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and First Order E-Matching

Combinaison du Filtrage du Second Ordre
et du E-Filtrage du Premier Ordre

Régis Curien”

Abstract : We propose an algorithm for combining second order matching and first order matching in
an algebraic first order theory E. This algorithm has the flavor of the higher order E-unification algorithm
of Nipkow and Qian [NQ91], but relies on the classical second order matching algorithm of Huet and
Lang [HL78] instead of higher order unification. Since matching is simpler than unification, we are able
to prove the termination of our algorithm when the algebraic theory E respects some conditions. We
show that it is possible to preserve the termination when we relax some of these conditions by adapting
the previous algorithm. It allows us to use AC1, ACI and ACII for example. These algebraic theories
are the more useful for our purpose (recognizing logical or functional schemata).We have implemented
our algorithm for the AC and ACI theories, and we show examples of possible applications.

Keywords : matching. second-order, equational theories, AC-matching.

Résumé : Nous proposons un algorithme de combinaison du filtrage d’ordre deux et du filtrage modulo
une théorie algébrique du premier ordre. Si cet algorithme rappelle la E-unification d’ordre supérieur
de Nipkow et Qian [NQ91], il repose en fait sur le filtrage du second ordre de Huet et Lang [HL78].
L’avantage du filtrage sur l'unification se manifeste ici par le fait que si la théorie E respecte certaines
conditions, nous pouvons prouver la terminaison de cet algorithme. Certaines de ces conditions peuvent
d’ailleurs étre levées en adaptant ’algorithme de base. Il est alors possible de traiter les cas AC, ACl
ou ACI par exemple. Ces théories étant parmi celles qui nous intéressent pour reconnaitre des motifs
logiques ou fonctionnels dans des formules. Cet algorithme a été implanté pour les théories AC et AC1,
et des exemples d’applications sont présentés.
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Abstract

We propose an algorithm for combining second order matching and first order match-
ing in an algebraic first order theory £. This algorithm has the flavor of the higher order
E-unification algorithm of Nipkow and Qian [NQ91], but relies on the classical second or-
der matching algorithm of Huet and Lang [HL78] instead of higher order unification. Since
matching is simpler than unification, we are able to prove the termination of our algorithm
when the algebraic theory E respects some conditions. We show that it is possible to preserve
the termination when we relax some of these conditions by adapting the previous algorithm.
It allows us to use AC1, ACI and ACII for example. These algebraic theories are the more
useful for our purpose (recognizing logical or functional schemata). We have implemented our
algorithm for the AC and AC1 theories, and we show examples of possible applications.

Keywords : matching, second-order, equational theories, AC-matching.

1 Introduction

Pattern matching is one of the most basic tools in A.I. and computer science and is used in
many applications. The expressiveness of pattern matching has been widely enhanced by per-
forming this process modulo a set of first order axioms (called an equational theory). The most
common ones are Associativity Commutativity axioms (for short AC). AC = {f(z, f(y,2)) ~
f(f(z,y),2); f(z,y) ~ f(y,2)} (for instance A and V connectives are AC). Another useful pat-
tern matching process deals with higher order pattern matching and is required when we are
dealing with schemes instead of first order terms. There has been a growing interest in higher
order topics since researchers have realized that they can be handled much more easily than it
seemed at first glance.

Huet was the pioneer of higher order unification, pre-unification [Hue76] and matching [HL78].

We have used this matching algorithm as a base. Snyder and Gallier have revisited Huet’s work
in [SG90]. Nipkow and Qian have combined regular theories with this higher order unifica-
tion [NQ91] and later on. Qian and Wang [QW92] generalized to arbitrary theories.
In many applications. second order matching is all that we need. In this paper, we consider
second order pattern matching modulo a first order equational theory as a tool needed in a
higher order toolbox which can be used in applications like higher order theorem proving, first
order theorem proving or higher order rewriting.



Indeed, formula simplification is a useful process to carry out, before performing the auto-
mated deduction, in order to simplify the search for a proof. Therefore, the main difference
between our second order E-matching and current work on E-unification is that we must obtain
a termination property. We shall provide examples which show how second order E-matching
can be used to find recurrence patterns in a logic program and make simplifications in a first
order logic formula in order to prove this formula.

Section 2 contains general definitions used in this paper. We first give in section 3 a basic
algorithm wich combines second order matching and first order E-matching for size and root
preserving theories (see below for formal definitions). The required properties of this algorithm
(soundness, completeness and termination) are proved in the section 4. We then show in section 5
how the root-preserving condition can be relaxed. Furthermore, collapsing axioms can be added,
as described in section 6. We give runing examples and discuss about the implementation in
section 7 and conclude in section 8.

2 Preliminaries

2.1 Terms

The reader is assumed to be familiar with typed A-calculus [HS86] and first order matching.
Then, we shall give the definitions and notions that we actually need.

Types : the set of the types T is inductively defined by :
e 7€ Tyg=> 7 €T where Ty is the set of base types,

e o, feT =» a—-peT.

Example 1
To = {Bool, Int} = (Int — Int) — Bool € T

Note that — associates to the right and in the sequel, we shall write a7 X ap X --- X a, — 3
for (ay — -+ (an — B)---) or &, — B which is a more convenient notation.
Order of a type : the order O of a type 7 is defined by :
e O(r)=1ifT€Tp
e O(a;, — B)=maz{O(e;) |1 <i<n} + 1.

Example 2 The order of the previous type (Int — Int) — Bool 1s three.

Signature :
e for cach type 7 € T, there is a denumerable set V; of variable symbols of type 7. The
set of all variable symbols is V,

¢ for each type 7 € T, there is a denumerable set . of constant symbols of type 7.
The set of all constant symbols is



Convention : In the following, we shall use (unless stated otherwise) a, 3, Bool and Int
for base types and 7 for any type: a, b, ... for constants of base type (i.e. of order one); f, g,...
for constants of higher order; F. G, H and P for variables of second order; z, y, = for variables
of any order and ¢ for any function symbol.

Atoms : the set of atomsis A = VUC(
Terms : the set 7 of terms is defined by 7 = (J e 7o with

Application : (ot) e Tif ¢ € T and t € T,
Abstraction : Av.t € T,,_gift € Tz and z € V,,

Remark: The order of a term is the order of its type. We shall note (---(¢ t,)---t,) as
o(ty. ta. . ... tn) or ©(f,). t and s will denote terms. A language of order n contains constants
of order at most n + 1. and variables of order at most n. We study here a language of order two.

Example 3 Let v,y € V with 7(z) = 7(y) = Bool, And € C with T(And) = Bool x Bool —
Bool. Then. the logical function And will be written as the term Ay.Az.((And ) y) or, in a more
practical notation Azy.And(z,y) or Azy.x Ay .

As usually defined, in the term AZ, - t, T, is called the binder, ¢ is the matriz and the
occurrences of the variable z; in ¢ are called bound ones. BV(t) is the set of all the variables
which are bound in ¢t and FV(t) is the set of all the variables which occur free in ¢. For each
term t = AT - &(1,), ¢ is the head of the term. We denote it by H(t) = ¢. The term ¢ is
said rigid if its head is a constant or a bound variable and flexzible otherwise. In the sequel,
[x — t3]t; will be the result of replacing each free occurrence of z in ¢; by ¢;. We consider terms
modulo a-conversion. i.e. two terms which are equivalent modulo bound variables renaming are
considered as syntactically equivalent.

