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Abstract

In a recent paper by the same Authors, we have thoroughly described how to extend to
the case of general shells the well known D.K.T. methods (i.e. Discrete Kirchhoff Triangle)
which are now classically used to solve plate problems. In this paper we have also detailed
how to realize the implementation and we have reported some numerical results obtained
over classical benchmarks.

The aim of this paper i1s to prove the convergence of a closely related method and to
obtain corresponding error estimates.

SUR LA CONVERGENCE D’UNE METHODE D.K.T.
VALABLE POUR DES COQUES DE FORME ARBITRAIRE

Résumé

Dans un article récent des mémes auteurs, nous avons soigneusement décrit comment
étendre au cas de coques générales les méthodes D.K.T. (i.e. Discrete Kirchhoff Triangle)
qui sont maintenant tres utilisées pour approcher les problemes de plaques. Dans cet article,
nous avons également détaillé comment réaliser I'implémentation et nous avons donné des
résultats numériques obtenus sur des exemples tests classiques.

L’objet de ce travail est de démontrer la convergence de cette méthode et d’obtenir les
estimations d’erreur correspondantes.

*) for submission to Comput. Methods Appl. Mech. Engrg.



1 INTRODUCTION

There exists a large number of approximation methods for plate and shell problems. This
great diversity can be explained :

- by the number of continuous models which have to be adapted to the problem into con-
sideration : geometrical characteristics (thickness, curvature), small or large displacements,
small or large strains... ;

- for a given model, by the number of possible variational formulations which lead to
conforming or nonconforming displacement, mixed, hybrid, equilibrium... finite element
methods ;

- for a given model and for a given variational formulation, by the variety of finite el-
ements : two or three dimensional, triangular, quadrilateral, use of low or high degrees of
polynomials, exact or approximate integrations...

Thus, there are many different parameters to take into account in order to choose a finite
element method and this is not so easy ! In order to make easier such approximations, the
computational mechanicians have tried to propose a general and effective method valid for
the most part of the problems.

In this way, the methods based upon the so-called Mindlin/Reissner plate or shell the-
ories [1,2] seemed very attractive since they only require C°-continuity for shape functions
and since they can take into account the effect of shear deformations. These models are
well adapted to the study of moderately thick plates or shells. Unfortunately a direct dis-
cretization of such Mindlin/Reissner models by conforming finite element methods leads to
numerical instabilities as soon as the thickness becomes too small (locking phenomenon...).

The introduction of D.K.T. (Discrete Kirchhoff Triangles) methods has improved such
approximations ; they have been satisfactorily applied to a large class of thin to moderately
thick, linear or nonlinear plate problems. The basic ideas of these D.K.T. methods are
mainly :

i) to neglect the shear strain energy in the computation of the strain energy ; this part
is generally small when compared to the membrane or bending strain energy, specially for
sufficiently thin plates or shells ;

i1) to introduce on the discrete model some constraints like :

* Kirchhoff-Love conditions at mesh nodes ;

* “tangential” Kirchhoff-Love conditions at some nodes located along the sides
of the finite elements ;

* and, if necessary, some other constraints in order to insure a good definition
of the discrete problem.

The basic ideas of these D.K.T. methods were introduced in [3,4,5]. But these methods
became really popular more recently, particularly after the works of [6,7,8].

Parallely, [9,10] have performed the numerical analysis of these D.K.T. methods for plate
problems. They have proved the convergence of these methods to the solution of the Kirch-
hoff plate model and they have obtained the corresponding error estimates.

Thus, after these successes obtained in the approximation studies of plate problems, it
seemed to be natural to extend these methods to the case of thin to moderately thick shell
problems with arbitrary shape. In [11,12], we have thoroughly described how to make such
an extension and we have illustrated the efficiency of this method by giving its numerical
results on a set of classical benchmarks. In this way, like in [13,14,15,16,17], we have assumed



that the middle surface of the shell is defined as the image of a plane reference domain by a
regular mapping. Such a construction is interesting from practical but also theoretical point
of view, since we have just to analyze the D.K.T. approximation without any additional
geometrical approximation. Then, we have detailed how to realize the implementation and
we have reported some numerical results obtained over classical benchmarks. Finally, the
second Author [18] has considered a light modification of Kirchhoff-Love restrictions in order
to simplify the mathematical study of the convergence.

The aim of this paper is now to prove the convergence of this last method [18] and to
obtain corresponding error estimates. For clarity, we recall in paragraph 2 the equations of
thin shells into consideration which include, or not, the effect of shear deformation. Next, in
paragraph 3, we define a D.K.T. finite element method valid for general thin shells. Finally,
in paragraph 4, we prove that such a D.K.T. finite element method is nothing but a noncon-
forming finite element approximation of the Koiter’s modelization and then, we prove the
convergence and we obtain the corresponding error estimates.

2 THE EQUATIONS OF THIN SHELLS INTO CONSIDERATION

The geometrical description of the shell before deformation is given for example in [17]. In
particular, the middle surface of the shell is defined as the image of a domain Q by a mapping
¢ which will be assumed sufficiently regular. Subsequently, we will use the notations of this
referred book. For convenience, we briefly record hereunder the two different models into
consideration.

2.1 Naghdi’s model including shear effects

A general presentation of this model is given for instance in [16] or [19]. Here we take
a more simple statement from [8] valid for plane stress assumptions, for shear strains which
are constant through the thickness and for sufficiently thin shells.

The displacement field U of any point M of the 3D shell can be approximated as follows :

U =@+ (B.a°,

where 4 is the displacement field of the orthogonal projection P of the point M upon the
middle surface of the shell before deformation, i.e.,

U= ’u,'(-l‘i,
where ¢ denotes the coordinate through the thickness of the shell and where the parameters
B are the components of the rotation of the normal @. Let us explain this last point :
the assumption of shear deformation involves that the particles located upon the normal @,
before deformation remain aligned after deformation and define a possibly non unit vector
as, i.e.,

By = s + fud®

This assumption is illustrated in Fig. 1.



before deformation after deformation (Naghdi) after deformation (Koiter)
Fig. 1. Geometrical aspects of the deformation of the shell (transverse sections)

Loading of the shell :

Subsequently we assume that the shell is :

i) clamped along I'y C T = 09 with measure (I'g) > 0 ;

ii) loaded by a distribution of volume forces whose resultant is p’ and whose resultant
moment is 0 along the middle surface S of the shell ;

iii) loaded by a distribution of surface forces applied to the part (I'y = T'—TI'g) x| —e/3, /2

of its lateral surface. We denote by N the corresponding resultant along T'; and by M =
€43MP3* the corresponding resultant moment along T';.

