Gaussian parsimonious clustering models
Gilles Celeux, G. Govaert

To cite this version:

HAL Id: inria-00074643
https://hal.inria.fr/inria-00074643
Submitted on 24 May 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Gaussian Parsimonious Clustering Models

Gilles CELEUX
Gérard GOVAERT

N° 2028
Septembre 1993

PROGRAMME 5
Traitemenr du signal,
automatique et
productique
Gaussian Parsimonious Clustering Models

Gilles Celeux
INRIA Rocquencourt

Gérard Govaert
UTC Compiègne, URA CNRS 817

Abstract

Gaussian clustering models are useful both for understanding and suggesting powerful criteria. Banfield and Raftery (1993) have considered a parametrization of the variance matrix Σ_k of a cluster P_k in terms of its eigenvalue decomposition, $\Sigma_k = \lambda_k D_k A_k D'_k$, where λ_k defines the volume of P_k, D_k is an orthogonal matrix which defines its orientation and A_k is a diagonal matrix with determinant 1 which defines its shape. This parametrization allows us to propose many general clustering criteria from the simplest one (spherical clusters with equal volumes which leads to the classical k-means criterion) to the most complex one (unknown and different volumes, orientations and shapes for all clusters). Methods of optimization to derive the maximum likelihood estimates as well as the practical usefulness of these models are discussed. We especially analyze the influence of the volumes of clusters. We report Monte-Carlo simulations and an application on stellar data which dramatically illustrated the relevance of allowing clusters to have different volumes.

Keywords: Gaussian mixture, eigenvalue decomposition, cluster volumes.

Modèles gaussiens parcimonieux de classification

Résumé

Les mélanges gaussiens sont utiles pour fournir des modèles de classification puissants et faciles à interpréter. Dans cet article, nous reprenons une paramétrisation proposée par Banfield et Raftery (1993) qui ont considéré la décomposition spectrale des matrices variance des classes $\Sigma_k = \lambda_k D_k A_k D'_k$, λ_k représentant le volume de la classe, D_k représentant son orientation et A_k, matrice diagonale de déterminant 1, représentant sa forme. Cette paramétrisation permet de proposer de nombreux modèles de classification du plus simple (volumes, orientations et formes égales) au plus compliqué (volumes, orientations et formes différentes). Nous décrivons les algorithmes d’identification de ces modèles par le maximum de vraisemblance. Puis, des simulations de Monte-Carlo et une application sur des données d’astronomie illustrent la portée de ces différents modèles et font apparaître le très grand intérêt de supposer des volumes différents pour les classes.

Mots-clés : mélange gaussien, décomposition spectrale, volumes des classes.
1 Introduction

Basing cluster analysis on Gaussian mixture models has become a classical and powerful approach. (Banfield and Raftery 1993, Celeux and Govaert 1993 and the book of McLachlan and Basford 1989 are recent examples among many others of this point of view.) Data \(x_1, \ldots, x_n \) in \(\mathbb{R}^d \) are assumed to arise from a random vector with density

\[
 f(x) = \sum_{k=1}^{K} p_k \Phi(x|\mu_k, \Sigma_k) \tag{1.1}
\]

where the \(p_k \)'s are the mixing proportions \((0 < p_k < 1 \text{ for all } k = 1, \ldots, K \text{ and } \sum_k p_k = 1) \) and \(\Phi(x|\mu, \Sigma) \) denotes the density of a Gaussian distribution with mean vector \(\mu \) and variance matrix \(\Sigma \). In clustering context, four commonly used assumptions on the component variance matrices are considered:

1. \(\Sigma_1 = \ldots = \Sigma_K = \sigma^2 I \) with \(\sigma^2 \) unknown. For instance, this assumption can lead to minimize the standard \(K \)-means criterion \(\text{tr}(W) \) where \(W \) is the within cluster scattering matrix of the partition \(P = P_1, \ldots, P_K \) to be derived from the mixture model (Scott and Symons 1971):

\[
 W = \sum_{k=1}^{K} \sum_{x_i \in P_k} (x_i - \bar{x}_k)(x_i - \bar{x}_k)' \tag{1.2}
\]

where

\[
 \bar{x}_k = \frac{1}{\#P_k} \sum_{x_i \in P_k} x_i.
\]

2. \(\Sigma_1 = \ldots = \Sigma_K = \text{Diag}(\sigma_1^2, \ldots, \sigma_d^2) \), with \((\sigma_1^2, \ldots, \sigma_d^2) \) unknown and where \(\text{Diag}(a_1, \ldots, a_d) \) denotes a diagonal matrix with diagonal vector \(a_1, \ldots, a_d \).

3. \(\Sigma_1 = \ldots = \Sigma_K = \Sigma \) where \(\Sigma \) is an unknown symmetric matrix. This assumption can lead to minimize the classical inertia type clustering criterion \(|W| \) of Friedman and Rubin (1967).

4. No restriction is placed on the variance matrices \(\Sigma_1, \ldots, \Sigma_K \).

Following Banfield and Raftery (1993), we consider in this paper a parametrization of the variance matrices of the mixture components which allows us to embed the four above mentioned assumptions in a general and flexible framework which can lead to powerful, although somewhat unusual, clustering criteria. This parametrization, also considered in Flury et al. 1993 in a discriminant analysis context, consists in expressing the variance matrix \(\Sigma_k \) in terms of its eigenvalue decomposition

\[
 \Sigma_k = \lambda_k D_k A_k D_k' \tag{1.3}
\]

where \(\lambda_k = |\Sigma_k|^{1/d} \), \(D_k \) is the matrix of eigenvectors of \(\Sigma_k \) and \(A_k \) is a diagonal matrix, such that \(|A_k| = 1\), with the normalized eigenvalues of \(\Sigma_k \) on the diagonal in a decreasing order.

The parameter \(\lambda_k \) determines the volume of the \(k \)th cluster, \(D_k \) its orientation and \(A_k \) its shape. By allowing some but not all of these quantities to vary between
clusters, we obtain parsimonious and easily interpreted models which are appropriate to describe various clustering situations.

In this paper, we derive the criteria and the algorithms for most of the situations of general interest. By the way, we generalize the work of Banfield and Raftery (1993). These authors focussed attention on situations where the shape matrices have to be specified by the user, they considered only classification maximum likelihood criteria and they assumed that the mixture proportions p_k's in (1.1) were equal. On the contrary, we study situations where all the parameters of interest are assumed unknown and we derived the criteria and algorithms for the mixture and the classification approaches of the mixture problem. Moreover, we pay special attention on situations allowing different cluster volumes with equal shapes and orientations since they lead to powerful and parsimonious clustering models.

The paper is organized as follows. In Section 2, we sketch the two classical approaches in competition to estimate the parameters of a mixture. In Section 3, we present the statistical analysis of 14 Gaussian mixture models specifying different clustering situations from the eigenvalue decomposition of the variance matrices Σ_k of the mixture components. In Section 4, we present illustrative numerical experiments, Monte-Carlo simulations and an application on stellar data. A concluding section summarizes the main points of the paper.

But, before to get into the heart of the matter of the paper, we want to stress the differences between the size and the volume of a cluster for avoiding a possible confusion between these two notions. For instance, Banfield and Raftery (1993) designed the parameter λ (which in their paper is the largest eigenvalue of Σ) as the size of a cluster. In fact, the size of a cluster P_k is $\#P_k$ and is proportional to p_k. Size and volume are not directly related: a small (resp. large) size cluster can occupy a large (resp. small) volume. There exists classical optimization non-hierarchical clustering models to deal in a satisfactory manner with different size clusters, as seen in Section 2 of the present paper. But, those models are not relevant to detect different volume clusters. It is one of the aims of this paper to provide simple models taking account of the volumes of the clusters.

