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Implémentations paralleles d’un algorithme de programmation
dynamique pour le probleme du sac a dos

Résumé : Cet article présente un algorithme systolique pour la programmation dynamique du probléme du
sac a dos. Cet algorithme est exécutable sur un nombre quelconque de processeurs et posséde des propriétés
d’accélération et d’efficacité optimales. Le temps d’exécution est en ©(mc/q + m) sur un anneau de g
processeurs, ol ¢ représente la taille du sac a4 dos et m le nombre d’objets. Une nouvelle méthode de calcul
de complexité en temps de O(m) est également proposée pour la phase de “backtraking”. Ce résultat constitue
théoriquement une amélioration par rapport aux solutions antérieures dont la complexité atteignait ©(mec).
Nos analyses montrent dans quels cas notre algorithme de “backtraking” est plus efficace que le précédent
quand la totalité du temps d’exécution est pris en compte. Nos expériences sont réalisées sur la machine
IWARP avec des jeux de données générés aléatoirement. Ces expériences vérifient nos résultats théoriques et
prouvent l’efficacité de notre algorithme pour des problémes de taille quelconque.

Mots-clé : programmation linéaire, programmation dynamique, récurrences, partitionnement, probléme
du sac a dos, parall‘elisme, algorithme systolique, machine iWarp
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1 Introduction

Suppose that m types of objects are being considered for inclusion in a knapsack of capacity ¢. For i =
1,2,...,m, let p; be the unit value and w; the unit weight of the i-th type of object. The values w;, p;,
t = 1,2,...,m, and c are all positive integers. The problem is to find the maximum total profit without
exceeding the capacity constraint, i.e.

m m
max {Zplzz : Zwizi < ¢,z > 0integer, i =1,2,...,m}, (1)
i=1 i=1

where z; is the number of i-th type objects included in the knapsack. Sometimes (1) is referred to as the
integral knapsack problem (Teng [1]), sometimes as the unbounded knapsack problem (Martello and Toth
[2]). We shall call it simply the knapsack problem. If additional constrains z; € {0,1},¢ = 1,2,...,m are
added to (1), then the restricted problem is called the 0/1 knapsack problem.

This classical combinatorial optimization problem has a wide range of application (see e.g. Garfinkel and
Nembhauser [3], Hu [4], Martello and Toth [2]). Moreover this is the most elementary integer programming
problem, in the sense that there is only one constraint. In principle, any integer programming problem can
be transformed into this problem, see [3]. The difficulties which arise when solving problem (1) are typical
for the whole area called integer programming. Effective algorithms for the knapsack problem are not only
interesting for the problem itself but for this domain of research in general.

Problem (1) belongs to the class of NP-complete problems (see e.g. Garey and Johnson [5]). However it
is known that this problem can be solved sequentially in O(me) time. This time bound is not polynomial
in the size of the input since log, ¢ bits are required to encode the input ¢. Such a time bound is called
pseudo-polynomial time [5].

Two basic approaches are currently popular for finding the exact solution of the knapsack problem:
dynamic programming (DP) and branch-and-bound (B&B).

Serial machine implementations: The first knapsack algorithm based on dynamic programming
approach was developed by Gilmore and Gomory [6]. It takes ©(mc) operations to solve the problem and
is totally insensitive to the parameters p;, w;, i = 1,2,..., m. This is typical of dynamic programming serial
implementations which can be good for poorly-behaved problems and bad for well-behaved ones, as noted
in [7].