The corresponding work of these loads associated to a displacement (7, §) of the particles
of the shell is approximated by :

05,6) = [ 75 Jadelde? + / (NG = M?6,)dv. (2.1)
Then, the corresponding variational formulation of this model can be stated as follows :

PROBLEM 2.1. For any 5 € (L*())*, N e (L¥I1))*, M € (L¥(T}))? find (@,8) €
‘7, B = B.a*, such that :

al(g, B); (3, 8)) + bl(, B); (¥, 8)) = £(5,8), V(7,6) € V, (2.2)

where :
2

al(i, ) (3,6)] = /ﬂeE"”“[‘raﬂ(ﬁ)’m(ﬁ)+ %5 Xoali, Boul5,0)] Vadelde?,  (23)

e a"’ﬁ
b, ) / ST (6ali) 4 B)(G0() + 60) VA, (24)
2v

Eaﬁ/\u — ) ( al ﬁu+aa#a[3/\ + a

af _Au
2(1+1/ 1o )

b

= ({ve H'(); vlr, = 0})".
Moreover, the components v,3(7), xag(¥,8) of the tensors of deformation and of change
of curvature of the middle surface of the shell are given by :

~ 1
Yo (V) = B (Valg + Vgja) — bagus, (2.5)
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-~ L) ;
Xop(7,8) = § (8ujp + 8g1a) — 3 (83015 + Bjvria) + Capvs, (2.6)
while :
$a(T) = V34 + bj0a. (2.7)

It is interesting to record that :
THEOREM 2.1. ([20,21]) : Problem 2.1 has one and only one solution.

PROOF. The main step is the obtention of the V—ellipticity property of the bilinear form,
i.e. : there exists a constant a > 0 such that :

al(7, ) (7, 9) + (3,8 (3,8) > a {FlEa + 18120}, VEHEV.  (28)
|

2.2 Koiter’s model

This model is a refinement of the classical theories [22,23] : now the normal to the middle
surface remains normal to the middle surface during the deformation (see Fig. 1c) so that :

53 = 63 —_ ¢u(ﬁ)[i“, (ﬁ“(ﬁ) = u3,# + bﬁu,\

In particular, let us note that the Naghdi’s model gives back the Koiter’s model as soon
as az = as, l.e.,
Ba + ¢a(u) = 0. (2.9)
By substituting this relation, and more generally relation é, + ¢,(¥) = 0, into relations
(2.1) to (2.6), we get the variational formulation of Koiter’s model :

PROBLEM 2.2. For any § € (L*(Q))}, N € (L¥T1))®, M € (L¥I}))?, find @* € V*
such that :

a* (@, ) = f*(3), VeV, (2.10)
with : \
xf = =+ a — —+ € — —\ - -
a"(@,9) = [ B Prap(@1aul®) + T3 asl@)prn(D)] vVade'de?,

V= {7 e (H'(Q)" x HYQ), Tlr, =0, Onvslr, =0},
Pap(D) = Vsjap — Caps + By0r18 + B5vrIa + Bajpvrs |
@) = [ Fovadeae + [ 5+ M (vsq + Bhon)d. (2.11)
It is worth to note that :

THEOREM 2.2. ([20] or [24]) : Problem 2.2 has one and only one solution.

PROOF. Here again the main step is to prove the V*-ellipticity of bilinear form, i.e., there
exists a constant o* > 0 such that :

a*(3,7) > o ||5)|%., V5V~




3 THE D.K.T. FINITE ELEMENT METHOD

The direct approximation of the equation (2.2) by conforming finite elements is easy to
implement since we have just to use C%-elements. However, for small thickness, we observe
numerical instabilities (locking phenomenon) as quoted for example by [25]. Several methods
have been proposed to fight such instabilities but none of themn meets a systematic success
until recent works by [26,27].

On the other side, the direct approach of the equations (2.10) by conforming finite element
methods leads to the use of finite elements of class C! whose implementation is always
delicate. Moreover, these equations give a good modelization of thin shells but they are less
performant for semi-thick or thick shells for which it is not really reasonable to neglect shear
strain effects.

The object of D.K.T. finite element methods is to propose an “intermediate” discrete
model between the two discrete models which can be obtained from equations (2.2) and
(2.10). In this way :

i) one defines a mesh of the plane domain Q ;

i1) one approaches the components of the unknowns #, § in suitable finite element spaces ;

ili) one introduces some constraints over the discrete space which are some types of
Kirchhoff-Love conditions imposed in a finite number of nodes ;

iv) one neglects the shear strain energy, i.e., b[.; .].

In this paragraph, we detail this D.K.T. approximation and then, we give two equivalent
variational formulations.

3.1 The mesh in use

From now on, we assume for simplicity that the plane domain  is polygonal. Then,
we consider partitions of this domain by regular family of triangulations which satisfy an
inverse assumption [28].

