N

N

The Lambda-calculus with multiplicities
Gérard Boudol

» To cite this version:

Gérard Boudol. The Lambda-calculus with multiplicities. [Research Report] RR~-2025, INRIA. 1993.
inria-00074646

HAL 1d: inria-00074646
https://inria.hal.science/inria-00074646
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074646
https://hal.archives-ouvertes.fr

W NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Lambda-Calculus
with Multiplicities

Gérard BOUDOL

N° 2025
Septembre 1993

PROGRAMME 2
Calcul symbolique,

programmation
et génie logiciel

apport

de recherche

1993

The Lambda-Calculus with Multiplicities

(preliminary report)

Le Lambda-Calcul avec Multiplicités

(rapport préliminaire)

Gérard Boudol

BP 93, 06902 SopHia-ANTIPOLIS CEDEX (FRANCE)

email: gbo@sophia.inria.fr

Abstract.

We introduce a refinement of the A-calculus, where the argument of a function is a bag of resources,
that is a multiset of terms, whose multiplicities indicate how many copies of them are available. We
show that this “A-calculus with multiplicities” has a natural functionality theory, similar to Coppo
and Dezani’s intersection type discipline. In our functionality theory the conjunction is managed
in a “multiplicative” manner, according to Girard’s terminology. We show that this provides an
adequate interpretation of the calculus, by establishing that a term is convergent if and only if it
has a non-trivial functional character.

Résumé.

On introduit un raffinement du A-calcul dans lequel ’argument d’une fonction est un paquet de
ressources, c’est & dire un multi-ensemble de termes, dont les multiplicités indiquent combien de
copies en sont disponibles. Nous montrons que ce “A-calcul avec multiplicités” a une théorie de
la fonctionnalité naturelle, similaire a la théorie des types avec intersection de Coppo et Dezani.
Dans notre théorie de la fonctionnalité la conjonction est traitée de maniére “multiplicative”, selon
la terminologie de Girard. Nous montrons que ceci fournit une interprétation adéquate de notre
calcul, en établissant qu’un terme est convergent si et seulement si il a un caractere fonctionnel non
trivial.

The Lambda-Calculus with Multiplicities

(preliminary report)

Gérard Boudol
INRIA-Sophia Antipolis
BP 93, 06902 SopHIA-ANTIPOLIS CEDEX (FRANCE)

email: gbo@sophia.inria.fr

Abstract.

We introduce a refinement of the A-calculus, where the argument of a function is a bag of resources,
that is a multiset of terms, whose multiplicities indicate how many copies of them are available. We
show that this “A-calculus with multiplicities” has a natural functionality theory, similar to Coppo
and Dezani’s intersection type discipline. In our functionality theory the conjunction is managed
in a “multiplicative” manner, according to Girard’s terminology. We show that this provides an
adequate interpretation of the calculus, by establishing that a term is convergent if and only if it
has a non-trivial functional character.

1. Introduction.

Following Girard, the A-calculus application could be written M(!N), or MN, as we shall do,
instead of M N, to emphasize the fact that the argument NV is actually infinitely available for the
function M. Indeed, in the term resulting from a f-reduction (Az.M)N — M[N/z], the argument
N is copied as many times as needed, that is, as much as there are free occurrences of z in M.
Therefore, one could also use an alternative notation for substitution, like M (N /).

This immediately suggests to investigate a more general situation where we write M/N™ and
M(N™/z), meaning that the argument is of possibly limited availability, that is m € INU{co}. The
B-reduction remains the same, that is (Az.M)N™ — M(N™/z), but it is perhaps less obvious to
see how to perform the substitution. A natural way is to fetch a sample of the resource whenever it
is needed, that is when the variable occurs in the head position. To formalize this, it is convenient
to use explicit substitutions (or “closures”, in Landin’s terminology), as proposed by Curien et al.

This work has been partly supported by the BRA CONFER, and by the PRC-CNRS “Modeéles
Logiques de la Programmation”.

(1,101, turning the meta-operation of substitution into a computational device. Then we may
define the evaluation process in such a way that, provided z is not free in M:

(N NP (M™) = (MN]™ - NT*(M™)

Clearly what is new is the possibility of deadlock: if there is no resource available for z, like in
(xNJ™ - NI (MP /), then no reduction is possible (here we follow the lazy strategy of Abramsky
and Ong [2]; then we do not evaluate the arguments). However, we do not wish to regard this
normal form as a meaningful value. Then introducing finite multiplicities provides us with more
discriminating power. For instance, we distinguish the two A-terms 22z and z(Ay.zy) - that is more
precisely (zz°°) and (z(Ay.(zy®))®) -, since in the context [-](I'/z), where | = Az.z is the identity,
the first one reduces to a deadlock z(z*°/z)(l 0/2), while the second has a value, namely the closure
(Ay-(zy®))((Ay-(zy>)) =/ 2)(V° [z).

This gain in discriminating power was our original motivation for introducing the A-calculus
with multiplicities, which emerged from the study of the encoding of the lazy A-calculus into the
w-calculus given by Milner in [17]. He showed that his encoding is adequate, that is, two A-
terms that are separated by A-calculus contexts are also separated in the w-calculus, but not fully
abstract (or not fully adequate), that is, the m-calculus is strictly more discriminating. There are
several reasons for this. One reason is that the lazy A-calculus is too weak to define some strict
functions, like the “convergence testing” combinator, see [2]. Milner showed that the w-calculus
has some convergence testing ability, thus allowing for instance the two terms of Ong’s example to
be discriminated (see [2,17]). Let us note that the same context as above, [J(!'/z), may be used
for this particular purpose.

Another weakness of the lazy A-calculus is that it lacks means for defining parallel functions.
That is, there are terms that are not distinguished by A-calculus contexts (in the lazy regime), but
can be differentiated by means of parallel functions (see [2]). In [5,6] we showed that functional
parallelism is essentially the “join” operation, which may be implemented either using a non-
deterministic choice or as a confluent parallel composition. Obviously, the w-calculus offers such
non-deterministic and parallel facilities, thus providing another source of extra discriminating power
w.r.t. the lazy A-calculus. We shall return to this point later.

Finally, there are some quite “robust” A-calculus equalities — like the afore-mentioned one,
zz = z(Ay.zy), which holds in any model satisfying a weak form of extensionality, namely M #
2 => M = Az(Mz), for z not free in M - which can be broken using m-calculus features. Indeed,
this is because the w-calculus provides means, namely parallel composition and replication (or
“bang”), for controlling the number of copies of an agent: a resource with finite multiplicity is simply
the parallel composition of copies of the resource, as many times as we wish, i.e. M™ = (M|---| M),
m times, while M is the replication of M, also denoted 'Af, which may be regarded as an infinite
parallel composition of copies of M. Therefore, to give our calculus its full generality, we shall not
confine ourselves to arguments of the form N™, but we shall allow bags of resources as arguments.
We write a bag, that is more formally a multiset of terms, as a parallel composition of terms with
multiplicities:

P = (M| | MP* | N |- | N2
= (Mo][MO - (M| | M) NP2 -2 | NJP)
e ——— N
my times my times

The parallel composition is intended to be commutative and associative, with a neutral element 1,

2

denoting the empty multiset. Now we may give the syntax of our A-calculus with multiplicities:

M
P

| Az.M | (MP) | (M(P/z)) (terms, or “programs”)
1| M| (P|P)| M® (bags of terms)

1l

H

The rules for (lazy) evaluation are given in the next technical section. In particular, the “fetch”
operation implementing substitution now becomes:

(@N[* - NE(MP)) = (MN]™ - N)P)

What is new now is that the evaluation is non-deterministic, since one may fetch a sample M;
of any of the resources contained in a bag P = (M[™ |..-| M*), provided m; > 0 - recall
that parallel composition is commutative and associative. This is best exemplified by defining a
non-deterministic (internal) choice:

(M@ N) =ger 2((M | N)/z)
Then one can see that, up to some garbage collection:
M&N)-M and (M@®N)—> N

The non-deterministic choice contruct may be used to build parallel functions, as shown in [5].
Sangiorgi showed in [19,20] that in a sense internal choice is exactly what makes the m-calculus
more powerful than the lazy A-calculus: he established that the encoding of the latter, extended with
internal choice, into the m-calculus is fully abstract. Then, as he pointed out to me, the encoding
of the A-calculus with multiplicities should enjoy the same property. His result was established
considering a kind of bisimulation as the semantical equality for extended A-terms. Here we shall
use a more standard semantics, known as Morris’ extensional operational semantics, based on the
discriminating power offered by the contexts of the calculus. More precisely, we define the testing
preorder, as follows:

M C N &g VC closing M and N. C[M]} = C[N]JJ

where M| means that this term has a value.

Now let us turn our attention to the question of the “abstract” semantics -~ abstract in the
sense of not mentioning the evaluation process. Incidentally we note that, since we intuitively
presented our A-calculus with multiplicities in terms of resource availability, one would expect
some connection with Girard’s Linear Logic [11], and more specifically with the “Bounded Linear
Logic” of Girard et al. [13]. We shall leave this matter open for further investigations. However,
in this preliminary report we shall use some of the ideas of Linear Logic, for the purpose of giving
a semantics for our calculus. More precisely, we introduce a refinement of the “intersection type
discipline” of Coppo et al., and prove refined versious of results of [8,9].