Acalculus rules :

J-reduction : ((Az.s)t) —g [T — t]s
n-reduction : if ¢ ¢ FV(t) then (Az.(t z)) —, t.
—p denotes a single application of the -reduction. Analogously for —,.

— 3y Is defined as —g U —,. The reflexive, symmetric and transitive closures of —g, —
and —g, are respectively denoted by =3, =, and =g,.

Normal form : when no f-reduction can apply to a term t, t is said to be in -normal form.

A long-j3n-normal form is a 3-normal form Az, - (1, ) where 7(¢(%,)) € Tp and each ¢; is in
long-An-normal form (187n-nf). 18%-nf is unique.

Example 4 The term t = And is in f3-nf but not in IB3n-nf. We have to apply the n-expansion
und t becomes Axy.And(z,y) which is its I3n-nf.

Substitutions : a substitution (represented by ¢ or 8) is a function from V to 7 such that
(o(z)) = 71(z) Vo € V.



Domain : Dom(o) is the set {a € V | o(2) # x}. We shall always assume that BV (£) N
Dom(c) = 0. Hence, we can say that o(AT,.t;) = AT,.0(ly).

The range of a substitution is Ran(o) = Uzepom(e) £V (a(2)).

Composition : let o and 8 be two substitutions. their composition (foo)r = 6(a(x)) is defined
by (foo)={< x.0t >|<a.t>co}U{<a,t >€8|x ¢ Dom(a)}.

Union : if Dom(a) N Dom(8) = 0. then o UG = {< 2.1 >C o} U {< x.t >€ #} and is not
defined otherwise.

Normalization : ¢ is normalized iff Vo € Dom(e). o(x) is in 1g7-nf.

Order on substitutions : let 1I" be a set of variables. If Va € Wo(z) = 6(2), o and 6 are
equal over 11" and we write 0 = 6[W)]. J-equality is defined by o =35 W) iff V2 €
Wa(x) —3 6(x). So. o is more general than § over W (denoted by o <jz §[W] iff there
exists a substitution + such that 8 =3 o oy[W].

Idempotent substitution : ¢ is said idempotent when o o 0 = ¢. Snyder [Sny88] has shown
that for any substitution ¢ and a set of variables W containing Dom(c), there exists o’
idempotent such that Dom(o) = Dom(e’), o' <g, o[W]. We then shall use now only
idempotent substitutions without loss of generality.

2.2 Theory

We now define algebraic terms [NQ91].

Algebraic terms : let Ag be U, ¢r, Aa- The set of the algebraic terms TE is the smallest one
such that :

. AoeTE
oif fECo_3witha;€Tol<i<nand s; €TENT,, 1<i<nthen f(5;)€ TE.

Equation : an equation is an unordered pair ¢ ~ s with 7(¢) = 7(s) and ¢ and s are algebraic
terms.

Theory : A set E of equations is an algebraic theory. For a given theory E, TF denotes its
terms and CF the constants appearing in it.

Equivalence : the equivalence modulo E denoted by =g is the smallest equivalence relation
on the terms such that t[o(l)] =g t[o(r)] Vt,oc and | ~ r € E. So, we define the SnE-
equivalence (=g,g) by the reflexive, transitive and symmetric closure of =g U —g,. A
useful result [BT88] is that for any pair of terms < t1,t; >, t1 =g,5 t2 iff 8y Lign=E t2 ligy
(t ligy is the Bn-nf of t).

Example 5 We define a theory which illustrates the associativity-comrmutativity of the And
function.
E = {And(And(z,y),z) ~ And(z, And(y, z));

And(z,y) ~ And(y,z)}

Size of a term :

3]



we now define the size of terms [HL78] :

the size |t | is lel=1 T
ATy b)) = 1+ 20 6 ]

Size preserving theories : we call so, theories which have the following properties :

o {{V(1)}} = {{V(r)}} for each equation | ~ r € E (where {{V(l)}} is the multiset of
the variables in /),

e |l |=]|r | for each equation [ ~ r € E.

Lemma 1 If a theory has the previous properties, then this is reqular and if ty and t, are two
terms with t; =g t then |t |=| 1tz |.

Proof: The regularity is trivial because {{V([)}} = {{V r)}} implies {V({)} = {V(r)} which is
the definition of regularity.
=g is the smallest equivalence relation on the terms such that t[o(!)] =g t[o(r)] Vi, 0 and
[ ~ r € E. The number of constant symbols is the same for [ and r for each equation of the
theory, (because the total number of symbols is constant and the also number of variables).
The only way to make a term grow is to apply a substitution o. But o is applied to the both
sides and if 2 € Dom(o), then = € V(1) <= z € V(¢t;) and it appears the same number
of times in both sides. That means that we preserve the property | o(t;) |=| o(t2) |.

a

Root-preserving theories : a theory will be called root-preserving if each axiom of this theory
is such that H(!) = H(r) for each { ~ r € E. AC is such a theory for example.

3 Higher-Order E-Matching

Higher Order E-Matching will be studied here with terms and theory as defined in the previous
section.

3.1 Definition of E-matching

Matching pair : t; 2fisa matching pair if ¢; and t; are two terms in 137-nf and t; is rigid,
and T(t1) = 7(f2). We assume that {; doesn’t contain any free variable. If it is the case,
they can be frozen during the matching. The theory we shall use cannot introduce free
variables in this term.

E-matcher : ¢ is an E-matcher of a set of matching pairs iff for each pair of this set. we have
oty =y t2. ME denotes the set of all such E-matchers.

Solved form : » = ¢ is said to be solved in a set & of matching pairs if x is a variable and
v @ FV(S—{r 21}). §is solved if all its matching pairs are solved or if S is empty. Note
that if @ is of order two. x is not in I-gn-nf in @ = t. In fact, a solved form x = t means
xr— 1.



A complete set of E-matchers of a set of matching pairs S denoted by CSMg(S) is a set
of substitutions requiring the following properties :

Soundness : 0 € CSME(S) implies 0 € Mg(S)
(i.e. CSME(S) C ME(S))

Completeness : Yo € Mg(S), 3y € CSME(S) such that v <gyp o[FV(S)] (i.e. for
each solution in Mg there exists a smaller one in CSME(S)).

Protectiveness : Yo € CSMEg(S) such that Dom(o) C FV(S), Ran(o) N (Dom(o) U
W) = 0, we have ¢ normalized. This property is assumed without loss of gener-

ality [NQ91] because each substitution ¢ has a normalized equivalent 6 away from
Dom(a)U W.

3.2 The algorithm : rules and strategy

We shall describe the algorithm in three parts. In the first one, we shall see what abstraction
is and the rule which use the matching in E. The second one contains the rest of the rules and
the third one, the strategy.

3.2.1 Abstraction and matching in F

Let t; = t; be a matching pair. Assume H(t;) and H(t,) are constants of the theory E. We
then have to do first order matching in E. But before, we have to abstract ¢, to make it pure
in E.

Example 6 Let us consider the matching pair : A\zy.And( P(And(z,y)),y) = Azy.And(y, f(a)).
To find a solution, we have to consider the fact that And is commutative. To use the matching
algorithm of the theory, t; must be pure in it. So, abstraction will transform the pair into the
system :

{\zy.And(X1, X2) 2 Azy.And(y, f(a)); X1 = P(And(z,y)); X2 = y}
and we shall use AC-matching for the first pair.