Subsequently, we detail the most representative of these D.K.T. methods in case of trian-
gles ; the other methods based upon triangular or rectangular elements are briefly described

in [7].
3.2 The finite element spaces used to approximate the unknowns 4 and 3

Every components u; and 3, will be approximated in a finite dimensional space associated
to the finite elements displayed in Fig. 2.
3.3 The discrete space associated to the D.K.T. method

Let Z, be the finite element space defined by :
Zh = {(n,64) €V ; Vha € Va1, Oha € Va1, a=1,2; vp3 € Vi ;

(Tk, 83)|T satisfies the twelve “discrete Kirchhoff (3.1)
constraints” for any T € 73},



Associated finite
Finite element Representation of the element spaces
Unknown . . .
type finite element including boundary
conditions v|r, = 0
uy, Uz, A1, B2 P,-Lagrange Vi
U3 Pj-Hermite Vi

Fig. 2. Finite elements in use

where the twelve constraints are :

(1) Kirchhoff-Love assumption is satisfied at the vertices, i.e., with (2.7) and (2.9) :

6ha(a,~) = —vhg,a(a;) bt b’o\,(a;)vh,\(a;), a = 1,2 ] 1= 1,2,3, (32)

that means six constraints.

To express the other constraints, it is worth to introduce in the plane reference domain
) the unit external normal 7i; vector to the side a;4;a;-, of the triangle into consideration
(see Fig. 3) at rmdpomt b;, so that n; = n{é,. Likewise, we will use the unit tangential
vector t; = i; x € with f; = = t3€,. For convenience, we will also use t,, = t¥ and n;, = n¢

-
€

Fig. 3. Local basis attached to a triangle

Then, the other six constraints can be stated as follows :



(i) Kirchhoff-Love assumption is “tangentially” satisfied at the midsides b; of the trian-
gle : o
t26ha(bi) = —t3[vhz,a(bi) + ba(b)var (b)), ¢=1,2,3; (3.3)

(i) Kirchhoff-Love assumption is “normally” satisfled in mean at the midsides b; of the
triangle, i.e. :

nZ6ha(bi) = —n¢ [ 5 (hs.a(aic1) + vasa(air)) + B3 (b:)Joma(b:)], 1 =1,2,3. (3.4)

Thus, by imposing these twelve independent constraints, we have reduced to twenty one
elements the set of effective degrees of freedom. For proving the convergence, it will be useful
to keep the set :

{vha(ai), vha(bi)a vh3(ai)) vh3,a(ai)1 a = 132 ’ 1= 1’273}, (35)

while, for implementation purpose, we have seen in [12] that it is most convenient to replace
Un3,a(@i) by bhalai).

3.4 Variational formulation of the D.K.T. approximation problem

Since we specify discrete Kirchhoff conditions, this D.K.T. approximation is mainly ad-
dressed to thin shell approximations. So, we define the associate discrete problem by

- looking for approximate solutions lying in discrete space Zn s

- neglecting in (2.2) the term coming from shear energy, that is b[.; .].

Then the D.K.T. approximation problem can be defined as follows :

PROBLEM 3.1. For any § € (L*(Q)), N € (LTy))*, M € (L*(T1))?, find (@, B,) € Zn
such that .
a[(dn, B,); (Uh, 83)] = L(Vh,84), V(Un,8,) € Zn. (3.6)

|
Subsequently, we will introduce another equivalent formulation of Problem 3.1 which will
be more interesting for the study of convergence and for the obtention of error estimates.
First, let us give some remarks concerning the definition of Problem 3.1.

REMARK 3.1. If we introduce the subspace Z of the space V defined by :
7 = {(3,8) € V such that 6, + v3a + b2vs = 0 in L2(Q)}, (3.7)

then, we can check that : . -
i) the problem : For any p € (L%(Q))3, N € (L*(I'}))3, M € (L¥(T,))?, find (4, B)eZ
such that :

—

a[(4,B), (v,8)] = £(3,8), Y(4,6) € Z, (3.8)

is equivalent to Problem 2.2 since we have :
UT,8) = f7(D),  xap(7,6) = —pap(5), V(7,6) € Z;

ii) Problem 3.1 is nothing but a nonconforming approximation of problem (3.8), and then
of Koiter’s model given by Problem 2.2, since Z, ¢ Z. It is easy to check that (vx,6,) € Zx

8



implies ¥, € (C°(£2))® but since J,vs3 is not continuous along the interface, we do not have
vps € H*(Q). In fact the constraints (3.4) introduce a control for the jump of these normal
derivatives along the common sides between adjacent triangles ; these contraints are essential
to ensure the convergence of this nonconforming method. For nonconforming finite element
approximations of thin shell problems, we refer to [29,30]. |

As we have mentionned in the comments of relation (3.5), it is convenient to eliminate
the unknowns §, and to give another equivalent statement of Problem 3.1. The elimination
of the unknowns §, leads to an approximation space Vh = Vi1 x Vi1 x Viy which is not
included in V*.

It will be convenient to define the discrete derivative :
Oha(Th) = —6ha — bivnr,  V(Bh,84) € Zh, (3.9)

whose interesting properties are :

1) Ona(Un) is supposed to be a good approximation of vs3 , (see the constraints introduced
in the definition (3.1) of Zh) This result will be stated precisely in Lemma 3.1 ;

11) Ono(Un) € HY(Q) while vps 4 only belongs to L2(Q).

For any o), € Vh, we define :

od

_— f o —
Phap(Th) Z Onhap(Un) — TagOhr(Th) — capvns + byvars + bjvarje + B2 lsvnn,

where (3.10)

(060ha(Vn) + OaOnp(Vh)),

N [—

Ohap(Ur) =

so that :
Phas(Uh) = —Xap(Oh, 81)s  V(Uh,81) € Zh. (3.11)

For following purposes, it is worth to note that relations (3.9) to (3.11) can be extended
to functions of space Z defined by relation (3.7), by setting :

Oha(®) E V30 5 Phap(T) & —Xap(,8) = pos(@), for any (7,6) € Z. (3.12)

With thece definitions it is easy to prove that :

a[(in, B,), (Br, 84)] = an(iin, Bn),  V(iin, B, ), (Bn,8,) € Zn,

(3.13)
g({)‘haéh) = fh({)‘h)a v((ghvéh) S Zh’
where :
D BA ~ ~ e? -
an(h, Uh) = /Q e B [yap (U ) yan(Vh) + B Phas(Un)prre(Tn)] Va d€' dE?,
(3.14)

Fu(@) = [ 50 Vadede? + [ (V5 + M (Bu() + Bona)ldr.