2 Two approaches for mixture analysis

Many authors (see Scott and Symons 1971, Marriott 1975, 1982, Symons 1981, McLachlan 1982, McLachlan and Basford 1989, among others) have considered non-hierarchical clustering methods in which a mixture of multivariate normal distributions is used as a statistical model. In this context, two commonly used maximum likelihood (m.l.) approaches have been proposed: the mixture approach and the classification approach. Loosely speaking, the mixture approach is aimed to maximize the likelihood over the mixture parameters, whereas the classification approach is aimed to maximize the likelihood over the mixture parameters and over the identifying labels of the mixture component origin for each point.
2.1 The Mixture approach

In the mixture approach, the parameter $\theta = p_1, \ldots, p_{K-1}, \mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K$ is chosen to maximize the log-likelihood

$$L(\theta|x_1, \ldots, x_n) = \sum_{i=1}^{n} \ln \left[\sum_{k=1}^{K} p_k \Phi(x_i|\mu_k, \Sigma_k) \right].$$ \hspace{1cm} (2.1)

In the restricted case where the mixing proportions are assumed to be equal, $\theta = \mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K$ and the criterion to be maximized takes the form

$$L_R(\theta|x_1, \ldots, x_n) = \sum_{i=1}^{n} \ln \left[\sum_{k=1}^{K} \Phi(x_i|\mu_k, \Sigma_k) \right].$$ \hspace{1cm} (2.2)

It does not seem that there is any interest to detail the expressions (2.1) and (2.2) for the Gaussian mixtures under consideration in this paper.

The parameter θ is chosen to maximize equation (2.1) or (2.2) using, generally, the EM algorithm (Dempster, Laird and Rubin 1977). Starting from an initial parameter θ^0, an iteration of the EM algorithm consists in computing the current conditional probabilities $t_k(x_i)(1 \leq i \leq n, 1 \leq k \leq K)$ that x_i arises from the kth mixture component for the current value of θ, according to the equation (2.3) (E step); then the m.l. estimates $\hat{\mu}_k, \hat{\Sigma}_k$ are computed using the conditional probabilities $t_k(x_i)$ as conditional mixing weights (M step). (Detailed formulas for the M step are given in the next section.)

In this approach, a partition of the data can directly be derived from the m.l. estimates of the mixture parameters by assigning each x_i to the component which provides the greatest conditional probability that x_i arises from it. The estimated conditional probability that x_i arises from the kth component $(1 \leq i \leq n, 1 \leq k \leq K)$ is given by

$$t_k(x_i) = \frac{\hat{p}_k \Phi(x_i, \hat{\mu}_k, \hat{\Sigma}_k)}{\sum_{t=1}^{K} \hat{p}_t \Phi(x_i, \hat{\mu}_t, \hat{\Sigma}_t)}$$ \hspace{1cm} (2.3)

for the unrestricted model (unknown mixing proportions) and by

$$t_k(x_i) = \frac{\Phi(x_i, \hat{\mu}_k, \hat{\Sigma}_k)}{\sum_{t=1}^{K} \Phi(x_i, \hat{\mu}_t, \hat{\Sigma}_t)}$$ \hspace{1cm} (2.4)

for the restricted model (equal mixing proportions).

2.2 The Classification Approach

In the classification approach, the indicator vectors, identifying the mixture component origin, $z_i = (z_{ik}, k = 1, \ldots, K)$ with $z_{ik} = 1$ or 0 according as $x_i(1 \leq i \leq n)$ has been drawn from the kth component or from another one, identifying the mixture component origin, are treated as unknown parameters. Two different types of criteria, usually denoted Classification Maximum Likelihood (CML) criteria, have been proposed according to the sampling scheme.

Under the separate sampling scheme, the sample x_1, \ldots, x_n is formed by separately taking n_k observations from the kth component where n_k is fixed before sampling.
In this formulation, the proportions p_k's do not appear explicitly and, thus, they are implicitly assumed to be equal. In this situation, the restricted CML criterion takes the form (see, for instance, Scott and Symons 1971)

$$\text{CL}_R(\theta, z_1, \ldots, z_n | x_1, \ldots, x_n) = \sum_{k=1}^{K} \sum_{x_i \in P_k} \ln [\Phi(x_i | \mu_k, \Sigma_k)]$$ \hspace{1cm} (2.5)

where $P = (P_1, \ldots, P_K)$ is the partition of x_1, \ldots, x_n associated to the indicator vectors $z_1, \ldots, z_n : P_k = \{ x_i / z_{ik} = 1 \}$.

Under the mixture sampling, the sample x_1, \ldots, x_n is taken at random from the mixture density (1.1), so that the number of observations from the components has a multinomial distribution with sample size n and probability parameters p_1, \ldots, p_K.

In this situation, the CML criterion takes the form (Symons 1981)

$$\text{CL}(\theta, z_1, \ldots, z_n | x_1, \ldots, x_n) = \sum_{k=1}^{K} \sum_{x_i \in P_k} \ln [p_k \Phi(x_i | \mu_k, \Sigma_k)].$$ \hspace{1cm} (2.6)

It can be written

$$\text{CL} = \text{CL}_R + \sum_{k=1}^{K} \# P_k \ln p_k.$$ \hspace{1cm} (2.7)

There is some interest to detail the computation of CML criteria using the decomposition (1.3) of the variance matrices Σ_k since most of the classical clustering criteria can be analyzed as restricted CML criteria (see Scott and Symons 1971). In the most general case, we get

$$\text{CL}_R = -\frac{1}{2} \sum_{k=1}^{K} \frac{1}{\lambda_k} \sum_{x_i \in P_k} (x_i - \mu_k)' D_k A_k^{-1} D_k' (x_i - \mu_k)$$

$$- \frac{d}{2} \sum_{k=1}^{K} \# P_k \log(\lambda_k) - \frac{nd}{2} \log(2\pi).$$ \hspace{1cm} (2.8)

Both criteria can be optimized by making use of a classification version of the EM algorithm, the so-called CEM algorithm (Celeux and Govaert 1992) that we described briefly in the unrestricted situation (maximization of CL):

Starting from an initial partition P^0, an iteration of the CEM algorithm consists in computing the current conditional probabilities $t_k(x_i)(1 \leq i \leq n, 1 \leq k \leq K)$ according to the equation (2.3) (E step); then a up-dated partition is calculated by assigning each x_i to the cluster which provides the maximum current conditional probability $t_k(x_i)(1 \leq k \leq K)$ (C step); and the m.l. estimates $(\hat{p}_k, \hat{\mu}_k, \hat{\Sigma}_k)$ are computed using the cluster P_k as sub-sample (1 \leq k \leq K) (M step).

3 Fourteen models

The eigenvalue decomposition (1.3) can model various clustering situations. First, we can allow the volumes, the shapes and the orientations of clusters to vary or to be equal between clusters. Variations on assumptions on the parameters λ_k, D_k and $A_k (1 \leq k \leq K)$ lead to 8 general models of interest. For instance, we can
assume different volumes and keep the shapes and orientations equal by requiring
that \(A_k = A \) (A unknown) and \(D_k = D \) (D unknown) for \(k = 1, \ldots, K \). We
denote this model \([\lambda_k^D A D_k']\). With this convention, writing (for instance) \([\lambda D_k A D_k]’\)
means that we consider the mixture model with equal volumes, equal shapes and
different orientations. Moreover 2 other families of situations are of interest.
The first one consists in assuming that the variance matrices \(\Sigma_k \) are diagonal matrices. In
the parametrization (1.3), it means that the orientation matrices \(D_k \) are permutation
matrices. These permutiation matrices will be denoted \(J_k \) instead of \(D_k \) to
distinguish this specific case with the general case. Since in such a case it does not seem that
variations on the shape matrices are of any interest, we write \(\Sigma_k = \lambda_k B_k \) where \(B_k \)
is a diagonal matrix with \(|B_k| = 1 \). This particular parametrization gives rise to
4 models \(([\lambda B], [\lambda_k B], [\lambda B_k] \) and \([\lambda_k B_k])\). The second family of models consists in
assuming spherical shapes, namely \(A_k = I, I \) denoting the identity matrix. In such
a case, two parsimonious models are in competition: \([\lambda I]\) and \([\lambda_k I]\). Finally, we get
14 different models for which both the mixture and the classification approaches are
detailed hereafter.
The E and the C steps of the EM or the CEM algorithm do not need further
explanation. But the M step has to be detailed for both approaches for each of the
14 models. To unify the presentation, we make use of a classification matrix
\(c = (c_{ik}, i = 1, \ldots, n; k = 1, \ldots, K) \) with \(0 \leq c_{ik} \leq 1 \) and \(\sum_{k=1}^{K} c_{ik} = 1 \), with the
constraint \(c_{ik} \in \{0,1\} \) when \(c \) defines a partition as in the classification approach.
With this convention, in both approaches, the M step consists in maximizing in \(\theta \) the
function (we restrict attention to the unrestricted model).