The intersection type discipline was introduced by Coppo and Dezani in [7,8], and indepen-
dently by Sallé [18], to the purpose of assigning meaningful functional characters to terms that do
not have any type in Curry’s functionality theory. Namely, a A-term may be typed in a non-trivial
way in this type discipline if and only it has a head normal form. A crucial fact for this result is
the “subject expansion” property, which states that if a A-term R reduces to R, and R’ has type
7, then I has type 7 too. Typically, this holds for R = (Az.M)N and R' = M[N/z]. Then one

3

shows that from a typing of M[N/z] one can build a typing of M under the assumption that z
has a type that IV possesses. This is something like a converse of the cut rule, which we called the
“paste property” in [6].

To achieve this paste property, the intersection type discipline uses as type constructors, besides
Curry’s arrow 0 — 7, a constant w and a conjunction o A 7. The constant w is the universal type
- the “truth” -, which may be assigned to any term. Then w may be used as a type for z in a
typing of M whenever 2 does not occur in M. On the other hand, whenever z occurs more than
once in M, and 7,..., 7, are the types assigned to the various occurrences of N in a typing of
M([N /z], one uses the conjunction, to build a typing of M under the assumption that z has the
type i A---ATq. As it was originally done in [8,9], one may restrict the use of conjunction (except
for the empty one, that is w) to the left of the arrow without affecting the main results.

As one can see, the use of conjunction is related to the implicit multiplicity of the arguments
in the A-calculus('). Then it will not be surprising that, to establish a functionality theory for
our A-calculus with multiplicities enjoying similar properties, we shall also use a conjunction for
accumulating the information about the arguments — in our case the bags of resources. However,
since a resource is used at most once in our calculus, we shall use a specific management of the
conjunction, inspired by Girard’s notion of a multiplicative connective [11]. We must immedi-
ately point out that we do not use our calculus to develop a proof theory (i.e. a Curry-Howard
correspondence) for any fragment of Linear Logic. As a matter of fact, our “logic” will be quite
different from Linear Logic: our conjunction is neither the additive nor the multiplicative one(?).
This is because we shall use an unrestricted form of weakening(®), corresponding to the fact that a
resource may be useless, but disallow the use of contraction, since a resource cannot be used twice.
The only difference with Coppo and Dezani’s conjunction is that ours is not idempotent (except
for the empty one). Therefore, to avoid any confusion, we use the following concrete syntax for
functional characters:

¢ =

o

w | (> ¢)
¢ | (xxm)

where X is our conjunction.. Apart from the use of this last symbol, our set of functional characters
is the same as the one of [8,9].

1

Then we shall introduce a functionality theory, that is a kind of typing system allowing us to
infer sequents of the form z,:m,...,2x: 7 F M : ¢, which may be read: “under the hypothesis
that each free occurrence of z; in M represents exactly one of the resources of a bag satisfying ,
one may conclude that M has the character ¢”. Next we define the interpretation of a term M
as the set F[M] of pairs (T, ¢) such that ' M : ¢. Our main result is that this interpretation is
adequate, that is:

FIN]C F[M] = NC M

The paper is organized as follows: after having settled some syntactic matters, we define the lazy
evaluation process. Then we introduce the testing preorder, and establish some of its properties,
using a “context lemma”. Next we show that our A-calculus with multiplicities is a strict refinement
of the lazy A-calculus, in the sense that there is an adequate but not fully abstract translation from
the latter to the former. Actually the translation goes into a sub-calculus, where we only use M N™
and M(N™/z), but no explicit parallel composition. Then we introduce the functionality system,

(') another way of dealing with implicit multiplicities is to use polymorphic types.
(?) it could be (L & A) @ (1 & B), see the Approximation Theorem of [11].
() this also explains why we do not need to distinguish two kinds of truth.

4

and undertake the proof of the afore-mentioned adequation theorem. A first step is to show the
“subject expansion” property. We establish this property for a notion of reduction that contains
the evaluation process, and allows computing in any context. Finally we introduce a notion of
realizability of formulae, and conclude the proof of the theorem by showing that the typing system
is sound with respect to realizability.

2. Syntax and Evaluation.
2.1 Syntax.

We recall that the grammmar of our calculus is, as given in the introduction:

Muzaz | Az.M | (MP) | (M(P/z))
Pu=1| M| (P|P) | M®

1

We denote by A™ the set of terms given by the first clause of the grammar, and by /I the set
of “bags of resources”, that is the terms given by the second clause of the grammar. We use
S, T... to stand for terms of any kind. We adopt the usual conventions of the A-calculus; in
particular M P - - - P stands for (---(MP;)---Pg). We shall also use a notation, namely X, for
the set of substitution items, that is the terms of the form (P/z) for P € II. Then MQ, ---Qy is
an abbreviation for (---(MQ,)---Qx) where the Q;’s belong to IT U . The variable = is bound
in M by the construct M(P/z). We define the a-conversion accordingly; the definition is given in
the appendix. We denote by fv(M) the set of free variables of M (see the appendix).

We shall see that the lazy A-calculus is embedded in our A-calculus with multiplicities, Namely,
the usual application is recovered as M N, and the ordinary substitution is M{N*/z). Then we
shall keep the standard notation for the usual combinators, written with explicit multiplicities. For
instance, A denotes Az(xz*) and 2 = (AA®).

As we said in the introduction, the parallel composition is intended to be commutative and
associative, with 1 as a neutral element. Moreover, M is an infinite parallel composition of
copies of M. Then the “bags of resources” are really elements of II/ =, where = is the structural
equivalence (see [17]), that is the least congruence over II satisfying:

(P|1) =
(P1Q)= (Q | P)
(PI(QIR) = ((PIQ)|R)

M™= = (M| M%)

We shall use (P || Pn| Pnt1) as an abbreviation for (P | (-- | (Pn | Pns1)--*)). One can see
that the bags of resources are “finite” multisets of terms of A™. More precisely, let us define the
terms with explicit finite multiplicity, as follows:

M0 =1
M™H = (M| M™)
Then for any £ € {I:
P= (M M)
where the multiplicities my, ..., my are possibly infinite, i.e. m; € N U {oo}. The structural equiv-

alence is extended to terms of A™ as the least congruence, still denoted =, such that
P=Q = MP=MQ & M(P/z)=M{Q/z)

5

2.2 Evaluation.

As we said in the introduction, the evaluation mechanism we define now follows a lazy strategy, that
is we do not evaluate the body M of an abstraction Az.M, and we do not evaluate the arguments,
that is more accurately the bag of resources P in MP and M(P/z). The one-step evaluation
relation is denoted M — M'. We shall use implicitly the rule that any two a-convertible terms
have the same reductions:

M- M

N - M
To introduce the evaluation mechanism, we observe that any term M may be written in a unique
way as AQ), - --Qr where the @Q;’s belong to [T U X, and A is either a variable, or an abstraction
Az.N. We may call A the head subterm of M. Indeed, we could have written the grammar for
terms as follows:

M=4 N

M= A | (MQ)
A=z | Az. M
Q== P | (P/z)

where P stands for any term of II. We shall also use a notion of value, which is any functional
closure. That is, the values are the terms of A™ given by the grammar:

V iz Az.M l (V<P/1?>)

We use V, W ... to range over values. Now we introduce the computation rules. The first two state
that a reduction may be performed in the context of a list of arguments or substitutions:

M= M M - M
El: —— E2:

MP - M'P M(P[z) = M'(P/z)
Then the actual computation depends on the form of the head subterm A of M = AQ, - Q.
When A is an abstraction, we look for the first (); in the list, if any, which is an argument, that is
a term P of IT to which the closure AQ; ---Q;_; is applied. Then, possibly using the context rules
El and E2, we perform a $-reduction of the form:

(Az.M)(Pr/g)y-- - (Pier/z;) PQixr -+ Qx = M(P/2)(P1/z)) - (Pic1 [z,)Qis1 - Qxk

provided the z;’s are not free in P. This is formalized by the following two rules:

(VP) = M
E3: (Az.M)P — A/[<P/:z;) E4: z ¢ fv(P)
(V(R/z))P — M(R/z)

When the head subterm is a variable z, one looks for the first substitution (P/z) for it, if any,
in the list Q; - Q. Then one fetches a resource out of P, that is any term N of A™ such that
P = (N | R), and leaves the rest R for future use. To state the “fetch” rule E5, we introduce an
auxiliary relation AM{N/z)— M', intended to formalize the replacement of the head variable z of
M by N, that is, roughly, M = 2Q;---Q and M' = NQ, ---Q, where Q; € T U X. The rules

are:

M(N/z) — M’

St1: (M /z) > M S2:
(MPY(N/zy — M'P

M(N/g) — M’
S3: £z & 2¢fv(N)
(M(P/2))(N/z) = M'(P/[2z)

Now we can give the “fetch™ rule, which is the last rule of evaluation:

M{(N/z)— M' '
5. P=(N|R), z ¢ fv(N)
M(P/z) = MY(T)2)

Note that in this rule the resource which is fetched, that is N, is a term of A™, and not a term of
II.

We write M{l whenever M has a value, that is 3V. M 5 V. If this is not the case, we write
M1. For instance 2ff. Note that MPy = M| and M|} = M(P/z){}. We could have considered
a “garbage collection” rule:

—_—— z ¢ fv(M)

M(P/z) = M |
We shall see that this rule is semantically valid. Note also that since M(N/z) —» M’ means that
N replaces the variable £ when it is needed, that is when z is at the head position in M, one could
think of adopting a “call-by-need” strategy. That is, one could require that this replacement takes
place only when NV has been evaluated. However, this does not change the convergence predicate
M since in NQ; - - - Qy, the subterm N has to be evaluated anyway. Now let us see some examples
of evaluation. Since M = (M | 1) we have, using S1 and E5:

(M/z) — M(1/2)

where z is not free in M. Moreover, up to some garbage collection, M(1/;) is identical to M. To
see the use of infinitely available resources M, note that since M = (M | M*°), we have:

(2Qr - Qu)(M™T/z) = (MQy - Qx)(M™/z)

provided z is not free in M (and the additional constraints imposed by S3 are fuifilled). Let us
see another example, showing how the evaluation in the usual lazy A-calculus is mimicked in the
A-calculus with multiplicities (this will be investigated in a more formal way below). Recall that
the application of the usual A-calculus is modelled as (M N), while M(N*/z) represents the
usual substitution. Let | = Az.2 and A = Az(zz°). Then for instance we have:

(A1) = (22%)(1®/2) (E3)
= (12%°)(F°/z) (S1,S2, E5)
— 2(2%°/2) (17 /) (E3, E2)
= z(z%/2)(17 /) (S1,E5, E2)
= 1(x%/2)(17/z) (S1,S3, E5)

Using a garbage collection rule, the last term of this sequence of evaluations would be transformed
into L.