We shall describe it more formally. First, we introduce the notion of mazimal alien subterm

[NQ91] :

MAS : let AT, - ¢(1,) be a term with ¢ a constant of the theory. We have :

. Y i : E
MAS(AZo, - ¢(12)) ={ ﬁ‘,‘f},ﬁ(f)wt”)) oczgt;)iic

For example, M AS(Azy.And(P(And(z,y)),y))is {P(And(z,y)); y}

Then, the abstraction of the first term of the matching pair can be written as a rule by : (¢
and ¢’ are constants of the theory)

AT - $(37) = AT/, - ¢/(5T)
Mo (ti — Xi]$(3a) 2 AT - ¢/(5T)

Abs



where

4 {ti} = A'[AS(/\:L'm : ¢(§))7
e \; are new distinct variables of the appropriate type.

Note that the pairs .X; = ¢; are in solved form. As seen in the previous example, we want
to use the matching algorithm on the first pair obtained by abstraction. The first term is built
with constants of E and new variables X;. therefore, the result of E-matching are pairs X; < t..
Hence, we shall have to make the correspondence between these terms ¢; and the alien subterms
t;. By compacting all this work (abstraction and forming the pairs), we obtain the following

rule :
AT - @(F0) = ATy - (8T, .
Tre - 9{5) 3 T d)(s")E—matchmg
ATty = /\.’L‘ﬁn.tg
where

o {t;} = MAS(AT - o(52))s

o X, are new distinct variables of the appropriate type,

o t! are such that X; = ¢/ are solution of {\Z.[t; — Xi]57 = Az', - ¢/(s',)} in E.
Let us apply it to our example.

Example 7 We shall detail the two steps of the rule :

Azy.And(P(And(z,y)),y) = Azy.And(y, f(a))
Azy. And(X1, X2) = Azy.And(y, f(a))

Abs

Then, the AC-matching of the first pair will give us for first solution oy = {X; — f(a); X2 —
y} (fla) and y are the t!. defined in the E-matching rule). Hence, we get :

Azy. And(P(And(z,y)),y) £ Azy.And(y, /(a))

- - E-matching
Azy.P(And(z,y)) = Azy.f(a); Azy.y = Azy.y

The first order E-matching algorithm need to deal with free constants in order to consider
alien subterms in the rigid term as free constants.

3.2.2 The other rules

We shall introduce the rest of the rules by showing with an example in which case they are
needed.

Example 8
AFPz.F(a,z) = M\Gy.G(a,y)

Since we are working modulo a-equivalence, and since F and G are variables of the same type,
. .. . - q o a
to match this pair is to match the subterms. i.e. {A'z.a = AGy.a; Al'v.2 = AGy.y}.



This is the purpose of the following rule :

AB.F(ty) = AB,.G(1)
ABy.ti = ADy.tys ...t ABytm = ABy.t!

m

Decompl

where

o By=ua,...2; Fai4r...0,.

o N Wi N
e Bo=2ay..2,Gri...ap.

Example 9 The simplest case is when H(ty) = H(t1) and are constants. For example :

Ary.And(e.y) = A2'y'. And(a, b)

We then have. as in the previous case. lo examine the subterms {Azy.x = Az'y'.a; Azy.y =
p y vy

Ax'y'.b}
So, we write this second decomposition :

AT - f(T) = A2 - f(Tn)
ATty 2 A2 s -0 ATty = A2

In the sequel Decomp means either Decompl or Decomp?.
Example 10 If we have the matching pair :
Azy. F(And(z,y),a) = X2'y' . And(z',y')

we need to transform F' into a projection, i.e. to form a new pair F = Az zq.z1 (which is a
solved one). So, we shall obtain the system {Azy.And(z,y) = Az'y’ . And(z’,y'); F = Az zq.21}.

This is achieved by the projection rule :

AT - F(3,) 2 Mzl.s

AT t; = Azl .s; F = \Tj.a;

Projection

Note that the head of s is either a variable or a constant.

Example 11 Assume we have to match the following pair :
Azy.Glz,y) 2 A’y f(a', ', 2')

We shall try then to imitate the function f with the variable . For our example, we imitate f
by : G = Azyzo.f(Hi(z1,22), Ho(z1,22), H3(21,22)), where H; are new function variables of the
appropriate type. Applying the substitution {[G — Az zo.f(H1(z1,22), Ho(z1,22), Ha(z1,22))]}
to the first term and after B-reduction, we obtain the pair Azy.f(H,(z,y), Hao(z,y), Hs(z,y)) 2
A’y f(2', ¢, ).



So, we give the imitation rule :

Mg - F(T) = Aa'n - f(Um)
[F = Mo f(Tmn))tr = XeT - f(U )i F = XEo f ()

Imitation

where

o tr is AT, - F({,,), and T,, are new variables of the appropriate type

e with the following definition of u; (due to Huet and Lang [HL78]) :
if T(té) € 1o then u; = Hl(m)
if 7(t)) = (a1 X -+ - X an — B) then u; = Awy, wo, ..., ws - Hi(TH,W5)
and T(w;) =a; 1 <j<s
Where w; and H,; are new variables of the appropriate type.

Remarks:

Decomposition denotes either Decompl or Decomp2. We are working with second order
language combined with first order theory. Therefore, in the imitation rule, if f is in E, then
the order of f is at most two (because E is of order 1). The consequence is that the case
7(t}) = (a1 X @2 X - - X ap, — ) only appears for an imitation of a symbol f out of the theory.

The set of rules { E-matching; Decomp; Projection; Imitation} will be called p. p; will be
any of them.

3.2.3 The strategy

We have to define now how to use these rules. First. let us define what success and failure cases
are.

Success case : § is a success case if it’s empty or solved. We can then build a substitution
os with all the pairs in solved form of S, and we have ost; =g,g t; for all ¢ 2 ¢, in the
initial set Sg.

Failure case : S is a failure case if it contains a pair such that :
AT - () = X2/, - ¢' (V') with ¢ and ¢ two different constants not in E.

To start the E-matching, we need a set Sp of matching pairs such that all the terms in Sy
are in 18n-nf, and such that 7(t;) = 7(¢y) for each pair t; = ¢, in So.

The strategy : if S is neither in solved form nor empty nor in a failure case, we select
arbitrarily a pair.

e a) If we have a pair rigid-rigid :

if H(t)) € F and H(t,) € E. then E-matching will be applied (cf. following example),
if H(ty) € E and H(t,) € E and H(t;) = H({3). then use Decomp,
if H(t,) and H(?,) are bound variables. use Decomp.

it’s a failure otherwise.

10



e b) If we have a pair flexible-rigid :

— if O(H(t1)) = 1, then either the pair is in solved form, and we do not select it, or it’s
a failure case,

— otherwise O(H(#;)) = 2 and then
if H(1y) € V, we apply the Projection rule as many times (at most the number of
arguments of H(ty)) as the type constraints permit it, and each time, we shall try to
find a different solution.
i.e. when we have t; = AT, - F(%,), we shall try a new matching with each AT.t;
such that 7(¢;) = 7(F({,)).
if H(t2) € C, we shall then apply the projections as in the previous case, and we shall
add another solution which will be given by the application of the imitation.

