one guard is passable, then any one of the
corresponding branches can be executed. If no guards are passable then the
process blocks until one of the communication guards becomes passable - un-
less there are no communication guards or the processes named in the guards
are terminated, in which case the command fails and the process terminates.

On each iteration of the repetitive command, a branch whose guard is
passable is executed. If more than one guard is passable, then like for the
alternative, any one of the branches is chosen. When no guard is passable
the command terminates and the process continues.

3 Information Flow in Sequential Programmes

There are two classes of information flows in programmes. An assignment
command causes a direct flow of information from the variables appearing
on the right hand side of the (:=) operator to the variable on the left hand
side. This is because the information in each of the right hand side operands
can influence by causing variety in the left hand side variable [Cohen77]. The
information that was in the destination variable is lost.

Conditional commands introduce a new class of flows [Denning75]. The fact
that a command is conditionally executed transfers information to an obser-
ver on the value of the command guard. Consider the following programme
segment. We use a multiple assignment for brevity; e() is some expression:

1= e();
;0:=10,0;
t=0—oa:=1

Oz#£0—b:=1]

(ol

[

If someone knows the programme text then, by inspecting either a or b after
programme execution, someone can know whether x was zero or not. This is



A Security Proof System for Parallel Programmes 5

an example of an implicit flow [Denning75] or what we will more generally
refer to as an indirect flow.

This section examines the information flows effected by the principal se-
quential constructs - assignment and the alternative and repetitive com-
mands. The notation used throughout the paper is explained beforehand.

3.1 Notation

We firstly need some way of representing the set of variables information
concerning which has flown to, or influenced, a variable v. We call this set
the security variable of v, denoted v.

Indirect flows are modeled by the indirect variable - defined as a sequence
of sets of variables:

indirect : (Pvariables)™

(where P is the "set of” operator and * stands for the set of non-zero length
sequences.) The empty or nil indirect is < {} >=. The operators on indirect
are now explained.

The value of the flow of indirect, denoted val(indirect) is the set of all
variables in the indirect variable. Let indirect(z) denote the it of n entries:

val(indirect) = Uy indirect(i)

where U is the set union operator. Since indirect is just a sequence (of sets),
we assume the head(), tail() and concatenation (o) operators. A set of va-
riables V' may also be added to, as opposed to concatenated with, indirect.
This is done with the W operator. The set V is set unioned with each entry
in the indirect sequence.

V Windirect = o2y (V U indirect(i) )

Finally, we will need an operator for combining two indirect variables to-
gether. The operator is LI. Note that it is non-commutative. Its effect is to
add using the W operator the variables in both indirects to the first indirect
argument’s entries:

indirect; U indirect; = (val(indirect;) U val(indirect;)) W indirect;



6 J.P. Banatre & C. Bryce

The flow security state of a programme is defined as firstly, the mapping
from each variable to its security variable and secondly, the value of indirect.
We stress that all the axioms and rules given in this paper are in terms of
the flow security state, not the functional state (mapping from variables to
values). When describing the behaviour of the command types with respect
to the flow security state, we will use an operational notation similar to
[Plotkin83]. The flow semantics are defined as a transition relation ”—” which
maps a programme segment and state pair to another. The interpretation
given (Cq, o) — (Cy, 7) is that the execution of the command sequence Cy
in state o leads to a state 7 from which the command sequence C; executes.
Composition is specified with the following rule:

(Slv J) - (67 T)
(S1;S2, 0) — (Sq, 7)

where ¢ denotes the empty command sequence.

3.2 The Assignment command

The command y := exp(zq, ....., xx) has the effect of setting the security
variable 7 to

{z; |1 =1.N}U{T; |i =1..N} U val(indirect)

The term {z; | « = 1..N} captures the fact that the value of y now gives
more information about what was in each z;.

The term {Z; | ¢ = 1..N} capture the transitivity of the information flows.
For example, the programme [ b := a; ¢ := b] causes a flow from variable a
and b to variable ¢ since ¢ contains the value of both a and b.

Constants are ignored in the flow calculus since they give no information
concerning the values of variables. Their security variable is always the empty
set {}. Thus the assignment a:=0 sets @ to val(indirect).

As mentioned, val(indirect) holds the value of the information flows which
the left hand side variable will indirectly receive. Indirect flows are looked at
shortly in the context of the repetitive and alternative command.

A result of this approach is that a variable x may be a member of the
security variable ¥ even though y cannot be used to infer the current value of
x; a subsequent assignment may have altered x. This is intentional. As long
as the current value of y is functionally dependent on a (perhaps former)
value of z, then = will be in 5. We are trying to model the fact that y has
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received information form a source which may be forbidden to it, whatever
the current information content of that source. Of course, when y is reset
or takes an assignment not involving x, then z is no longer member of the
security variable 7 since y’s new information content is independent of (any
previous) content of .

The effect of the assignment on the programme security state is captured
by the following axiom (& la [Hoare69])':
A,

{Ply— ({x: |t =1.N} U {z; |t =1..N} Uwal(indirect))] }
y = exp(x1, T2, oeey TN)

{P}

where Pla « b] is a predicate equivalent to P except that every free occur-
rence of the variable a is replaced by expression b.

For array variables, one could imagine having a security variable for each
element. From the point of view of a static security analysis though, it is
easier to assign a single flow variable to the whole array. For an array a,
index variable ¢ and variable e, the assignment a[i] := e transfers information
about e and 7 to a since one can more easily infer the value of the two former
variables from a after the assignment. (The index flows to a since its value
can be known by noting the index of the element updated).

A

{Pla « {a,e,i} Ua U eUiUwval(indirect)] }

alt] :=e
{P}
For the opposite assignment, e := afi], there is a direct flow from variables

a and 7 to e. The variable a flows since one discovers more about it; ¢ flows
because one can know which array element was assigned from the new value
of e, and hence the value of .

A::Sn
{ Ple « {a,i} U@ Ui U val(indirect)] }
e := ali]
{P}
Of course, both A._" and A._.” are a special case of A.__: the commands
aft] :== e and e := a[i] are equivalent to a := exp(a,i,¢e) and e := exp(a,?)
respectively.

LAll our axioms and rules have an ’s’ (for secure) attached to their subscript to empha-
sise that they are defined on the flow security state.
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3.3 The Sequential command

The rule for sequential composition (;) follows. If the command S1 esta-
blishes a state satisfying predicate Q from a state P and S2 establishes R
from Q, then S1 followed by S2 must establish a state satisfying R from P:

Rs—composition

{P} 51 {Q}, {Q} 52 {R}
Py SL;S2 {R}

3.4 The Alternative command

The variables in a guard flow indirectly in the branch when it executes
since execution of the branch means that the guard must be true. Moreover,
a guard being true may imply that another guard is true (or false). Thus,
we consider that there is an indirect flow from all guards to the branch that
executes. Similarly, if a branch is not executed, then this could mean that its
guard is false and therefore other guards are true (or false). Thus, there is
an indirect flow from all guards to all branches which are not executed. As
an example of this, consider the following programme segment.

z,y :=0,0;
[B—>r:—7;y::9Dn0tB—>y::2];
[2=T—-50y=9—5,0z=0— S5;];

In the second alternative command, the execution of any branch gives infor-
mation on all of the guards. That is, if S; executes then the condition z =7
must have been true. Consequently, we know that y is 9 from the first alter-
native statement. This information is also discernible by observing that S
has not executed. Execution of S3 implies that = is zero and that therefore y
is 2 since the second branch must have executed in the preceding alternative.

The behaviour of a secure alternative command with respect to the flow
security state can be described as follows. For a given flow security state o,

([i=1.N0OC; — S;;], o) — (updatel;S;;update2,0)
where
updatel =
indirect := { cUC| ¢ € Chop } 0 tndirect; [ :=1U{ cUT|c€ Chp } VI E lhsvars
update2 =
indirect := tail(indirect)

lhs_vars is the set of variables appearing on the left hand side of the := ope-
rator in the branches of the command; C,,; is the set of variables appearing
in the guards. The branch executed depends on the functional state.
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The transition is easily explained. The indirect flows from the command
guards exist only during the command body. Thus, indirect is updated on
entry (updatel) with the new indirect flow value which is removed on exit
(update2). Since the variables in the branches not executed do not see the
effects of indirect, all variables that can receive assignments in the command,
lhs_vars, have their security variables updated with the flow value of the
guard variables on entry (updatel).

A rule describing the semantics of the alternative command is the following.
We let Cioor = {C Ue | c € Cbool};

Rs—alternative

P = Rlindirect « Cyop 0 indirect, | « [ U Cpo V I € lhs_vars],
Vi=1.N{R}S; {T},
T = Qindirect « tail(indirect)]
(Pl =%00=50...00y=5v1{Q}

The rule is geared towards flow security proofs. Hence, one wants a predicate
T that is established no matter which of the command branches S; is execu-
ted. It should be re-emphasised that the rule says nothing about the values
of the command guards since it deals only with the flow security state.

Finally, note that the case of the process terminating due to all guards
failing is not dealt with. Such an event does not cause any flows between
programme variables. However, information can be leaked to the environment
in a runtime version of the flow mechanism. We return to this point in section
5.2.

3.5 The Repetitive command

Repetitive commands also cause indirect information flows from the va-
riables in the guards to all variables which could possibly receive flows in
the loop body since we can know the value of the guards by examining the
variables in the loop - even if the loop does not execute.

z,r = e1(),ea(); /* expressions return non-negative values */
z,y,t:=0,0,0;
Tety—oy=y+1
Or#£t—t:=t+1];
z:=1;

In this programme segment, the values of y and ¢ will equal x and r respec-
tively on loop termination, even if none of the branches execute.
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Moreover, as [ReitmanT78] pointed out, since all variables receiving direct
flows after the loop do so on condition that the loop terminates, the variables
of the loop guards flow indirectly to these variables. This is because it is
known after the loop termination that all guards are false. In the example
above, by observing that z is 1 one knows that = equals y and r equals .
Consider thus the behaviour of the repetitive command with respect to the
flow security state.

(*[i=1.N0OC; — S;;], 0) — (update 1;S;;update2;*[i=1..N
0C; — S;;],0) or (update3, o)

where

update3d =
indirect ;== { ¢cUC | ¢ € Choor } Wandirect; [ :=1U { cUT|c € Chou }

On each iteration of the loop, the flow value of the loop guard is pushed
onto the indirect stack (updatel) and popped at the end (update2). When
the loop finally terminates, the indirect flow from the loop conditions to all
variables that could have received a flow in the loop ({hs_vars, to cater for the
case when no branch executes) and all variables which subsequently receive a
flow is recorded (update3). Note how the W operation is used instead of the
o to capture the permanence of the change in indirect; moreover, the number
of entries in indirect is the same on entry and exit since any arbitrary nesting
scheme of alternative and repetitive commands must be supported.