\[
F(\theta|x_1, \ldots, x_n, c) = \sum_{k=1}^{K} \sum_{i=1}^{n} c_{ik} \ln [p_k \Phi(x_i|\mu_k, \Sigma_k)]
\]

for fixed \(c \) and \(x_1, \ldots, x_n \). When we are concerned with the EM algorithm, \(c \) defines
a fuzzy classification and we have \(c_{ik} = \pi_k(x_i) \) for \(1 \leq i \leq n \) and \(1 \leq k \leq K \). When
we are concerned with the CEM algorithm, \(c \) defines a partition and we have \(c_{ik} = 1 \)
if \(x_i \in P_k \) and 0 otherwise for \(1 \leq i \leq n; 1 \leq k \leq K \). Thus, for both approaches and
for each of the considered models, the updating formulas for the proportions and the
mean vectors of the mixture are, for \(1 \leq k \leq K \),

\[
\hat{p}_k = \frac{n_k}{n} \quad (3.10)
\]

\[
\hat{\mu}_k = \bar{x}_k = \frac{\sum_{i=1}^{n} c_{ik} x_i}{n_k} \quad (3.11)
\]

where

\[
n_k = \sum_{i=1}^{n} c_{ik} \quad (3.12)
\]

Remark that as \(c \) defines a partition \(n_k = \#P_k \). Moreover, the within cluster scat-
tering matrix \(W \) defined in (1.2) becomes

\[
W = \sum_{k=1}^{K} \sum_{i=1}^{n} c_{ik} (x_i - \bar{x}_k)(x_i - \bar{x}_k)' \quad (3.13)
\]
Table 1: Some characteristics of the 14 models. We have $\alpha = Kd + K - 1$ in the unrestricted situation and $\alpha = Kd$ in the restricted situation, $\beta = \frac{d(d+1)}{2}$; CF means that the M step is closed form, IP means that the M step needs an iterative procedure. The last column gives the inertia type criterion to be minimized in the restricted situation for each model.

\[
W_k = \sum_{i=1}^{n} c_{ik}(x_i - \bar{x}_k)(x_i - \bar{x}_k)'.
\] (3.14)

The updating formulas for the variance matrices depend on the considered mixture model and are presented in the next subsections.

Table 1 summarizes some features of the 14 models. In this table, the first column specifies the model. The second column gives the number of parameters to be estimated. The third column indicates if the M step can be achieved with closed form formulas (CF) or if there is the need to make use of an iterative procedure (IP). The last column displays the inertia type criterion to be minimized for the restricted situation when the M step is closed form. These criteria can be derived from standard algebraic calculations.

3.1 The general family

From Table 1, it can be seen that the inertia type criteria derived from the models $[\lambda DAD']$, $[\lambda D_k A_k D_k']$ and $[\lambda_k D_k A_k D_k']$ are classical clustering criteria (see Scott and Symons 1971, Maronna, Jacovkis 1974). On the contrary, the unusual models $[\lambda_k DAD']$, $[\lambda_k D A_k D']$ and $[\lambda_k D_k A D_k']$ which allow different volumes for the clusters
do not lead to any inertia type criteria. Moreover, it is worth noting that the 8 models of the general family are invariant under any linear transformation of the data.

We now detail the m.l. estimations of the variance matrices from a classification matrix c for the 8 situations.

Model [$\lambda DAD'$]. In this well-known situation, Maximizing (3.9) leads to the minimization of

$$F_1(\Sigma) = \text{tr}(W\Sigma^{-1}) + dn \ln(|\Sigma|)$$

and the common variance matrix Σ is estimated by

$$\hat{\Sigma} = \frac{W}{n}.$$

Model [$\lambda_k DAD'$]. In this situation, it is convenient to write $\Sigma_k = \lambda_k C$ with $C = DAD'$. Maximizing (3.9) leads to the minimization of

$$F_2(\lambda_1, \ldots, \lambda_K, C) = \sum_{k=1}^{K} \frac{1}{\lambda_k} \text{tr}(W_k C^{-1}) + d \sum_{k=1}^{K} n_k \ln(\lambda_k).$$

The minimization of $F_2(\lambda_1, \ldots, \lambda_K, C)$ has to be performed iteratively.

- As the matrix C is kept fixed, the λ_k’s minimizing $F_2(\lambda_1, \ldots, \lambda_K, C)$ are

$$\lambda_k = \frac{\text{tr}(W_k C^{-1})}{dn_k}.$$

- As the volumes λ_k’s are kept fixed, the matrix C minimizing $F_2(\lambda_1, \ldots, \lambda_K, C)$ is minimizing $\text{tr}\left(\sum_{k=1}^{K} \frac{1}{\lambda_k} W_k\right) C^{-1}$, and thus, (see Appendix 1, Theorem 1), we have

$$C = \frac{\sum_{k=1}^{K} \frac{1}{\lambda_k} W_k}{\sum_{k=1}^{K} \frac{1}{\lambda_k} W_k^{1/2}}.$$

Model [$\lambda DA_k D'$]. In this situation and in the next one, there is no interest to assume that the terms of the diagonal matrices A_k are in decreasing order. Thus for the models [$\lambda DA_k D'$] and [$\lambda_k DA_k D'$] we do not assume that the diagonal terms of A_k are in decreasing order. Maximizing (3.9) leads to the minimization of

$$F_3(\lambda, D, A_1, \ldots, A_K) = \frac{1}{\lambda} \sum_{k=1}^{K} \text{tr}(DA_k^{-1} D'W_k) + nd \ln(\lambda).$$

F_3 is minimized by first minimizing $\sum_{k=1}^{K} \text{tr}(DA_k^{-1} D'W_k)$ using an iterative method that we describe hereunder and by a direct calculation of λ

$$\lambda = \frac{\sum_{k=1}^{K} \text{tr}(DA_k^{-1} D'W_k)}{nd}.$$

The minimization of $\sum_{k=1}^{K} \text{tr}(DA_k^{-1} D'W_k)$ is achieved by making use of the following procedure:
For fixed D, from Corollary 1 of Appendix 1, we get

$$A_k = \frac{\text{diag}(D'W_k D)}{|\text{diag}(D'W_k D)|^{\frac{1}{2}}}$$

where $\text{diag}(M)$ denotes the diagonal matrix which has the same diagonal as the matrix M.

For fixed A_1, \ldots, A_K, $\sum_{k=1}^{K} \text{tr}(D A_k^{-1} D'W_k)$ is minimized using an adaptation of an algorithm of Flury and Gautschi (1986) that we presented in Appendix 2.

Model $[\lambda_k D A_k D']$. In this situation, there is no need to isolate the volume and it is convenient to write $\Sigma_k = D A_k D'$ where $|A_k| = |\Sigma_k|$. Maximizing (3.9) leads to the minimization of

$$F_4(D, A_1, \ldots, A_K) = \sum_{k=1}^{K} \left[\text{tr}(D A_k^{-1} D'W_k) + n_k d \ln |A_k| \right].$$

The minimization of F_4 can be achieved by a similar procedure as previously presented for minimizing $\sum_{k=1}^{K} \text{tr}(D A_k^{-1} D'W_k)$.

For fixed D, from Corollary 2 of Appendix 1, we get

$$A_k = \text{diag}(D'W_k D).$$

For fixed A_1, \ldots, A_K, it can be making use of the same algorithm described in Appendix 2 since minimizing F_4 is equivalent to minimize $\sum_{k=1}^{K} \text{tr}(D A_k^{-1} D'W_k)$.