Remark:

The case of a pair flexible — flexible doesn’t appear here because in a matching pair, t; is
rigid. i.e. its head cannot be a free variable.

Example 12 This illustrates the case in which the E-matching generates more than one solu-
tion.

{And(a,b) = And(b,a)}

i <

{a=b;b=a} {aZa;b2b)
Failure Success

Example 13 :

Imitation of a symbol of the theory :

/\(L‘yF(:L, y) é ,\Q;yAnd(p(z), y) ___,projections |
|

limitation
A

Azy. And(H(z,y), Ho(z,y)) = Azy.And(p(z),y); F = Az zo. And( Hi(x1, x2), Ha(21, 22))

‘ E—matching
Y

{Axy.(Hy(z,y)) 2 Azy.p(a); day.(Ho(z, y)) = Aey.y; F 2 Az And(Hy(xy.22). Ha(21.22))}

{Azy.(Hi(z, ) = Azy.y; Azy.(Hao(z, y)) 2 Azy.p(2); F = Aaqag. And(Hi(2q. 22). Hy(x1,22))}

The E-matching rule gives two matching problems.

11



Imitation of a symbol out of the theory :

Axy. Fa,y J) = day-f(p(2),y) ___,projections _

lmutatzon

Ay f(Hy(x,y). Ho(x.y)) = Awy. f(p(z), y); F = Azyzg. f(H) (21, 22), Ha(21,22))

lDeL omp

Ay (Hi(z.y)) = day.p(a); Aey{Ha(2, v)) = Aey.y; F = Aagze. f(Ha(z1, 22), Ha(21, 22))

4 Termination, soundness and completeness

We shall prove the essential properties of this algorithm for size and root preserving theories.
The next section improves the algorithm for dealing with all size preserving theories and then,
we show how to allow collapsing axioms in the following section.

4.1 Soundness

Lemma 2 Let S and &' be sets of matching pairs, ?S,—p,- implies CSMEg(S') C CSME(S).
Proof: E-matching : Let {t; — t2] mean that we replace all the occurrences of ¢; by t;, then
we summarize the result of £—matching by :

(t: — 12T - B(37) =5 A2 - /(") (1)

because [t; — X;][Xi « t] = [t; — t!]. Then, it is easy to see that if there is a o such
that o(ATm ti) =gnE Az!, .t for each i, from (1) we can conclude that o(AT, - ¢(37)) =pnE
AT - @' (8'00) (14 cannot contam va.rlables)

Decomp : if we have a o such that o(AZTm.ti) =gnE Az! .t it is straightforward to say
that o(ATm, - ¢(th)) =pnE A’ ¢'(t’n) if & and ¢’ are cither the same constant or bound
variables because we are working modulo a-conversion.

Projection : Let o be such that o(ATm.t;) =pne Azl 8. [F — Moz ] T . F(T,) =3
AT,.t; where [F «— AT,.2,;] is a possible projection. Then,

(0U[F — AT5.2,))ATm . F(T,) =gnE Axl,.s (with F and z1,...,z, of the appropriate type).
Imitation : We have o such that

o(ATr. f(NT H1 (T, B8y, - -+ AWK, Hont (T W) =pnE AT/ - f(Tmr)

Then, if we note 6 the imitation, § = [F — Az'...z™. f(Awg . Hi(z', ..., 2", Ok ), ...
AT, Hop (2t 2™, T )]s

O(AT - F(1)) =pn ATr- f (A Gk, Hi (T, Wiy ), - - -, AWk, - Hint (8, W, ) ) Hence, (0UB)(AT-
F(Tm)) =gog Aln - f(U'm)

]

4,2 Termination

We just need some tools and two lemmata :

12



e the Alternation is defined for a term by <

TAST(t)U{t;} | H(t) ¢ Eand H(t,) € Eif 6 ¢ E

TAST(AT - $(1n)) = { TAST(t)U{t;} | H(t:) € Eand H(t;) € Eif ¢ € E

We denote the alternation of a term by Alt(t) such that :

Alt(t) = 1 + mazepas7(6)AlL(S)

For a set S of matching pairs, we define Alt;(S) by :

Alt(S) = {{Alt(t)} | t1 = 12 € S and not solved}

o {{}} stands for multisets.
e multisets of integers are compared using the multiset extension of <.

e we now define the depth of a system of matching pairs [HL78] :

let t; = ¢, be a matching pair and S a set of matching pairs,

£1(S) =3 |t ]| for all t; such that t; = ¢; not solved in S
£2(S) = 3 |t | for all t5 such that ¢; = ¢, not solved in S

e notion of subterm :

B AT - 6(t0)
subterms of AT, - ¢(1,) are ¢ {;
subterms of ¢;

o t' is a strict subterm of ¢ if ¢’ is a subterm of ¢ and ¢’ # t.

So, to prove the termination of the algorithm, we shall prove for each rule that the complexity
triple CT(S) =< Alt1(S),&2(S),&1(S) > is decreasing. We shall compare CT(S) and CT(S')

lexicographically. Before, this lemma :

Lemma 3 if t’ is a subterm of the term t, then we have :
| ¢ <] ¢]

Alt(t") < Alt(1)

if t' is a strict subterm of the term t, then we have :
L )<]t]

Ali(t) < Alt(t).

13



Proof: If ¢ = t/, we trivially have [#' [=]| ¢ |. If ¢/ is a strict subterm of ¢, then we have [t' [<| ¢ |
because ¢’ is at most one of the t; in t = AT, - ¢(t,). So, by definition, |t |= 1+, | t; |
and trivially | ¢ |<| t; | V.
If we take off the head of a term, we cannot increase its alternation. We can just decrease
it, or keep it to the same value. Then we have Alt(t') < Alt(t). O

We just need the following lemma that justifies the use of root and size preserving theories.

Lemma 4 Let f(2y, 22, ..., Tp) 2 f(ty, tg, ..., tn) be a matching problem where f € E and
x; are all distinct variables, then, if E is a size and root preserving theory, each solution
0; = Uke1..nTk — Sk will be such that | s |<| f(t1, ta, ...y ta) .

Proof: By definition, | o; f(z1, 22, - .., 24) |=| f(t1, t2, ..., tx) |. Then, we have for each
zp — Sk € 0y,atleast | si |<| f(z1, 22, ..., z,) | —1. Therefore, | s¢ | <] f(t1, t2, ..., ta) |.

a
We can then formulate the termination lemma for such theories.

Lemma 5 (Termination (for root and size preserving theories)) : for any derivation with the

given set of rules, either Sy is a terminal case, or CT(S83) <iez CT(Sy).

S1
E‘Pi;
Proof: Note that the strategy cannot generate an infinite set of solutions because the E-
matching is assumed to give a finite set of more general solutions. We have to examine all
the rules.

E-matching : in this rule, ¢; is a maximal alien subterm of AT, - @(3;). It means that ¢ is
a constant of the theory, and the head of ¢; is not in E. Therefore, the alternation has
decreased of 1 between AT, - #(5,) and each t;. We then have Alt;(S;) < Alt1(S51)
which implies CT(S;) <jex CT(S1). It is clear here that regularity is required to
avoid free variables in terms ..