A rule for how the secure repetitive command influences the flow security
state is:

Rs—'fspetitive

P = R[indirect « Cioo 0 indirect, | «— 1 U Cypoo ¥ | € lhs_vars],
R = Plindirect « tail(indirect)],
Vi=1.N{R}S; {R},
P = Q[indirect « Cyop Windirect, | « [ U Cyop V 1 € lhs_vars]
{P}«[C; —S5,0C; — 5,0 ... OCy—=5Sv]1{Q}

We justify this rule using the transition given above. Since the command
body may be executed any number of times, we need an invariant on the
flow security state. P serves as this invariant. Moreover, the modifications
that occur to the lhs_vars and indirect variables at the start and end of each
branch allow an inner invariant R to be established®. After termination, the
final modifications to the flow variables establish a state satisfying Q.

?In fact, this does not have to be an invariant just as long as P is re-established at the
end of the iteration; nevertheless, it is convenient to think of R as being invariant.
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A proof of the soundness and completeness of the proof system is given in
the appendix along with a proof that the semantics capture all the informa-
tion flows.

3.6 A Flow Security Proof Example

The example we will consider is a library decryption programme. The pro-
gramme has three inputs and two outputs as shown in the diagram. The
input consists of a string of encrypted text, or cipher-text, a key for decryp-
tion and a unit rate which the user is charged for each character decrypted.
The outputs are the decrypted text, or clear-text, and the charge for the de-
cryption. We assume that the clear-text is output to the user and that the
charge is output to the library owner. To be usable, the user must trust the
programme not to secretly leak the clear-text to the library owner via the
charges output. Such a leakage is termed a covert channel in [LampsonT73].
We will therefore flow secure prove the decryption programme, the code of
which is given below.

Ciphertext Charge
Decryption
K
& Service
Unit cost Cleartext

Figure 1: Decryption Schema

var: t, charge, key, unit;
array: clear_text, cipher_text;
cipher_text := < message to be decrypted >;
unit := < unit rate constant >;
charge := unit;
1= 0;
[ cipher_text]i] # null_constant —
[ encrypted(cipher_text[i]) — clear_text[t] := D(cipher_tezt[t], key);
charge := charge + 2*unit;
O not encrypted(cipher_text]i]) — clear_text[t] := cipher_text[];
charge := charge + unit;
I;
i

=1+ 1
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The cipher-text is an array of characters. A character is decrypted by applying
it to an expression D with the key parameter. To save computing resources, some
characters may not have been encrypted. The user pays twice the price for every
encrypted character that goes through the decryption programme. The Boolean
expression encrypted() determines if the character passed is encrypted or not. O

A comment on the notation: In the proof that follows, rather than re-
writing large formulae, we will use the following notation for brevity:

P but a = {3}

is an assertion which is similar to P except that the flow value « is now {f}.
Similarly,

P but a removed

is an assertion which is similar to P except that there is no sub-predicate for a.
For completeness we give the consequence rule:

Rconsequence

P=P’, {P} 5{Q}, @’=Q
{P} S {Q}

The flow security proof of the programme is as follows. We let the security flow
values of the input variables unit, cipher_text and key be denoted by uﬁit, cip?zer
and kgy respectively. (We will write "cipher” for ”cipher_text” and "clear” for
"clear_text” for reasons of brevity).

We formalise the post condition as follows:

post_condition = { clear ¢ charge, key ¢ charge }

that is, the charge output may not receive a flow of information from the clear-text
variable or from the key input.

With the precondition
PRE =

{ clear = {}, charge = {}, cipher = cipher, key = key,
unit = unit, i = {}, indirect = < {} = }

We are going to establish the following condition:
POST =

{ clear C {clear cipher, czpher,z,key,key} charge C {czpher cipher, i, charge, unit ,unit},

cipher = czpher key = k‘ey, unit = unit, i C {cipher, czpher i},
indirect = < {cipher, czpher,z} =}
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Regarding POST, the clear-text will depend on the cipher-text and the key.
The charges output is permitted to receive flows from the cipher-text and from
the unit charge. It is easy to show that POST = post_condition.

The plan of the flow security proof is as follows. P is the repetitive command
invariant and pre-condition. PRE is the programme pre-condition and POST its
post-condition:

Plan :

i) initialisation statements establish {P} from {PRE}
ii) {POST} is established when the loop terminates
iii) the predicate {P} is invariant over all iterations

The following is chosen as the loop invariant P:
POST but indirect =< {} >

i) Proof of: {PRE} charge := unit; i := 0 {P}
1= 0;
let P’ be P but with updates associated with assignment
P’ = P[i «— val(indirect)]
and since indirect is empty in P,
P’ = P[i — {}].

Since {} C {cipher, cipher, i}, the assertion for 7 is removed, so we get P’:
P but i removed

charge := unit;

Let P” be P’ but with updates associated with assignment
= P’[charge «— {unit} U unit U val(indirect)]

= P’[charge — {unit} U unit U {}]

and so the sub-predicate for charge becomes:

{unit,unit} C {cipher, cipher, i, charge, unit, unit}

= P’ but charge removed

So it has been shown that {P”} charge := unit; i := 0 {P}
Since it can easily be shown that PRE = P”

= {PRE} charge := unit; i := 0 {P} by Reonsequence

qed.

ii) We want to show that {POST} is established when the loop terminates.
Since no commands follow the loop, POST is equivalent to the repetitive command
post-condition Q.

We let Cpoor Tepresent {cUT | ¢ € Cpoor}

We must show P = Q[indirect — Chyoop W indirect, lhs_vars — lhs_vars U Cp,yl]
(from Rs—repetitive _

let Q" = Qlindirect — Cpoop W indirect, lhs_vars «— [hs_vars U Chyy]

= Q[indirect «— cipher Ui U {cipher,i} W indirect, clear «— clear U cipher Ui U
{cipher,i},i «— tUcipherUiU{cipher,i}, charge «— chargeUcipherUiU{cipher,i}]
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Q’ = { clear U cipher Ui U {cipher,i} C {clear, cipher, cipher, i, key, k‘Zy},

charge U cipher U1 U {cipher,i} C {cipher, cipher, i, charge, unit, uﬁit},

cipher = cip_fzer, key = kgy, unil = unit,
1 U cipher Ui U {cipher,i} C {cipher, cipher,i},
cipher Ui U {cipher,i} W indirect = < {cipher, cipher, it}

Q but indirect C < {cipher, cip?zer,i} = }

P = Q’, since the assertions only differ in indirect and indirect =< {} = =
indirect C < {cipher,cipher,i} >. So, by Reonsequence ;

P = Q[indirect — Chopp Windirect, lhs_vars — lhs_vars U Cp,yl

qed.

(iii) Proof that P is invariant.
Using Rs_yepetitive, We can let R be:

{ clear C {clear cipher, czpher,z,key,key} charge C {cipher, cipher, i, charge, unit ,unit},

czpher = czpher key = key, unit = umt
i C {cipher, cipher,i}, indirect = < {cipher, cipher,i}{} = }

i) i :=17 4 1;

Let R’ be the assertion which is held prior to the assignment. From A.—,

R = R[f — 7U {i} U val(indirect)] = R but i U {i} U {cipher, cipher,i} C
{cipher, cipher, i}

=R.

command pre-condition and post-condition are both R.

We must look for a T with these properties from R;_,iternative:

(a) R = T[indirect «— Chpoo 0 indirect, lhs_vars «— lhs_vars U Chyyl,
(b) T = R[indirect — tail(indirect)]

T is chosen as:

R but indirect = < {cipher, cipher,i}{cipher, cipher,i}{} >

To show (a)
let T’ = T[indirect «— Choop 0 indirect, lhs_vars — lhs_vars U Cpy)

= T[indirect «— {cipher,i} Ucipher Uioindirect, charge «— chargeU {cipher,i} U
cipher U i, clear — clear U {cipher,i} U cipher U 1]

This is similar to the proof conducted at the end of (ii); the predicate can be shown
to be equivalent to R.

Since R = T’ so property (a) is satisfied. It is trivial to show property (b).

We now show that both branches of the selection command preserve T.
The proof of branch 1 is as follows:
charge := charge + 2*unit;



A Security Proof System for Parallel Programmes 15

let T’ be T but with updates due to assignment; it is the predicate which must be
true before the assignment.
T’ = T[charge «— {charge,unit} U charge U unit U val(indirect)]
= { T but charge removed,
charge U {charge, unit, unit, cipher, cipher, i} C {charge, unit, unit, cipher, cipher, i}

=

T

clear_text[i] :== D(cipher_text[i], key);
let T? be T but with updates due to assignment
T’ = T[clear — {clear,cipher,i, key} U cipher U clear Ui U key U val(indirect)]
= { T but clear removed,
clear U {clear, cipher, cipher, i, key, ka} C{clear,cipher, cipher, i, key, kgy}
} also equal to T
So{ T} branch 1 { T }

The proof of branch 2 is almost the same proof as for branch 1 so we omit it
here.

So, both branches of the alternative command preserve T which means that R
is indeed the pre and post condition of the alternative. Moreover, we have shown
that R is also the ”inner invariant” of the repetitive command which formally
derives from P using R,_,epetitive- Thus P is invariant on the repetitive command
and so part (iii) of the proofis complete. The programme is thus proved flow secure
with respect to our requirements. O

It should be noted that the cipher-text will depend on the key and the
original clear-text. However, the programme is still certified since this infor-
mation flow dependency does not occur in the decryption programme itself.

4 Parallelism and Information Flow

This section examines information flow in a parallel framework, using the
complete version of CSP [Hoare78]. The problems relating to inter-process
indirect flows are first looked at; then the flows effected by each of the com-
mand types is described, accompanied by the semantics. A flow security proof
of a CSP programme using the complete proof system is outlined in the final
subsection. The proof system is modeled on that of [Apt et al.80] for proving
the correctness of a CSP programme.

4.1 Interprocess Information Flows

With processes exchanging data, we need to consider how inter-process in-
formation flows are defined. Direct flows occur during communication. There
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is a direct flow from the variables named in the expression of the send com-
mand to the variable named in the receive command.