From the identities (3.13), we can give the following equivalent formulation of the D.K.T.
approximation (3.6) :



PROBLEM 3.2. For any § € (L%(Q))}, N € (L¥(I1))}, M € (L*(T}))?, find i@, € Vy
such that : .
an(tp,Us) = fa(th), V0, € Vi

Therefore, we have defined a nonconforming approximation of Koiter’s model given by
Problem 2.2, with three kinds of nonconformity :

i) Vi g V*;

i) a*(.,.) is approximated by a(.,.) ;

i) f*(.) is approximated by fx(.).

To prepare the convergence studies, it is convenient to equip the space V, with the norm

1/2
lUalln = {llﬁh“in + Y, lvhslg,r} , VU, €V, (3.15)

TeT,

and to prove the following lemmas :

LEMMA 3.1. Let us assume that the mapping q_g which defines the middle surface of the
shell belongs to the space [W**(Q)]°. Then, there exists a constant C > 0, independent of
hr, such that for m = 0,1 and for a = 1,2, we have :

|r3,0 — Oha(On)|m,r < Chlr_m{llvmlll,r + ||lvazllir + |vasler}s  V(Ur,8,) € Zh-

PROOF. By using the definitions (3.1) and (3.9), we obtain for every (%, 8,) € Z) over each
triangle T € 7}, :

Ona(n)(§) = —51?(5) = b3(E)vma(€) ‘
= —Z;[/\,(Q/\, - 1)(5}10((1,') + 4/\,'.,_1/\,‘_15;10,((),')] L (316)
—b(€) E[Ai(z)\i = Dvpa(a:) + 42X M1 vna(by)).
Next the combination of relations (3.2) (3.3) and (3.4) gives
6hal@:) = —vh3 (@) — b2 (a;)vnr(a:) ; (3.17)

bna(bi) = —toit?[vas, () + 63(b:)uar(b;)]
—Nain] [ % (Vhsp(@iz1) + vnsp(ais1)) + b,),‘(bi)vh/\(bi)]

= —[taitfvns,(bi) + % naintf (Va3 (@ic1) + Vnau(@is1))] — 83(6:)uar(bi),

where we have used notations t,; = t&, n, = n? (since these components are taken with

respect to an orthonormal basis) and the identity t,it! + noin! = 85. Moreover, since vpar €
Hermite triangle of type (3’), we can write :

1 0¥ fonan(@ic) + vasw{aie)) = n¥okau(bi) + g DPona(b:)((aie1 — aim1)?, /),

10



so that :
Sha(bi) = —vhsa(bi) — B)(b:)vna(bi) — § naiD vms(b)((aiss — aisa)?, 7). (3.18)
Then, by substituting (3.17) and (3.18) into (3.16), we obtain for any { € T :

Oha(Un)(€) = Z[/\ (22 — 1)()(a:) — b2(€))var(@:) + 4Xipa hima (B2(6:) — 03(€))vma(b)]
+ 23:[/\1‘ 2X; — Dopaalas) + 401 Az 1Vh3,0(0:))]

1=1
3

> g1 dicinei D2oms (b)) ((aigr — ai)?,75)],
=1

O —

+

or again,

Ona (1) (&) = 77(bavns)(€) — ba(€)TH(vmr)(§) + 73(vrsa)(€)

3

+ 3 S Pirtdicina D?osa(b:) ((aig1 — @im1)?,753)],

1=1
where 72 denotes the P(T)-interpolation operator. Since by definition vy € Py(T) and
Vps.a € Po(T), we can write :

Oha(Th)(€) = vhz,a(§) + 73(bavra)(§) — ba(§)vra(§) |
3
S 3.1
+ % > Diidicinai DPors(bi) ((aigy — ainy)?, )], VEET, (3.19)
=1
so that we get for m =0or 1 and for any T € 7 :
[vhsa = Oha(@h)|m1 < V2{|b3vhr = T2(B30AN) m,T + [rT(Vh3)Im.r ), (3.20)

where :

w

'Uh3 Z [ x+1Ai—lnaiDavha(bi)((ai+l - a.‘-l)z, fii)] .

=1
Now, if we assume that b) € W%°(f2), we obtain for m = 0 or 1 and for any T € 7}, (see
[28, Theorem 3.1.5]) :

|02 vRs ~ T2(b20R)) lmr < CRE |62 vRs |2,

so that (see [28, p. 192]) :

2
630ns — T2 (B508A) Imr < CRF™ S {lvmrlor + [vraliT + [oarlar)s
=1
and by using |vpy|2r < Ch7'|vpa|i7 (see (28, Theorem 3.1.2)), we have :
|63vmr = 72(B3va) fm,r < CAT ™ {{[vatflar + [[vazlln,r}- (3.21)

Finally, if we observe that |vas)3 e < Ch7?|vrslor and M1 dicilmr < CRY™ (see 28,
Theorems 3.1.2 and 3.1.3]) we obtain :

Ir7(vh3)lm,r < ChT ™ |vasla,r. (3.22)

11



Then conclusion arises from inequalities (3.20) to (3.22). ]

LEMMA 3.2. Let us assume that the mapping ¢ which defines the middle surface of the
shell belongs to the space [W*°(Q)]>. Then, there exists a constant C > 0, independent of
hr, such that for a = 1,2 we have :

[oh3.a = Oha(Tr)- 1 or < Chr{ljvnillir + |vnellur + [vrslar},  Y(0h,65) € Zy,.
PROOF. The boundary 0T of triangle T is the union of the three sides S;, : = 1,2,3. Let us

examine the contribution of one given side S; = [a;4+1,@i-1]- The specification of development

(3.19) to this side gives :

[Oha(Th) — vhsalls, = [T7(bavaa) — bavmx }
(3.23)
+ % Xis1Xic17ai DPors(b:)((aig1 — @ica)?, 7)) -
Next by using an extension of [28, Theorem 3.1.5] (in this direction, see also [31]) done
by {32, Lemma 6] :
[bavay = 77 (Boom) |-y 5, < ChT[B3vma Loz,

and, like in the proof of Lemma 3.1, we deduce :

Bhoms — w2 (Bom)|_s s, < Chr{llomlr + onelli ). (3:24)

Again, by using [28, Theorems 3.1.2 and 3.1.3] we get |vas|s,co,r < C’h}2|vh3|2'T and, in
accordance with {32, Lemma 3], we obtain |A;41 -1 1.5 < Chr, so that :

l 3 Mirthic1naiD3osa () ((aig1 — aio1)?, 72)

Finally, by combining relation (3.23) with the estimates (3.24) and (3.25), we obtain the
expected result. [ |

) S ChT|vh3|2,T. (325)

1
35

4 CONVERGENCE AND ERROR ESTIMATES

As usual, let us start by giving an abstract error estimate which will give the way to
prove the convergence and to get error estimates.