Decomp : if H(t;) and H(t5) are constants. thev are not in E. otherwise, we would
apply the E-matching rule. If they are variables, thev are bound ones (otherwise, it’s
a Flexible-Flexible case). For these two cases, the alternation cannot increase. £;(S)
and &(S) are decrea,bmg because t; and t! are strict subterms of respectively F(tm)
or f(%,) and G(t,) or f(t7). Therefore CT( 82) <ier CT(S1).

Projection : Again, t; is a strict subterm of AT, - }(f}, . then 4/t; cannot increase (by
lemma 2). F 2 AT,.r; is in solved form. A¥,;.s doesn’t change. So, & doesn’t
increase. And £ is decreasing because t, is a strict subterm of A7, - F(¢,). Then,
CT(SQ) <ler CT(Sl)

Imitation : We have to distinguish two cases :

e 1- imitation of a svmbol f out of the theory.

Iitation : F— Avy .o v f(Awgccowyy - Hy(egooo ooy Wiy Yy e ey
Awy ooy, Hopp(ey oo wr L))

m

After application of imitation and J-reduction. we have the pair :

AT Sy e Hy (T T ) Awy.owg  Ho (G 08 ) = Azl - f(T )



a

In this case, the only rule we can apply is the decomposition. The result is the
following set of matching pairs.

{(ATa0t I (T D7) 2 AT, (AT R, H ot (T, W) = A2l )}

We then have Al (Sy) = Alt(Azy, - F(1,)) with ¢ € E and Alt(S,) =

Al AT wx, H (6, W7,)) = Alt1(S1) because H; € E. But we have £(S;) = 3, |
' |= &,(S1) — 1. therefore, £,(S2) < £2(S1), and then CT(S;) <ier CT(S1).

2- imitation of a symbol f of the theory. After application of the imitation and
j-reduction, we have the same pair :

Ao f((Tm), - - o Hoo () = A2%s - [(T )

But f € E and H; € E. Then, trivially MAS(A\Z5.f(H ({m )y s Hoo(T))) =
{H{(tm);...; Hn(tx)}. The E-matching rule is then applied on the pair

JACTOR 7T = f(m) where the z;’s are the abstractions of the ( H;(%,,))’s.
The k (assumed finite) more general solutions will be :

: sol.1 sol .k
Hl(m) ) — s% RPN e I — 3}1"
H ,(t_—) Tt  — 51 SN e Ty e Sk

m'\tm m m’ m f m!

We shall have then the & matching problems :
81 = Uigr.m/(Hi(Tm) = s})

Sk = Uiet.m!(Hi(lm) = sF)

We then have Alt(Hi(tn)) = Alt(F(1)), and £(Hi(tm)) = §(F(tm)). There-
fore, the only way to prove termination with this method is to assume £(s!) <
{(f(t_';)), ViVj. i.e. for a matching problem f(zy, 2, ..., Tm/) = f(t. ), so-
lutions are of the form U;[z; — s;], where each s; is such that | s; |<]| f(m) |.
Lemma 3 shows it’s true for root and size preserving theories.

4.3 Completeness

Completeness means that for each solution of a given matching problem. our strategy generates
a sequence of rules which gives an equivalent solution. To prove this, we could adapt the proof
given by Snyder and Gallier in [SG90]. But our context is simpler. then we give a simpler one.
We first prove the following lemma.

Lemma 6 Let t; = {; be a matching pair not solved. If ¢ € CSMEg({t; 2 t2}), then there

exists a rule p; in p such that

<
t—‘;ipi and o is solution of §.

(@



Proof: Let us consider the different cases for the form of this pair and let 0 € CSMgp({t; £ t,}).
Rigid-rigid :
H(ty) € CE and H(t,) € CE . if we consider the abstractedt, i.e. ti[t; — X;] where
{; are the maximal alien subterms of ¢, then Dom(o) N FV (abstracted t1) = @ because
abstracted ty is just made of constants of the theory and new variables.

Hence, aty = [t; — ot;]ty (1)

Let 8 € CSMEg({abstractedt, = t2}) le. O([ti — Xi]t1) =g t2. Then, 6 will be of the
form {[.X; — t]}.
Therefore, t, =g [t; — X;][X; — €]t1 (2)

On the other hand, we assumed that at; =g,g t;. Then, by (1) and (2), we have (assuming
that we have all the substitutions 6§ | @ € CSMg({abstractedt; = t,})),

oty = [t,' — Ut,’]t] =pnE l2 =E [ti - t;]zl

Therefore, [t; — otilti =gne (t: — t]t1. Hence, ot; =pg,g t. for each ¢, and this is the
result of the E-matching rule. Remember that the E-matching algorithm considers the
maximum alien subterms of the rigid term as constants not in the theory.

H(t1) = H(t2) € C\C¥ : then H(t;) € C implies H(t;) ¢ Dom(c), therefore, o(A\Ty, -
() =55 AT - f(T7) implies AT - f(7T) =png AaTm - f(T1).

Then, trivially, ot; =g, t. which is the result of Decompl.

H(t,) € BV (t;) and H(t2) € BV(t3) : 0(AB1.F(t)) =pye AB2.G(11)).

With o(AB.F(f,7)) = AB1.F(ot,) as before. Then, ot; = t! which is Decomp?2.

Flexible-rigid : then, for the pair AT - F(t,) 2 2z, f(tT,;), we have o | o(AZ,, -
F(%)) =gng A&’m - f(t'n). Hence, [F — s] € o because F' € FV(AZ,, - F(f,)). s is in
13n-nf, and 7(s) = 7(F) = (t1) — (7(t2) = (--- = (7(tp) — 7o) ---)). For a term of this
tvpe in 1J7n-nf, there are only two cases :

s = AT,.z; : with 7(2;) = 10 which is the case of application of the projection. Then,
[F — s](ATm - F(1,)) =gn ATm - ti. And we know that o is a solution of the matching pair
AT L 2 AT, f(tT,;) which is the result of one of the projections.

s = AZ,.s' with s’ # z; We still have two subcases.

f & E we then have H(s') = f and s = AT, - f(AWg,.51(T5, Wk, ), . - -, AWk, - (Tp, Wk, ))
hence, [F — 5]’\:7: : F(g) =B ’\‘T_P- : f(’\w—hsl(g’ -u)_kl)’ s ’\w_knsn(.t;?m)) We
then have Vi € 1...n, o(AZTnwr,-si(lp, Tk,)) =pnE )\a,_";- t! which is the result of the
imitation and decomposition. Note that decomposition is the only rule we can apply
to the pair
Ao - f(AWE, 51 (T, W)y - 3 ATy 8n(lpy WE,)) = AZ' e - (7).

f € E We then have s = AT, - f(51(Z5),...,5(T}))
hence [F — s]AT - F(t,) =pn ATm - f(s1(8p), ..
solution of the matching problem
AT - fls1(1)), - usallp)) = Azl - f(¥,) with f € B (1).

Hence,30 € CSMEg(f(z1,...,2n) = f(8))ie. Bf(21, ..., 20) =g f(t})s.t. (s1,) =
62;). This solution will be generated by imitation followed by E-matching (assuming
that the E-matching algorithm gives the complete set of more general solutions).

.y5(1p)) We then know that o is
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Remark : We work here with root and size preserving theories, but the next section shows
how to relax the root preserving condition.

The E-matching algorithm has to give the set of all solutions in a finite time (to preserve
termination). Then, this set has to be finite. It is the case for size preserving theories. as shown
by the following lemma.