Regarding indirect flows, each process has its own indirect variable. It was
mentioned in the last section that there is an indirect flow from conditional
command guard variables to the variables which can receive flows in the
branches. In a similar way, when a process does a rendezvous, there are
subsequent updates and communications with other processes. The fact that
one of these communications takes place, and that the updates which follow
are made, gives information to each process about the condition that was met
in the process that communicated with it. This information is contained in the
process’ tndirect variable which must thus be exchanged during rendezvous.
If the communication is not made, then the fact that no updates occur in
a remote process can be indicative of the condition for the rendezvous not
being met in the first process. Thus, there is still an indirect flow in the
absence of a rendezvous.

As an example of how indirect flows can occur in the absence of a rendez-
vous, consider the following programme segment. Suppose that y of process
P1 is either 1 or 0. Whatever, the value of y, at the end of process P1, x will
equal y. The reason for this is that, if y = 0 in process P1, then P1 passes
the value 1 to b of process P2 which then passes 0 back to x. Conversely, if
yis 1 in P1, then P1 signals 0 to process P3 which signals 1 to P2’s b which
in turn passes this value back to x. To cope with this, if P1 misses its com-
munication with P2 in the alternative command, the flow value containing
y must normally be transferred to P2’s b so that its subsequent rendezvous
with P1 (when it sends @) will permit y to be registered in the flow variable
of z.

P1: P2:: P3::
[var x,y; [var a,b; [var s;

y = e(); [P1?b — b:=b-10 P17s;
[y=0—P2'!'10O P37 b — skip | P211
y#0 — skip ] a:=b; ]

P310; Pl'la

P27 x 1//

17/

[Mizuno & Oldehéeft.88] recognised the problem of interprocess indirect
flows in the context of an object-based system. In their proposal, each time
a communication with another object is skipped in a conditional command,
a dummy message called a probe is sent to all objects which could have been
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transitively communicated with, had the conditional communication been
made by the object. The probe carries the information flow value (in their
case the security classification) of the variables in the condition of the com-
mand containing the communication. On arriving at the destination objects,
the classification is added to the current classification of the variables which
could have received a direct flow if the communication had gone ahead.

We believe the probe message approach to be pessimistic for flows and
to have an unacceptably high cost. For a dynamic flow mechanism, sending
a message each time a communication is skipped would flood the system.
Another problem with it is that we found it difficult to define the semantics
in CSP for the probe message exchange. This was due to the rendezvous
communication: a receiver stated explicitly when it wanted a message. Thus
the probe would have to be consumed at a precise point in time. Moreover,
if the process receiving a flow also missed its communication, then it is not
evident how and when we express the updating with the probe value. To
counter the performance difficulties, [Mizuno & Oldehdeft.88] did produce a
link time optimisation though this is only for cases where all the processes
(objects) are known and named at compile/link time and where the security
levels are statically bound to the variables. Such a solution does not suit us.
Though in CSP the first criterion is met, we would like our flow semantics
to be as easily adaptable to other process/programming models where the
criteria may not hold. Secondly, it is not evident if a mechanism based on
security variables is as easily adaptable to the link time analysis as one based
on statically bound security levels.

A better solution comes from considering the causal relations that exist
among processes and the way that processes view the system. A process
cannot observe all the events in a system as they happen; it must be informed
of these events by other processes via communication. This has important
implications for the treatment of interprocess indirect flows. Consider the
piece of code:

[t=0—=a:=10z2#0—=5b:=1]

where a and b are both zero beforehand. After execution, b will give informa-
tion about x. Consider what happens if the assignment b := 1 is in a remote
process: If © # 0 then b is updated and the indirect flow from x occurs.
However, if one observes b and sees that it is zero then one cannot infer that
the condition failed in the first process: the alternative command may not
have executed yet or P2 may have communicated with some other process.
The only way that the value of the condition in P1 can be inferred from any
value in P2 is if a set of communications from P1 to P2 takes place, after



18 J.P. Banatre & C. Bryce

[x=0 — a:=10 [...O0P17Db — skip ]
x#0 — P21 1] :

17/
]

the alternative has executed in P1. This also covers, for example, an observer
process looking at some variable in P1 and seeing that the alternative has
completed and then communicating with P2 to see whether b was updated,
with the intention of deducing z.

The solution we propose is to transfer the flow value of a condition on
which a communication executes, only if the communication takes place. If
the communication is skipped, then the flow value of the condition is recorded
in a special variable rendezvous (one per process). On each communication,
rendezvous in transferred in both directions as part of the indirect flow. In
our mechanism, rendezvous is incorporated into the indirect variable. This
approach works because interprocess indirect flows can only signal any useful
information if a process from which the flow originates, (transitively) com-
municates with the process with which it should have communicated, later
on. With the rendezvous mechanism, we are guaranteed that the flow value
of the condition in question will be transferred when this subsequent com-
munication occurs. This approach constitutes what we call weak information
flow consistency.

The weak consistency approach implies that the conditional commands do
not always undo the indirect after each branch. Nevertheless we believe that
weak information flow consistency can be less pessimistic overall in registering
information flows than the probe mechanism.

4.2 CSP Flow Security Inference Rules

Using this weaker consistency approach, a security flow proof system for
CSP is now presented. Proofs are conducted in two phases. In the first phase,
each process is proved individually with assumptions being made on the
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flow values exchanged during communication. The second stage of the proof
demonstrates that the proof of the processes are consistent with one another.

4.2.1 The Send and Receive commands

The effect of the communication command is to assign the expression in
the send command to the variable in the receive command. This is a direct
flow. In addition, both indirects are updated to include each other’s value
using the LI operator since execution of both processes is now dependent on
the rendezvous having taken place.

(Plz /] Pily, o) — (€, 07)
where o resembles o’ except that ¥ in o’ equals (T U x U val(indirect;) U
val(indirecty)), indirect; in o’ equals (indirect;Lindirects) of o and indirect,
is (endirects Ll indirecty).

In accordance with our two staged approach to proving parallel programmes

secure, for both the send and receive command axioms, any post-condition
is allowed to be established:
As—send

{ P} < Process = ! < Expression = { Q }

As—receive
{ P} < Process =7 < Variable = { Q }
The suitability of the post-condition chosen is verified in the second stage

of the proof with the help of the communication axiom:

As—communication

{ z1 = indirecty, z, = indirecty }
{7 = {2} UT Uwval(indirect;) Uval(indirectsy), indirect; = z1 Ll z3, indirecty = z3 0 z1 }

There is a special case of the A;_communication @xiom to cater for a process
being named with the help of an expression - when the process’ name is
an array entry. For example, P[:]!X//Q?7y permits the receiving process to
discern z since continuation of its execution depends on it. Thus, during the
rendezvous, the process indices are exchanged as part of the indirects. More
specifically, for the rendezvous,

Prinz [/ Psij?y
we have as part of the A;_.ommunication pPostcondition for the indirects:
indirect gy = ({:} U Z) W (ZR[Z'] U Zs[j]), indirect sy = ({73 u j) S (ZS[J'] L ZR[i])

In this case the indices are variables, but it generalises for expressions.
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4.2.2 The Alternative command

The complete alternative command of CSP is more complex than that
introduced in section 3. A guard may be a Boolean expression, a commu-
nications command or a Boolean expression followed by a communications
command. However, in the presentation which follows, we assume the latter
form b; @ — S to be rewritten as b — «; S where b is a non-constant Boolean
expression (containing variables as opposed to the constant true say), a a
communications and S a command sequence.

As mentioned previously, when a branch with a Boolean guard executes,
there is an indirect information flow from all Boolean guards to the branch
variables. In contrast, a communications guard creates no such flow - one
cannot know the value of some Boolean guard from the fact that a commu-
nications guard was passable and its branch executed. The indirect flows in
each branch effected by the complete alternative command are now summa-
rised:

When a branch with a Boolean guard executes, its guard variables flow in-
directly in the branch since the condition must be true; the other Boolean
guards also flow since the branch guard may imply that they are true or false.

All other branches receive a flow from the Boolean guards, even branches
with communication guards, since the branch not executing may mean that
a Boolean guard somewhere is true.

When a branch with a communications guard executes, there are no indi-
rect flows in the command since nothing can be inferred about the values of
the Boolean guards. Execution of the branch is not conditioned on the value

of any of the command’s Boolean guards.

The transitions for the alternative command is the following.
([i=1.N0OC; — S;;], o) =) (updatel;S;;update2’,o)

where updatel is the same as for the sequential version, bool(C;) is true
if the guard is a Boolean expression, otherwise comms(C;). missed_comms
is true if one of the other branches of the alternative command contains a
communication with a process other than one communicated with in the
executing branch. and for a branch with a communications guard.

([i=1.NOC; — S, a) —eomms(©) (S, o)

if there exists a matching communication command «, such that (a//C;, o)
— (e, 07).
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update2’ = if missed_comms
then indirect := head(indirect) W tail(indirect)
else indirect := tail(indirect)

endif

The semantics is explained as follows. updatel captures the indirect flows
that occur in the branches at the start of a Boolean guarded branch - all
guards’ variables flow to all branches. After the branch has executed, one
must undo the changes to the indirect stack for the branch if it has a Boolean
guard (update?2’, else part) except if a communications with some other pro-
cess, not communicated with in the current branch, has been skipped. This
captures the flow arising due to the weak consistency protocol (update2’,
then part).

We derive the following rule:
Rs—alternative
if bool(C;) then (P = Ulreplacel], {U} S; {V}, V = Q[replace2])
if comms(C;) then ({ P } C; { T, }, {T; } S;
{P}[Cl—>51DCQ—>SQD ...... oc

for some predicate P,
Plreplacel] =
Plindirect « Chyoo 0 indirect,l «— [U Cyoor, ¥V 1 € lhs_vars]
Plreplace2] =
missed_comms : Plindirect «— head(indirect) U tail(indirect)]
not missed_comms : Plindirect « tail(indirect)]

This rule is justified as follows. Consider the case of a branch with a com-
munications guard executing. The guard can establish any predicate {T;}.
Because we are dealing with an alternative command, the branch must es-
tablish the post-condition {Q} directly since there is no change to indirect
to be handled at the end. For branches with Boolean guards, the predicate
{U} captures the changes to the security variables on entry to the branch.
The branch body establishes {V} which must establish {Q} when indirect
is handled at the end.

Note again that no functional predicates have been used, that is, predicates
on the mapping from variables to values. Their use would greatly benefit the
security analysis since it could allow the elimination of several guards from
consideration. For example, in the following programme segment,
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{ x>0} - predicate on functional state
[1<0—=S50z=0—S0z>0— S3]

one can eliminate the first guard from analysis because we know it can never
execute and produce flows. Another area where extra functional information
is useful is in determining indirect flows. Some guards being true (or false)
have no implication regarding other guards. There is no indirect flow from
the latter guards when one of the former is true and its branch is executed.
However, it is not clear how easy it would be when functionally analysing a
programme to know which guards are dependent; the predicates may not be
always be able to give us that information. In any case, runtime implemen-
tations of the flow mechanism would lack this information.