We pointed out in the introduction that what makes a real difference with the usual A-calculus
is that the evaluation mechanism is non-deterministic, and may introduce deadlocks. We defined
the non-deterministic choice as follows:

(M & N) =ger 2((M|N)/z)

7

Since (M | N) = (N | M), we have both (M @ N) - M(N/;) and (M @& N) — N(M/;), with
z ¢ fv(M) U fv(N). Moreover, the two terms M(N/z) and N(M/2) may be regarded as identical
to M and N respectively, up to some garbage collection. Therefore one has - again up to some
identifications:

(M®&N)-> M and (M®N)—> N

Clearly, the commutativity of parallel composition is the only source of non-determinism of the
evaluation mechanism. However, the evaluation is still deterministic if for instance we restrict the
use of parallel composition to build terms with multiplicities, that is if we consider the terms of the
set A=, given by the grammar:

M=z | Az.M | (MM™) | (M(M™/z))
where m € N U {oo}. Indeed, it is easy to check that the following holds:
LEMMA 2.1. Forany M € A* we have: M - M' = 3INeA* M'=N.

Note that for this A* sub-calculus, one could optimize the evaluation process using a “call-by-need”
mechanism, which is a refinement of the rule E5, given as follows:

NSU, MU/z)— M

z ¢ (V)
M(N™* gy — M (U™ /1)

where U is either a value, or a term of the form 2Q); - --Qx, where no Q; is a substitution for z (see
also [22]).

Regarding the point of potential deadlocks, one can see that a term like 2Q; - - -Qx(1/z) has
no evaluation if none of the @;’s is a substitution for z, but this “normal form” is not regarded as
a value, that is 2@, - --Q«(1/z)ft. Then for instance if we consider (A I) instead of (A I1°°) (like in
a previous example) we have:

(A1) = (z2%°)(!/z)
= (12%°)(1/z)
— 2(2%/2)(1/z)
— 2(2%/2)(1/z)

This last term is identical, up to garbage collection, to z(1/z), a deadlocked term.

2.3 The Testing Preorder.

Let us now define the operational semantics of the calculus, and give some of its basic properties.
The operational semantics we adopt is the extensional preorder of Morris, which we call here the
testing preorder. We call test any context C' of the A-calculus with multiplicities, that is any term
built using the contructs of the calculus plus an additional constant [], representing a “hole”. As
usual, we denote by C'[M] the term resulting from filling the hole in C by M (we say that C closes
M if the free variables of M are bound by C). This also represents the testing of M by C. A success
is reported whenever the evaluation of C[M] terminates on a value, and a term is operationally
better than another if it passes successfully more tests. The testing preorder is thus defined:

DEFINITION (TESTING).

M C N <y VC closing M and N. C[M|§ = C[N]§

8

Although the definition of the testing preorder is a “natural” one, it is not very convenient to prove
any property - apart from the fact that the preorder is a precongruence! Then we shall use an
alternative characterization of the testing preorder, showing that the tests may be restricted to
“application to a sequence of arguments or substitutions”. To this end, let us define the applicative
testing, as follows:

MEAN Sger VAVQr,..., Qs € TUX (MQy---Qxld = NQi--- Qi)

where MQ, - -Qx and NQ, ---Q are assumed to be closed. Then we have the standard result,
known as the “context lemma” - or the property of “operational extensionality”, see [2] for in-
stance.

LEMMA (the CONTEXT LEMMA) 2.2

MCEN & MC4N

Proor. The “=" direction is obvious. To prove the converse, we use Lévy’s technique: if C
is a context (closing M and N) such that C[M] = V for some value V, we show that C[N]{ by
induction on (I, h) (w.r.t. the lexicographic ordering), where [is the length of the evaluation sequence
C[M] 5 V, and h is number of occurrences of the hole J in C. We may write C = CoC, ---Chp
where Cy is either the hole [], or a variable z, or an abstraction context Az.B, and the C;’s, for
¢ > 0, are “argument contexts” (this notion should be clear). We examine the possible cases.

e Cp =[] Let C' be the context MCj ---C,, which has h—1 holes. Clearly C' closes both M and
N. Since C'[M] = C[M] we have C'[M] % V, therefore by induction hypothesis we get C'[N]{.
Since C'[N] = MC,[N]---Cr[N]and M C4 N we conclude NC|[N]---Cr[N]{, that is C[N]{.

o Co==z. Here! > 0, and there exists 7 (1 < ¢ < n) such that C; = (D/z), with D[M] = (T | R),
where T € A™, R € Il and

C[M] = TC\[M]---Ci_ [M}(R/2)Cis1[M] - -Cu[M]'T V

Since M € A™, there must exist D' and D" such that D = (D'| D"), where D' is a term context,
with T = D'[M] and R = D"[M] (the possibilities are: D' = D and D" = 1, if D is a “term
context” ,or D' = B and D" = B*®,if D = B*, where B is a term context, or D = (D'| D")). Let
C'=D'Cy --Ci—1{(D"/2)Ciy1---Cn. Then by induction hypothesis we have C'[N]{, therefore
C[N]{ since C[N] = C'[N].

e (o = Az.B. There are two cases. If { = 0 then C[M] is a value, and C,[M],...,Cp[M]€ X.
Since M cannot be a substitution, we clearly have Cy{N}],...,C,[N]€ X, therefore C[N]is a value
too. Otherwise [> 0 and there exists ¢ (1 < ¢ < n) such that

C[M] = BIMUCiIM]/2)Ci[M] - -Ciy [M]Cig s [M] - -Co[M] 'S v

Let C' = B{(Ci/z)Cy - -Ci_1Ci4y - - -Cn. Then by induction hypothesis we have C'[N]y, therefore
C[N]{§ since C[N] = C'[N] @

In the rest of the paper, although we sometimes use the symbol C, we shall always regard this
preorder as defined by means of applicative tests. An obvious property of the applicative testing
preorder is:

NCuM = YP.NPCAMP & N(P/z)Ca M(P/z)

9

We denote by =, or > 4, the equivalence associated with the preorder C (= C 4).

It should be clear that, for a term MQ), ---Q,, some permutations or garbage collection may
occur in the list of arguments and substitutions Q,...,Q without affecting the potential evalua-
tions. To state this formally, let = be the least relation containing = U =, and satisfying;:

M(P/zy = M z ¢ fv(M)
(MPY(R/z) < (M(R/z))P z ¢ u(P)
(M(P/2)(R/z) < (MB/)(Plz) 3 #2 o ¢ (P) & 2 ¢ fu(R)
M=M = (MP)x (M'P)
MxM = (M(P/2) < (M"P/z))

Then we have:

LEMMA 23 M=xN&M->M = IN' . NSN &M <N

The proof is straightforward &

Note that if M < N and M is a value, then N is a value too. Then an obvious consequence of the
previous lemma is:

COROLLARY 2.4. M <N = M=>=4 N

Another property of applicative testing is that the evaluation process is decreasing w.r.t. this
preorder:

LEMMA 25 Mo M = MCsM

The proof is obvious, since M - M' = MQ,- - Qr - M'Q,---Qr,and N 5> N' & N'} = N|.
In particular one has M(N/z) C4 (Az.M)N, and (combining the two previous facts) if m > 0
then M C4 z(M™/z). It is not difficult to see that the converse inequalities also hold, that is
(Az.MYN ~4 M{(N/z) and o(M™/z) ~4 M for m > 0. One may also note that there is no
semantical difference between an empty bag of resources or a bag consisting of an undefined term.
That is M(1/z) ~4 M(S2/z) for any M. Similarly, it should be intuitively clear that, the more
resources a bag contains, the better it is. More formally:

LEMMA 2.6. For any M, R and P:
(i) M(P/z) E4 M((P| R)/z)
(i) MPC 4 M(P|R)

ProoF. To show the first point, we prove that if T = M(P/z)Q,---Qx -3 V for some value V
then § = M{(P|R)/2)Q) - -QxY, by induction on the length of the reduction T 5 V. If this
length is O then Af is a value, and all the @Q;’s are substitution items, therefore S is a value too.
Otherwise 7' = T' 5 V', and we examine the possible cases for T — T".

o UT =M(P/2)Q) - Qi with M — M’ then S — S' = M'((P|R)/2)Q, - - -Qx, therefore by
induction hypothesis S'l}, hence S{.

o T = N(Qi/)Ty - TulP/2)Q1 - Qicy Qigr - Qi with M = (Az.N)Ty - T, Qi € IT and
Ty,....T.,Q1,...,Q;_y are subtitution items (not binding any free variable of Q;) then § — S’
where

S'=N@Qi/)Ty - T, ((PIR)/z)Q1 - Qi—1Qit1 - - Qk

10

and we use the induction hypothesis.

e The proofis similar it M = 21y -+ Ty, Q; = ((N| P')/z) and
T'=NT - Tu(P/2)Qr - Qi—1(F'/2)Qig1 - Qi

(with some additional requirements that we do not write).

e Finally if M = 2Ty ---T», P= (N | P') and
T = NTy - TP [2)Q1 - - Qi
(again, omiting some conditions) then (P|R) = (N | (P'| R)), and S — S’ where
S'=NTy-- - To((P'| R)/2)Q1 - - Qi

and we use the induction hypothesis.