Lemma 7 Let E be a theory such that for each matching problem of the form f(ay. w, ..., 2y) 2
flticta, ..., ty) where f € E and @; are all distinet variables. we have for cach E-solution o; =
Ukel..nZk — Sk. | Sk |< ¢ where ¢ s a constant which depends on the size of f(t1, tay ..., ty).
then the number of solutions is finite.

Proof: Each si is closed. and the number of constant symbols used in the theory is finite. Then,
the number of wayvs to build closed terms which size is bound by ¢ with a finite number
of constants is finite. A solution of the previously defined matching problem is a set of n
such terms (corresponding one to one to the x;). Hence, we cannot built an infinite set of
such substitutions. O

Let S be a set of matching pairs in solved form. Each element of S will be of the form z = s.
We shall denote by og the substitution {[z — s}.

Theorem 1 (Completeness for root-preserving theories) : Let S be a set of matching pairs not
solved. If 0 € CS.ME(S). then there exists a sequence of rules of p generated by the strategy
which gives a set of solved matching pairs S, such that os,, =gng o[FV(S)].

Proof: By previous lemma. we know that for each S, if we have 0 € CSME(S), then Jp; € p

s. t. ; with 0 € CSMEg(S’). And such a sequence of rules application is finite

S
S’ P
(termination) and sound (soundness). Then Sg,...,S,, exists, 05, € CSMEg(Se) and
0 € CSMEg(Sn). Then os,, =g o[FV(S))].

a

This result is valid for root and size preserving theories. This class is a little wider than
permutative theories, and we shall extend it in the next section to all the size preserving theories.
But theories like AC1, ACI or ACI1 are neither size preserving nor root preserving just because
of their collapsing axioms. We then show in the section 6 how to deal with such theories.

5 Relaxing the root-preserving condition

After the simplest case, we shall relax the root-preserving condition on theories. In order to do
that, we shall generalize the imitation rule, and modify the strategy. In fact, the only difference
appears when we have to imitate a function f of the theory. If each axiom of this theory is
of the form [ ~ r with ‘H(l) = H(r), then we just have to imitate f by f. But here, we have
to consider all the function symbols ¢ such that f(Z) =g g(Z,) has solutions. Note that the
variables T, are the same on both side by definition of size preserving theories, but the arity of
¢ can be different from f’s. That’s why we have
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o to adapt the definition of the imitation,
e to make the strategy generate all the appropriate imitations,

¢ and to verify that proofs are still correct.

First of all, if we define a compatibility pair as an unordered pair ( f,g) where f and g are
such that f(Z,) =g ¢(T») has solutions, then we can provide, as suggested in [NQ91], the set of
such pairs with the first order E-matching algorithm. Furthermore, we can say in our case that
this set is finite, at least because there are a finite number of axioms in the theory, and then a
finite number of H({) s. t. [ ~r € E. Then we shall call CPS(E) this compatibility pairs set
for a given theory E.

5.1 New imitation rule

The modification comes from the arity of the imitated function. The arity of f is m’ and ¢’s
one is [.

NT7 - Flim) £ AT - f(T)

—_— . — Imitation
[F — Aom.g(@)|tr = A2’y - f(Tr); F = XTrp.g (W)

where

e tp is AT, - F(1), and T, are new variables of the appropriate type

o with the definition of u; :
if r(t}) € To then u; = H{(Ty) withi€[1---m/]for fandi€[l---{]
for any g # f
if 7(t)) = (a1 X *++ X ap — B) then u; = Awy, we, ..., ws - Hi(Tr, ;)
and T(w;)=a; 1 <j<s
Where w; and H; are new variables of the appropriate type.

Remark:

For an imitation of a symbol in the theory, the case where 7(!) = (a; X -+ X a, — 3) is
avoided because the theory is assumed of order one. Hence, a constant symbol cannot be of
oder three.

5.2 Modification of the strategy

In the case of an imitation of a function f out of the theory, of course, nothing changes. We are
in the case of the previous section , f = g, and there is only one imitation to perform. But to
imitate a function of the theory, all the compatible functions will be imitated in order to keep
completeness. Then the strategy for the flexible-rigid case becomes :

o if O(H(t;)) = 1, then either the pair is in solved form, and we did not select it, or it’s a
failure case,

e otherwise O(H(t;)) = 2 and then if H(¢;) € V, we apply the rule Projection as many times
(at most the number of arguments of H(t,)) as the type constraints permit it, and each
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tine, we shall try to find a different solution.

i.e. when we have t; = A7, - F(%,,), we shall try a new matching with each AZ,.t; such
that 7(¢;) = 7(F(tm)).

if H(t2) € C but H(t,) € E we shall apply the projections and we shall add the solution
which will be given by the application of the imitation with ¢ = f.

if H(t;) € C and H(ty) € E we shall apply the projections and we shall generate all the
imitations of f by f (¢ = f) and all the compatible functions (i.e. f is imitated by each
functions g such that (f,¢) or (¢, f) is in CPS(L)).

Let us give an example to illustrate such a case.

Example 14 let E = {g(k(z,y))~ f(h(zx),y)}. F is size preserving but is not root-preserving.
Obviously CPS(E) = {(f,g)}- Then, if we have the matching problem :

Myz - Fy,2) = My'2" - f(h(a),b),

we shall generate projections and :

Ayz - F(y,2) = Ay'z" - f(h(a),b)

L imitation b
tmitation by fl \‘%}

Ayz - f(Hy(y, 2), Ha(y, 2)) 2 \y'Z f(h(a),b) Ayz - g(Hy(y, 2)) = \y'z' - f(h(a),b)

5.3 Modifications in the proofs

We begin with the soundness of the imitation rule. We have substituted f by ¢ and m’ by [.
We have ¢ such that

(A Tr-g(H1(Tn)s - - -, Hi(En))) =g A2y - f(¥ )
Then, if we note # the imitation, § = [F — Azy...2m.g(H(Z1,...,2Zm), .- .,H((:c‘l, cerZm))]e
6(NTn - F(Tm)) =gn AFw.g(Hy(m), - ., Hi(Tm)) Hence, (o U B) ATz - F(Fm)) =pn AT - [(T)

and all is still correct.

For the termination in the case of an imitation of a function of the theory, we have to verify
two things. First the number of generated imitations is finite because C PS( E) is finite. Second
one, the part of the termination proof concerning this operation, becomes :

After application of the imitation and g-reduction, we have the same pair :

AT g(H1(Tm)s - - 0 Hi(Tn)) 2 275 - f(T )
But f and ¢ € F and H; ¢ E. Then, trivially MAS(/\ﬁ.g(Hl(t_,;m: Ui=1.1{Hi(t.x)}. The

E-matching rule is then applied on the pair g(x1, 2y, .... ;) = J(t,)) where the ;s are the
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abstractions of the (H({,,))’s. The k (assumed finite) solutions will be :

sol.1 ‘ sol .k
H](fm) T — ,s{ LIS cee Xy — 5‘]\‘
H(T) W s "
1( m Ty S ) 8

We shall have then the & matching problems :
St = Viera(Hi(Tn) = 1)

Sk = Uier. a( Hi(Gn) = sF)

We then have Alt(H (1)) = AlL(F(1)), and £(Hi(tm)) = &(F(Im)). Therefore, the only way
to prove termination with this method is to assume £(s?) < £(f(t,,)), ViVj. i.e. for a matching
problem g(zy, o, ..., ;) = f(tl.)), solutions are of the form U;[z; — s;], where each s; is such
that | s |<| f(t,.) .