The dominant opinion today is that algorithms for large-size problems (1) based on B&B approach
are more efficient on the average for a serial machine implementation. This is shown by the encouraging
theoretical and experimental results obtained by numerous researchers (see the book of Martello and Toth
[2] on related topic). However, one can raise questions about the randomly generated test problems used in
such computational experiments. In general, when the parameters p; and w; are independently generated
the problems tend to be easy. When these coefficients are correlated the problems seem to be more difficult.
Hard knapsack problems have been constructed by researchers including Jeroslaw [8], Chvatal [9] and Chung,
Hung and Rom [7]. The latter authors study a class of problems with constant difference between p; and
w; which requires a branch and boundalgorithm to run exponentially in the problem size m. They prove
also that the difficulty of the problem does not depend on the bounding mechanism used in B&B algorithm.
Computational tests indicate that these problems are truly difficult for even a very small problem size. In
such problems DP algorithms behave better than B&B. The difficult question is is in reality how often are
the hard knapsack problems encountered. But in any case the available knowledge for problem (1) implies
that both approaches - DP and B&B - are worthy of study for parallel implementations.

Parallel machine implementations: =~ With the advent of parallel processors, many researchers concen-
trated their efforts on the development of efficient parallel algorithms for solving the knapsack and the 0/1
knapsack problems. As in the sequential case, dynamic programming [10, 11, 12, 1] and branch-and-bound
[13, 14] are the most popular combinatorial optimization techniques for finding the exact solution to these
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problems. The results obtained show that either of these two approaches is suitable for parallelizing, but each
in its own manner. Each one requires a different type of parallel machine in order to ensure a good trade-off
between communication and computation, resulting in a good performance for the parallel algorithm.

The inherent parallelism in B&B method is suitable to implementation either on MIMD shared memory
multiprocessor machines ! see e.g. [15, 16, 17, 18, 19] or on MIMD distributed-memory coarse-grained
multiprocessors 2 (see the paper of Dehne, Ferreira and Rau-Chaplin [20] for more references). Two major
problems arise in this approach: (i) Load balancing: how to manage the sizes of the problems assigned to
individual processors; the site may vary significantly, and this unbalanced distribution of work load may
result in performance degradation; (i) Global information: how to distribute the global information in order
to avoid the additional computational overhead or the unnecessary search. It seems these two problems are
rather difficult in the case of parallel B&B implementation, as shown by the numerous publications on this
subject [19, 21, 13, 22].

Recently in [20], parallel B&B was studied on fine-grained hypercube multiprocessors (the Connection
Machine). To the knowledge of the authors this approach has not yet been applied to problem (1).

As in the sequential case, the best time complexity parallel algorithm for (1) is based on the DP technique,
as proposed by Teng in [1]. The number of processors required is exponential in the size of the input and this
algorithm has a very low processor efficiency. More precisely it requires M (¢) processors to solve the problem
in O(log?(me)) time. The function M(n) above denotes the number of processors needed for multiplying
two n by n matrices in O(log n) parallel time. It is known that n? < M(n) < n3. Therefore the knapsack
capacity ¢ is a factor in the processor complexity of the algorithm, and 1/¢ is a factor in its efficiency which
approaches zero as ¢ increases.

In this paper we concentrate on the dynamic programming approach with a fixed number of processing
elements. A brief overview of the obtained results show that the research in this area has primarily been
restricted to the 0/1 case [12, 23, 24, 10, 25]. As we show in section 4 the dependence graphs for the general
and the 0/1 cases belong to two different families of graphs. This implies different data partitioning schemes.

To the knowledge of the authors, the proposed algorithm is the first implementation for the general case
of problem (1) with asymptotically (with respect to ¢) linear speedup ©(g). Moreover, this approach can
be easily applied for the 0/1 case, preserving its efficiency. For the 0/1 case, the implementation proposed
here is more efficient than the parallel implementation of Lin and Storer [12] which has time speedup of
©(g¢/log q), on ¢ processors on the Connection Machine.

We follow the direction of research of [26] where the main lines of our parallel approach have been briefly
presented. Here we develop in details these ideas and study the constants appearing in the different parallel
implementations. Furthermore in this research note we analyze the application of the dependence mapping
approach to all types of knapsack problem recurrences. The problems of the implementation and performance
of the algorithm on a real parallel machines are analysed and a large number of computational experiments
are performed.