Model $[\lambda D_k A D_k']$. Maximizing (3.9) leads to the minimization of

$$F_5(\lambda, D_1, \ldots, D_K, A) = \frac{1}{\lambda} \sum_{k=1}^{K} \text{tr}(W_k D_k A^{-1} D_k') + nd \ln \lambda$$

Considering for $k = 1, \ldots, K$ the eigenvalue decomposition $W_k = L_k \Omega_k L_k'$ of the symmetric definite positive matrix W_k with the eigenvalues in the diagonal matrix Ω_k in decreasing order, we have

$$F_5(\lambda, D_1, \ldots, D_K, A) = \frac{1}{\lambda} \sum_{k=1}^{K} \text{tr}(D_k' L_k \Omega_k L_k' D_k A^{-1}) + nd \ln(\lambda)$$

Theorem 3 of Appendix 1 shows that $D_k = L_k$ and we have

$$F_5(\lambda, L_1, \ldots, L_K, A) = \frac{1}{\lambda} \text{tr}(\sum_{k=1}^{K} \Omega_k A^{-1}) + nd \ln(\lambda).$$

From which, we deduce that the optimal A and λ are

$$A = \frac{\sum_{k=1}^{K} \Omega_k}{|\sum_{k=1}^{K} \Omega_k|^{\frac{1}{2}}}$$
and
\[\lambda = \frac{\sum_{k=1}^{K} \Omega_k^{\frac{1}{2}}}{n}. \]

Model \([\lambda_k D_k A D_k^T] \). Maximizing (3.9) leads to the minimization of
\[F_6(\lambda_1, \ldots, \lambda_K, D_1, \ldots, D_k, A) = \sum_{k=1}^{K} \frac{1}{\lambda_k} \text{tr}(W_k D_k A^{-1} D_k^T) + d \sum_{k=1}^{K} n_k \ln(\lambda_k) \]

Using again the eigenvalue decomposition \(W_k = L_k \Omega_k L_k^T \), direct calculation shows that the optimal \(\lambda_k, D_k \) and \(A \) are solutions of the equations to be solved iteratively
\[\lambda_k = \frac{\text{tr}(W_k D_k A^{-1} D_k^T)}{d n_k} \]
\[D_k = L_k \]
and
\[A = \frac{\sum_{k=1}^{K} \frac{1}{\lambda_k} \Omega_k}{\sqrt{\sum_{k=1}^{K} \frac{1}{\lambda_k} \Omega_k}}. \]

Model \([\lambda D_k A_k D_k^T] \). In this situation, it is convenient to write \(\Sigma_k = \lambda C_k \) where \(C_k = D_k A_k D_k^T \). Then, maximizing (3.9) leads to the minimization of
\[F_7(\lambda, C_1, \ldots, C_K) = \frac{1}{\lambda} \sum_{k=1}^{K} \text{tr}(W_k C_k^{-1}) + n d \ln(\lambda). \]

Direct calculation shows that
\[C_k = \frac{W_k}{|W_k|^{\frac{1}{2}}} \]
and
\[\lambda = \frac{\sum_{k=1}^{K} |W_k|^{\frac{1}{2}}}{n}. \]

Model \([\lambda_k D_k A_k D_k^T] \). This is the most general situation. Maximizing (3.9) leads to the minimization of
\[F_6(\Sigma_1, \ldots, \Sigma_K) = \sum_{k=1}^{K} \text{tr}(W_k \Sigma_k^{-1}) + d \sum_{k=1}^{K} n_k \ln(|\Sigma_k|) \]

and the variance matrices \(\Sigma_k \) are estimated by
\[\hat{\Sigma}_k = \frac{1}{n_k} W_k. \]

3.2 The diagonal family

For this more parsimonious family of models, the eigenvectors of \(\Sigma_k \) (1 \(\leq k \leq K \)) are the vectors generating the basis associated to the \(d \) variables (\(D_k = J_k \)). If the \(J_k \) are equal, the variable are independant. If the \(J_k \) are different, the variables are independant conditionally to the \(z_i \) (1 \(\leq i \leq n \)). In this situation, Gaussian mixture with diagonal variance matrices can be viewed as an elegant model for weighting variables
in a cluster analysis context. It leads to adaptative weighting algorithms assuming
same weights for each cluster if the J_k's are assumed equal and different weights for
each cluster if the J_k's are assumed different. As said in the beginning of this section,
we considered four models of interest. The main features of these four models are
summarized in Table 1. The three inertia type criteria for the models $[\lambda B], [\lambda B_k]$
and $[\lambda_k B_k]$ are simple adaptations of the corresponding criteria of the general family.
The interesting model $[\lambda B]$ does not lead to an inertia type criterion. Moreover,
it is worth noting that the 4 models of the diagonal family are invariant under any
scaling of the variables but not under any linear transformation.

We now derive the m.l. estimation of the variance matrices from a classification ma-
trix c for each of the four situations.

Model $[\lambda B]$. In this situation, maximizing (3.9) leads to the minimization of

$$F_9(\lambda, B) = \frac{1}{\lambda} \text{tr}(WB^{-1}) + nd \ln \lambda$$

It can be deduced from Corollary 1 of Appendix 1 that

$$B = \frac{\text{diag}(W)}{|\text{diag}(W)|^{\frac{1}{2}}}$$

and we have

$$\lambda = \frac{|\text{diag}(W)|^{\frac{1}{2}}}{n}.$$

Model $[\lambda_k B]$. In this situation maximizing (3.9) leads to the minimization of

$$F_{10}(\lambda_1, \ldots, \lambda_K, B) = \sum_{k=1}^{K} \text{tr}(W_k B^{-1}) + d \sum_{k=1}^{K} n_k \ln(\lambda_k).$$

The minimization of the function F_{10} has to be performed iteratively.

- As the matrix B is kept fixed, the λ_k's minimizing $F_{10}(\lambda_1, \ldots, \lambda_K, B)$ are

 $$\lambda_k = \frac{\text{tr}(W_k B^{-1})}{dn_k} \quad (1 \leq k \leq K).$$

- As the volumes λ_k's are kept fixed, the matrix B minimizing $F_{10}(\lambda_1, \ldots, \lambda_K, B)$
is minimizing $\text{tr} \left(\sum_{k=1}^{K} \frac{1}{\lambda_k} W_k \right) B^{-1}$, and thus, (see Appendix 1, Corollary 1), we have

 $$B = \frac{\text{diag} \left(\sum_{k=1}^{K} \frac{1}{\lambda_k} W_k \right)}{|\text{diag} \left(\sum_{k=1}^{K} \frac{1}{\lambda_k} W_k \right)|^{\frac{1}{2}}}.$$

Model $[\lambda B_k]$. In this situation, maximizing (3.9) leads to the minimization of

$$F_{11}(\lambda, B_1, \ldots, B_K) = \frac{1}{\lambda} \sum_{k=1}^{K} \text{tr}(W_k B_k^{-1}) + nd \ln(\lambda).$$
From which it follows that

\[B_k = \frac{\text{diag}(W_k)}{|\text{diag}(W_k)|^{\frac{1}{2}}} \quad (1 \leq k \leq K) \]

and

\[\lambda = \frac{\sum_{k=1}^{K} |\text{diag}(W_k)|^{\frac{1}{2}}}{n}. \]

Model \([\lambda_k B_k]\). In this situation, maximizing (3.9) leads to the minimization of

\[F_{12}(\lambda_1, \ldots, \lambda_K, B_1, \ldots, B_K) = \sum_{k=1}^{K} \frac{1}{\lambda_k} \text{tr}(W_k B_k^{-1}) + d \sum_{k=1}^{K} n_k \ln(\lambda_k) \]

and, we get

\[B_k = \frac{\text{diag}(W_k)}{|\text{diag}(W_k)|^{\frac{1}{2}}} \quad (1 \leq k \leq K) \]

and

\[\lambda_k = \frac{|\text{diag}(W_k)|^{\frac{1}{2}}}{n_k} \quad (1 \leq k \leq K). \]

3.3 The spherical family

We consider here very parsimonious models for which the variance matrices are spherical. Two situations have to be considered: \(\Sigma_k = \lambda I \) and \(\Sigma_k = \lambda_k I \), \(I \) denoting the \((d \times d)\) identity matrix. The inertia type criterion \(\text{tr}(W) \) of the model \([\lambda I]\) is certainly the oldest and the most employed clustering criterion. On the contrary, as far as we know, the criterion

\[\sum_{k=1}^{K} n_k \ln \frac{\text{tr}(W_k)}{n_k} \]

has been proposed for the first time by Banfield and Raftery (1993). Note that the 2 models of the spherical family are invariant under any isometric transformation.

We derive the m.l. estimations of the volumes of the clusters for these models.