LEMMA 4.1. (Abstract error estimate). Assume that the bilinear form ay(.,.) is uni-
formly continuous on Vj, U Z and elliptic on V4, i.e., there exists constants ¥ > 0 and é > 0,
independent of h, such that :

YNOr|2 < an(Vh,Un), YOn € Vi,

(4.1)

ah(’(—)‘h,ﬂ)‘h) < 5”17;;”;1 ”u-;h”h, V’l_)‘h,’Lb‘h eV,UZ.

Then, there exists a constant C' > 0, independent of h, such that

@ ~ @l < ©4 int [ =+ sup KOO LE0)
ThEVR WhEV, ”wh“h (4 2)
wf = ¥ - .
4 sup |f* () _‘ah(u , Wh)| :
GreV, (|0 |4

12



where #* and U, are respectively the solutions of Problems 2.2 and 3.2.
PROOF. From (3.12), (3.14) and from the assumption (4.1), we obtain for any v, € Vi :
Yin — Onllz < an(dh — On, @h — On) = an(@* — Op, i — Us)
+ [fa(@n — 0a) = f*(dn — 5n)] + [f*(dn — ) — an(d”, dn — B1)],
and, by using the uniform continuity of ax(.,.) on V, U Z:

- *f < xf = _ e -
,Ynﬁh _,l-)‘h”h S 5”17 _Uh“h + sup Ifh(wh)_‘ f (wh)l + sup If (wh) -‘ah(u ’wh)]

Y

where § is a constant independent of A. By combining this inequaliy with the triangular one,
1.e.,
|7 — tnlln < ||©™ = Balln + ||Un — Gnl|n

and by taking the infinimum with respect to o), € Vh, we get (4.2). [
To use this lemma, we have to check the uniform continuity on Vj, U Z (see Lemma 4.2)
and the uniform Vj-ellipticity (see Lemma 4.6) of the bilinear form, on the one hand, and

we need to estimate the interpolation error term (see Lemma 4.3) and the two consistency
terms (see Lemmas 4.4 and 4.5) which appear in the right hand side of estimate (4.2).

LEMMA 4.2. (Uniform continuity of ax(.,.) on Vj U Z). Let us assume that the map-

ping ¢ which defines the middle surface of the shell belongs to the space [W(Q)]?. Then,
there exists a constant 6 > 0, independent of h, such that

lan(Tr, Wh)| < 6Okl ||Gn||ln, YOh,wn € V, UZ. (4.3)
PROOF. From Lemma 3.1, there exists a constant C > 0, independent of k, such that :
10ha(Tr)l1,7 < N10halBh) — Vhsall,r + Wrsallir < Cllilvalliz + [vazllir + llvssllz.r)-

Then, by using [23, Théoreme 6.2.1] and the expressions (2.5) (3.10) and (3.14), we ob-
tain the inequality (4.3) for any o, w, € V},. This result can be immediately extended to v,
or Wy, € Z by using (3.12). ]

LEMMA 4.3. (Interpolation error estimate) Let us assume that the solution u* of Koiter’s

Problem 2.2 belongs to the space V N [(H2(0))? x H3()]. Then, there exists a constant
C > 0, independent of h, such that :

inf [|@ — Balla < Ch{luilzq + lusfha + 330}/ (4.4)

Jhev,,

PROOF. Let ©,a* be the Vh-interpola.tion of the solution #*. From (28, Theorem 3.1.5], we
obtain :

lug, — W%u;|m,T < ChzT_m|u;[2,T, m=0,1; |u;— W%uglm,r < C’h:}""lu;b;, m=20,1,2.

13



Then, with definition (3.15), we have :

1/2
1
inf | —Balln S 1@ = B@|la = | 2 & = Fad™ o+ Y Jui —mruilzr
UhEVh =0 TeT,

» * *® 1/2
< Ch{luifig + lusBiq + lusBia}

which is nothing but the expected result. ]

LEMMA 4.4. (estimate of the first term of consistency). Let us assume that the mapping 5
which defines the middle surface of the shell belongs to the space [W**°(Q)]*. Then, for any
pE(L*(N))3, N € (LYT1))%, M € (HY?*(I'1))?, there exists a constant C > 0, independent

of h, such that : .
| fa () — ()]

sup - < ChiM|;y r,. (4.5)
WheVh ”wh”h 20
PROOF. By using the definitions (2.11) and (3.14), we get for any W € Vi :
Su(@r) — (@) = /F M (Onx(Wh) — whz x)dy. (4.6)
1

J
But I'y is an union of triangle sides S;, 7 =1,...,J, 1.e.,I'i = U S;.
i=1

Let us examine the contribution of such a given side S; to the integral over I';. With
Lemma 3.2, we obtain :

< CIMA|§ s, 10ua(Wh) — w3 |- 1,

/S MO (Bh) — whan)dy

< C,\hTIM’\I%,SJ{meHLT + llwrzlli,7 + lwhalz,r}s

and then :
|fu(@n) = f7(@n)] < ChIM]y p, [l
so that (4.5) is proved. [

REMARK 4.1. Let us precise that for implementation, one can replace fj(w0) directly by
@) = [ o adelde? + [ (N5 + M (v + Bon)ldy,

i.e., one can compute va3 ) instead of Ona(¥r) in the integral over I';, which reduces the
previous consistency error estimate to zero whithout modifying the following analysis. One

can check that this slight modification keeps a sense as long as M € (L%(T';))? and w3 is
piecewise polynomial so that Duggr, € (L*(T'1))%. N
: “(Wh) — ap(u™,Wp)| . . :
In order to estimate the consistency term sup 'f (wh)” = I’I(u h)l, 1t 1s convenient to
tﬂhevh wh h

record the following notations :