Our approach is close to that of Chen, Chern and Jang in [11], who propose a pipeline architecture
containing a linear array of ¢ processors, and queue and memory modules of size « for solving the knap-
sack problem. Their algorithm has a time complexity ©(mc/q + m) and their architecture allows one to
asymptotically achieve a linear speedup.

Using the same architecture and new data partitioning we propose an algorithm with a > w4, requi-
rement for the size o of any memory module, where w4, = max ", {w;}. It is well known that in many
practical applications w4, 1s much less than the knapsack capacity ¢, i.e., Wyqee < ¢. Therefore this is an
improvement of the memory requirement of the algorithm in [11] which needs @ > ¢ memory for any proces-
sors. Another difference is that our approach is systolically oriented in contrast to [11] where a transputer
implementation is given.

A new procedure for the backtracking phase of the algorithm with a time complexity ©(m) is also
proposed. It is an improvement on the usual strategies used for backtracking (see Hu [4] and Garfinkel and

las Cray X_MP or Cray 2
?multiprocessors with a relatively small number of relatively powerful processors each having a considerable amount of

memory such as the FPS hypercube, NCUBE, or Intel iPSC
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Nembhauser [3]) which have a time complexity ©(m + ¢). Thus this phase of the dynamic programming
approach, which is sequential, becomes independent of the parameter c.

This paper is organized in the following way. Section 2 describes both phases of the dynamic programming
approach for problem (1) on a serial machine. Section 3 presents our new algorithm for backtracking and
analyses its complexity. In section 4 we discuss our parallel implementation on a linear array containing an
unbounded number of processing elements (PE). Section 5 is devoted to the analysis of the constants in the
classical and the modified backtracking algorithm. In section 6 we consider the case of a fixed number of
PEs. In section 7 the computational experiments are presented.

2 Dynamic programming approach for the knapsack problem

In this section we present the dynamic programming approach for the knapsack problem on a serial machine.
This approach is based on the principle of optimality of Bellman [27] and usually contains two phases. In
the first (forward) phase, the maximum value of the objective function is computed, i.e. the value fp,(¢) such
that

m m
fm(c) = max {ZpZzZ : Zwizi <c¢, z > 0integer,i =1,2,...,m}
i=1 i=1

In the second (backtracking ) phase the integers z;,i = 1,2,..., m, such that

> pizi = fmlc)
i=1

are found.

2.1 Forward phase

Let fx(j) be the maximum value that can be achieved in (1) from a knapsack of size j, 0 < j < ¢, using only
the first k& types of objects, 1 < k < m. That is

k k

frx(j) = max {Zplzz : szzl < J,z > 0integer,i =1,2,... k}.
i=1 i=1

The principle of optimality [27, 3] states that for Vk, 1 < k < m and V4,0 < j < ¢ we have :

Je(§) = max {fe_1(4), fe(j — we) + pr }- (2)

For the 0/1 knapsack problem, equation (2) can be rewritten as

Je(g) = max {fe—1(J), fr—1(J — wi) +pr}- (3)

The optimal value of fp,(¢) (1), can be found in m stages by generating successively the functions
fi, fa, ..., fm using equation (2) (or (3)) assuming the initial conditions fo(j) = 0, fx(0) = 0 and f3({) = —c0
for k =1,2,...m,c=1,2,...c and ¢ < 0. By stage k£ we shall denote the computation of all the values of
the function f;.

Any serial algorithm which solves problem (1) using equation (2) requires ©(mc) time. Currently this
is the serial algorithm which has the best behavior when solving the worst case instances for the knapsack
problem. We shall use its running time to determine the speedup and the efficiency of our parallel algorithm.