4.2.3 The Repetitive command

The template of the command is the following. The notation used is the
same as in the alternative semantics.

(*[i=1.NOC; — Si], 0) ="°1%) (updatel;S;update2’;*[i=1.N
0C; — S;;],0) or (update3, o)

and for a communications guard ...

(*[i=1.N0OC; — Si], o) —=omms(C) (Sp*[i=1.N OC; — S;;],07) or
(update3, o)

where the updates are as before; and ¢’ is a valid state reached by a com-
munication. The semantics can be explained as follows. If the branch that
executes has a Boolean guard, then there is an indirect flow from all of the
Boolean guards to all branches (updatel). The reasoning is the same as for
the alternative command. After the branch is executed, the indirect stack is
popped (update2’, else part) except in the case where a communication is
skipped in another branch, where the indirect is re-updated using the & ope-
rator to account for the rendezvous flow (update2’, then part). Finally, after
termination of the command, indirect is updated along with the [hs_vars va-
riables, as was described in section 3, to capture the termination condition.
The rendezvous flow is implicitly taken care of (update3) for the case where
no branch is taken.

And a rule describing the semantics, derived using the same reasoning as
Rs_atternative:
Rs_sepetitive
if bool(C;) then (P = U[replacel], {U} S; {V}, V= P[replaceZ]),
if comms(C;) then ({P} CZ {Tz}, {TZ} SZ {P}),
P= Q[replace3]
{P}+[C; —=5,0C; —5,0.... OCy—=5Sv]1{Q}
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where
Plreplace3] = Plindirect «— Chyooy Uindirect, [ « U Chopr, V I € lhs_vars]

4.2.4 Co-operation

The second phase of a CSP programme flow security proof demonstrates
that proofs of processes Py, Ps,....., Py co-operate. The rule assumed is the
following:

Rco—operation

{pre;} P; {post;} i=1,..,N co-operate
{npre; |i=1.N}y P /] Py /] ...]] Py {Apost; |1 =1..N}

Processes co-operate if the following two conditions hold:

1. The predicates used in the proof of process P; contain no free variables
modifiable in any other process P;.

2. For all semantically paired communication commands {p;} P;! < expression =
{¢:} and {p;} P;? < variable - {q;},

{pi N p;} P;! < expression = [/ P;? < variable = {q; A g;}.

Note how condition (2) says semantically matching communication com-
mands, that is, commands which name each other’s process and which can
possibly communicate during programme execution. It may seem strange
that semantically paired commands are stated in the rule since the flow
security state gives no indication of the semantically matching commands.
This is another area where a static security analysis is aided by a functional
analysis.

4.3 Proof Example: An authentication server for a
network service

An authentication server accepts a client login request, verifies that the
user he/she represents has a right to the service and, if so, constructs a ticket
which the client must present to the service to use it. A ticket cannot be
forged. This service is similar to many distributed system applications where
security is provided, [Satyanarayanan89] for example.
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request for ticket

Auth
Server

ticket

Figure 2: Authentication Service

To access the service, the client sends his name, password and his conven-
tional encryption® key to the authentication server. This request is encrypted
with the server’s public key to dissuade network eavesdroppers and to tole-
rate masquerading servers since only the real server will hold the private key
enabling it to decrypt the request and get the client information. The au-
thentication server decrypts the request, authenticates the client by ensuring
that the password in the message is the same as that stored on the server
(in Passwd_Table). The server then constructs a ticket which will permit
the client to avail of the service provided by the main server. The ticket is
encrypted with a conventional key (Ksgrver) known only to the server to
prevent the client fabricating a ticket. The ticket also contains an authenti-
cator field which contains the client’s name encrypted with his key. This is
to prevent some process making use of a stolen ticket. It is expected that
when a client presents a ticket to the service he/she presents his key also.
Since only the real client will have his key, no other process will present a
key enabling the service to decrypt the authenticator to get the client name.
Finally, the ticket is returned to the client encrypted with the client key. This
prevents playback attacks succeeding, where a third party attempts to gain a
ticket by replaying a valid request message. Only the real client will be able
to decrypt the reply message.

1 The ticket contains a timestamp field so that its lifetime is bounded. We don’t detail
the clock process. In particularly, for the proofs, we assume that the communication
with clock effects no change to the indirect of the auth_server.

Security Requirements: The server must not be allowed to (acciden-
tally) leak the client’s ticket or personnel key to another client process. This
information must be destroyed between successive calls to the authentication
server. One way to guarantee this is to ensure that on each iteration of the
server loop,

P={all ={}, indirect = < {} =}

3In conventional cryptography, the same key is used to encrypt the text and decrypt
the resulting cipher-text. In public key cryptography, a public key is used to encrypt the
text and a private key decrypts the corresponding cipher-text.
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[ auth_server::

var client_name, client_id, client_key;
var token, authenticator, message;
var I'ights, date, KSPij, KSERVER;
array Rights_Table, Passwd_Table;

client_name, client_id, client_key, token, authenticator, message := 0, 0, 0, 0, 0, O;

rights:=0; date:=0; KSpriv:=....; KsgrvER:=". - ;
Rights_Table := .... ; Passwd_Table := .... ;
*[ true —
[ ... O client[7] ? message — client_name := i]; /* i is a constant */

message := Decrypt(KSprrv , message);
client_id := f!(message); /* some function of the message */
client_key := f?(message);
[ not Passwd_Table[client name] = client_id — client[client_name] ! 0; O /* Login failure */
Passwd_Table[client_name]= client_id —
rights := Rights_Table[client_name];

clock 7 date;T
authenticator := Encrypt(client_key, client_name);
token := f3(authenticator, date, rights, noise_constant);
token := Encrypt(Ksgrv er, token);
token := Encrypt(client_key, token);
client[client_name] ! token; ];
message:=0; authenticator:=0; /* Resetl variables */
token:=0; client_id:=0; client_key:=0;
client_name:=0; date:=0; rights:=0; |;
/]
client[d]::
var ticket, client_message, passwd, key, KSpyp;
KSPUB = ..
passwd := ..;
key := f(passwd);
client_message := Encrypt(KSpup, (passwd, key));
auth_server ! client_message;
auth_server ? client_message;
ticket := Decrypt(key, client_message);
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where all represents the security variable of each variable declared in the
process. Similarly, we will use others to denote the security variables not
appearing in the predicate.

The client must not be allowed to have enough information to construct
a valid ticket himself. We will show that this requirement cannot be met in
theory; the client will receive a flow from the server key used to encrypt the
ticket.

Outline of Server Proof: The commands preceding the loop assign cons-
tants to all the variables. It is easily shown that P is established as loop
pre-condition. Note that for brevity we use the following annotations in the
flow security predicates: msg for message, c_msg for client_message, c_name
for client_name, R_Table for Rights_Table and authent for authenticator.

We insert the assertions that we want to prove into the text; assertions are
enclosed in [| and |] brackets for clarity.

[l 7]
*[ true — [| R |] = P but indirect =< {}{} =
[ ... O client[7] ? message — client_name := iJ;
[ R but { msg=nidg } |
message := Decrypt(KSpprrv , message);
client_id := f!(message);
client key := f?(message);
H Py = { mz{i}, cid = {msg, ]{Spgjv,m_ég},
c_key = {msg, KSprrv,még}, msg = mdg,
others={}, indirect==< {}{} = } |]

[ not Passwd_Table[client_name] = client_id — client[client_name] ! 0; O

[| Rait = Pair but { indirect =< {P_Table, c_name, c_id, msg, KSpriv,m3g}H{}H{} =,
date, authent, rights, token = {P_Table,c_name, c_id, msg, KSprrv,msg} } |]

Passwd_Table[client_name] = client_id —
rights := Rights_Table[client_name];
clock 7 date;
authenticator := Encrypt(client_key, client_name);
token := f3(authenticator, date, rights, noise_constant);
token := Encrypt(Ksgrv gR, token);
token := Encrypt(client_key, token);

[| Y = Rai but token = {KsgrvEr, authent, date, rights, c_key, c_id,

msg, KSprv ,mbg, P_Table,c_.name, R_Table},

authent = {c_key, c_id, msg, KSpriv, msg, P Table, c_name},

date = {P_Table, c_.name, c_id, msg, KSprrv,msg},

rights = {R_Table, c.name, c_id, msg, KSpgryv ,még, P_Table} } |]

client[client_name] ! token; [| Y |] ];
[| {Y but indirect==< {}{} =) V Pay |]
message:=0; authenticator:=0;
token:=0; client_id:=0; client_key:=0;
client_name:=0; date:=0; rights:=0; ];

(171
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where msg = { K Spup, passwd, key, c_msg}

R follows from P using Fs_,cperitive- The body of the first alternative is
a simple assignment. A;_,eceie allows any predicate to be established; since
the guards are not Boolean expressions, no change to indirect occurs on
termination. P,j; follows from the subsequent assignments using A._, and
Rs_ composition- Each branch of the alternative will start in condition R, which
follows from P,j; using R;_ternative- In the second of the branches, A.__ is
used to show that Y is established before the communication with the client.
Since A;_senq permits any post-condition, we choose Y. Termination of the
alternative gives (Y but indirect =< {}{} »=) V Pu: using Rs_aiternative- LThe
P,i; is established if the first branch executes. Lastly, it can be easily shown
that the final assignments of the loop re-establishes P from the alternative
post-condition.

Thus, assuming that the proof of the server co-operates with the proof
of the other processes, the predicate {P} holds each time a client request
is received. Therefore, we know that the server is unable to retain valuable
client information after servicing a client.

Outline of Client Proof

KSPUB = ..
[ {all = {}. indirect = < {} = } [
key := f4(passwd);
client_message := Encrypt(KSpyp, passwd, key);
N = || {etmsg = {KSpyp, passwd, key, c.msg},
key = {passwd}, others={}, indirect==< {} > } |]
auth_server ! client_message;
[ A ]
auth_server 7 client_message;
[| {comsg = coisg, key = {passwd}, others={}, indirect==< {a} > } |]
ticket := Decrypt(key, client_message);
[| {ticket = {key, c_msg, passwd, c_riisg}, comsg = c_nisg, key = {passwd},
others={}, indirect=< {a} = } |]

where c_riisg = a vV
8 = {KsgrvER,authent,date, rights, c key, c_id, msg, KSpryv, token,
K Spyp,passwd,c_msg, P_Table,c_name, R Table }
a = {P_Table,cname, cid,msg, KSprrv, KSpup, passwd, key,c-msg}

The pre-condition to the send to server communication is established from
the process pre-condition. The communication axioms allow any post-condition
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so, in the example above, we just need to show that the process proof co-
operates with the server to prove the post-condition and thus the client.