Model \([\lambda I]\). In this situation, maximizing (3.9) leads to the minimization of

\[F_{13}(\lambda) = \frac{1}{\lambda} \text{tr}(W) + nd \log(\lambda) \]

and we get

\[\lambda = \frac{\text{tr}(W)}{nd}. \]

Model \([\lambda_k I]\). In this situation, maximizing (3.9) leads to the minimization of

\[F_{14}(\lambda_1, \ldots, \lambda_K) = \sum_{k=1}^{K} \frac{1}{\lambda_k} \text{tr}(W_k) + d \sum_{k=1}^{K} n_k \log(\lambda_k) \]

and we get

\[\lambda_k = \frac{\text{tr}(W_k)}{dn_k}. \]
We focussed on these models because they are the simplest models for each family (see the column 'number of parameters' of Table 1) and we think that models allowing different volumes are able to tackle various situations though they are neglected in the cluster analysis literature.

To limit the experiments, we only considered the CEM algorithm for the restricted situation where the mixing proportions are assumed to be equal. (Comparisons of the mixture and of the classification approaches in cluster analysis highlighting the influence of assumptions on the mixing proportions can be found in Celeux and Govaert 1993.)

We have performed extensive (more than 400 different data structures) Monte-Carlo simulations. It is not possible to display the numerical results for such an amount of experiments in this paper. We selected 6 types of data arising from a two-component Gaussian mixture in \mathbb{R}^2 which have been simulated according to the 6 models in competition. The types of data were as follows.

- Type of data 1 was generated according to the model $[\lambda I]$ with $\lambda = 1$.
- Type of data 2 was generated according to the model $[\lambda_1 I]$ with $\lambda_1 = 1$ and $\lambda_2 = 5$.
- Type of data 3 was generated according to the model $[\lambda B]$ with $\lambda = 1$ and $B = \text{Diag}(3, 1/3)$.
- Type of data 4 was generated according to the model $[\lambda_1 B]$ with $\lambda_1 = 1, \lambda_2 = 5$ and $B = \text{Diag}(3, 1/3)$.
- Type of data 5 was generated according to the model $[\lambda C]$ with $\lambda = 1$ and $C = DAD'$ where $D = \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$ and $B = \text{Diag}(3, 1/3)$.
- Type of data 6 was generated according to the model $[\lambda_1 C]$ with $\lambda_1 = 1, \lambda_2 = 5$ and $C = DAD'$ where $D = \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$ and $B = \text{Diag}(3, 1/3)$.

For each type of data we considered three different values $\delta = 1, 3, 4.5$ for the distance between the two mixture components defined by:

$$
\delta^2 = (\mu_1 - \mu_2)' \left(\frac{\Sigma_1 + \Sigma_2}{2} \right)^{-1} (\mu_1 - \mu_2).
$$

These distance values are respectively associated with poorly, well and very well separated clusters. Thus, we get 18 data structures. For each of these data structures, we generated 30 samples of size $n = 200$ and 30 samples of size $n = 40$. For each generated sample, we ran the 6 versions of the CEM algorithm corresponding to each of the 6 models. For each experiment, we ran 20 times the CEM algorithm from random initial positions and we selected the solution out of the 20 runs which provided the best value of the optimized criterion.

The simulation results are summarized in Tables 2-7. In these tables are displayed the sample mean and, into parentheses, the standard error over the 30 trials of the overall apparent error for each data structure and for each model.

In our opinion, the main points arising from these tables are
Formally models $[\lambda I]$ and $[\lambda_k I]$ do not seem to be very different and the increase of the number of parameters when considering model $[\lambda_k I]$ instead of model $[\lambda I]$ is small (see Table 1). In fact, these two models can lead to very different clustering structures as illustrated with the following example. We generated a sample of size $n = 500$ from a two-component Gaussian mixture in \mathbb{R}^2. The mixture parameters were $p_1 = 0.5, p_2 = 0.5$, $\mu_1 = (0, 0), \mu_2 = (3, 0)$, $\Sigma_1 = \begin{pmatrix} 100 & 0 \\ 0 & 100 \end{pmatrix}$ and $\Sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

We built two partitions on this data set using the CEM algorithm for both models $[\lambda I]$ and $[\lambda_k I]$ assuming equal mixing proportions and $K = 2$. Figure 1 displays the separation between the two clusters of the partitions derived from the two models. The model $[\lambda I]$ leads to connected clusters separated by a line and the model $[\lambda_k I]$ leads to clusters separated by a circle. It is clear that the partition derived from the model $[\lambda_k I]$ fits dramatically better the underlying clustering structure as it also apparent from the empirical error rates: 0.32 for model $[\lambda I]$ and 0.02 for model $[\lambda_k I]$.

4 Numerical experiments

4.1 Simulated Data

It is impossible to report in this section numerical experiments for all of the discussed models. We only considered variations on the volumes and compared the models

- $[\lambda I]$ vs. $[\lambda_k I]$ (spherical models)
- $[\lambda B]$ vs. $[\lambda_k B]$ (diagonal models)
- $[\lambda DAD']$ vs. $[\lambda_k DAD']$ (general models).
<table>
<thead>
<tr>
<th>Data structure Model</th>
<th>$[\lambda I]$</th>
<th>$[\lambda_k I]$</th>
<th>$[\lambda B]$</th>
<th>$[\lambda_k B]$</th>
<th>$[\lambda DAD']$</th>
<th>$[\lambda_k DAD']$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\lambda I]$</td>
<td>.376 (.050)</td>
<td>.307 (.056)</td>
<td>.444 (.038)</td>
<td>.300 (.100)</td>
<td>.422 (.048)</td>
<td>.396 (.072)</td>
</tr>
<tr>
<td>$[\lambda_k I]$</td>
<td>.363 (.048)</td>
<td>.269 (.079)</td>
<td>.443 (.038)</td>
<td>.297 (.098)</td>
<td>.400 (.042)</td>
<td>.372 (.091)</td>
</tr>
<tr>
<td>$[\lambda B]$</td>
<td>.415 (.076)</td>
<td>.308 (.078)</td>
<td>.395 (.083)</td>
<td>.234 (.057)</td>
<td>.428 (.042)</td>
<td>.397 (.069)</td>
</tr>
<tr>
<td>$[\lambda_k B]$</td>
<td>.408 (.085)</td>
<td>.273 (.082)</td>
<td>.414 (.064)</td>
<td>.236 (.070)</td>
<td>.427 (.042)</td>
<td>.379 (.086)</td>
</tr>
<tr>
<td>$[\lambda DAD']$</td>
<td>.404 (.068)</td>
<td>.325 (.078)</td>
<td>.344 (.071)</td>
<td>.238 (.054)</td>
<td>.357 (.066)</td>
<td>.340 (.099)</td>
</tr>
<tr>
<td>$[\lambda_k DAD']$</td>
<td>.408 (.068)</td>
<td>.287 (.082)</td>
<td>.373 (.058)</td>
<td>.246 (.066)</td>
<td>.373 (.071)</td>
<td>.317 (.086)</td>
</tr>
</tbody>
</table>

Table 2: Means and into parentheses standard errors of error rates for the CEM algorithm for the distance $\delta = 1$ and the sample size $n = 40$.

<table>
<thead>
<tr>
<th>Data structure Model</th>
<th>$[\lambda I]$</th>
<th>$[\lambda_k I]$</th>
<th>$[\lambda B]$</th>
<th>$[\lambda_k B]$</th>
<th>$[\lambda DAD']$</th>
<th>$[\lambda_k DAD']$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\lambda I]$</td>
<td>.052 (.042)</td>
<td>.113 (.049)</td>
<td>.423 (.068)</td>
<td>.337 (.090)</td>
<td>.300 (.070)</td>
<td>.235 (.077)</td>
</tr>
<tr>
<td>$[\lambda_k I]$</td>
<td>.065 (.060)</td>
<td>.052 (.020)</td>
<td>.424 (.071)</td>
<td>.197 (.125)</td>
<td>.293 (.059)</td>
<td>.210 (.086)</td>
</tr>
<tr>
<td>$[\lambda B]$</td>
<td>.085 (.117)</td>
<td>.104 (.040)</td>
<td>.076 (.082)</td>
<td>.123 (.070)</td>
<td>.332 (.084)</td>
<td>.222 (.069)</td>
</tr>
<tr>
<td>$[\lambda_k B]$</td>
<td>.080 (.096)</td>
<td>.068 (.026)</td>
<td>.080 (.082)</td>
<td>.055 (.029)</td>
<td>.329 (.091)</td>
<td>.232 (.079)</td>
</tr>
<tr>
<td>$[\lambda DAD']$</td>
<td>.102 (.081)</td>
<td>.141 (.079)</td>
<td>.142 (.124)</td>
<td>.125 (.071)</td>
<td>.098 (.055)</td>
<td>.091 (.060)</td>
</tr>
<tr>
<td>$[\lambda_k DAD']$</td>
<td>.109 (.083)</td>
<td>.088 (.034)</td>
<td>.149 (.144)</td>
<td>.098 (.065)</td>
<td>.117 (.092)</td>
<td>.069 (.058)</td>
</tr>
</tbody>
</table>

Table 3: Means and into parentheses standard errors of error rates for the CEM algorithm for the distance $\delta = 3$ and the sample size $n = 40$.