The communication required for the execution of equation (2) or (3) can be described by means of a direc-
ted graph, called the dependence graph (DG). Let N denote the set of natural numbers, i.e. N={0,1,2,...}.
Let G = (D, .A) be the DG for equation (2) or (3), where D = {(j,k) e N2:0< j<e¢,1 <k <m}is
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Figure 1: Dependence graph for equation (2)

the set of nodes and A is the set of directed arcs. Each node (j,k) € D of the DG represents an operation
performed by the algorithm and the arcs are used to represent data dependencies. For example figure 1 (a)
depicts the DG for equation (2), with m = 3,¢ = 6, w; = 4, wy = 3, w3z = 2. Each node (j, k) represents one
calculation, detailed in figure 1 (b). Figure 2 depicts the corresponding DG for equation (3) with the same
data.

The peculiarity of the graphs in figures 1 and 2 is that in any column the dependence vectors depend
on the weights w;,7 = 1,2,...,m. Such a dependency is non-affine dependency. This peculiarity makes the
knapsack recurrence equations difficult to transform into a systolic array using the well-known dependence
mapping approach (see Quinton and Robert, [28] or S. Rajopadhye [29] ).

2.2 The classical backtracking algorithm

m
An approach to find the solution vector of problem (1), i.e. a vector z* € N™ such that szzl* = fm(c), is
i=1
discussed in this section. It is based on the work of Hu [4].
In the course of the forward phase a pointer ug(j) is associated with each value fi(j), (4, k) € D in such
a way that ug(j) is the index of the last type of object used in fi(j). In other words, ux(j) = r means that
zr > 1, or the r-th object is used in fi(j) and z; = 0 for all [ > r. The value uj(j) is used to keep a history
of the first dynamic programming phase.
The boundary conditions for uy(j) are

Vj:OSJ'SC:ul(j):{(l) iﬂ;;ﬂ

In general we set

wn={ g e “
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Figure 2: Dependence graph for equation (3)

Vk:1l<k<mandVj:0<j<ec
As shown in [4], definition (4) allows the solution vector z* € N™ of the knapsack problem to be found
from the values of the function u,, by the following algorithm:

Hu’s backtracking algorithm

j=c
for £ = m downto 1 do begin
2y =0;

while u,, (j) = k£ do begin
ZZ ::422 + 1;
Ji=J = wk;
end{while}
end{for}

Corollary 1 The previous algorithm has time and space complezity T = ©(m + ¢) and S = O(c + m)
respectively.

Remark: In the 0/1 case the algorithm runs in ©(m) time.

3 A modified backtracking algorithm

Let us associate a value py to any vertical arc ((¢, k), (i + wg, k)) in column k of the DG for problem (1).
Then fn(c) can be regarded as the value of the shortest path from point (0,1) to point (¢, m) (see figure
3). Let us denote by Sy, the subpath of the optimal path in column k. The elements of Sy are of the form
((4, k), (1 + wg, k), ..., (1 + wrzt, k)), for some 0 < i < ¢. Obviously

7 =[Sk [ -1, ()
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Figure 3: The shortest path from point (0,1) to point (c,m)

where | Sy | denotes the cardinality of the set Si. In fact (5) determines how many units of object k are
used in the optimal solution. It is easily seen that Hu’s backtracking algorithm takes | Sy | steps in column

m
k. Thus this algorithm requires E | S | = ©(m + ¢) steps. The improvement is to compute for any k the
k=1
cardinality | Sy | in constant time and to thus decrease the total time for the backtracking phase to ©(m).
Let I;, denote the sequence of the first indices of the elements of the optimal subpath S; in column k, i.e.

I = {i: (i, k) € Si .

Let i¥ . denote the minimum index in I, i.e.