The result for the client (the state of the tickets security variable in the
post-condition) means that we cannot in theory prove our system secure
with respect to the client; he/she receives an information flow from several
sensitive variables - the password and rights tables, the server’s private key
and the server’s personnel key used to encrypt the tickets. But things are
not quite as bad as they seem: despite the flow from the password and rights
table, a combined functional proof would show that the information is from
the entry corresponding to that client only*. The information flow from the
server’s private key arises because it is used for encrypting the ticket. This
flow cannot be avoided. The security of the system will thus depend on
the strength of the encryption algorithm. This is precisely what happens in
practice, so the onus is now on the security officer to satisfy himself with the
strength of the encryption algorithms.

Co-operation needs to be established for the three communications: the
client to server, the server to client error message and the server to client
result. We will show the latter using A..mmunication:

Zserver — anlreCtserver =

< {P_Table,cname,cid,msg, KSprrv, KSpup, passwd, key, comsg }{}{} =

Zelient[client_name] — Znd’LTEthlient[client_name] == {} -

Aommunication Says that after rendezvous
anl'reafserver = Zserver U Zelient[client _name]
but since zejiens is < {} =
= Zserver = INAiT€Ctserper Which is established in the server. (See predicate V).

indirethlient[client_name] = ({C—name} U c_'name) © (chient[client_name] L 2567”7187“)
= < {P_Table,c.name,c_id, msg, K Sprrv, K Spup, passwd, key,c.msg} >
This security variable expression is equal to a that we defined in the proof of the

client process.

Finally, also from the communication axiom, we consider the update to
the client_message variable.
cmsg = {token} U token U val(indirectseryer) U val(indirect yicnfclient _name])
= {token, KsprvER, authent, date, rights, c key, c_id, msg, K Sprrv,
K Spyup,c-msg, passwd, P_Table,c_name, R T'able}
which is met since it is equivalent to 3. The other two communications

can also be shown to be consistent with the communication axiom. O

4A dynamic mechanism can more easily support a flow variable per array entry
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5 Adaptability of the Flow Control mecha-
nism

The flow mechanism up to now has been based on security variables: each
variable is tagged with the set of variables from which it has received a flow.
A proof system was described for verifying the flow security of a programme.
The section looks at the generality of this mechanism from three points of
view. We firstly more formally compare the security variable and traditional
security level, or classification, approaches to flow control. We then look at
the problems encountered with a dynamic or runtime version of the flow
mechanism. Finally, we see how our mechanism can be adapted to support
coarser grained policies - flow policies where permitted flows are specified in
terms of what processes or groups of processes may legally exchange data
rather than what variables may do so.

5.1 Information flow control: security variables ver-
sus security levels

Information flow in programmes is traditionally handled by giving each
variable a security level, or classification. The set of classifications forms a
lattice® so that the effect of the assignment y := exp(z, 22, ....,x,) in the
case where variables are dynamically bound to classifications, is to make
the security classification of variable y, denoted y, the least upper bound of
the right hand side variables’ classifications. In programmes where security
classifications are statically bound to variables, such an assignment is illegal
if the resulting classification exceeds that of y.

Theorem -

The relationship between the security variable approach and the classification
approach is captured by the following predicate:

reEy=>z <y

where z is the classification of £ when the information it contained was
transmitted to y. ¢

5A lattice is a partially ordered set of elements S on which some relation, denoted <,
is defined. The partial ordering implies anti-symmetry - Va,b € S;a <bAb<a= a =1,
reflexivity - Va € S,a < a and transitivity - a < bAb < ¢ = a < c¢. In addition, for all pairs
of elements a, b there is an element known as the least upper bound (a ®b) and an element
known as the greatest lower bound (a ® b) defined as follows:
adb=cifa,b<cA-3d,a,b<d,d<canda®@b=cifa,b>cA-Ad,a,b>d,d>c
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Proof We will prove the theorem with respect to the assignment operation:

Y= exp(.rl, L2y ey :EN)

The proof is by induction on the contents of the security variables. That is, we
show that our property is true at step(0) - at the start of the programme and
that it is preserved by the initial assignment (the base step). We then show
that if the property holds at step(N), then it holds at step(N+41). Step(n)
denotes the flow security state after execution of the n** instruction.

After termination of the above assignment, with respect to the security
classifications, where the r;s are the variables which flow indirectly in the
assignment and & is the least upper bound operator®, we have

y > (Bl z) & (@Mr) c_property

since, for dynamic binding, the classification of y is set to the least upper
bound of the right hand side variables while for static binding, the command
will only terminate (without an error) if the property holds. The & operator
allows us to re-write the c_property as Vi =1.N,y > x; AVi=1.M,y > r;

The security variable flow mechanism gives

y={a;|i=1.N}U{z |i=1..N} U val(indirect)
sv_property

Base Step At the start of the programme, the security variables and
indirect will be empty. Each variable will have some initial classification. The
assignment y := exp(z;);=1.ny would give ¥ = {z,},=1. n. Using c_property, the
theorem is trivially satisfied for this case.

Inductive Step We assume that the property holds at the n'* step.
Ve €z, =>¢; <

where ¢; is the classification of the information in e; when it was transmitted
to x;. We show that for all the entries in 7, the theorem holds. We take each
term of sv_property in turn:

{Ii}izl..N

For all z;, c_property tells us that y > z;. Thus the theorem holds for the
ZI;S.

{ZTi}i=n

The inductive step assumption tells us that z; > ¢; for all e; € 7;. Thus,
by c_property and the transitivity of the > operator,
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YyZrTiNz e =>y>e;

so the theorem also holds for the {Z;},=1. n terms. Note that an e¢; may be
the same variable as one of the x;s, this does not matter.

val(indirect)

This variable is of the form {r; | : = 1..M}. The proof that the theorem
holds for this follows directly from c_property.

Since the theorem holds for the inductive and the base steps, it is proven.
The proof for the other programme constructs easily follows. O

Note how the theorem stated for z "when the information it contained
was transmitted”. This is because a variable named in a security variable
may subsequently have its classification altered by an independent flow. For
statically bound classifications, this cannot happen; the class will always be
constant. This gives us the following corollary.

Corollary 1 For variables z, y whose classifications are statically bound,
the predicate:

reEy=>z <y

holds at all times. ¢

The reverse implication of corollary 1, z <y = = € ¥, does not hold. A flow
mechanism using security levels is unable to say anything about information
flows between particular variables. In this sense, the traditional security level
approach is ”poorer” than the security variable approach.

5.2 Run-time and Compile-time Detection of Flow
Violations

In the preceding sections, we introduced the security semantics of a parallel
programming language in an axiomatic form and used the semantics to verify,
by hand, the security of a programme. But the language semantics give us
a framework for other forms of security violation detection, principally, at
run-time and compile-time.
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Run-time: For an executing programme, we need some way of expressing
our flow security policy since the mechanism (unlike the security classification
approach) has no implicit policy. The latter means that we must also specify
the precise points in a programme where the policies are to hold. In the
authentication server example, the server’s security constraints only had to
be met at the start of each iteration. We could not have done this with the
traditional classification mechanism.

We introduce a pragma declaration, ENSURE, which specifies and verifies
at run-time the flow security policy. Its syntax is the following:

ENSURE T, not inv

where T', is the set of variables forbidden to flow to v under the security
policy. The semantics of the pragma are the following:

AENSURE

PonTl,=10
{P} ENSURE I, not in v {P}

If the command is executed in a state satistying P where the security variable
for v is disjoint from the set of variables forbidden to flow to it, then the
command terminates normally, still in flow security state satisfying P. The
semantics are undefined in the event of a security violation.

One of the inherent problems of a dynamic mechanism is that failures can
leak information to the environment - this information being the condition
that led to the failure. Consider the following piece of code:

[b=T7T —c:=d0b+#7— skip ]
ENSURE {d} not inc

The system policy may forbid flows from variable d to ¢. During execution,
should the condition 6 = 7 be true, then the policy will be violated and the
programme fails. Since a failure only occurs when the value of the condition
is true, the value of variable b is leaked to the environment. Note that our
proof system would cause this programme to be rejected because of the pos-
sible flow from d to ¢. Another example of information being leaked to the
environment is when a process terminates because one of its alternative com-
mands fails. Our proof system deals only with inter variable flows; it cannot
cope with this problem since the failure event is not deducible from other
process’ variables.
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The run-time mechanism must tackle the problem by considering the envi-
ronment as part of the system. Each time a process’ indirect is updated, an
error is signaled if information concerning the updated variables are forbid-
den to flow to the environment. In the preceding example, an error is raised
if the value of b cannot be released to the environment of the process. In
the case of the alternative command, when indirect is updated on entry in
updatel, we check that it contains no variables which can be leaked to the
environment by the command failing. In effect, what is happening is that
we are unconditionalising process violations. However, there is a snag with
this approach - the value of indirect cannot be undone after a conditional
command as is usually the case. To see why, consider the following example:
Process P2 fails if the condition z = 0 is true in P1. Yet 2 will not be in P2’s

P1: P2:
[ [
[x=0 — y:=a O P1?7b
X#0 — y:=11]; ENSURE {a} not in b

P2y

indirect after the rendezvous if P1’s indirect is undone after the alternative.
A dynamic mechanism must not undo the indirects.

The optimum solution would be to have flow violations detected by the
compiler. With violations statically detected, we do not have the problems
with indirect that existed for the run-time approach. Some aspects of the
compilation approach are studied in [Mizuno & Oldehéeft.88] and [Mizuno
& Schmidt.92].

5.3 Supporting coarser grained flow policies

A feature of the security variable based mechanism is the size of the se-
curity variables becoming very large. For information flow policies expressed
in terms of the processes that may exchange information rather than the va-
riables in those processes, our proof system gives a lot of supplementary in-
formation. For example, the stock exchange has the secrecy rule that traders
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dealing with one company must not receive ”insider” information concerning
another. Computerised versions of the stock exchange would specify that no
flows may occur from accounting processes with a company X attribute to
accounting processes with other company attributes [Brewer & Nash.89]. Our
flow mechanism can be easily tailored to meet these criteria.