3
€
AT = BN (i), () = o BNy, (),

14



which denotes respectively the (membrane) stress resultant and the (bending) stress couple
over the thickness of the shell. Let us also notice that @* is the solution of the Koiter problem
so that with (3.12),

ﬁhaﬁ(lr) = _Xaﬁ(ﬁ"g) = ﬁaﬁ(ﬁ‘)a (47)

where 8, = —u3 , — b u}. Then, we prove :
LEMMA 4.5. (estimate of the second term of consistency). Under the assumptions of
Lemma 4.4 and by assuming that @~ € (H*(Q))? x H*(Q), one has :

sup |f (wh) '—ah(u ,wh)|

on €V Hn |

< Ch{llulizg + lusllze + lluslis o)™ (4.8)

PROOF. First, we decompose the consistency error by using relations (2.5) (2.6) (2.11) (3.11)
(3.14) (4.7) and the Green formula (see [33, (1.13.61)], i.e., / v% o Vadérde? = / vavody,
Q r

where 7 = v,d denotes the unit outer normal vector to @(I';)) :
F() = (i 8) = [ (5 ~ A s () — (0 s ()] v/ de' dg?
+ [ [N + M wran + Bl

= [ + (@) + 5 (@) lalwne — (@)l ha
+ [P3 + baﬁﬁaﬁ(ﬂ‘) + Caﬁmaﬁ(’r)lwha} Vadg'de?

+ | AN = (@) - B (@))vs + M Jwna
1

+m°P (@) g wha + N3whs + M'\whs,,\}d‘y, V(Wh,wp) € Zn.

Since u* is solution of the variational problem (2.10), we have for any ¢ € 1%

L 100(5) + (@) pop ()] Va dE'de®

_ /Q 5 \Ja de'de? + /r 954 M (o3 + o]y,
and since we have assumed that @* € (H%(Q2))? x H*(Q), Green formula gives :
A + (35 + 20 (@) — B (@
+ [P® 4 bap®P (@) + capm®P (@)|va + P (") gvsa} Va dE* dE?
+ [ AN = M - (50 = 2 (@) ol
+ N30y + [M® — m (@) vglvs o Jdy =0, V& € V.
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Now, consider the decomposition :
V3,0 = tavB,t + NaU3 n,

where t, and n, denote the components of the unit tangential and normal vectors as specified
in paragraph 3.3. From [14, p. 175], we obtain :

. [M™ — P (T )vg|ngvandy = 0,
so that :
A" + (70) + 2 s — B (e
1+ Bogi () + op® (Yo + (i) s} VA dE
+ [N = M0 = (0(T) - 20 @R o

+ N33 + [M® — m®P (@ )vpltavsdy =0, V& e V™

Then, by density and by using [34, Theorem 2.11}, we infer that this relation is still true for
any W, € Wj. Thus, we obtain :

[ (Wn) — an(d™, ) /{[ —b3m (@) |pwha — P (@) pwha — M (") [swhsa} va dE'dE?
+ [ {5 Ygina + R pione + 1 (T Yz},

which can also be written with (3.9) :

£7(8) = an(@, ) / 7 (T plwns. — Oha(4) V/a d€'de?
(4.9)
+/ aﬁ l/g[whgya—aha(wh)]d’)’.

From Lemma 3.1 and by considering the terms which appear in m®?(@*)|s, we obtain :

@) |s(Wh3,a — Oral(Wr)) Va dE'dE?

(4.10)
< Chlluili3 o + lu3lliq + lellzal? 1 la-

On the other hand, the integral along I'; is of the same type than the second hand side
of relation (4.6). Since 4* € (H?*(R2))? x H3() and since H'(Q2) — H'*(T'), we have

Im*?(@)wplly r, < Cllm™(@)lha < Cliluilla + lusle + lu3llz ol /2.

Then, by using Lemma 3.2, we obtain :

S, A a(wra = Oral0)) da| < ORI 30 + 330 + 3130 Bl (4.11)

16



The conclusion arises from relations (4.9) (4.10) and (4.11). [

In order to apply the abstract error estimate (4.2), it just remains to prove that the
assumption (4.1), is satisfied, that means :

LEMMA 4.6. For any uniformly regular triangulation 7, in the sense of [28, (3.2.28)] and
for h sufficiently small, there exists a constant v > 0, independent of h, such that :

VITal2 < an(Bh,Th), Vi € Vi (4.12)

PROOQOF. This lemma is a consequence of the previous interpolation and consistency error
estimates and of discrete compactness properties for nonconforming finite element spaces
obtained in [35]. The proof takes two steps :

STEP 1 : For h sufficiently small, the bilinear form ax(.,.) is uniformly Vy-coercive, e.g.,
there exists two positive constants C; and C,, independent of &, such that, for any v}, € V},,
we have :

an(Dh, Bn) 2 Crl[Bhllk = Colllomllog + llvr2lls.q + llonslit o). (4.13)

According to [24, Theorem 6.1.1] and from (2.5) (3.10) and (3.14), the contribution
anpr(.,.) of every triangle T € 7}, to the bilinear form ay(.,.) satisfies :

~ o 1
art(ThyBn) 2 T {lomllr + lonzliir + lossllf r 1

+ 110011 (Bn) = T3 0ua(B)NIE 7 + 10h12(Vh) = T320u (G137 y (4.14)

o — M —~ %
+ 110h22(5h) = T20m (B8} = T {lom sz + lvnellBr + owsllir}, Vo € Vi, |

where the constants L > 0 and M > 0 are independent of h.
From relations (3.10) and (3.19), i.e.,