<table>
<thead>
<tr>
<th>Data structure Model</th>
<th>$[\lambda I]$</th>
<th>$[\lambda_k I]$</th>
<th>$[\lambda B]$</th>
<th>$[\lambda_k B]$</th>
<th>$[\lambda DAD']$</th>
<th>$[\lambda_k DAD']$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\lambda I]$</td>
<td>.009 (.012)</td>
<td>.024 (.025)</td>
<td>.227 (.197)</td>
<td>.200 (.116)</td>
<td>.114 (.075)</td>
<td>.138 (.076)</td>
</tr>
<tr>
<td>$[\lambda_k I]$</td>
<td>.012 (.021)</td>
<td>.008 (.013)</td>
<td>.212 (.170)</td>
<td>.074 (.068)</td>
<td>.113 (.096)</td>
<td>.081 (.071)</td>
</tr>
<tr>
<td>$[\lambda B]$</td>
<td>.009 (.012)</td>
<td>.024 (.025)</td>
<td>.010 (.018)</td>
<td>.038 (.027)</td>
<td>.149 (.128)</td>
<td>.168 (.088)</td>
</tr>
<tr>
<td>$[\lambda_k B]$</td>
<td>.012 (.021)</td>
<td>.011 (.018)</td>
<td>.013 (.020)</td>
<td>.009 (.012)</td>
<td>.140 (.130)</td>
<td>.092 (.091)</td>
</tr>
<tr>
<td>$[\lambda DAD']$</td>
<td>.015 (.025)</td>
<td>.027 (.024)</td>
<td>.040 (.105)</td>
<td>.042 (.034)</td>
<td>.021 (.025)</td>
<td>.042 (.055)</td>
</tr>
<tr>
<td>$[\lambda_k DAD']$</td>
<td>.015 (.030)</td>
<td>.012 (.018)</td>
<td>.047 (.107)</td>
<td>.010 (.012)</td>
<td>.022 (.040)</td>
<td>.013 (.012)</td>
</tr>
</tbody>
</table>

Table 4: Means and into parentheses standard errors of error rates for the CEM algorithm for the distance $\delta = 4.5$ and the sample size $n = 40$.

<table>
<thead>
<tr>
<th>Data structure Model</th>
<th>$[\lambda I]$</th>
<th>$[\lambda_k I]$</th>
<th>$[\lambda B]$</th>
<th>$[\lambda_k B]$</th>
<th>$[\lambda DAD']$</th>
<th>$[\lambda_k DAD']$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\lambda I]$</td>
<td>.322 (.035)</td>
<td>.270 (.034)</td>
<td>.467 (.024)</td>
<td>.443 (.035)</td>
<td>.450 (.031)</td>
<td>.384 (.036)</td>
</tr>
<tr>
<td>$[\lambda_k I]$</td>
<td>.328 (.039)</td>
<td>.202 (.031)</td>
<td>.465 (.025)</td>
<td>.402 (.082)</td>
<td>.453 (.029)</td>
<td>.383 (.056)</td>
</tr>
<tr>
<td>$[\lambda B]$</td>
<td>.399 (.083)</td>
<td>.275 (.050)</td>
<td>.372 (.088)</td>
<td>.305 (.069)</td>
<td>.449 (.026)</td>
<td>.382 (.040)</td>
</tr>
<tr>
<td>$[\lambda_k B]$</td>
<td>.401 (.080)</td>
<td>.210 (.031)</td>
<td>.365 (.083)</td>
<td>.216 (.035)</td>
<td>.452 (.028)</td>
<td>.370 (.053)</td>
</tr>
<tr>
<td>$[\lambda DAD']$</td>
<td>.377 (.066)</td>
<td>.273 (.043)</td>
<td>.377 (.056)</td>
<td>.282 (.036)</td>
<td>.386 (.051)</td>
<td>.287 (.049)</td>
</tr>
<tr>
<td>$[\lambda_k DAD']$</td>
<td>.378 (.064)</td>
<td>.221 (.038)</td>
<td>.370 (.057)</td>
<td>.229 (.036)</td>
<td>.372 (.051)</td>
<td>.224 (.041)</td>
</tr>
</tbody>
</table>

Table 5: Means and into parentheses standard errors of error rates for the CEM algorithm for the distance $\delta = 1$ and the sample size $n = 200$.

15
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Data structure & $[\lambda I]$ & $[\lambda B]$ & $[\lambda B]$ & $[\lambda DAD']$ & $[\lambda DAD']$ \\
Model & & & & & \\
\hline
$[\lambda I]$ & .066 (.015) & .090 (.026) & .457 (.030) & .403 (.059) & .267 (.041) & .231 (.028) \\
$[\lambda I]$ & .067 (.016) & .043 (.017) & .458 (.029) & .170 (.094) & .260 (.044) & .184 (.055) \\
$[\lambda B]$ & .066 (.014) & .090 (.027) & .071 (.021) & .083 (.060) & .305 (.073) & .216 (.029) \\
$[\lambda B]$ & .067 (.015) & .043 (.018) & .072 (.022) & .042 (.016) & .301 (.081) & .189 (.039) \\
$[\lambda DAD']$ & .068 (.014) & .096 (.032) & .075 (.024) & .091 (.028) & .065 (.024) & .091 (.034) \\
$[\lambda DAD']$ & .068 (.014) & .043 (.020) & .075 (.024) & .044 (.017) & .067 (.025) & .038 (.011) \\
\hline
\end{tabular}
\caption{Means and into parentheses standard errors of error rates for the CEM algorithm for the distance $\delta = 3$ and the sample size $n = 200$.}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Data structure & $[\lambda I]$ & $[\lambda B]$ & $[\lambda B]$ & $[\lambda DAD']$ & $[\lambda DAD']$ \\
Model & & & & & \\
\hline
$[\lambda I]$ & .011 (.008) & .026 (.013) & .383 (.152) & .186 (.123) & .143 (.033) & .144 (.037) \\
$[\lambda I]$ & .012 (.009) & .005 (.005) & .318 (.154) & .076 (.028) & .146 (.032) & .058 (.033) \\
$[\lambda B]$ & .011 (.008) & .026 (.013) & .011 (.008) & .024 (.010) & .152 (.049) & .137 (.040) \\
$[\lambda B]$ & .012 (.009) & .005 (.005) & .012 (.008) & .007 (.006) & .146 (.032) & .063 (.033) \\
$[\lambda DAD']$ & .012 (.008) & .026 (.013) & .011 (.007) & .024 (.009) & .013 (.008) & .024 (.011) \\
$[\lambda DAD']$ & .012 (.009) & .005 (.005) & .013 (.008) & .008 (.006) & .015 (.008) & .006 (.005) \\
\hline
\end{tabular}
\caption{Means and into parentheses standard errors of error rates for the CEM algorithm for the distance $\delta = 4.5$ and the sample size $n = 200$.}
\end{table}

- No surprisingly, the best results are obtained with the model underlying the data structure.

- Comparing the two models in competition in each family, we can recommend the model allowing different volumes: When it is dominated by the model assuming equal volumes, the performances of both models are not very different; in others cases, it outperformed greatly the model with equal volumes.

- An overall comparison of the 6 models shows that the model $[\lambda_{L}C]$, at least for the sample size $n = 200$, can be regarded at the best choice when no prior information is available. But we have to remark that we have performed our experiments in a low dimension space ($d = 2$) for which the differences on the number of parameters to be estimated for the 3 families is not very large. Choosing more parsimonious models (for instance models from the diagonal family) could be preferable in higher dimension spaces especially in a small sample size situation.