To verify process-based policies, we re-write the proof system. The first
thing that needs to be done is to have variables named in the security va-
riables pre-fixed by the name of the process in which they were declared.
(This should have been done in the first place to avoid name clashs). For
example, T = {Pl.s, P2.t} means that = has received a flow from variable
s of process P1 and variable t of process P2. Thus, the assignment y :=
exp(z;);=1.y would set:

y={selfx;|1=1.N} U {selfz;|1i=1.N} U val(indirectsey)

where self names the enclosing process. The security variable for a constant
is still the empty set {}. The ”assignments” treating the indirect flows in the
conditional commands are similarly handled. Thus, in R, cpetitive,

| = self.lU {self.c} U self.c

for all variables ¢ in the Boolean guards and all variables [ in the [hs_vars.
The communication axiom has as part of its post-condition for Prlxz//Ps?y

7= {Ps.x} U {Ps.T} U val(indirects) U val(indirectp)

For policies where only the process name is important, then one need only
store the process name in the security variable. Thus, the assignment and
communication predicates above would be respectively:

7= {self} U {self.7; |t =1..N} U val(indirectsy)
¥ ={Ps} U {Ps.T} U val(indirects) U val(indirectp)

One can go a step further than this. Policies on processes may be based on
attributes of the processes rather than the processes themselves. In the Chi-
nese Wall example, the attributes of interest of the process are the company
name for which the process is working. The system maintains a mapping
from each process to the attributes associated with that process. One could
imagine process names in the security variables being replaced by their attri-
butes. Thus one could know the attributes of the information flow sources.
The assignment and communication axioms are as in the last paragraph ex-
cept that self and the process name now stand for the attributes that the
system associates with the process in question.
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Examples Consider how a multi-level secure environment might be im-
plemented. Each process is given a classification in the set {¢i,....,cx} on
which there is a lattice ordering (<). We will assume here that the classifi-
cation of a process is static. The security variables contain elements of the
set {c1,....,cn}. The classification of the information that has flown to each
variable is the least upper bound or maximum of the security variable entries.
Therefore, to ensure multi-level secrecy in a process of classification ¢;, we
insert the predicate for variable v:

{¢j | self <ec;<eny}nNu=10

at the points in the programme where the policy is meant to hold. In a similar
way, if the set of company names in a Chinese Wall applications is denoted
by the set COMPANIES, the predicate to be proved for variable v would be:

(COMPANIES - {self})Nv =10

6 Discussion

In this paper, an information flow mechanism for a parallel language was
presented. There are two main arguments. Firstly, the flow semantics based
on security variables rather than the traditional classification scheme gives us
more flexibility in our security analysis. Secondly, a weaker form of indirect
information flow consistency can be used to capture inter-process indirect
flows so that no extra message exchanges are necessary. A set of axioms and
rules for establishing the information flow security of a CSP programme was
presented.

6.1 Related Work
6.1.1 Language Approach

[Denning75] was the first to consider information flow control in pro-
grammes. Using the classification approach, she describes a compile-time
algorithm for ensuring that sequential programmes with statically bound se-
curity classes are flow-correct - that no variable receives information whose
classification is greater than that of the variable. In programmes where the
security classifications are dynamically bound, a runtime mechanism is in-
troduced so that the class of y is updated with the value of the flow. See also
[Denning76], [Denning & Denning.77] and [Denning82].

[Reitman78] describes a flow control proof system for parallel processes
communicating by shared variables as well as by message passing using the
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security classification approach. A proof system for Parallel Pascal is also
presented. His assignment axiom is:

A
{Ply — a1 ® a3 & ... Bz, & local & global] }

Y= exp(X1, To, eerey Tyy)

{P}

where the variables local and global tulfil the same role as indirect. Shared
variable communication is treated as an extension to sequential processing.
To prove a set of Pascal processes, for each process he establishes an invariant
- a definition of the maximum security level of each of the variables, and then
for the other processes, shows that when they communicate with the process,
the invariant in the called process cannot be violated. See also [Andrews &
Reitman.80].

However, Reitman’s flow semantics for the conditional commands are in-
complete - he does not consider the indirect flow from the selection guard to
the branch which is not executed. His selection command rule if B then S1
else S2 endif, is the following,

{V.',G}S; { VL',G’ }, i=1,2
(V,L”,G) = L[local « local & B]
{ V,L,G } if B then S1 else S2 endif { V,L,G’ }

{ V,L,G } is a predicate on the security state, V a predicate on the mapping
from variables to classifications, L a predicate on the value of local and G
a predicate on the value of global. In each branch, the value of local which
captures the indirect flow from the programme guard is updated on entry:
L goes to L’. Consider the following programme segment where a and b are
known to be 0 beforehand:

{a=0b=low, local = low, global = low }
if z =0 then a :=1 else b :=1 endif
{a <z, b= low, local = low, global = low} V {a = low, b < z, local =
low, global = low}

indirect flow in the two branches seems to be accounted for. But it is not!
The logical or in the post-condition is in fact an exclusive-or. The predicate
which holds depends on the branch which executes which is exclusive. This
can be seen from an example used in [Andrews & Reitman.80] in which they
give the following piece of code:

if b then y := z endif
if =6 then z := y endif
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b is a Boolean expression not containing y say, both z and y are low before-
hand. Reitman correctly points out that since only one branch can execute,
there is no flow from x to z. Using his combined functional and security
proofs he establishes the post-condition:

{b=>(y<b®z z=low), b= (y=low,z<bdz)}

This clearly does not cater for all indirect flows since in the first case z does
not have the flow from b registered, y in the second. The problem is that his
OR in the selection semantics is not logically strong enough to capture all
indirect flows - as we saw it can behave as an exclusive-or. This has profounder
implications for parallel programmes where we must register indirect flows
in other processes. Consequently, Reitman’s semantics can allow an insecure
programme to be "proved” secure.

[Mizuno & Oldehoeft.88] also use the security classification approach in the
context of a distributed object oriented system. All inter-process (object)
indirect flows are considered. Each time a communication is skipped in a
conditional command a probe, or dummy message, is sent to each object
which could possibly have received a flow if the method call had been made.
The probe carries the security level value of the condition on which the
method call was skipped which is least upper bound with the class of the
variables in the receiving objects which might have received a direct flow.
However, as argued in the text, the sending of such messages is not needed.

The framework in which the language approach to information flow began
was multi-level security. In multi-level security, each process has a fixed level
(where the set of levels form a lattice). A process can read an object only if
the object’s level is not greater than that of the process; a process can write
to an object only if the object’s level is not less than that of the process. Thus
if a process (programme) has a sensitivity level 7, its programme variables can
contain information from different levels at the same time. If a programme
variable v held information from level : —2 then the process should be allowed
to write v to an object of level ¢ — 1 even though the security level of the
process would normally forbid this. For this to be allowed, a mechanism for
controlling information flows at the programme level must be incorporated.

Information flow control where each variable has a security level supposes
an environment where there is a multi-level-secure policy. This is too in-
flexible with respect to the range of policies that one might like to support.
Another problem with the security level approach is deciding whether some
variable should be statically or dynamically bound to its level. Static binding
is very restrictive in that the sensitivity of the variable is independent of the
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information it contains; after reseting a variable, its level would not be Low.
Such over-classified variables lead to needless flow violations being signaled.
Dynamic binding has the problem that the classification is too dependent on
the information contained in the variable; for example, the constant assign-
ment in a bank account process balance := 50.000FF would set balance to
Low which would mean that balance could legally flow to any variable. Fi-
nally, and most importantly, the classification approach has no way of saying
that a variable y depends on some variable x. With security variables, as
long as the value of y depends on the (perhaps former) value of x then x €
7. This is the property that our flow control mechanism captures and is far
more useful than the policy-implicit classification scheme.

[Jones & Lipton.75] describe a surveillance set flow mechanism for sequen-
tial programmes which also accumulated variables in sets. The mechanism
presented in this paper differs in how indirect flows are handled, parallelism
is addressed and that efficiency and correctness considerations are looked at.

6.1.2 Multi-level Secure systems

Despite the work of Denning and Reitman, the approach more often used
for multi-level security is to assign a security level to each process [Casey et
al.88], or site as in Unix United [Randell & Rushby.83], and to prevent mes-
sages being sent from processes to higher level processes. Control of message
exchanges is easier and less costly than controlling the flows at the language
level.

6.1.3 Commercial Security

Another, though non-multi-level approach to information flow control is
the Chinese Wall model [Brewer & Nash.89]. Here, a process’ permitted access
to the objects in the system is defined as a function of the system objects
that it has already accessed. The objects of the system are partitioned into
data-sets which are themselves partitioned into conflict of interest classes.
The rule is that a process may only access an object if it has not already
accessed an object in another data-set of the same conflict of interest class.
The Chinese wall is a model of the stock market security policy.

6.1.4 Derivation of Secure Systems

A more recent approach integrates security validation into the system de-
sign. This consists of analysing the system’s specification to try and find flows
between the input and outputs. The specification should be much easier to
analyse than a complete system. The system is then derived by refining the
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secure specification. The various flavours of this approach - non-interference,
non-deducibility and now causality are well summarised in [Bieber & Cup-
pens.92]. More specifically, the system is viewed as a state machine which
must satisfy certain security properties. For example, the non-interference
property can be informally stated as ”a user A is non-interfering with a user
B if a state transition caused by A leads to a state which is equivalent to
the former state from B’s point of view”. This is a top down approach. The
specification is refined and at each step it must be shown that the property
still holds. These approaches have the advantage that they are less pessimis-
tic for flows since some of the dependencies noted in our mechanism are too
small to signal any useful information. However, they do have their difficul-
ties. When subsystems that satisfy non-interference are joined together, the
resulting system need not be non-interfering. Non-interference requires that
system specifications be deterministic, otherwise covert channels can appear
during refinement.

A related approach is taken by [Jacob88,90] and [Foley87] who use the
trace model of the 1985 version of CSP [Hoare85] to reason about security
properties of a system’s specification.