We proceed in a similar way to show the second point, that is we prove that if -
T=MPQ, --Qx>V

for some value V then S = M(P|R)Q; ---Q«{, by induction on the length of the reduction T 5 V.
In the case of M = (A2.N)Ty---Tpand T — T' = N(P/)Ty - -TnQ) - - - Qx one uses the previous
point 3

From this lemma it follows that (M & N) is an upper bound of M and N. As a matter of fact, it
is not difficult to see that (M & N) is the join of M and N:

MEAT&NCAT & (M@N)CT4T

To conclude this section, we give some further properties of the applicative testing preorder that
will be used later. To state these properties, let us introduce some notations. We use p,p’,... to
denote sequences of substitution items, that is p = (Pi/z,) - (Pk/z,). We say that p is closed if
all the P;’s are closed, and we call the sequence of variables z,,...,z4 its domain. Fori=1,...,n
let p; = (Pf/xl) - -(P,i/zk) be substitutions with the same domain. Then (p;|---|p.) denotes the
substitution (P! |---| P)/z,) - ((Pe |-+ -1 P¥)/xy).

We say that a set R of closed terms of A™ is an applicative simulation if and only if it satisfies
the following conditions:
(i) if (T,S)€ R and T is a value then S is a value
(it) if (T,SyYe R and T — T' then S — S’ for some S’ such that (T',S') € R.

Clearly if M and N are two terms such that there exists an applicative simulation containing all the
pairs of closed terms (MQ; - Qk, NQ,---Q) then M C 4 N. This provides us with a technique
for proving M £ 4 N, that we used in the previous lemma for instance.

[LEMMA 2.7. Let p,p1,...,pn be closed substitutions with the same domain, not containing z.
Then for any M, M,,..., M, € A™ the following holds:

(i) M{(Mipy || Mapn)/a)p Ca (M((My |-+ [Ma)/2))(pl oy |-+ | pn)
(ii) (M,D)(/VI]/)I | o | A/Inl)n) Ca (A/I(A/Il | o l A/In))(p I P | e | Pn)

11

PROOF. Let R be the least transitive relation containing set of pairs of closed terms (7', S) such
that

e either T < M((Mip1 || Mnpn)/2)Ry -+ RinpQy - - - Qk and
Sx (M{(My] | Mu)/e))Ry -+ R(plpi |-+ | pn)Q1 -+ Qu, or
o Tx M(Mipy |- | Mupn)Ry - RopQ1 -+ - Qi and
S (MM]| Mu))Ry - Ren(plpr |-+ | pn)Qr -+ Qi or
o T <X MplRy---Rpp'Qy - -Q and
SX MRy Rnlp]p)Q:1-Qx

where p’ is a closed substitutions with the same domain as p, and Ry, ..., R,, are arguments (i.e.
elements of IT) or substitution items (£/z) such that z is not in the domain of p. Then one shows
that R is an applicative simulation. The details are omitted &

2.4 Translation of the Lazy A-Calculus.

In this section, we show that the A-calculus with multiplicities is in a sense a strict refinement of
the lazy A-calculus of Abramsky and Ong [2]. Recall that the lazy evaluation of the A-terms is
given by the following two rules:

M——-)g M’ = MN——)g M'N

where M[N /7] is the usual substitution. It is easy to see that:
M —¢M' = M[N/z] »¢ M'[N /]

We shall denote by M C; N the testing preorder in the lazy A-calculus, where the tests are the
ordinary A-contexts, and the (closed) values are the (closed) normal form for the evaluation process,
that is simply the (closed) abstractions Az.M. To avoid any confusion, we also denote for a while
by —m, the evaluation in the A-calculus with multiplicities, and by M C,, N the testing preorder
of our calculus. Now we define a translation [-]* from A-terms to terms of A™, as we already
suggested, that is:
[]" ==
[Az. M]* = Az [M]*
[MN] = [MP(IN])™

This could be called the “Girard’s translation”. Clearly, the translation actually goes into a subset
of A~, that we denote A%, where one only uses infinite multiplicities. Then we can show that
this translation is adequate, regardless of the co-domain, while, as a mapping to A*, it is not fully
abstract (or fully adequate). On the other hand, A® obviously provides an exact image of the lazy
A-calculus. In the following proposition, we regard the evaluation of A*-terms as a binary relation
over A, This is true up to structural equivalence, see the Lemma 2.1. Similarly, we regard the
evaluation of A*-terms as resulting into A*-terms. Moreover, we denoteby M C, Nand M C N
the testing preorders where the tests are confined to the correspoding sub-calculi. Then we can
show the following propertics of the translation:

12

PROPOSITION 2.8.
(i) The translation [-]* is adequate, that is:
[M]* C IN]" = [M]"C.IN]* = [M]"Coo [N = MCeN
(i1) The translation from A to A™ is not fully abstract, that is:
IM,Ne A MCTy N & [M]*Z. [N]*
(iii) The translation trom .1 to A™ is tully abstract:

[[.'\1]]' Eoo l[N]]* < MLC N

Proor. For the first point, we note that since the translation is defined in a compositional way, we
just have to show that for a closed A-term A we have, using obvious notations, M|, < [M]*},,..
We proceed as for the proof of the similar Theorem 4.6 of Milner [17]. That is, we define the
relation R C /A x A™ as the set of pairs (M, T) such that for some Ny, Ny, ... N, € A and distinct
variables zy, ..., x4 .

(a) fv(N:) C {zig1,--. 2k}
(b) M=o No[N1/z\)-[Ne/a] and T < [No] ([N)% /2) - ((INKD)° /)
Then we show that for (M,T) € R:
(c) if T is a value then M is an abstraction;
if T —,, T then either (M,T') € R or M —¢ M’ with (M",T') e R.
(d) if M is an abstraction then T 5,, V for some value V such that (M,V) € R;
if M -, M' then T 5, T' for some T" such that (M',T') € R.

(c) The first point is obvious. Now suppose that T —,, T'. There are two cases: either Ny is
x;M;---M, and
T = [[-'\'t-'\/[l to A’I/L]]'<([[Arl]]*)oo/l‘1> ce (([[Nk]]')oo/.Ck)

or Nog =4 (Azg.Mo)M; --- M, (where 2 may be assumed to be distinct from z,,...,zx) and
T' = [Mo]™((IMAI7) % /o) ([M2]7) % - - - (IMRT) ((TNA T /2y - - - ((INKD*) /2,

In the first case we have (M,T’) € R. In the second one, we have by definition of x:

T = (Mol ([IM]7) - - (IMa]) (M) [) (IN) /2y -+ - ((AINK]) ™ /)

therefore if we let
M" = (MoMy - - - Mp)[My/20][N1/z,] - - [Ne/ 2]

we have M —, M’ (up to a-conversion), and (M',T') € R.

(d) Assume that M is an abstraction. We show that T has a value V such that (M,V) € R by
induction on k. TFor & = 0, this is trivial, since then Ny is an abstraction. Otherwise, for k > 0,
either Ny is an abstraction (again, this case is trivial) or Ny is a variable, say z; with 1 <7 <k,
and then M =, Ni[Nit1/z;] [Nk/z,]. We have, using the Lemma 2.3, T —, T' for some
T' such that T' =< [NJ*((IN)/ z,) - ((INK]*)*°/z,). Since fv(N;) € {Zis1,...,zx} we have
T < [N ([N D)%/ zi) - - ((INED7)*° /) by definition of x, therefore (M,T') € R, and we
use the induction hypothesis.

13

Now suppose that M —¢ M'. We have previously noted that T may be written in a unique
way as AQ - -Qn where A is either a variable or an abstraction, and Q; € [T U Y. Let

L) 0O if Alis an abstraction
f(f)‘{z' if A=z

It is casy to sce that if S < T then j(S) = j(T'). We show by induction on j(T') that there exists
T such that 7" 5, T’ and (M',T') € R. If j(T) = 0 then Ny = (Azo.N)M;---M, where z, may
be assumed ta be distinct from zy,..., 2%, and

M' = NMy - Ma[My/2o)[Ni/z,) - [Ne/z,])

We let

T' = [N (IM) e o) ([M2]) > - - (IMa) (AN D)) - - ((INRE))
Clearly T —,. T', and

T' < [N]*([M]")* - - ([[Mn]]*)°°<(E[M9]]*)°°/xo)(([[Nlll*)“/xl) (VD) /)
therefore (M', T') € R. Otherwise if (T) > 0 we have Ng = z;M, - - - My, and

M = (N;M,---My)[Ni/z,) - [Ne/zy)
‘Then clearly T —,, 1" for some T” such that
T < [NiMy - Mo (AN fy) - ((AINED) > /2)

and we use the induction hypothesis, since (M, T') € R, and fv(N;) C {Zi41,---,ZTk}-

To show the second point of the proposition, we have to exhibit a pair of A-terms that are
distinguished using contexts of the A-calculus with multiplicities, but not by A-calculus contexts.
Let A’ = Az(z(Ay.zy)). Then A = Az(zz) and A’ have the same interpretation in the canonical
model of the lazy A-calculus, solution of the domain equation D = (D — D), (see [2,8] for this
interpretation). Therefore they are operationally indistinguishable, that is A =~, A’, since this
interpretation of the lazy A-calculus is adequate. However, as we have seen, ([A]* I)1,,, while

(IAT 1) 5 Ay (2y=) (Ay-(zy=)*/2) (1 /z)

that is ([A']*D,,.