\section{4.2 A real data set}

It is important to also evaluate the performances of the proposed models on real data (not generated from an 'ad hoc' probabilistic model). We consider in this section an application on stellar kinematics data. Data consist in a population of 2370 stars described by their velocity U toward the galactic center and their velocity V toward
the galactic rotation. This data set has been analyzed by Soubiran (1993). Here, we use it in a merely illustrative purpose. It is of interest because it exhibits a large size and small volume cluster \((P_1)\) and two small size and large volume clusters \((P_2\) and \(P_3)\) as it appears from figure 2. We considered the unrestricted models \([\lambda I]\) and \([\lambda_k I]\) estimated through the CEM algorithm. Figures 2 and 3 display the resulting partitions into 3 clusters for the models \([\lambda I]\) and \([\lambda_k I]\) respectively. In these figures, the clusters are represented using three different characters \((o, -\text{ and } +)\). In both figures, the dense cluster \(P_1\) is more or less associated with the ‘+’ cluster, \(P_2\) and \(P_3\) are associated respectively with the ‘o’ and with the ‘-’ clusters. The considered models provide the following empirical mixing proportions and volumes:

\[[\lambda I]: p_1 = 0.945, p_2 = 0.025, p_3 = 0.030, \lambda_1 = 2210, \lambda_2 = 6929, \lambda_3 = 5569 \]

\[[\lambda_k I]: p_1 = 0.900, p_2 = 0.0043, p_3 = 0.057, \lambda_1 = 1732, \lambda_2 = 6744, \lambda_3 = 6496. \]

It appears that the model \([\lambda I]\) is not able to clearly distinguish the dense cluster. On the contrary, the model \([\lambda_k I]\) shows its ability to find clusters with different sizes and volumes.

5 Conclusion

Considering the eigenvalue decomposition of the variance matrices of the components of a Gaussian mixture leads to many useful clustering models since this parametrization makes easy the specification of assumptions on the volumes, the orientations or the shapes of the clusters associated to the mixture components. For instance, Banfield and Raftery (1993) have taken profit of this eigenvalue decomposition by requiring a common and user specified shape matrix to solve an identification problem of anatomical structures arising in magnetic resonance imaging.
In this paper, we have considered this eigenvalue decompositions of the clusters’ variance matrices from a general point of view. We studied fourteen models of interest by constraining none, some or all of the clusters features to be constant across clusters and by assuming some additional parsimonious situations such as diagonal or spherical variance matrices. In each case, we assumed that all the parameters specifying the models are unknown.

For each model, we derived the parameter estimates in the mixture and the classification approaches of the mixture problem.

From a practical point of view, we focussed attention on the most parsimonious models allowing different volume clusters. Numerical experiments showed that these models are most interesting and are capable to detect many clustering structures without needing complex algorithms. In our opinion, they can be preferred to models assuming equal volumes in most of practical situations even for small data sets.

In conclusion, we advocate introducing different volumes for the clusters in each of the most employed clustering Gaussian models (see Section 1) and, thus, we recommend to make use of the following assumptions for the variance matrices of the mixture components:

1. $\Sigma_k = \sigma_k^2 I$ with σ_k^2 unknown $(1 \leq k \leq K)$,

2. $\Sigma_k = \lambda_k \text{Diag}(\sigma_1^2, \ldots, \sigma_2^2)$, $(1 \leq k \leq K)$, with $\lambda_1, \ldots, \lambda_K$ and $(\sigma_1^2, \ldots, \sigma_2^2)$ are unknown positive real numbers.

3. $\Sigma_k = \lambda_k \Sigma$ $(1 \leq k \leq K)$, where $\lambda_1, \ldots, \lambda_K$ are unknown positive real numbers and Σ is an unknown symmetric matrix.

Acknowledgements. We are indebted to Christophe Biernacki who helped us to achieve the Monte-Carlo simulations. We thank Caroline Soubiran for kindly providing us the stellar kinematics data.
Appendix 1

Theorem 1 The \((d \times d)\) symmetric matrix \(M\) such that \(|M| = 1\) minimizing \(\text{tr}(QM^{-1})\) where \(Q\) is a symmetric positive definite matrix is

\[
M = \frac{Q}{|Q|^\frac{1}{2}},
\]

and the minimized value is \(d|Q|^\frac{1}{2}\).

Proof: Let \(B = |Q|^{-\frac{1}{2}}QM^{-1}\), the optimization problem is equivalent to the minimization of \(\text{tr}(B)\) with the constraint \(|B| = 1\). Using the eigenvalue decomposition of the symmetric matrix \(B\), it can easily be seen by standard Lagrangian manipulation that the solution is \(B = I\). The result follows directly.

Corollary 1 The \((d \times d)\) diagonal matrix \(M\) such that \(|M| = 1\) minimizing \(\text{tr}(QM^{-1})\) where \(Q\) is a symmetric positive definite matrix is

\[
M = \frac{\text{diag}(Q)}{|\text{diag}(Q)|^\frac{1}{2}},
\]

and the minimized value is \(d|\text{diag}(Q)|^\frac{1}{2}\).

Proof: If \(M\) is a diagonal matrix, \(M^{-1}\) is also a diagonal matrix and we have \(\text{tr}(QM^{-1}) = \text{tr}(\text{diag}(Q)M^{-1})\). And, Theorem 1 leads to \(M = |\text{diag}(Q)|^{-\frac{1}{2}}\text{diag}(Q)\).

Theorem 2 The \((d \times d)\) symmetric matrix \(M\) minimizing \(\text{tr}(QM^{-1}) + \alpha \ln |M|\) where \(Q\) is a symmetric positive definite matrix and \(\alpha\) is a positive real number is \(M = \text{diag}Q\).

Proof: Writing \(M = |M|^\frac{1}{2}N\) with \(|N| = 1\), we have

\[
\text{tr}(QM^{-1}) + \alpha \ln |M| = \frac{1}{|M|^2} \text{tr}(QN^{-1}) + \alpha \ln |M|.
\]

From Theorem 1,

\[
N = |Q|^{-\frac{1}{2}}Q.
\]

Thus

\[
\text{tr}(QM^{-1}) + \alpha \ln |M| = \frac{d|Q|^\frac{1}{2}}{|M|^2} + \alpha \ln |M|.
\]

Taking the derivative with respect to \(|M|\) and setting it equal to zero yields \(|M| = |Q|\), from which the desired result is direct.

Corollary 2 The \((d \times d)\) diagonal matrix \(M\) minimizing \(\text{tr}(QM^{-1}) + \alpha \ln |M|\) where \(Q\) is a symmetric positive definite matrix and \(\alpha\) is a positive real number is \(M = \text{diag}Q\).

Proof: Corollary 2 is deduced from Theorem 2 as Corollary 1 is deduced from Theorem 1.

Theorem 3 The orthogonal matrix \(Q\) minimizing \(\text{tr}(QAQ^{-1}B)\) where \(A\) and \(B\) are diagonal matrices, with general diagonal term \(\alpha_i\) and \(\beta_j\) such that \(\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_d\) and \(\beta_1 \leq \beta_2 \leq \ldots \leq \beta_d\), is the identity matrix and the minimized value is \(\text{tr}(AB) = \sum \alpha_i \beta_j\).
Proof: Let $\alpha'_1, \ldots, \alpha'_d$ be the general terms of the diagonal of the matrix QAQ^{-1}. Since Q is orthogonal the matrix QAQ^{-1} is symmetric and we have from Lemma A.1 below

\[
\alpha'_1 + \ldots + \alpha'_c \leq \alpha_1 + \ldots + \alpha_c \quad (1 \leq c < d)
\]
\[
\alpha'_1 + \ldots + \alpha'_d = \alpha_1 + \ldots + \alpha_d.
\]

Now, $\text{tr}(QAQ^{-1}B) = \sum_{j=1}^{d} \alpha'_j \beta_j$ (B diagonal). Thus

\[
\text{tr}(QAQ^{-1}B) = \sum_{j=1}^{d-1} \alpha'_j \beta_j + \left(\sum_{j=1}^{d} \alpha_j - \sum_{j=1}^{d-1} \alpha'_j \right) \beta_d \\
= \sum_{j=1}^{d-1} \alpha'_j \beta_j + \sum_{j=1}^{d-1} (\alpha_j - \alpha'_j) \beta_d + \alpha_d \beta_d \\
\geq \sum_{j=1}^{d-1} \alpha'_j \beta_j + \sum_{j=1}^{d-1} (\alpha_j - \alpha'_j) \beta_{d-1} + \alpha_d \beta_d
\]

since $\sum_{j=1}^{d-1} (\alpha_j - \alpha'_j) \geq 0$ and $\beta_d \geq \beta_{d-1}$. Repeating the same argument, we get

\[
\text{tr}(QAQ^{-1}B) \geq \sum_{j=1}^{d-2} \alpha'_j \beta_j + \sum_{j=1}^{d-2} (\alpha_j - \alpha'_j) \beta_{d-2} + \alpha_{d-1} \beta_{d-1} + \alpha_d \beta_d
\]

and, finally,

\[
\text{tr}(QAQ^{-1}B) \geq \sum_{j=1}^{d} \alpha_j \beta_j
\]

Hence $\sum_{j=1}^{d} \alpha_j \beta_j$ is a lower bound of $\text{tr}(QAQ^{-1}B)$. Since this bound is reached as $Q = I$, the proof is complete.