Ohag(Br) = 5 (OuOhs(Th) + Opbha(Tn)),
3

Oha(Vn)|T = Vhz o + w%(bévu) - bzth + %Z[)\iﬂ)w—maiDavhs(bi)((aiH - ai-1)2, i),

=1

and from [24, Theorem 6.1.1, inequality (6.1.7)], we obtain :
10r11(T) — T1100r(F0)lo.T = 10101(Fn) — T33[0ra(Th) — vaap] = Thvmaaliar
3
> 125 Jonsan + 5 enhic)amiD3oa(b)((ais — 1), 7) 3

_s 2 bA‘=1 _p 2 2019, (5 — 2 e (4.15)
B{H[WT( 1UhA) 1th].1||0,T+p1[|| h1 (V) vhS,IHO,T

+ [10h2(%1) — vnsellor + lensallor + llons2llor]}s )

where 8 > 0 is any constant independent of A and where p; > 0 is an upperbound on

geometrical characteristics of the middle surface of the shell (see [24, (3.1.1)]). Of course, we

can get similar estimates for ||On12(0s) — I’{‘zi)h,\(ﬁh)H&T and for ||One2(vy) — ngahk(ah)”gj.
But

(7% (baver) — avmalsllar < C{llvm iz + llvlli 7},
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and, from Lemma 3.1, we have :

10ha(5r) — vrsllor < ClAT{llvarlli r + lvnelliz} + [vnsli 7)-

Then, by taking 8 sufficiently small in estimate (4.15) and in their analogues, we can write

(4.14) as follows :

ahT(Uh,ﬁh) > Ca{llvmllir + lvazll} 7 + llvaslli 7

+ [|vnan + QZ Aig1Aiz 1)1”1;D vra(bi)((aipr — ai-1) ,ﬁi)“(z),r

=1

3
+ |lvrsz + %Z (Mg dica) amai + (Mg dicn) 2] DPos (b)) ((aigr — @im1), ) I 7 > (4.16)
1=1 '

3
+ ||vns22 + %Z(/\H-l/\i—l),2”21’D3Uh3(bi)((ai+l — ai-1)2,ﬁe)|lg,T}
i=1

= Co{llomlls.r + llvnelle.r + llvrslitr}, J

where C; and C; are constants > 0 and independent of A. We obtain (4.13) by proving the
existence of a constant C' > 0, independent of h, such that relation (4.17) below is true and
then by adding it upon all T € 7.

3 \
onsn + 3 S (Airrhiz1)anuD3ora(b) (i = aict)?, @) |2 1
=1
3
+ ||vha2 + %Z (Mig1Aic1) ang + (/\i+1/\i—1),2n1i]Davh3(bi)((ai+1 - ai—l)zaﬁi)”g'fr L (4.17)
1=1 .
+ vz 22 + 3 Z(A;H)\;_l),znziD"vhs(b;)((a;H —ais1)’, )5 7
i=1
> Clonslsrs Yoms € Vaa. )
This proof follows the lines of {10, Lemma 1] and takes three points :
i) Proof of the relation (4.18) below :
2 1 3 W
Z ”vh3,aﬁ + 4_2[ 1+1At 1 alp:
a,B=1 =1
a<lp
+ (Mirrdic1) pnai) DPos(b:) ((aisr — aiz1)?®, 7)o = 0 (4.18)
implies |vas|2,r = 0. )

Firstly, let us observe from (3.19) that upon any T € 7T, :

3
Vhsa + 5 9 Akt Aic1nai D?0na(8)((@ipr = @im1)?, %) = OnalBn)lr + B3vny — 72(Blvmn),

=1

so that .
Oha(Tn) |7 + DXvny — m2(bivny) € Po(T), Von € Vi, VT € Th.
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Then, the assumption (4.18) involves :

O (Tn)lr + blumy — 72(bYvRy) = ¢ + caé?
. (4.19)
On2(Bn)|T + bjvar — 75(bJvnr) = c2 — 3!

where ¢;, 1 = 1,2, 3, are appropriate constants attached to the triangle T.
Now, from the discrete Kirchhoff constraints (3.2) and from (3.9), we have at the vertices
a; of the triangle T :

[Ora(Th) + bavns — T2(B3var)](a:) = Ona(¥n)(ai) = vhzalai),
so that, if we define 6, along every side [a;;,,a;_1] of T as follows :
bt = t510ha(Th) + Vaons — 77 (b3vma)] o, (4.20)

we obtain : . ‘
0ri(aicy) = vaze(air), Oplain) = Uhs,t(aiﬂ)-

Likewise, from the discrete Kirchhoff constraints (3.3) and from relation (3.9), we obtain :
B (b:) = vaa,(by),
and then, since 6, and v,3, belong to P;([a;41,a;_;]) we have :
o;;t = Vpa, along [aiyr, i) (4.21)
Hence, by using relations (4.20) (4.21) and Green’s formula in connection with (t},¢?) =
(n?, —nl), we obtain (see Fig. 3) :
3 .
0= /a onsadt = ; /8 Ot
= /T[Bz(t?m(ﬁh) +bvan — 77(b1vmn)) = 0u(ha(Th) + byvns — 7(bvar))]dE dE?,

so that with relations (4.19), we get 0 = 2¢3 area(T). It follows ¢ = 0 and then, with (4.19),
[Oha(Tr) + Bdvps — 72(B2vopa)]lr = cay @ = 1,2, s0 that :

Vp3alti) =Coy, a=1,2,;1=1,2,3.

Relation (4.20) involves that 6%, is constant along each side 8T} of triangle T ; then, by
using relation (4.21) we get that vi3, is constant upon each side J7; of triangle T. In other
words, we have :

Dupz(aiy1)(ai—y — aiz1) = Dopa(a;i1)(@i-r — aiy1) = vaz(aiz1) — vas(aiyr), (4.22)
and two similar relations when one considers sides 0T;4, and 0T;_,. Since vy37 € Hermite

triangle of type (3’), we obtain :

Va3 = E( 2/\3 -+ 3/\2 + 2/\ A /\3 ’l)h3 Z A /\ /\ + I)Dvh3(a,)( — a,~),
l";]l
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and then the substitution of relation (4.22) and of their analogs along dT;4, and 97T;_; gives
finally

3
Un3|IT = E /\ivhs(ai)-

i=1

Thus, we get |vps|2,r = 0 and (4.18) is proved.