-k
Ymin

=min{i:i € I }.
By the definition of the function u; we have
-k -k
uk(lmzn) = uk—l(lmin) <k

and
Vi€ ik, = u(i) =k

In the modified backtracking algorithm, for any (j, k) € D we keep a record of the candidate for i¥,; . In
order to generate these values during the forward phase a new function vy is introduced:

vi—1(7) if up(j) < k
ve(j) =< J ifug(j) =k  and ugp(j —wg) <k (6)
vp(j—wr) fur(i)=4k and up(j —wr) =%
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forallk,and all ;1 <k <m,0< j<cand vp(j) =0for k=0,0<j<ec.
When the values of v is found, we can easily trace the value z; that yields fi(j) by the formula

_J) 0 if up(j) < k
“‘{<j—wu»m%+1 if ug(j) = k. (7)

Once the value z; has been computed, the total weight limitation j is reduced to jnew = vr(j) — wg, for
which the inequality ug(jnew) < k holds and therefore ug(jnew) = Uk—1(Jnew). To find the value zj_, we
examine the values ur_1(Jnew) and vg—1(jnew) in the same way. It is easily seen that formula (7) gives the
same results as (5) when the backtracking process starts from point (e, m).

The functions vg,k = 1,2,...,m are similar to the functions u; by their properties. For all j such
that ur(j) < k the function v; keeps the values of the functions vp_;. This property allows the values
23,k =1,2,...,m to be found from the values of the function u,, and v,, only. The following algorithm is
used.

Modified backtracking algorithm

j=c
for £ = m downto 1 do
if um (j) < k then 2} = 0;
else begin
2t 1= (5 = vm(i))Jwn + 1
J= Um(j) — Wk

end;{if}

In this way the values of u,, are used to move back along the k axis of the DG. The values of v, are used
to move back along the j axis. Since the computation of z} for any k,1 < k < m requires ©(1) operations
we obtain the following property:

Corollary 2 The modified backtracking algorithm has time and space complezity T = O(m) and S = O(c+
m) respectively.

The computation of the functions vy, k = 1,2,...,m can be done simultaneously with the computation
of the functions f. Comparing (6) and (4) we see that the computation of the functions vy does not
influence the time complexity of the forward phase (i.e. the total time of the algorithm is still ©(mc)). The
advantage of the modification is to make the backtracking phase independent of the parameter ¢. However
this modification also modifies the constant in the forward time. How large is the new constant? When
the modification proposed results in better total time? The answers to these questions and more details
concerning the implementation of the proposed modification are discussed in the next two sections.

4 Application of the projection method to the knapsack problem
recurrence equations

In this section we consider the implementation of the knapsack problem recurrence equations on linear array
composed of g identical processing elements Cy, k = 1,2, ..., ¢, where ¢ > m. Each PE C} has two addressable
memories F; and V; each of size a. The purpose of Fj and V; is to save the values of the functions f; and
vy, respectively.

Forward phase: The operation of the systolic array is best explained using the dependence projection
method (see [28]), which corresponds to scheduling the dependence graph and projecting it along a conve-
niently chosen direction. As was noted in section 2 the similarity of the graphs corresponding to equations
(2) and (3) is that they are both data dependence graphs. In any column k the dependence vectors depend
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on the associated weight w; which is input data for the problem. That is, this is a run-time dependency. This
peculiarity makes these dependence graphs rather irregulars. The most convenient direction of projection
has to be chosen in order to hide this irregularity in the local memory of the processing element. Note that
the DGs considered are well determined by the initial data at their borders (upper and left). This allows the
computations to be performed successively in a pipeline fashion.

The computations in any column of the DP in figure 2 depend only on the computations of the previous
column. Similar graphs have been studied in the paper of Li and Wa [23], where they are called multistage
graphs. Usually such graphs are projected along the %k axis, which yields a linear array of ¢ processing
elements. This projection is used by Lin and Storer in [12]. Their algorithm has optimal linear speedup of
O(q) on an EREW PRAM of ¢ processors. But the implementation on the Connection Machine achieves
speedup of O(q/log ¢). This is due to the dependencies along the axis j which are not local and whose
implementation on a hypercube takes up to log ¢ steps.