The proof of the last point is trivial &

One may observe that we have proved a little more than the “non-full abstraction” of the translation
from /1 to A™: since the two terms A and A’ have the same interpretation in D = (D — D), they
are not distinguished by adding a convergence testing facility, or any other construct for which this
domain provides an adequate interpretation, like parallel composition or non-deterministic choice
{sec 2,5,6]). Therefore, if we were to define a translation from a A-calculus extended with these
constructs into A™, this translation would still be non-fully abstract. Obviously we do not regard
this fact as a defect. Indeed, the A-calculus with multiplicities was conceived exactly for the purpose
of distinguishing terms like .2\ and A’, by means of a refined management of the arguments of a
function, like it arises from Milner’s encoding of the A-calculus’into the m-calculus.

14

3. Semantics.

3.1 The Functionality Theory.

In this section we introduce a refinemnent of the “intersection type discipline” of Coppo et al. [7,8,9],
which will serve to give a semantics to our calculus. We recall that the grammar for functional
characters is, as given in the introduction:

¢ iz w | (m = @)

Tz @ | (mxm)

i

The set of formulae of the first kind is denoted ®. They will be used as functional characters for
terms of A™. On the other hand, the formulae of the second kind are used to type the bags of
resources. We denote by Tl the set of these formulae. We shall use ¢, ¥ ... and =, (... to range
over ¢ and Il respectively, and we use 7, g... to denote formulae of any kind. We abbreviate
(my % (- X (T X Wyg1)--7)) a8 Ty X -+ X Ty X MTp4y, and, as usval, 71y = - = 7, = @ is an
abbreviation for (m) = (- = (7, = @) - - 4)).

REMARKS. Our results would still hold if we were to add an additive conjunction ¢ A 3 for
formulae of ®. Similarly, we could use Girard’s exponential “of course” to build formulae !¢ of II
from formulae of ®, that can be used to type terms with an infinite multiplicity. However, since we
can content ourselves with “compact” functional characters, we do not need this construct (see the
Approximation Theorem of Girard [11]). Indeed, one may remark that the construct M is not
mentioned in the evaluation rules E1-ES, except indirectly in E5, by means of M*® = (M | M).

The typing system, or more appropriately the functionality system is an intuitionistic natural
deduction system, presented in sequent form. The sequents are either z;:my, ...,z F M: @,
for typing terms of A™, or z,:m,...,2k:m F P:m, for typing bags of ressources. As usual,
we use I, A... to denote hypotheses, that is sequences z;:7,...,2x: mx, where a variable may
occur more than once. When the hypothesis is empty, we write - T: 7. Note that although the
variables are terms of A™, the hypotheses we formulate about them are assertions concerning bags
of resources. Then z: ™ may be read as “z is one of the resources of a bag satisfying =”.

Since our typing system - as opposed to the various “linear term calculi” one finds in the
literature ((3,4,15,16,21]) — does not record the various manipulations of the hypothesis - like
weakenings, contractions, derelictions, ... - as terms constructions, we shall factorize these manip-
ulations into just one rule. For this purpose, we write I' > A whenever the hypothesis A results
from I" by application of a sequence of exchange, weakening, or product. That is, > is the least
preorder satisfying:

Czemyy: (A>T y:(z:m, A exchange
F>»z:n, T weakening
rimz:(, [>»z:mx(,T product

The first group of typing rules concerns the constructions of the calculus:

z:m, T M:¢
Ll: 2:¢tFuz:o L2: (z not in I)
'z M:nr > ¢

'bM:7n =3¢, AFP:x 'FPim,z:n,A-M:¢
L3: L4: (z not in A)
IAE (MP): ¢ C,AFM(P/z): ¢

15

FP:x, AFR:C FE(M|M>®):x
L5: L6:
F,AF(PIR):mx(F-M*:n

The apparent circularity in the last rule, L6 for M*°, may in fact be broken by using the rule L7
below. The remaining rules of our system are independent from the structure of the terms. For
technical convenience, we shall introduce a rule partly reflecting the structural equivalence T = S
in the typing system. To this end, let us define the congruence ~ over formulaec as the least one
satisfying:
WX T~
g X Wy ~ Ty X Wy
o X (M X Ma) ~ (Mg X M) X
Tl o~y D> TN Y

Then our last rules are:

'-T:r '-T:r
L7: THFP:w L —— I'>A L9: —— r~o¢o

AVT:7 '+T:0

In the rule L9 we implicitly assume that ¢ is in ® if T € A™. For instance, although w X w ~ w, we
do not allow using L9 to infer F M :w X w.

Now let us make some comments on our functionality system. The first three rules are quite
standard. The rule L4 associate explicit substitutions with the logical “cut rule”, as in [3] for
instance. The way we accumulate the hypotheses regarding the subterms in the rules L3-L5 is
typical of a “multiplicative” management, according to Girard’s terminology (in particular, L5
is the rule for introducing the multiplicative conjunction). Since we allow the usual weakening
rule, this discipline may be derived from the usual “additive” one. However, since we disallow
contraction, it is strictly more restrictive. If for instance we were to use, instead of L3:

'-M:in—>¢,’HP:x

T (MP): ¢

then we could infer z:9,y: ¢ — (¢ — ¥) F (yz)z: 9, which is not possible in our system. The
additive management of the hypotheses involves implicit contractions that we wish to avoid. Apart
from this, the main difference with Coppo and Dezani’s typing system is the rule L5, introducing
a term constructor, unlike the usual rule, which is:

FFM:¢, TEFM:y
TEM:oAY

This rule may be regarded as a “contraction rule” - contracting the terms, not the formulae. We
have indicated that the results we will prove still hold if one uses also this “additive™ conjunction
o A . This refers to the usual rules for this connective, that is, apart from the previous one:

I'EM:pny 'EM:ioAY
'-M:9¢ C'-M:y

16

Now let us see some examples. As with the intersection type discipline, one may assign a meaningful
functional character to the duplicator & = Ax(22°°), as follows:

L — Ly —

r:obka: Fa®rw

L1 Ls
Tip b Tio Y zidb(2]2) o xw
L6

T:pkF 2P xXw

L9
2:oF 20
L3

219>, xidk (22%):
z: (oY) Xk (22%): 9

FAz(z2z®): (¢ o ¥) X @) = ¥

L8

L2

Clearly one has - Az.z: ¢ — ¢, therefore if we let ¢ = ¥y = 7 — 7 we have:

FAz.z:idp = FAz.z: o

Ls
FAz(za®): ({9 2 w) X @) =2 ¥ (= ()\z.x)Q: (oY) X @

L3

F(Az(2zz®))(Az.z)?:7 > T

Regarding the combinator S = Azyz(z2z°°)(y2*°)*°, one can infer the following typing:
FSi(rov—o¢)0((o9)2(mx()—¢

The following example shows that A @ N has the types of M (and similarly the types of N):

- L7
F'-M:¢ FN:w
Ls L ——
FE(M{N):¢xw z:pkFz: 0
L9
'F(M|N):¢

L4
PHz((M|N)/z): ¢

To conclude this section we may now define the semantics of our calculus, using the functionality
system:

DEFRINITION. F[M] is the set of pairs (I', @) such that '+ M : ¢.

We shall write N Cx M whenever F[N] C F[M]. Our aim is now to show the following result:
ADEQUACY THEOREM.

FIN]C F[M] = NC M
The rest of the paper is devoted to establish this result.

17

3.2 The Adequacy Theorem: Reduction is Decreasing.

It should be clear that the preorder N Cx M is compatible with the constructions of the calculus,
that is

NCrM = YC.C[N]Cxr C[M)]

Therefore to prove the theorem we only have to prove the following, for closed terms:
NCxrM&N|) = M|

‘This will be established by showing the property of computational adequacy, stating that a closed
term M is convergent if and only if it has a non-trivial type, namely:

My &@F-M:m > ¢

for some m and ¢. To prove the “=>" direction, we show that any value has a non-trivial functional
character, and that the typing is preserved by “expansion”, that is:

()FVirow
(i) M > N&THFN:¢p = THEM:9

LEmMMA 3.1. FV:imr s w

Proor. The proof is given by the following deductions:

FVir o w

L7 — L7 L8

z:r - M:w FP:w z:whHEVim s w
L2 and L4

FlzM:m 2w FV(P/z)im o w

We shall prove a slightly more general result than (ii) above, by considering a notion of reduc-
tion that contains the evaluation relation, and may be used to define other evaluation strategies.
Roughly, this relation allows evaluating in any context, . In particular, reductions may occur within
P in the terms M P and M(P/z), and reductions may take place within an abstraction. Moreover,
the use of a substitution item (P/z) is not limited to the case where the variable appears in the
head position. In particular, (Az.M)(P/z) may be reduced as Az.(M(P/z)), provided this does
not induce any capture of free variables. The reduction relation T > T", defined using the auxiliary
relation M({N/z) > M’, is the least relation satisfying the evaluation rules E1-E5 (replacing — by
> and — by I>), and:

‘ M o> M
Rl: a#:z&a2¢v(P) = (A M)(P/z) > Ax.(M(P/2)) R2:
Az.M o Az.M'
P> P P P
R —m— R4:

MP o> MP M(P/z) > M(P'/z)

M > M’ Pp P
R5: R6 Q=P

(M| P)> (M| P) Qo P

where > is the least relation satisfying S1-S3 (replacing — by I>) and:

g A/I<N/,L> > M’ g5 M(N/;z;> > M
>4 :
(R(M | P))(N /) > R(M"| P) (R(M | P)/2))(N/z) > R((M"| P)/2)

it should be obvious that M(N/3) = M' = M(N/z) > M',and M - M' = M > M'. Then
we shall show the property known as “subject expansion”, that is:
ToT &T'+T':7 = TFT:r

For the terms of A™, this property may also be called “reduction is decreasing”, since it may be
read:
Mo M = FIM']C F{M]

We should first check that:
T=,T &T+T':7 = I'FT:1

This will be omitted. Then a first step towards the “subject expansion” property is:

LemMma 3.2. P=P &THFP:m = ' P

PROOF. One proceeds by induction on the definition of P = P’, and then on the inference of
[+ P': 7, and by case on the last rule used in this inference. The details are omitted @

Next we need some technical lemmas concerning the functionality system. Clearly the only way to
introduce in the hypothesis of a sequent I' - T': 7 some variables which are not free in the term T
is by means of L7 or LS. Therefore we have:

LEmMMA 3.3. IfD,z:n, A+ T:7, wherezx ¢ tv(T), then T, AFT:7.-
The proof is straightforward

The next lemma states that the typings of compound terms of the calculus are essentially given by
using the rules L2-L6. '

LEMMA 3.4. Let ¢ # w.