1) Proof of relation (4.17) :

Over the quotient space P;/P;, the semi-norm |vyslor is a norm. Likewise, the step
1 proves that the left hand member of the relation (4.17) is a norm over the same quo-
tient space. Since these norms are defined over the same finite dimensional space, they are
equivalent. Then, it remains to prove that the equivalence constants are independent of the
triangle T into consideration. In other words, we have to prove that the constant C in (4.17)
is independent of T.

In order to clear the dependence on h of both quantities, we express both hand sides
of relation (4.17) over any triangle T' € 7, as functions of the barycentric coordinates
(X, 2=1,2,3). Firstly, if vp3|r € Hermite triangle of type (3’), then (see [12]) :

v3(€',€%) = [DLLC3(vr3)]1xe [Asloxio [A3]iox1,

where :

[DLLC3(vh3)]lx9 = [Uhs(al) Uhs(a'z) Uhs(as) Dvhs(al)(as - al) Dvha(al)(az - 01)

Dupns(az)(a1 — az) Duvra(az)(as — az) Duvps(as)(az — as) Duvns(as)(a; — as)],

7200660000 47
0200066004
002000066 4
0002000001

[Asloxio= 2 {0 00020000T1][,
0000020001
0000002001
0000000201
(00000000 2 1]

and :
‘N3] = A2 A3 A3 A2 ATA; AZA;p A2z AZX; A2 Azl

Consequently :
vhs,aﬁ(fl,f2) = [DLLC3(va3)]ixs [Asloxio [OapA3]ioxi-
Then, we get :
lonals 7 = [DLLC3(vka)lixe [Asloxio [Y]oxio ‘[As] ‘[DLLC3(vaa)l,

where :

-

[Y]IOXIO = /;([011/\3] 2[011/\3] + 2[8]2/\3] ‘[812/\3] + [622/\3] '[622/\3])d§1d§2
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2\2 93 2 232 9’23 2)2 ____62’\3

[311/\3] {(62 63) [(5)1)2] + (63 - {1) [(a/\2)2} + (612 - 62) (0/\3)2}
o 5%)\3 s o 9*23

+ 2(5% —6)E &) | iy | T 2E - - &) [6A26A3

0*23
+2(6 - €9)(& - &) [M] }

and similar expressions for [9,2A3] and [0 A3]. Then, A = 2area(T) = 0(h%) so that
[012A3] = 0(h7?), [Y] = O(h7?) and [vwsl; r = 0(h7?).

Concerning the first hand side of (4.17), let us observe that vi3,; = 0(hT?), (Mg Aic1)a =
0(h71), D3ura(b;)((ai41 — ai1)? /i) = O(h7') so that :

3
Urzan T %Z 1M i=1) a1 DPong (b)) ((aigr — ax—1)2tﬁi) = O(h;2)’
1=1

and then the first hand side is in 0(h7?).
. Thus, both members of the inequality (4.17) are in 0(h7?) so that the constant C is
necessarily independent of h, for h sufficiently small.

ii1) Proof of inequality (4.13) :
We obtain the inequality (4.13) by substitution of estimate (4.17) into (4.16) and by
adding it upon all T € 7,.

STEP 2 : For h sufficiently small, the bilinear form a(.,.) is uniformly \-/‘h-elhptic, 1e.,
inequality (4.12) is true.

Let us assume that inequality (4.12) is false. Then, there exists a sequence {7, } of
functions of V,,, klim hi = 0, such that :
—00
”Ehk”hk =1, [ahk(ﬁhk’i“hk )]1/2 <

Therefore, in the same way than in (30, Lemma 2.2.2], we deduce that the sequence {Gs, }
is weakly convergent to 0. Now, from the weak discrete compactness of Vi in wrer, H(T)
(see (35, p. 98]) and from the compactness of the inclusion of V4; in L?(§}), we deduce :

Jim ([[Fi,llo.0 + [1Fh2llon + 1Fk,slly o) = 0,

so that
‘}er;[ahk(ahka 5’11:) + 02(”6’1[:1 ”(2),0 + ||l_;hk2”g,ﬂ + “6’11:3”39)] = 0.

Finally, the inequality (4.13) involves :.
0 < Ci = CillBnelli, < lan,(Thes Fny) + CalllBnalln + 1Bnalloe + I8nalli @)y

which leads to a contradiction. Hence, the inequality (4.12) is satisfied with v independent

of h.



Let us recall that to apply Stummel’s result [33], one has to check a “strong continuity
property” at each common edge between two adjacent triangles of 7 : this is satisfied be-
cause the nodal scheme allows the full continuity of vy3 and v,3, at, at least, one point of
such a side (for example at the vertices). u

THEOREM 4.1. (Convergence and error estimate theorem). Let us assume that i) the middle
surface of the shell is the image of a plane polygonal domain Q! by a mapping é€ (WH>(Q))3;
ii) the triangulation T, of the domain Q is uniformly regular in the sense of [28, (3.2.28)] ;
iii) the loads p € (L*(Q))3, N € (L¥T,))® and M € (HY?*(I'\))? ; iv) the solution @* of the
Koiter problem (2.10) belongs to the space V N[(H*())? x H3(Q)).

Then, for h sufficiently small, the Problem 3.2 has one and only one solution u; € A
which satisfies :

17 = @alln < Ch{UI R0 + 530 + llu3lBa)’ + M)y 1, } (4.23)

PROOF. From Lemmas 4.2 and 4.6, we can use the abstract error estimate (4.2). With (4.4)
(4.5) and (4.8) we obtain (4.23). [

REMARK 4.2. Let us add that if one has only M € (L%*(T;))?, the discretization error
|| — @ || would be 0(h!/2). Of course when M = ( or measure(T;) = 0, we recover the full
rate of convergence. [
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