And this is true for theories which preserve size, equally not root-preserving.

For completeness, we are only interesting in the flexible-rigid subcase where f € E. We have
then

s = AT, - g(s1(Tp), - - -, 5i(T7)) hence [F — s]ATm - F(tp) =gy ATm - 9(51(Tp)s - - -, s1(tp)). We
then know that o is solution of the matching problem
AT (515, - r1(Tp)) 2 AT - f(¥n) with f and g € E (1).
Hence, 30 € CSMg(g(z1,...,21) = f(1)) i.e. 8g(zy,...,x;) =g f(i) Then, a solution of (1)
which corresponds to a solution generated by the appropriate imitation (here, the imitation by
g). The strategy says that we try all the possible ones.

We then preserve the three properties of soundness, termination and completeness. We can
conclude that what Nipkow and Qian [NQ91] suggested in order to reduce nondeterminism can be
used here to increase the class of theories we can deal with, without losing neither completeness
nor termination.

6 Collapsing axioms

We make now the assumption that the theory E we use, is the union of £; and E; such that
E; preserves root and size, and E; is just made of regular collapsing axioms.

Regular collapsing axiom : a regular axiom is an axiom [ ~ 7 such that V() = V(7). And
it is a collapsing one if 7 = z where z is a variable. Then, a regular collapsing axiom has
the form [ ~ z with V(!) = {z}, but [ # 2. Note that it implies | [ |> 1.

Collapsed form : we say that a term is in collapsed form if no collapsing axiom can be applied
to it in the direction [ — 2 at any occurence.

By application of a collapsing rule, a term can only get smaller. Then the collapsed form ¢
of a term is smaller than any others in an infinite equivalence class ||t||fz such that ¢’ € ||t||g iff
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¢ —F

+
l—z {

t (+ means at least one time) becanse t' —7 |

= |t |>]t]is obvious.

Because each term has a collapsed form. we shall assume we only have terms in collapsed
form. Of course, we have to assume now, that the first order E-mmatching algorithm gives a finite
complete set of more general E-matchers because we have an infinity of solutions as one term
has an infinity of E-equivlent terms.

Then, what will change? Nothing for first order (rigid-rigid pairs). The E-matching rule
will make the alternation of the complexity triple decrease strictly, and the number of more
general solutions is assumed finite. Then. no termination problem. The real problem is again
the imitation rule. We shall illutrate it with the following example:

Example 15 The theory we consider is ACI1. ACI for + is ACU {& + 0 ~ z}. Assume we
have the following matching pair : F(x.y) 2 a+ b we then have the following computation :

Fa.p)=a+b

- 2 projections
Tmitation

F — Aryzg - +(Hy(21. 22). Ho( 21, 22))

+(Hi(z.9) Hy(z.y)) = a+b

Wﬂg gives 4 solutions

Hi(z.y) 2 a+b Hi(z,y) =0 Hl(z,y)éa Hl(a:,y)é

Hy(z,y) 20 Hy(z,y) 2 a+b Ho(z,y) 2 b Hiz,y)<a

We see that the two framed new matching pairs are equivalent to F(z,y) = a+b. Then, with
the simple idea that two same problems have the same solutions, and it’s no need to compute
them twice, we transform the strategy for flexible-rigid terms into :

o if O(H(ty)) = 1, then either the pair is in solved form, and we do not select it, or it is a
failure case,

e (this part is the usual one) if H(t;) ¢ E, then if H(t2) € V, we apply the rule Projection
as many times (at most the number of arguments of H(t;)) as the type constraints permit
it, and each time, we shall try to find a different solution.

i.e. when we have t; = AT, - F'({,), we shall try a new matching with each AZ,;.t; such
that 7(t;) = 7(F(t,)).

if H(t2) € C, we shall then apply the projections as in the previous case, and we shall add
another solution which will be given by the application of the imitation followed by the
decomposition.

e otherwise we have a matching pair P = {\T,; - F(T,,) = A/, - f(t_’;)} with f € E. We
apply the projection rule as in the previous cases, and we apply the imitation followed
by E-matching. We continue with each matching pair of cach solution of the E-matching
except the ones which are of the form {Az; - H;(t,,) 2 27, - f(T,.)}. The solutions of
these pruned matching pairs are the solutions that we find for P.
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There is no soundness problem because we don’t change the rules. It is the same for com-
pleteness since we remember that we are working with a first order E-matching algorithm which
gives all the more general solutions.

For termination, we have to look a little more precisely. For rigid-rigid pairs, there is no
change because E-matching gives a finite number of solutions. In fact, the strategy just cut
a looping branch of the search tree. Then, if each matching pair (except {AT, - Hi(f,) =
/\E-f(m)}) terminates, all the matching problem terminates. Indeed, the solutions of P are
the solutions of the pairs {7, - H({,,) N VU f(#.)}. Therefore, if we have the solutions of
P, we have their solutions.

We just have to verify that the complexity triple is decreasing with the other matching pairs
to valid the termination result.

As previously, we have Alt(H (1)) = Alt(F(im)) and §(Hi(tm)) = E(F(%n)). Then, we have
to assume again that for each s; # f(¢; ,), we have | s; [<| f(¢;,,) |. This is done by the following
lemma :

Lemma 8 For a theory E such that £ = Ey\U Eq with Eq a rool and size preserving theory, and
E, a set of regular collapsing azioms, then the more general solutions {z; — s;} of a matching
problem f(Z7) = f(tm) are such that s; =g f(Im), or | s; |<| f(tm) |-

Proof: Assume s; in collapsed form such that {z; — s;} is in the solution.
Then, f(z1,..-,8i,.--,2n) =E f(tm). There are two cases :

o f(Z1y...,Tiy...,Tn) =E, 2; then, either s; =g, f(I) and | s; |=| f(&m) |, or s is not
in collapsed form,

o or f(Z1,.-+8iy---y2n) =E, f(Im) which implies by definition of size preserving the-
ories that | s; |<| f(Tm) |-

O

Then, we preserve termination for such theories. It permits in particular to deal with AC1,
ACI and ACI1. Note that the root preserving condition can be removed here as in the previous
section.

Remark about complexity : We can see the search of solutions as a tree which has Sg as
root and inference rules as nodes. A leaf is then a success or a failure. Then. if we can find a
binding of the height of this tree and a binding of the complexity of the rules. we shall be able
to bind the complexity of the algorithm for finding a solution.

Let T(n.a) be the height of the search tree for the matching pair t; = ¢, where n is the number
of svmbols in the matrix of {; and a is an upper bound of the function symbol arities. One can
see that for each inference rule. we have the tree height which is O(n).

For instance. by decomposition. we obtain a new problems if a is the arity of the decomposed

function. Then. T'(n.a) = T(ny.a)+T(nz.a)+---+T(np.a) with p < e and En; = n—1. Then,
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if we assume that T'(n,a) < C.n for a constant . by reccurence, we have T'(n,a) < C.3Xn; =
C'(n — 1). Similar reasoniug can he held for the other rules. We then have a height which is
linear for the number of symbols in ;.

