On the convergence of a D.K.T. method valid for shells of arbitrary shape

Abstract : In a recent paper by the same authors, we have thoroughly described how to extend to the case of general shells the well known D.K.T. methods (i.e. Discrete Kirchhoff Triangle) which are now classically used to solve plate problems. In this paper we have also detailed how to realize the implementation and we have reported some numerical results obtained over classical benchmarks. The aim of this paper is to prove the convergence ofa closely related method and to obtain corresponding error estimates.
Type de document :
Rapport
[Research Report] RR-2010, INRIA. 1993
Liste complète des métadonnées

https://hal.inria.fr/inria-00074661
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 16:01:46
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : mardi 12 avril 2011 - 18:09:43

Fichiers

Identifiants

  • HAL Id : inria-00074661, version 1

Collections

Citation

Michel Bernadou, P. Mato Eiroa, P. Trouve. On the convergence of a D.K.T. method valid for shells of arbitrary shape. [Research Report] RR-2010, INRIA. 1993. 〈inria-00074661〉

Partager

Métriques

Consultations de la notice

115

Téléchargements de fichiers

57