The dependence graph associated with equation (2) offers less opportunity for parallelization. The unique
reasonable direction of projection is the j axis because of the dependencies in the columns themselves. In
this case a straightforward projection along the j axis yields a linear unidirectional array of m processing
elements. This mapping was studied in [11, 25, 30]. Compared to these papers, the partitioning we propose
provides the best memory size requirement for the algorithm while preserving its processor efficiency. The
approach is applicable to the DG resulting from equation (2) as well as to DG corresponding to equation

A timing function is a mapping ¢t : D — N, such that if the computations on vertex v € D depend on
the computations on vertex w € D, then t(v) > t(w). An allocation function is a mapping a : D — [1,¢],
such that a(v) is the number of the processor that executes the calculations attached to vertex v € D. The
mapping a must be chosen in such a way that a processor has no more than one computation to perform at
a given instant. In addition to the previous well known functions we need the so-called address function. It
is as a mapping addr : D — [1, a] such that addr(v) is the number of the memory location in processor a(v)
where data v € D is stored.

Obviously, an allocation function a(j, k) = k corresponds to the chosen direction of projection of the
dependence graph along axis j. Since for any k, the values fx(j),j = 0,1,..., ¢ are computed sequentially
and fi(j) depends on fi(j — wg), the value fr(j) can be stored in the same memory location in C} as the
value fi(j —wg). This implies the memory size & must meet the requirement a > wy, for any 1 < k < m. The
address of any data element (j, k) € D in F}, is given by addr(j, k) = j mod wy. The function ¢(j, k) = j + k
is a timing function. For the total time of the forward phase we obtain:

t(c,m) =c+m. (8)

The program of the processing element is the following:

PE algorithm

repeat {forever}
addr := j;n mod w;
{compute fr(J) in the variable frmaz}
if Jin < w then fmaz = fin;
else frmaz = max{fin, F(addr)+ p};
{compute ug(s) }
if fma.r S fin then Uout ‘= Uin,
else wuout := oby;
{compute v (j) and store in V}
if frmaz < fin then V(addr) := —1;
else if V(addr) = —1 then V(addr) := jin;
if fma.r S fin then wvout := Vin;
else vout := V(addr);
Jout = Jinj
fout = fmax;
end_repeat
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To realize this algorithm each cell C keeps the values py, wy and k in registers p, w, obj respectively. The
data input into the leftmost cell during the first ¢ + 1 instants ¢, ¢ = 0,1,...,¢c are fi, = 0, i = ¢, Uy =
0, v, = 0. The solution of the problem is fi,,(¢). The values uy,(j) and v (4),5 = 0,1,...,c are used in the
backtracking phase.

Remark: Obviously the approach presented above can be applied to any recurrence similar to equation (2)
or (3). For example the subset-sum problem exibits DP recurrence as in equation (3), while the the change-
making problem exibits DP recurrence as in equation (2) (for the definitions of these problems see the book
of Martello and Toth [2]).

Backtracking phase: The values ug(j) and vi(j) are computed and propagated through the considered
array simultaneously with the value f;(j). As with the values of the function fi, the values vi(j),;j =
0,1,...,c are computed sequentially and v;(j) depends on vi(j — wy), i.e. the value v (j) can be stored in
the same memory location in V; as is the value vi(j — wy). In other words, a memory Vj, of size wy, in cell
C} is enough for the computation of the function vg. The computation of the function u; does not require a
supplementary local memory. The values of the functions u,, and v,, leave the last cell C,, and are stored
in a supplementary memory of size 2¢. Then the modified backtracking algorithm can be executed by the
host computer. More details concerning the program implementation of recurrence (6) can be found in [26].

5 Discussion of the backtracking phase

A serial implementation of the backtracking phase is far from being crucial for efficiently solving the conside-
red problem. Indeed the time for this phase (©(m+¢) in the classical algorithm or ©(m) in the modification
proposed here) is negligable as compared with the total time ©(me). But the backtracking algorithm is
sequential and its time cannot be improved on a parallel machine. In contrast to this, as we see from (8),
given a multiprocessor with enough number of processing elements, the forward phase can be performed in
O(m + ¢) time, which is comparable to the time for the backtracking. Therefore this phase is also worth
studied when an implementation on a massively parallel architecture is considered.