Lemma A.1 Let A be a real, d-dimensional, symmetric, positive matrix and let q be the associated quadratic form. Let $\lambda_1 \geq \ldots \geq \lambda_d$ and x_1, \ldots, x_d be respectively the eigenvalues and the eigenvectors of A. For any orthonormal basis y_1, \ldots, y_d of \mathbb{R}^d, we have

\[
\sum_{j=1}^{d} q(y_j) = \sum_{j=1}^{d} q(x_j) \quad (= \sum_{j=1}^{d} \lambda_j) \quad (A.1)
\]

\[
\forall k = 1, \ldots, d \quad \sum_{j=1}^{k} q(y_j) \leq \sum_{j=1}^{k} q(x_j) \quad (= \sum_{j=1}^{k} \lambda_j) \quad (A.2)
\]

Proof: Relation (A.1) follows from the decomposition of the vectors y_i ($1 \leq i \leq d$) on the basis of the eigenvectors of A

\[
\forall i = 1, \ldots, d \quad y_i = \sum_{j=1}^{d} y_i^j x_j.
\]

Then, we have

\[
\forall i = 1, \ldots, d \quad q(y_i) = \sum_{j=1}^{d} (y_i^j)^2 q(x_j)
\]
\[
\sum_{i=1}^{d} q(y_i) = \sum_{i=1}^{d} \sum_{j=1}^{d} (y_i^j)^2 q(x_j) = \sum_{j=1}^{d} (\sum_{i=1}^{d} (y_i^j)^2) q(x_j).
\]

And, (A.1) is derived from the fact that the \(y_i^j\)'s are the coordinates, in a an orthonormal basis of vectors, of a vector with norm 1.

The relation (A.2) can be proved by induction on \(k\).

\[
q(y_1) = q(\sum_{j=1}^{d} y_i^j x_j) = \sum_{j=1}^{d} (y_i^j)^2 q(x_j) = \sum_{j=1}^{d} (y_i^j)^2 \lambda_j
\]

\[
\leq \sum_{j=1}^{d} (y_i^j)^2 \lambda_1 = \lambda_1.
\]

Assume that (A.2) is true for \(k-1\). Let \(F_k\) be the space generated by \(y_1, \ldots, y_k\) and let \(E_{k-1}\) be the space generated by \(x_1, \ldots, x_{k-1}\). dim \(F_k = k\) and dim \(E_{k-1}^\perp = d+1-k\). As a consequence \(G = F_k \cap E_{k-1}^\perp \neq \emptyset\). Let \(v\) be a normed vector in \(G\). Let \(z_1, \ldots, z_{k-1}, v\) be an orthonormal basis of \(F_k\). Applying (A.1), we have

\[
\sum_{j=1}^{k} q(y_j) = \sum_{j=1}^{k-1} q(z_j) + q(v) \tag{A.3}
\]

Since (A.2) is true for \(k-1\), we have

\[
\sum_{j=1}^{k-1} q(z_j) \leq \sum_{j=1}^{k-1} q(x_j).
\]

Since \(v \in E_{k-1}^\perp\), it is possible to write

\[
v = \sum_{j=k}^{d} v_j x_j
\]

\[
q(v) = \sum_{j=k}^{d} (v_j)^2 q(x_j) \leq (\sum_{j=k}^{d} (v_j)^2) \lambda_k = \lambda_k = q(x_k).
\]

Then, From relation (A.3) we have

\[
\sum_{j=1}^{k} q(y_j) \leq \sum_{j=1}^{k} q(x_j)
\]

and the proof of the lemma is complete.
Appendix 2

We present an algorithm derived from Flury and Gautschi (1986) (see also Flury 1984) to minimize

$$f(D) = \sum_{k=1}^{K} \text{tr}(DA_k^{-1}D'W_k)$$ \hspace{1cm} (A.4)

where D is an orthogonal matrix, A_k are diagonal matrices and W_k are symmetric matrices in $\mathbb{R}^d (1 \leq k \leq K)$.

Step 1. We start from an initial solution $D = (d_1, \ldots, d_d)$.

Step 2. For any couple $(\ell, m)(\ell \neq m) \in \{1, \ldots, d\}$, the couple (d_ℓ, d_m) is replaced with (δ_ℓ, δ_m) where δ_ℓ and δ_m are orthonormal vectors, linear combination of d_ℓ and d_m, minimizing the criterion (A.4). We have

$$\sum_{k=1}^{K} \text{tr}(DA_k^{-1}D'W_k) = \sum_{k=1}^{K} \sum_{j=1}^{d} \frac{d'_j W_k d_j}{a_k}$$

$$= \sum_{k=1}^{K} \frac{d'_\ell W_k d_\ell}{a_k^\ell} + \sum_{k=1}^{K} \frac{d'_m W_k d_m}{a_k^m} + \sum_{k=1}^{K} \sum_{j \neq \ell, m} \frac{d'_j W_k d_j}{a_k^j}$$

$$= S(d_\ell, d_m) + \sum_{k=1}^{K} \sum_{j \neq \ell, m} \frac{d'_j W_k d_j}{a_k^j}$$

Thus, we wish to find (δ_ℓ, δ_m) minimizing $S(d_\ell, d_m)$. We can write

$$\delta_\ell = (d_\ell, d_m)q_1$$

$$\delta_m = (d_\ell, d_m)q_2$$

where q_1 and q_2 are two orthonormal vectors of \mathbb{R}^2. We have

$$S(\delta_\ell, \delta_m) = \sum_{k=1}^{K} \frac{q'_1 (d_\ell, d_m)'W_k (d_\ell, d_m)q_1}{a_k^\ell} + \sum_{k=1}^{K} \frac{q'_2 (d_\ell, d_m)'W_k (d_\ell, d_m)q_2}{a_k^m}$$

$$= \sum_{k=1}^{K} \frac{q'_1 Z_k q_1}{a_k^\ell} + \sum_{k=1}^{K} \frac{q'_2 Z_k q_2}{a_k^m}$$

where

$$Z_k = (d_\ell, d_m)'W_k (d_\ell, d_m).$$

Thus, the optimization problem is the same than the original one in \mathbb{R}^2. Denoting $Q = (q_1, q_2)$, we get

$$q'_1 Z_k q_1 + q'_2 Z_k q_2 = \text{tr}(Q'Z_k Q) = \text{tr}(Z_k).$$

And the problem reduces to the optimization of

$$\sum_{k=1}^{K} \frac{q'_1 Z_k q_1}{a_k^\ell} + \sum_{k=1}^{K} \frac{\text{tr}(Z_k) - q'_1 Z_k q_1}{a_k^m}$$

22
which is equivalent to the minimization of

$$q_1' \left\{ \sum_{k=1}^{K} \left(\frac{1}{a_k^2} - \frac{1}{a_k^m} \right) Z_k \right\} q_1.$$

Hence, q_1 is the second eigenvector (i.e. the eigenvector associated to the smallest eigenvalue) of the matrix $\sum_{k=1}^{K} \left(\frac{1}{a_k^2} - \frac{1}{a_k^m} \right) Z_k$.

The step 2 is repeated until it produces no decrease of the criterion (A.4).
References

24