(i) if T'F Az.M : ¢ then for some w, 3 and I not containing = we havez:w, I+ M: ¢ with " > T
and p~m > 9P

(i) f TEFMP:¢ thenT"FM:7m— ¢ and "+ P:rw for some w and I'', ' such that I',T" > T

(i) if T - M(P/z):¢ then " + P:m and z: 7, " + M: ¢ for some m and [’, T" such that
I, T > I and z is not in "

(iv) f T (P|R):m then " F P:mg and T + R:m for some ", I, my and =, such that
I T" > T and m ~ mg x 7.

Proor. By induction on the inference of the sequents, straightforward 4

Note that the point (iii) of the lemma is similar to the “paste property” of the intersection type
discipline.

COROLLARY 3.5. Ifz ¢ fv(P) then TF (M(E/2))P:¢ & TH (MP)R/z):¢.

19

Proor. This'is trivial for ¢ = w, Then, assuming ¢ # w, we only prove the “<” direction - the
converse implication is similar, and even simpler. By the previous lemma, for some #, I'" and T'"
we have:

M+Remw and z:m,T"+FMP:¢
with IV, T > I', and 2 is not in ['"”. By the Lemma 3.4 again, there exist {, A and A’ such that:
AFM:(= ¢ and AFP:C

with A A" > 2:7 [, Since z ¢ fv(P) by the Lemma 3.3 there exists A” not containing z such
that A” = P: (¢ and A" > A, therefore A, A" > z: 7, [, It is easy to check that there exists =
not containing z such that A > z:7,Z and 2, A” > I'"”. Therefore we get:

: AFM:(— ¢
_— L8
IMFR:(¢ z:m,ZFM:(> ¢

L4
M=z M(R/z): (> ¢

Finally by L3 and L8 we have ' = (M(R/g))P: ¢ @

To prove “subject expansion” we need a similar property regarding the auxiliary “fetch” relation,
namely:

LEMMA 3.6. IfM(N/z) > M' and '+ M': ¢ then there exist ¢, I'" and I'"" such that '+ N: ¢
andz: ¢, T"FM:0 with!,T" > T.

ProOF. By induction on the proof of M[N/z] > M’, and then on the inference of I' - M': ¢.
We note first that the lemma is obvious if ¢ = w: in this case we let ¢ = w. Then F N:w and
r:w, ' M:w by L7. Therefore we shall assume that ¢ # w in the following.

(S1) If M = z and M’ = N, then we let " be the empty hypothesis, ' =T and ¥ = ¢. We
have r:@F z:¢ by LI.

(S2) If M = RP and M’ = R'P with R(N/z) > R’, then by the Lemma 3.4 we have [, - P: «
and '} F R': # —» ¢ with I'g,T"; > I". By induction hypothesis, there exist ¢, [V and A such that
IMEFN:Ypand z2:¢9,AF R:m — ¢ with IV, A > I'y. Then by L3 we have:

2P, A To-M: ¢

We let I' = A, I'g. Then I, 1" = 1", A, T >» Iy, 1 >T.

(S3) If M = R(P/z) and M’ = R'(P/;) with R(N/z) > R' and z ¢ fv(N) U {z}, then by the
Lemma 3.4 wehavellgF P:rand z: 7, F R : ¢ for some 'y, [} such that I'g, [y > I, with z not
in ['y. By induction hypothesis, there exist ¥, A and A’ such that AF N:y and z: 9, A’ - R: ¢,
with A, A" > z:7,). Since z ¢ fv(/N) by the Lemma 3.3 there exists I'" not containing z such
that I+ Ny and [V > A, therefore I, A’ > z: 7w, ;. It is easy to check that there exists = not
containing z such that A’ > z:x,Zand I, Z > I'). We let ['" = 'y, Z. Then clearly I, [> I,
and z: ¢, "+ M:¢ by L8 and 1.4.

(S4) If M = (R(L|P)) and M’ = R(L"| P) with L{N/z) > L' then by the Lemma 3.4 there

exist w, I'g and I'} such that:
Lo (L' P):m and MERim = ¢

20

with g, '} > I'. By the Lemma 3.4 again, there exist Ap, Ay, 7o and my such that:
Aok L :imy and A Pim
with Ag, Ay > I'g and # ~ 7y x 7. Then by induction hypothesis, there exist [, A and ¢ such

that It Neiwand a: ¢, AF Limg, with IV, A > Ag. Welet I' = A, A, . Clearly T, 1" » T,
and we have:

.’E.‘I/),A}‘L:/TO Al}—P:ﬂ'I
LS

U, A A F(L|P):img x my

- L9
NMFR:m— o 0, A A F(L|P):w
L3

z:p, MMM
(S5) We omit this case, which is similar to the previous one @Q
Now we are ready to establish the “subject expansion” property:

ProposiTiON (SuBJECT ExpansioN)3.7. ToT' & I'+T':7 = I'+T:7

Proor. By induction on the proof of T &> T, and then on the proof of I' F T’ : 7. We immediately
note that one can “factorize” the use of the rules L7-L9: if ' = T": 7 is proved by an application of
one of these rules, one obviously applies the induction hypothesis, and then the same rule. Then
we shall not take these rules into consideration in the following. We proceed by case on the last
rule used to infer T 1> T'. We shall only examine in details a few cases.

(E1,E2,R2,R3,R4,R5) These cases are obvious: the last rule used to infer the sequent '+ T7"': 7
may be assumed to be 1.3, L4, L2, L3, .4, L5 respectively. Then one uses the induction hypothesis,
and the same rule to infer '+~ T : 7.

(E3) IfT = (Az.M)P and T' = M(P/z) then, assuming that the last rule used to infer T+ T':7
is 1.4, we have I+ P: 7 and z:7,T" + M : ¢ for some 7, where ' = I'", T and z is not in T'".
Then using L2 and L3 we get '+ T': ¢. That is, we have the usual picture:

z:m, AFM:¢

I'+-P:nr z:m, A M:¢ '+P:n AF Az M:m— ¢
expands to
I,AFM(N/z): ¢ AR (MP): ¢

(E4) In this case one may assume that the last rule used to infer ' = T7: 7 is L4. Then one uses
the induction hypothesis and the Corollary 3.5.

(E5) We have T = M(#2/z) and T = M'(P/z) with R = (N | P) and M(N/z) > M'. Again,
one may assume that the last rule used to infer ' - 77 : 7 in this case is L4, that is:

M"-P:rm and c:w, M- Mr

21

with ' = I, ', and 2 is not in I'". Then by the Lemma 3.6 we have:
AFN:y and 2, A"F-M:T

for some ¢, A and A’ such that AA’> z:7,T'". Since z ¢ fv(N) by the Lemma 3.3 there exists
= not containing z such that =+ N: 9 and = > A. Moreover it is easy to check that there exists
A" such that A’ > z:7, A" and =, A" > I'"". By L5 we have =Z,I" F (N | P): ¢ x m, hence also
' F K@ x 7w by the Lennna 3.2, Therefore I' = T : 7 can be inferred in the following way:

z:p, AN M1

L8
z:p,cim, A" M7

L8
=EMER:Yxw Yy xm, A"FM:T

L4
=M A"M(R/z): T

L8
CHM(R/z):T

(R1) IfT' = Az.(M{(P/2)) and T = (Az.M){P/z) with z # z and z ¢ fv(P) then, assuming that
the sequent '+ 7" : 7 is proved using L2 we have 7 = 7 — ¢ with:

z:m, [M{(P/2): ¢
where [does not contain z. By the Lemma 3.4 we get:
I"FP:(C and z:(,T"+M:0¢

where I, T > T, and z is not in ['". Since =z ¢ fv(P) by the Lemma 3.3 there exists = not
containing z such that Z+ P:(and = > I'". Moreover it is easy to check that there exists A not
containing z such that ' >» z: 7, A and Z,A > T (hence A does not contain z). Therefore one
can build a proof of I' = T": 7 as follows:

z:(,T"+-M: 9

L8
2:(,z:7, AFM: ¢

z:m,z2:CAFM: ¢

L8

- Lo
=k P:C (AR A M:m— 0

L4
SAE (A MY(P/)im o 0

L8

F+T:r

(RG) This case is obvious, using the induction hypothesis and the Lemma 3.2

An obvious corollary of the Proposition 3.7 and the Lemma 3.1 Is a first half of the computational

adequacy property, that is:

COROLLARY 3.8, MY =F M:iw o @

22

3.3 The Adequacy Theorem: Realizability and Soundness.

To prove the converse of the previous implication, we use Tait’s technique, that is we introduce
a predicate of realizability, which is a set R of pairs (T, 7) where T is a closed term, and 7 is a
formula of appropriate kind. We shall write (T',7) € R as | T : 7 (in Tait’s notation this would be
written (1)), This may be read “T realizes, or satisfies 7”. To define the realizability predicate
for the formulae of M, we use the following observation: any formulae 7 € [1 may be written, up to
~, as a product ¢y x - -+ X ¢, of lormulae of . More precisely, let us define the relation (which is
in fact a mapping) o from formulae of Il to sequences of formulae of @, as follows:
(1) woe (the empty sequence) and 7 — ¢ m — ¢

(i) 7o o1, . @n &G, o = (TXE) PGy a1y U
The following should be clear :

REMARK 3.9. m~((ifandonly if to¢y,...,¢, and (>, ..., ¥m implies m = n and there exists
a permutation v of 1,...,n such that ¢; ~ ;.