Let us examine under which conditions the application of the modified backtracking algorithm can give
better total time than the algorithm of Hu. The comparison is not obvious since the time constant in
the forward phase is not the same when these two variants of the backtracking are executed. Denote by
Tforward—Hu 3 Tforward—modi; Tbacktrack—Hu; Tbacktrack—modi the time associated to the corresponding phases
of the two variants of the dynamic programming implementation considered here. Assume the number of
processors is equal to m and suppose we consider a software or firmware implementation. Then we have
Tforwarda—gu = Ci1(m + ¢) and Thacktrack—#u = Ca2(m + ¢), where Cy is the time taken to implement
statements (2) and (4) and C5 -the time constant from corollary 1. Analogously for the modified forward phase
we require C; for (2), (4), but we incur an extra penalty Cs to implement (6). This gives Tforward—modi =
(C1 + C3)(m + ¢). Finally corollary 2 implies Thocktrack—modi = Cam, where Cy is the corresponding time
constant. Then

Tforward—Hu + Thacktrack—Hu = Cl(m + C) + C2(m + C)

> Tforward—modi + Tbacktrack—modi — (Cl + CS)(m + C) + C4m

& Ca(m+c¢) > Cs(m+¢) + Cym. (9)

Theoretically C3 and Cq are much closer, and in practice the inequality (9) is hardly satisfied 3.
Consider now a custom VLSI implementation *. Denote by Cs the time constant in the classical forward
phase (i.e. recurrences (2) and (4)). Therefore we have Tforward—ru = Cs(m + ¢). However in the modified

3an illustration of this fact is our implementation on 1WARP(see section 7)

4this point is reasonable since the results of [26, 31] demonstrate that efficient VLSI implementations for recurrences 2 and
3 exist
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Figure 4: A linear processor array of length ¢ and a queue

forward phase, in this case, the supplementary statement (6) is implemented in parallel with (2) and (4).
Therefore we have the same time constant Cj resulting in

Tforward—modi = Tforward—Hu = CS(m + C)~

Hence
Tforward—Hu + Thacktrack—Hu = CS(m + C) + C2(m + C)

and
Tforward—modi + Tbacktrack—modi = C5(m + C) + C4m~

Obviously the inequality

Tforward—Hu + Tbacktrack—Hu > Tforward—modi + Tbacktrack—modi (10)

is valid since C3 and Cy are closer. For large values of ¢, (10) is satisfied even when the number of
processor is not equal to m.

6 A Ring

The algorithm in the previous section needs m processing elements to solve the knapsack problem. In this
section we compute the time of the algorithm on a ring composed of a linear array of ¢ processing elements,
each one with storage capacity at least w4, and a queue, which are connected as illustrated in figure 4. The
queue memory receives the data from processing element C,, stores it and sends it to C; when necessary.
This memory saves the vectors u,, and v,, at the end of the forward phase. The number ¢ is supposed fixed
and ¢ < m. Therefore, the linear array in the ring has to be used [m/q] times to find fy,(¢). For this purpose,
the set fr(j),k=1,2,...,m,j=0,1,..., cis partitioned into [m/q] bands and each one of these bands can
be evaluated in turn by the linear processor array. Let B; denote the ith band. The partitioning is given by
the relation fi(j) € B; & [k/q] = ¢.

Since ¢ values are input in any cell and a data needs to pass ¢ time through C; to C,, a new band can
be input to the cell Cy every max{e, ¢} = O(c + ¢) time. Hence, we obtain for the total time complexity of
our algorithm on the ring

T, = ©(me/q +m). (11)

The speedup and the efficiency of the algorithm both approach their optimal values respectively ©(g)
and ©(1) as ¢ increases.