6.2 Other Aspects

The flows considered in this paper are those that occur between variables in
the programme. There are other channels of information flow. In particularly,
programme execution time is a way of leaking information to the environment
[LampsonT73]. For the command:

*[ x =0 — skip ]

an observer of the process can easily discern that the value of x is zero if after
some time the programme has not terminated. [Reitman78] did not consider
such timing channels since he just wanted to capture how variables influenced
each other. [Jones & Lipton.75] point out that timing channels are created by
the variable execution paths of conditional commands and the information
signaled comes from the command guard variables. One could thus imagine
a pseudo-variable timing inserted into each conditional command which si-
gnals an error each time it receives an indirect flow from a variable that is
not allowed to influence the execution time of the programme. However, ti-
ming channels are more difficult to interpret in a real concurrent computing
environment since execution time depends on the number and computational
nature of currently executing processes.
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An interesting question to pose at the end of the paper is how the infor-
mation flow semantics presented may be adapted to other models of process
communication. Evidently, the flow semantics are very dependent on the
kind of communication used. For processes communicating asynchronously
for example, the sender cannot know at communication time whether the
message was consumed by the receiver. Thus, there is only a transfer of
indirect from the sender to receiver at communication, the reverse does not
occur. Another kind of communication uses letter boxes. In such systems the
receiver may not always know the sender. It is also possible that messages are
consumed by the receiver in an order different to their arrival. All of these
factors have important consequences for the information flow analysis. Thus,
a proper flow analysis of any programming model and its security semantics
requires a complete understanding of the language model behaviour. Never-
theless, we believe the approach taken here to be general enough to serve
as a basis for undertaking the design of a security proof system for different
parallel programming paradigms.
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Appendix - Formal Justification of the Secu-
rity Proof System

There are two stages in the justification (see figure 3). Firstly, we must show
that the flow semantics Mg capture all the flows that arise, that is, that the
modifications to the flow security state made by each command are necessary
and sufficient to capture the flows of information. Secondly, we show that the
axioms and rules of the proof system are sound and complete with respect to

M.

Flow .
f Axioms
y . Ms &
Information Necessity soundness
Rules
sufficiency completeness
Figure 3: Plan of Proof
Notation

A formula is of the form {p} S {q} [Hoare69], where p and q are predicates
on the flow security state and S a programme segment. We let = {p} S
{q} denote a formula that is true given our flow semantics Mg. That is,
if predicate p holds before S executes, then if and when the programme
terminates, predicate q holds on the security state. - {p} S {q} means that
our proof system allows us to show that q follows from executing S in a state
satisfying p. If a predicate p is true in some flow security state o, then we
write = p(o).

Aside We make no reference to the interpretation J in the following pre-
sentation, to avoid any ambiguity we assume it to be standard; for example
{a} U {b,c} = {a,b,c}, true V false = true, etc. ¢

The ”4” operator "updates” a state o,

(0 + (¢ — E))(v) = { %(v) it e #v

fz=vw

x can either be a security variable or the variable indirect.

When discussing parallelism, we write S for St || ... Si... || Sw-
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A Formal justification of the flow security
semantics

For some given parallel sub-programme S , suppose we have
(3,0) = (& 7) and = ¢ o(3)

where o and 7 are combined functional and flow security states. The sequence
of transitions form a trace denoted 7. We consider in turn what it means for
x to be a member (resp. not a member) of 7 in state 7.

x € 7(y) : If this is true then there must exist some value for x, different
from o(z) such that one cannot form a trace 7’ with the same path of control
as 7, and even if one can, the final value for y may differ. That this property
holds shows the necessity of our flow semantics.

x ¢ 7(y) : In this case, y does not reveal any information concerning x.
This should mean that no matter what the initial value of x in o, there is
a trace 77, formed by (g, 0’) —=* (€, 7’) where ¢’ = 0 + (2 4 o(x)) such
that 77 has the same control path as 7 and 7(y) = 7'(y). That this property
holds shows the sufficiency of our flow semantics.

A.1 Sufficiency

We denote the property of sufficiency on a sub-programme S as I'(S).

The proof is by induction. We assume that for any parallel sub pro-
gramme, S, that F(g’) is true. We proceed to prove that F(g) where S is
5" extended by C = skip, y := E(v;), [i=1.N0OC;, — S;] and *[i=
1.N OC; — S;;] and finally by the communication command. The base step,
proof of I'(C) proves to be a generalisation of the inductive step. Throughout
we rely on the following composition property:

If variety in an input v of command S1 leads to variety in an output x,
and if variety in the input = of command S2 leads to variety in the output
y, then variety in the input v of S1;52 leads to variety in the output y.¢

C = skip

Given M is the functional CSP semantics [Plotkin83], we have from M |skip],
(skip, o) — (¢, o) and (skip, 0’) — (€, ¢’), that is 7 equals o and 77 equals
o', where o, ¢’, 7 and 7’ are defined above in the proof obligation.
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Base case No state changes occur; 7(y) = 7'(y) trivially since o(y) equals
o’(y)-

Inductive step Since skip alters nothing, I'(S;skip) if and only if T'(S).
But this is guaranteed from the induction hypothesis.

C =y := E(v)i=1.N
The semantics M of the assignment command gives

(y := E(v;)i=1.N, 0) — (¢, 0 + (y — E(o(v;))i=1..N)
(y := E(v;)i=1.N, 0") — (¢, o' + (y — FE(o'(v;))i=1..N)

Base case Our flow semantics tell us that if z € 7 in 7 at the finish, then
x is not one of the variables v;, on the right hand side of the := operator. (In
the initial state indirect and all security variables are empty). We presume
that only those variables named in the expression may influence the left hand
side variable. So varying z in the initial state ¢’ makes no difference on y,
that is 7(y) = 7'(y)

Inductive step =z ¢ 7 after termination implies from Mg that = is not
on the right hand side of ”:=" i.e. one of the v; variables, x € v; and = &
val(indirect). So, like in the base case, variety in & cannot cause variety in y
by the execution of the assignment. Moreover, since z is not a member of any
of the v; security variables, we know from the composition property and I'(S)
that variety in x before the start of S cannot lead to variety in the v;s on the
right hand side of the := operator. Thus I'(S) = I'(S;y := FE(v;)). That « ¢
val(indirect), we know that « does not influence any paths in the programme
so varying x cannot lead to a trace 7’ which has a different control path and
thus a different value for y (see conditional command proofs).

C = [i:l..N oc; — SZ,]

We assume that y can possibly receive an assignment in one of the branches,
otherwise no change in y can possibly occur and I'(C) trivially holds.

Base case Consider that ([i=1.N0OC; — S;;],0) =™ (e, 7). lf & & 7(¥),
then Mg guarantees that = is not one of the Boolean guard variables. Thus,
E Ci(o) = = Ci(0o') and E =Ci(0) = = =C;(0’) so the same branch can
execute in o and ¢’. So no matter the value of x in ¢’, there is a trace 7~
with the same control as 7. Therefore the proot obligation is rewritten as,

I'([i=1.N0OC;, = S;]) iff I'(S;)i=1.N

which is just a re-statement of the original proof obligation.
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Inductive step This is an extension of the base step; since I'(S), ¢ 7(7)
means that x does not belong to the security variable of any variable in the
Boolean guards on entry to the command, nor has it affected any programme
paths.

C = *[ i=1.N OC; — SZ,]

again we suppose that y can be updated in some branch. Otherwise the proof
is trivial.

Base step If © ¢ 7(¥) on termination then z is not in any of the Boolean
guards. Thus, E C;(0) = E Ci(0') and | =C;(0) = | =C;i(o’) on each
iteration so any trace 7’ can have the same sequence of iterations. Thus
we only need to analyse the branches. Suppose that all guards are initially
false; the main part of the repetitive command behaves as the skip which
has already been proved. If the command executes a branch, then, like for
the alternative,

F(*[ i=1.NOC;, — SZ,]) iff F(Sz) 1i=1.N

With the possibility of more iterations we must prove that I'((.S;);S;) for all
J. But to prove this we must first prove I'(S;). But there being no new proof
obligation:

F(*[ i=1.N0OC;, — Sz,]) iff F(SZ) 1i=1.N

Inductive step This is an extension of the base step; since I'(S), « ¢ 7(7)
means that x does not belong to the security variable of any variable in the
Boolean guards on entry to the command, nor can a change lead to a different
execution path.

Parallelism We suppose that the property holds for some 5, that is
DS o ) S5 1] ) S)
The communication transition is the most interesting.
P lexp /] P71y
If « ¢ 7(y), then we know:

oz g {eUe]|e€exp}
i) @ € val(indirect;)
i) & ¢ val(indirect;)
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Clause (i) implies that z is not one of the variables v; in exp, and that
like for the assignment, F(g) tells us that = has not influenced the variables
v;. The other two clauses tell us that no conditional command skipped a
communications due to the value of = - thus changing x in ¢’ cannot cause
another interprocess flow of control and that no repetitive command was

influenced by .

Conditional commands Suppose that y is a variable in one of the branches.
If a branch with a Boolean guard executes then x not being in i at the end
means that = does not influence evaluation of the guards. Again, we need only
show I'(S;). If a branch with a communications guard executes then even if x
is a member of the Boolean guards, it need not be registered since the values
of the guard do not influence the communication being taken. Thus for all
o’ there is a trace 77 which can take the branch as does trace 7.

Hence, we consider the Mg flow semantics sufficient to capture the flows
that arise.

QED

A.2 Necessity

Again, the proof is by induction. We suppose that the property, denoted
® holds for an arbitrary programme segment S’, and proceed to show that

the property holds when any command is added to the end, ®(5). We treat
the sequential case first.

C = Skip

Base step Given that all security variables are initially empty, Mg cannot
possibly produce a state where x € . There is nothing to show necessary.

Inductive step x € ¥ after termination of skip if it holds beforehand.
Since skip produces neither a flow security nor a functional state change

— —

O(S) if ®(S5"); but this is guaranteed from the induction hypothesis.

C =y := E(v)i=1.N

Base step If z € ¥ on termination then x must be one of the right hand
side variables; obviously variations in a right hand side variable can cause vy,
the left hand side variable, to vary.
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Inductive step if at the end of the command y := exp(v;)i=1..N, x € 7(7)
then either (i) z € {v;}i=1.N, (ii) € {T;}i=1.N or (iii) z € val(indirect) or
any combination of these. If (i) is true then the registration in ¥ is necessary
since variety can easily be transmitted; if (i) is false but (ii) is true then
M is necessary by <I>(§') and the composition property. Finally, the proof of
necessity for the case where only (iii) is true is given below for the conditional

commands.

If # € 7(y) where z is not one of the guard variables means that the flow
arose in the branch S;. We must thus show ®(S;) but this is just our proof
obligation. updatel first adds the guard Cy.,; to indirect. This is necessary
because another value for one of these variables may cause the guard to be
false which would mean that the branch would not execute and therefore we
could not have the same control path. The update to [hs_vars comes since
changing = may force some other branch to be selected and assign y some
other value.

Remark The interesting point is that we cannot justify the necessity of
registering flows from the variables in the other guards using our formal
definition. Yet the example on page 9 clearly shows that an observer can
deduce something. There seems to be a more deductive form of information
flow that is occurring here. Hence, we keep the semantics despite of our
inability to formally justify it.