In the other hand, the most complex rule is obviously the E-matching rule. For instance, if we
take the AC theory, we know that the first order AC-matching is NP. Hence, the complexity for
finding a solution to a second order AC-matching problem via our algorithm is NP.

7 Implementation

Our main purpose was to implement this algorithm, and a main aspect of this work is modularity.
This concept appears in different ways.

> Reusability : first of all, we use two known algorithms. The second order matching algorithm
described by Huet and Lang in [HL78], and an E-matching algorithm for first order terms.
The E-matching rule permits us to make the link using the abstraction which is like a pipe
between them.

Abstraction

\
lSecond — Order Matchir@ ﬁ“irst — Order E — matching

We can say it in two ways :

o To first order E-matching, we add second order to obtain second order E-matching,

© or to second order matching, we add a theory to obtain second order E-matching.

> Adaptability, modifiability : for our practical application, E has been instantiated with
the AC-theory for the collapse-free theories case, and with AC1 for the collapsing case.
But it can be replaced by other E-matching algorithms if E is any collapsing size preserving
theory.

> Hidding : We do not need to know how E-matching is done. We just need to be sure that it
is sound, complete and can deal with free constants.

We shall show now examples which point out the many possible applications of such algo-
rithms.

Indeed, there are many applications of second order E-matching. Each domain where one
tries to recognize higher order patterns will be described more precisely if first order algebraic
properties are taken into account. This enhances the expressiveness of the svntactical approach
in many A.L applications. We show in the next example how we can recognize a recurrent pattern
in a logic program. But it can be applied also to automated reasoning. program transformation.
higher order rewriting systems, ...
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7.1 Recursive functions

We give first the same example as in [HL78]. The purpose was to give automatically an iterative
version of a given recursive program. This example doesn’t need any algebraic theory. But on
the sanie schenie, it is easy to imagine matching problems where function algebraic properties
must be taken into account in order to find any solution. fizpt represents the fixpoint operator
and cond is the conditional one. The first term represents the recursive functions of the form :

f(2) = If a(x) then b(2) else h(d(z), f(e(x))).
The recursive function we trv to match is the reverse function :
rev(x) = If null(x) then nil else append(rev(cdr(z)), cons((car(x)),nil))

Then. the matching problem

Ay.fixpt(Af x.cond(a(x),b(x),h(d(x), (£(e(x))))),¥)

e

Ay.fixpt(Arev x.cond(null(x),nil, append(rev(cdr(x)),cons((car x),nil))),y)

has for solutions:

a — Axg.null(xg) a — Axg.null{xg)

b — Axs.nil b — Axs.nil

e — Ax4.cdr(xs) e «— Axg.cdr(xq)

d — Ax3.X3 d « Axz.car(xs)

h — Ax; x;.append(x1, cons(car(x3),nil)) h — Ax; x7.append(xj,cons(xg,nil))

a — Axe.null(xe)

b — /\X5.ni1

e — Axg.cdr(xg)

d — Axjz.cons(car(xz),nil)
h — Ax; xgappend.(x1,x2)

This example illustrates very well the second order case. We could match functions in which
the role of the append function is performed by a function which is in a theory like AC1.

7.2 Finding a recurrence pattern in a logic program

Assuming we are working with Horn clauses, we know that a recurrence schema on the integers
for any predicate P has the form : ‘P(0) A P(suc(x)): —P(x)". Then, if we try to match a logic
program with this pattern, the algorithm will return all the relations which can instantiate P.
i.e. all the relations on which a recurrence is applied. For instance :

F(P(0) A = b:-aA

(P(suc(x)): —P(x))) p(suc(xy)): —p(x1) A
d: —cA
p(0) A
g:—e
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will give the solutions! :

X — X1 F— Ay(g:—eA X — X1
P — Ay-p(y) d:—cA P— Ay ply)
F—Ay-(g:—-eA p(0) A F— )y (g:—eA [+
d: —cA b:—-aA d:—cA
b:—aA p(suc(x1)) : —p(x1)) ¥y A
y) b:—a)

Without considering the AC properties of ‘A’, we would not be able to produce this result.
First order E-matching should trv to match at each possible occurrence, but furthermore with
each relation P occurring in the program. This pattern recognition is also useful in fold-unfold
program transformation where the folding rule rapidly becomes unmanageable by hand and re-
quires some mechanical tool.

7.3 Simplification of a logic formula

As previously stated. looking for tautologies can be applied in a pre-processing step in order to
simplifv formulae before invoking a theorem prover. We shall illustrate here a new way for simpli-
fving formulae using this method. Consider the following formula : (p(x) = q(x)) A (q(y) = r(y))
where x and y are universally quantified. Trivially, by transitivity of the implication, we can
simplify into p(x) = r(x). In order to make such simplifications in the formulae, we perform
some abstraction on this scheme to obtain the more general scheme :

¥ = F((P(x) = Q(x)) A (Q(y) = R(y))) where P Q and R are second order variables. We can then
match the pair v = ¢ with ¢ = ((q(x) = r(x)) A (p(2) V r(b)) A (p(x) = q(x))) = (x(a) V r(b)).
The matching problem

F((P(x) = Q(x)) A (a(¥) = R(¥)))

((a(x1) = £(x1)) A (p(a) V £(b)) A (p(x1) = q(x1))) = (x(a) V x(b))

has a solution :

F— Az-(zA(p(a)Vvr(b))) = (r(a)Vr(b))
P — Az -p(z)

Q— Az-q(z)

R — Az r(2)

X — X1

y—x1

Hence, we obtain : ¢' = ((p(x) = r(x)) A (p(a) vV r(b))) = (r(a) V (b)) after simplification.
Again, this result could not be obtained without taking account of the AC properties of ‘A’. To
use first order, we should have tried all the combinations to instantiate P Q and R, and to try to
match at each position in .

"Note that x4 is a frozen variable (other solutions do exist).



8 Conclusions

The main problem related to the implementation, is the number of solutions and this has two
essential reasons. First, we deal with second order. This produces a lot of useless solutions, in
particular, solutions which assign closed functions (terms like Az.t with 2 € ) to second order
variables. One can be easily convinced by looking at the presented examples. Secondly, we
cannot avoid the number of solutions given by the first order E-matching. Furthermore, these
two reasons can he combined. For example, if one solution is a closed function AT5 - s we shall
have as other solutions, all the closed functions AT, -s’ such that s’ is equivalent to s modulo the
considered theory. These solutions are obviously useless. One solution could be to keep only one
element of this class which would be the normal form. But we are not interested at all by these
solutions and computing only one good solution is a much better way of improving the pattern
recognition step in Automated Theorem Proving. We are convinced that for our purpose, the
first solution which have no closed function in its range associated with a second order variable
symbol is the one we need.

Note that experiments have shown that to use a term representation a la De Bruijn or a similar
encoding will not provide a substantial improvement since the most important wasting of time
is due to irrelevant solutions.

What we have presented is a second order matching algorithm which is able to take into
account algebraic properties. The termination property is obtained for collapsing size preserv-
ing theories and an appropriate strategy. This algorithm is a first step toward a toolbox using
higher order mechanisms in Automated Theorem Proving which is currently under development.

Acknowledgments : We are very grateful to Denis Lugiez for his help during this work
and to Eric Domenjoud for helpful discussions about theories.
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