7 Computational experiments

The algorithm discussed in this paper is a fine-grained parallel algorithm which requires only local communi-
cation on a linear array. The partitioning scheme is suitable for systolic implementation on a multiprocessor
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machine. Our experiments have been conducted on an iWARP [32]. This machine supports the register-to-
register communication model that is required to efficiently execute systolic programs [33]. The machine
we use has 8 processors connected in a ring. To support efficient systolic experiments, we use the parallel
language RELACS[34] which embodies both the computation and the communications aspects of systolic
algorithms in a terse programming model.

The systolic network is viewed as a programmable accelerator connected to a host workstation. The pro-
gramming model assumes a linear array of identical processors running in an SIMD mode. The input/output
data management of the systolic network, as well as the computational tasks, are handled using a scalar
processor connected between the two end-processors and the host.

The compiler produces three files of C source language from the program written in RELACS: the first
is responsible for the interface between the host and the systolic accelerator (it is loaded on the host); the
second is in charge of correctly feeding the data to the network and storing the results on the scalar processor;
the third performs the actual parallel computation of the systolic network. Parallelism is explicitly expressed
by data types and communication operators. Synchronization, and target-dependent communications and
control mechanisms, are generated by the compiler.

To test the performance of the algorithm we performed several experiments. In each instance the number
of objects and the size of the knapsack were specified, and the profits and weights were randomly generated.

The first experiment was designed to test the effect of the parameter ¢ on the running time. In order to
eliminate the influence of the ring, the number of objects m was fixed at 8 while the capacity ¢ varied from
10 to 150000. Note that we are able to solve problems with really very large knapsack capacity because in
our implementation this parameter does not influence the PE’s memory size (see section 4). We observe that
the running time (plotted in figure 5) is strictly linear in ¢. We compare as well the time of the classical DP
implementation from section 2 with the running time of the modification proposed in this article section 3.
The better behavior of the classical algorithm was theoretically expected because of the reasons explained
in section 5 where we argue why the effect of the modified algorithm is difficult to observe on a software
implementation. For these reasons in the next experiments we investigate only the behavior of the classical
DP algorithm from section 2.

The effect of the parameter m on the running time of the algorithm is observed in the second experiment.
The knapsack capacity and the number of PE is fixed respectively at 150000 and 8. The number of objects
varies from 10 to 1000. This forced the data to circulate through the ring several times each time loading
the new coefficients according to the partitioning in section 6. As we see from figure 6 this does not result
in a slowdown and the theoretical linear behavior of the algorithm from (11) is observed.

The third experiment was designed to observe the speedup of the parallel algorithm (i.e. the ratio T3 /T,
where T, is the running time of the algorithm on ¢ processors and 73 is the time required by a program
written on the C language (not on our parallel language RELACS) and executed on one processor of iWARP.
This experiment proves that the parallel algorithm is faster than the sequential one when more than 3
processors were used. The linear behavior of the speedup is also confirmed (see figure 7).

8 Concluding remarks

Dynamic programming is a based approach used to solve all types of knapsack problems. The following
features make this approach worthy of study for parallel implementation:

e it efficiently solves instances of the knapsack problem which pose difficulties for the more popular B&B
approach,

e it can be easily parallelized in a pipelined way using fine-grained parallelism,

e this requires only local communication on a linear array,
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e the speedup of the obtained algorithm is theoretically optimal; when m processors are available the
parallel implementation requires m + ¢ time units versus me time units in a serial machine implemen-
tation,

e the second (backtracking) phase of the DP method is sequential; this phase requires some computational
work during the first (forward) phase; these computations can be efficiently implemented when the first
phase is parallelized,

e problems with very large knapsack capacity ¢ can be considered because this parameter does not
influence the memory needed to solve the problem; only the size of the object’s weights determines the
PE memory size necessary,

e the data partitioning scheme has the flexibility to run on a varied number of processors independent
of the problem sizes.

Our computational experiments on the iWARP machine completely confirm the theoretical results and
show the proposed algorithm performs well for a wide range of problem size.
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