Then we define the realizability predicate |= T': 7, by induction on the formulae, as follows:
= M:w g true
EM:m > ¢ Sq MU & YP(EP:m = E(MP):¢)
EP:im Sger 7001,.., 0 &n>0 =
3RY:i3M;. EMi:¢; & P=(M,|---| M. |R)

Note that if in the last clause we have wpe, thatis 7 ~ w, then = P: 7 for any P. The realizability
predicate explains the meaning of the functional characters: ¢; x --- X ¢, — ¢ is the property
of being a function (this is the content of MY} whose application to an argument P satisfies ¢
whenever the bag P contains resources My,..., M, that satisfy ¢,,...,¢,. One may note that if
= P:mx (, then also | P: 7 and |= P: (. Moreover, it is not difficult to see that:

EP:irx(e 3Q,RP=(Q|R & EQ:7& ER:¢

We extend the realizability predicate to arbitrary terms of A™ (that is, not necessarily closed),
defining H & M: ¢, where H is a mapping from the set of variables to formulae of I, such
that H(z) = w for almost all variables, that is except for a finite set of variables. When we are
only interested in the value of H on the set {z;,...,z}, we write H as zy:m),...,Zx: Ty, where
7 = H(z;). Now we define H = M : ¢ as follows, where fv(M) = {z,,...,24}:

Cp iy, L2k T E Mg S VP, P (ViL B Pimy = E M /z) - (Pi/z):)

Obviously this definition coincide with the previous one for M closed. As we shall see in the next
lemma, this definition does not depend on the order in which the variables of A are written. For
any hypothesis I', in the sense of the functionality system, we denote by I'* the mapping from
variables to [T such that I'* (2) is the product of the formulae assigned to 2 by T' (if there is none
then I'*(2) = w) - this is slightly ambiguous, but it does not matter for our purpose. Now our aim
is to show the following soundness property:

'EM:¢p => I"EM:0
The following simple lemma will be of crucial use:

Lemma 3100 HEN: O NEAM = HEM: 9

23

Proor. We first show that, for M and N closed:

EN: oS NCAM =>EM:¢
We proceed by induction on the definition of E N : ¢, that is by induction on ¢. The case of ¢ = w
is trivial. 1f ¢ = # — ¢ then N, hence obviously M|, and if = P:m, then NP:1%. Since
NP C 4 MP we have = M P: ¢ by induction hypothesis, therefore = M : 7 — 9.

We note that this implies that the definition of H | M : ¢ does not depend on the order of
the free variables x,,..., x4, forif ¢ is a permutation of 1,...,k we have, for Py, ..., P closed:

M(Pr/zy) - (Prfae) < M(PyJzy)) - (P /zy,)

hence also M(P1/x)---(Ps/zy) ~a M(Pi,/z;)---(Pi/z;) by the Corollary 2.4. As a matter
of fact, we could even have assumed that the set {z,,...,z4} contains fv(M) in the defintion of
HiEM:o.

Now assume that H = N:¢, and let {zy,...,z4} = fv(N)U fv(M). Let P,..., P, be
closed terms such that }= P;: H(z;) for any i. Then |= N(Fi,/z;)---(Pi,/z;): ¢ by definition of
HE N:¢, where {2,,,...,2,,} = fv(/N). By the Corollary 2.4, we have:

N(Pi/z)) - (Pe/e) ~a N(Pi/ai) - (Fin/zy)
Since
NCaM = NP g)-(Pr/zi) Cu M(Pr/zy) - (Pi/xy)
we get = M(Pi/z,)--(Ps/z;): ¢ by the previous point. Now if fv(M) = {z},,...,zj, } we have,
by the Corollary 2.4:

M(Puzy) - (Prfag) =a M(P5/25,) - (Pin/z;,)
hence H = M : ¢, using the previous point &

Let us write H ~ H’' whenever H(z) ~ H'(z) for any variable z. Then a next step towards the
soundness property is:

LEMMa 31l. H~H & ¢~yp & HEM:¢ = HEM:y

PRrooOF. We first show that
¢~ & EM:¢p > FEM:yY

\We proceed by induction on the formula ¢. This is trivial for ¢ = w, since then ¥ = ¢. Otherwise
let =7 = ¢'. Then ¥ = (= ' for some ¢ and ¥’ such that (~ 7 and ¢’ ~ ¢'. Let = P:(.
Then, from the Remark 3.9 and the induction hypothesis, it should be clear that = P: n, therefore
= MP:¢', hence E MP:%' by induction hypothesis.

Now if fv(M) = {z;,...,zx} and = P;: H(z;) for any ¢, we also have = P;: H'(z;) by the
previous point, whence the lemma

To prove the soundness property, we will use the following observation: the decomposition of a
formula 7 into the sequence ¢y, ..., ¢, corresponds in an exact manner to a decomposition of the
typings I'+ P: 7. More precisely:

LeEMMA 3.12. Letroéy,...,¢n. Then '+ P:m if and only if there exist My,..., M, e A™, Rell,
and Iy, ..., Iy such that P= (My |- M, |R), Ty,....,Tn > T and I'; = M, : ¢; for any ¢ (with a
proof shorter than the one of ' - P: 7).

24

ProoF. The *“if” direction should be clear, using the Lemma 3.2. The “only if” direction is proved
by a straightforward induction on the inference of the sequent I'+- P:m g

Now we are ready to establish the main result of this section:

ProprosiTION (SOUNDNESS) 313, T'EM:¢p => ' EM:o

PrRoOOF. The proof is by induction on the inference of I' + A : ¢. Then, as usual, we show that the
realizability predicate satisfies the relevant rules of the typing system, that is L1-L4 and L7-L9.

(L1) We have toshow M:9p & P= (M| R) = E 2(P/2):¢. Clearly 2(P/2) —» M{R/z),
and M (#2/2) < M since Ml is closed, therefore Al T 4 z(FP/2) by the Lemma 2.5 and the Corollary
2.4. Then | 2(P/2): ¢ whenever | M : ¢ by the Lemma 3.10.

{(L2) Our hypothesis here is 2 : 7, ['* & M :¢, where z is not in I'. Let zy,...,z4 be the free
variables of Ax. M, and ' = a,:7y,...,2c:7g. Let P, ..., Py be such that = P;:«; for any <.
We show that

= Az M)(P/ay) - (Pefzy)im = &
Since this term is a value, we obviously have (Az.M)(P1/z,) - (Px/z,)¥. Now let }= P: . Then,
by definition of z: 7, I'* | M : ¢, we have, possibly using the Lemma 3.10 if z is not free in M:

EMP/a)(Pr/zy) - (Pk/zy): ¢

Clearly (Az.M)(Pr/z,)) - (Px/2)P = M(P/z){(P1/z,) - (Pk/z,), therefore

= (M. M)(Pi/z,) - (Pe/z)P: ¢

by the Lemma 3.10.

(L3) Assume that ' E M:7 — ¢, with A~ P:7m,and let 7> ¢y,...,%n. Then by the Lemma
3.12 thereexist My, ..., M,, Rand Ay, ..., A, such that P = (M,]|--|M,|R) and A; F M;: ¢; with
Ay, ..., A, > A, By induction hypothesis AX | M;: ¢; for any 7. Let {z,,...,z4} = f'v(MP)
and Py, ..., Py be such that = P;: (I', A)*(z;) for any 7. Since (I', A)*(z) ~ I'*(z) x A*(z) we
have P, = (Q: | R:) where |= Q;:['*(z;) and E R;: A*(z;). Moreover, for any z there is some (
such that AX(z) ~ A (z) x --- x AX(z) x (since Ay,...,A, > A. Then R; = (R} |---| RY)
for some RY,..., R} such that |= Rj: A;(xi). Therefore the following holds (possibly using the
Lemma 3.10):

E=N:x—¢ where N=M(Qi/z,) - (Qk/z,)
E Ni:¢y where Ny=M(Ri/z)) - (B{/z.)

}: N71:¢n Where A’n: Mn<R31/xl><Rﬁ/rk>

By definition of the realizability predicate, we have = (N; |---| Ny): m, therefore
F NN | Na):i o
By the Lemmas 2.7 and 2.6, we have:
N(Ni|- | Na) Ca (MP)(P/2y) - (Pr/zy)
hence |2 (MP)(Pr/z,) - (Pe/z,): . This shows (I, A)* = MP: ¢.