C = *[ i=1.N OC; — SZ,]

This is similar to the alternative except that we have update3. Here the
change to indirect is needed since altering an = in any Boolean guard may
cause the loop to never terminate - this alters the control path. The changes
to [hs_vars are needed since for the case where all guards are false - a different
x could cause one of these branches to execute and hence alter y, leaving 7(y)

# 7'(y).
Parallelism

Take the communication command first. For P; lexp // P; Ty, x € 7(y) at the
end implies that @ € {eU€ | e € vars(exp)} and/or x is either of the processes
indirect variables. The proof of (I)(g) if the first condition is met, is the
same as for assignment; if only the second condition holds, then the proof of
(I)(§) comes from the conditional commands. For the special communication

case where the process index is registered in the remote indirect - this is
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justified since changing ¢ can alter the control flow of the programme making
it impossible to have a 7’ with the same control path as 7.

Conditional Commands For the alternative, updatel adds the Boolean
guard variables if the executing branch is Boolean guarded. Supposing z is in
the guard, a new value for  might invalidate the truth of the guard and thus
force some other branch - even one with a communications guard to execute.
Thus registering x in all branches is necessary. For update2’ z is added to
indirect if another branch has a communication. This is important since a
different z forcing another branch to execute could take that communication

which would alter the control path through the programme.
QED

B Proof that the proof system respects the
flow semantics

Aside Even though the security proof system is based on [Apt et al.80], the
proofs of soundness and completeness are much simpler than Apt’s (see [Apt
83]). The reason for this is that the security proof system does not contain
the notion of a bracketed section or invariant. More precisely, in our proof
system, a bracketed section contains a communications command only, hence
each sub-programme is normal and thus each parallel composition admissible.
Given these conditions, even the proofs in [Apt 83] become easy. ¢

B.1 Soundness

By soundness we mean that if a programme S produces a flow security state
satisfying a predicate p, then the proof system must not show that —p is true.
More precisely,

For the axioms if - {p} S {q} then, V 0,7 such that = p(c) and 7 =
M;s[S](o), then = ¢(7)

For the rules if aq, ...., a, - {p} S {q} where the a;s are antecedents, V
o, 7 such that |= p(o) and 7 = M[S](0), then | ¢(7), assuming each a; to

be true.

We firstly give the substitution lemma which is crucial in the proofs.
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Substitution lemma For all predicates P on the flow security state, and
for all states o; let T be a security variable or the variable indirect, and E
be a set of variables,

P[T — E](U) = P(U—{—(T — E))

where P[T « E] is a predicate similar to P except that every free occurrence
of the variable T is replaced by the set E. We omit the proof.

Skip This is trivial to prove. Since c=M g[skip|(¢), if = p(o) then | ¢(0)
where p = g¢.

Assignment
o = -/MS[y = Exp(mlv'f?v 7'17N)](0-)

where 0’ = 04+(y — ({2;} U 0.7; U val(o.indirect))) for i=1..N. Let us denote
the new value of i as E. For our axiom A._, if the pre-condition holds in state
o, then = ply « FE](o). For post-condition p to be met, = p(o’) must be
true. But, |= p(o’) is equivalent to = p(o + (7 — FE)) from Mg, which must
be true since it is equivalent to = p[y « F](¢) according to the substitution
lemma.

Composition The flow semantics have the following property: M s[S1;52](o)

is equivalent to Mg[S2](Mg[S1](0)). We let o/ = Ms[S1](c). Then Ms[S1;52](0)
= Mg[S2](Ms[S1](0)) = Ms[S2](0’) = 7 We know from our first antecedent
that = ¢(o’) since |= p(o). Our second antecedent tells us that since = ¢(o”)
and given Mg[S2], then |= (7). Thus, for 7 = M3[S1;52](¢) and = p(o) we

deduce = r(7) and so the composition rule is sound.

Alternative The soundness of the composition rule allows us to deduce the
soundness of {p} [i=1..N OC; — S;;] {q} given that the antecedents are {p}
updatel {r}, {r} S; {t} and {t} update2 {q} and Ms[i=1..N OC; — S;;]
= v, Mg[updatel;S;;update2].

Repetitive We let 0,’=Mg[rep®](c) for k > 0. (where rep” denotes k re-
petitions of updatel;S;;update2). When k is zero, then there are no itera-
tions and the only alterations are to indirect and the lhs_vars,i.e. update3.
Thus Mg[rep®](c) = o+(update3). When |= p(c) then the {p} update3
{q} antecedent tells us that = ¢(7). For k > 0, we rely on the fact that the
antecedents tell us that the predicate p is established on each iteration. The
remaining proof reasoning is the same as for the alternative command.
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Parallelism Again, what we want to prove is that for - {P} S {Q}, then if
T E Ms[g](a) and =P(o) then we have |=Q(7). Since the free variables in P
and Q are disjoint, that is the free variables for one process are not the same
for any other, the formula =P (o) can be rewritten as = AY, p; (o) and - {P}
S {Q} rewritten as - {AY, p;} S {AY, ¢ }. Thus it suffices to show soundness

for each process in turn. We only need consider the communications command
here.

Firstly, we re-write the communications axiom to express it more like the
assignment axiom [Hoare69].

{p1 A p2[y — {2} UT U val(ind;) Uval(indy), ind; « ind; U ind,,
indy «— tndy Uind;]}
Plz /] Py
{p1 A pa}

The soundness proof for the communication axiom is similar to the assi-
gnment proof (and is based on the substitution lemma) so we omit it.

The parallel versions of the alternative and repetitive commands follow
easily. For example, for the alternative command, the proof reasoning for
the sequential composition rule allows us to say that for some branch with a
communications guard: {P} C; — S; {Q} is sound if {P} C; {T;} and {T;}

S; {Q} are correct. The argument for the repetition command is the same.

This concludes the proof of soundness.

QED

B.2 Completeness

Aside The security semantics say nothing about the functional properties
of the programme. In this sense they are "weak”; for example, for the alter-
native command we say that if some branch S; terminates, then update2 is
made to the flow security state. This allows us to talk about the completeness
of the proof system rather than the relative completeness. ¢

A proof of completeness verifies that if some formula = {p} S {q} is true,
then the proof system can show it to be true, that is F {p} S {q}. We repeat
the consequence rule as it is crucial for the proof.

P=P’, {P"} S {Q’}, Q'=Q
{P} s {Q}
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skip We have |= pre(skip, p) skip {p}, where pre(skip, p) denotes the set
of states which can exist before the execution of the skip command if the
predicate p is to hold on termination.

pre(skip, p) = {0 | V7, = p(7) A T=M[skip](o)}
={o | V7, Ep(r) A T=0}
= {o | Eplo)}

=r,r=p

then |= {r} skip {p} for r=p only, hence - {p} skip {p} is justified since
we also have the consequence rule.

Assignment Suppose that = {p} y:=Exp(x1,22,....,2n) {q}. Then, 3 o,
where = p(o) such that T=Mg[y:=Exp(x1, 22, ..., 2n)](0) and |= ¢(7). Given
My:=Exp(z;)t = 1..N] we know that = ¢(c + (§ — FE). The substitution
lemma tells us that | ¢[y «— F](c) where E is the flow value. Thus our
assignment axiom is complete since we have - {p} y:=Exp(z;)i=1.N {q}
where p logically implies ¢[y « E] (using the consequence rule as well).

Composition Suppose that we have = {p} S1;52 {r} from Mg. We want
to show that we can establish - {p} S1;S2 {r} with the proof system. Firstly
we give the following assertions: = {p} S1 {post(p,S1)} where post(p,S1) is
the set of all states that can be established after S1 if p holds beforehand,
and = {pre(S2,r)} S2 {r} where pre(S2,r) is the set of states which can exist
beforehand if r is to hold afterwards. Since |= {p} S1;S2 {r}, there must be
a set of states common to post(p,S1) and pre(S2,r). We denote these states

q:

q = post(p,S1) N pre(S2,r)
{ o] o' = Mg[S1](0) N 7= Ms[S2](¢") }

Hence, = {p} S1;S2 {r} can be rewritten as = {p} S1 {q} and = {q} S2
{r} so that F {p} S1;S2 {r} can be shown if - {p} S1 {q} and F {q} S2 {r}

which is equivalent to our composition rule.

Alternative Asshown in Mg, this is equivalent to the triple updatel;S;;update2.
Thus = {p} [i=1..N OC; — S;;] {q} implies that there are some predicates r

and t such that = {p} updatel {r}, E {r} S; {t} and = {t} update2 {q}.

That F {p} updatel {r} and - {t} update2 {q} from | {p} updatel

{r} and = {t} update2 {q} is easily shown; the proof is very similar to the
assignment proof. Thus the alternative command is complete if we can show

F {r} S; {t} from = {r} S; {t}. This is just a reduced version of our proof
obligation.
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Repetitive Suppose that = {p} *[i=1..N OC; — S;;] {q}. Then 3 p’ such
that = {p} rep® {p’} and = {p’} updated {q} (where rep* denotes k repe-
titions of updatel;S;;update2). For = {p} rep® {p’}, 0 iterations implies
E {p} rep® {p} since it is equivalent to a skip and we do have F {p} rep
{p}. For k > 0; we write

= {p} rep® {post(p,rep)}

where post(p,rep) is the set of all states that can exist after k& branches
execute. But because our semantics are "weak”, a formula is valid only if it
holds no matter how many iterations, then,

= {p} rep” {post(p,rep)}
= {p} rep"™"; {post(p,rep)} updatel;S;;update2 {post(p,rep)}
= p={post(p,rep)}.

Thus we need an invariant on the repetitive part updatel;S;;update2. In
R epetitive, P serves as this invariant. That we can get - {p’} update3 {q}
from = {p’} updated {q} follows from the assignment proof.

Parallelism We want to show that for each correct formula = {p} S {q},
we can get - {p} S {q}. The first step is to re-write the formula as = {p;}
S; {q;}, this being permitted by the disjointness property on the processes’
predicates. Thus we must show that we can get - {p;} S; {q;}.

The resulting proof obligation is similar to the sequential case. Only the
communication axiom remains to be treated. Let a be a communication
command, since Mg[a] is undefined (that is, it only has a meaning when
paired with another communication command), = {p1} « {q1} if and only
if there exists a paired communication 3 for which = {p2} 8 {q2} such that
= {p1 A p2} @//B {a1 A g2}. The proof that = {p1 A p2} a//B8 {a1 A a2}

using the communication axiom is very similar to the assignment proof.

QED
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