23

(L4) Assumethatz:m, A% |E M: ¢ where A does not containz and '+ P:n. Let 7o ¢y, ..., én.
Then by the Lemma 3.12 there exist M;,...,M,, Rand I'y,..., ', such that P = (M, |---|M,|R)
and [, & M;:¢; with I',...,T,, > I". By induction hypothesis [' = M;:¢; for any i. Let
{a1,...,ax} = V(M (F/g)). We may assume that ¢ ¢ {zy,...,zx}. Let Py,..., P be such that
k= P (D, A)%(z;) for any i. As in the previous point, we have P; = (Q;| R{|---| R.) where
FQi: A% (zi) and | t}: IJX (z;). Therefore the following holds (possibly using the Lemma 3.10):

}: Ny:¢y where N, = M1<R{/xl> e ‘(R;C/JUQ

= N, :én whére Np= My (RY/z)) - (RE/z,)
By definition of the realizability predicate, we have = (N, |---| Ny): m, therefore
EM((Nu- - Na) 2 (@1 fzy) - (Qr/zy) s @
By the Lemmas 2.7 and 2.6, we have:
M{(NuL- - I NR) [(Qu/ay) - (Qnfz) Ea M(P[2)(Pi/zy) - (Pe/zy)

hence E M(P/2)(Pr/z,) - (Pk/z,): ¢. This shows ([, A)* &= M(P/z): ¢.
(L7,L9) These cases are trivial (using the Lemma 3.11).

(L8) This case is obvious, since I' > A = Vz 3(. AX(z) ~ ['*(z) x ¢, therefore if | P: A*(z)
we also have = P: [(z) &

Clearly the second half of the computational adequacy property is an obvious consequence of the
soundness of the functionality system with respect to the realizability predicate:

CoRoOLLARY 3:14. For any closed M:
FM:m—o ¢ = M|

This completes the proof of the Adequacy Theorem. As a matter of fact, one can see that, if we
denote by H(M) the set of pairs (H,¢) such that H = M : ¢, we have proved the following:

M>N = FINCF(M) = NCM & NCaM = H(N)C H(M)

It is easy to see that, as usual, the first implication cannot be reversed. For instance, F(z(1/z))
consists of all the pairs (I',w), as well as F(z(§?/z)), but neither of these two terms reduces to the
other. Moreover, due to the non-determinism, the reduction is generally strictly decreasing w.r.t.
the semantics.

4. Conclusion.

To conclude this paper, let us mention some related work, and briefly examine the possible con-
nections with the A-calculus with multiplicities that we have proposed. We already mentioned
Bounded Linear Logic [13]. Certainly, it would be worth investigating whether our calculus, or
more accurately a part of it, provides a syutax for proofs in this logic. In relation to this, we are
studying a typed sub-calculus where the types are as our functional characters, except that w is
replaced by a set of propositional variables — possibly subject to universal quantification -, and
that we use the exponential 'o.

26

There are by now some papers, by Abramsky [3], Benton et al. (4], Lafont [12,14], Lincoln
and Mitchell 151, Mackie [16], Wadler [21], among others, which investigate the possible use
of intuitionistic Lincar Logic in functional programming. The common expectation is that Lin-
car Logic, as a logic of resources, could help in analysing and solving implementation problems
vegarding storage management and evaluation strategies. Most of these studies follow the “Curry-
Howard paradigm”. That is, they develop term calculi representing the proofs of a logical system.
This means that every logical rule is recorded in the syntax as a term construction — up to some
cquivalence of proofs.

Some of the above mentioned authors have noted that this discipline may in fact be quite con-
straining, especially when one try to use a linear term calculus as a typed functional programming
language. For instance Mackie observes in [16] that “algorithms become hidden in a wealth of
contractions, weakenings and derelictions”. We have taken the opposite approach, ignoring these
operations, but obviously we cannot claim that our A-calculus with multiplicities may be regarded
as a programming language, like any other pure - i.e. untyped - calculus. However, since our
calculus involves some more refined features than the usual A-calculus, it is worth investigating
whether it can be used as a “machine-oriented” framework for dealing with implementation prob-
fems. Morcover, its relationships with various typed calculi, and especially with linear term calculi,
deserve to be studied.

Acknowledgments. Thanks to Pierre-Louis Curien and Carolina Lavatelli for the stimulating
discussions we had on preliminary versions of the calculus.

REFERENCES
(11 M. ABapi, L. CarDELLI, P.-L. CURIEN, J.-J. LEvY, Explicit substitutions, POPL 90 (19g0)
31-46.

[2] S. ABramsky, C.-H.L. Ong, Full abstraction in the lazy lambda-calculus, Information and
Computation 105 (1993) 159-267.

{31 S. ABraMsKy, Computational interpretations of Linear Logic, Theoretical Comput. Sci. 111
(1993) 3-57.

[4] N.BeEnTON, G. BIERMAN, V. DE Paiva, M. HYLAND, A term calculus for intuitionistic Lin-
ear Logic, in “Typed Lamda Calculi and Applications”, Lecture Notes in Comput. Sci. 664
{1993) 75-90.

[3] G.BoubpoL, A A-calculus for parallel functions, INRIA Res. Report 1231 (1990).
(6] G.BoubpoL, Lambda-calculi for (strict) parallel functions, INRIA Res. Report 1387 (1991)

to appear in Information and Computation.

(7] M. Coprro, M. DEZANI-CIANCAGLINI, An extension of the basic functionality theory for the
A-calculus, Notre Dame J. of Formal Logic 21 (1980) 685-693.

[8] M. Corro, M.DEzanNI-ClaANCAGLINI, B. VENNERI, Functional characters of solvable
terms, Zeit. Math. Logik Grund. 27 (1981) 45-58.

(91 M. Corro, M. DEzANI-CIANCAGLINI, B. VENNERI, Principal type schemes and lambda-
calculus semantics, In To . B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism (J.R. Hindley and J.P. Seldin, Eds.), Academic Press (1980) 535-560.

[10) P.-L.Curien, T. HarpiN, J.-J. LEvy, Confluence properties of weak and strong calculi of

27

[11]
[12]

[13]

(14]
[15]

[16]

(17]
18]

[19]

{20]

[21]
(22]

explicit substitutions, INRIA Res. Rep. 1617 (1992).
J.-Y. GIRARD, Linear Logic, Theoretical Comput. Sci. 50 (1987) 1-102.

J.-Y. GIRARD, Y. LaronT, Linear Logic and lazy computation, TAPSOFT 87, Lecture Notes
in Comput. Sci. 250 (1987) 52-66.

J.-Y. GirarD, A.Sceprov, P.J. ScorT, Bounded Linear Logic: a modular approach to
polynomial-time computability, Theoretical Comput. Sci. 97 (1992) 1-66.

Y. LaronT, The linear abstract machine, Theoretical Comput. Sci. 59 (1988) 157-180.

P. LincoLN, J. MiTcHELL, Operational aspects of linear lambda calculus, LICS 92 (1992)
235-246.

I. Mackig, LiLac: a functional programming language based on Linear Logic, Techn. Report
of the Department of Computing, Imperial College (1993).

R. MiLNER, Functions as processes, Math. Struct. in Comp. Science 2 (1992) 119-141.

P. SALLE. Une extension de la théorie des types en A-calcul, ICALP 78, Lecture Notes in
Comput. Sci. 62 (1978) 398-410.
D. SANGIORGI, The lazy lambda-calculus in a concurrency scenario, LICS 92 (1992) 102-111.

D. SANGIORGI, Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms, PhD Thesis, Department of Computer Science, The University of Edinburgh
(1993)-

PH. WADLER, There’s no substitute for Linear Logic, draft (1991).

N. YosHIDA, Optimal reduction in weak A-calculus with shared environments, Proc. of Func-
tional Programming and Computer Architecture 93 (1993).

Appendix: o-conversion.

The sets fv(7T") and bv(T) of free and bound variables of T are defined by:

(z) = Az } bv(z) =0
fv(Az. M) = tv(M) - {z} bv(Az. M) = {z} U bv(M)
V(M P) = fv(M)Ufv(P) bv(M P) = bv(M) U bv(P)
v(M(P/z)) = (fv(M) ~ {z}) UTv(P) bv(M(P/z)) = {z} U bv(M) U bv(P)
fv(l) =0 bv(1) =0
fv(P|Q) = fv(P)Uv(Q) bv(P| Q) = bv(P) U bv(Q)
fv(M™) = fv(M) bv(M ™) = bv(M)

The a-conversion is not defined by means of substitution. Instead, we use the operation of renaming

28

z by 2 in T, denoted «%(T'), given by:

: ify=2a

y otherwise

Ay '\1 fy=zory=
=(Ay-M) {/\ otherwise

«i(MP) = o /\1)((P))

(P y)) = {M(il (aj{(y}D)/y) i)ftﬁe:waics(e)r T
=1
PIQ) (az(P) | az(Q))
az (M%) = (aZ(M))%

Then the a-conversion M =, N is the congruence generated by the following laws:

A .M = Az.al(M) where z ¢ fv(M) U bv(M)
M(P/z)y = o (M)(FP/z) where z ¢ fv(M)Ubv(M)

29

Unité de Recherche INRIA Sophia Antipolis
2004, route des. Lucioles - B.P. 93 - 06902 SOPHIA ANTIPOLIS Cedex (France)

Unité de Recherche INRIA Lorraine Technopdle de Nancy-Brabois - Campus Scicntifique
615, rue du Jardin Botanique - B.P. 101 - 54602 VILLERS LES NANCY Cedex (France)
Unité de Recherche INRIA Rennes IRISA, Campus Universitaire de Beaulieu 35042 RENNES Cedex (France)
Unité de Recherche INRIA Rhone-Alpes 46, avenue Félix Viallet - 38031 GRENOBLE Cedex (France)
Unité de Recherche INRIA Rocquencourt Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

EDITEUR
INRIA - Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

Iy

