Residual theory in lambda-calculus : a formal development

Gérard Huet 1
INRIA Rocquencourt
Abstract : We present the complete development, in Gallina, of the residual theory of b-reduction in pure l-calculus. The main result is the prism theorem and its corollary Levy's cube lemma, a strong form the parallel-moves lemma, itself a key step towards the confluence theorem and its usual corollaries (Church-Rosser, uniqueness of normal forms). Gallina is the specification language of the Coq proof assistant. It is a specific concrete syntax for its abstract framework, the calculus of inductive constructions. It may be thought of as a smooth mixture of higher-order predicate calculus with recursive definitions, inductively defined data-types and inductive predicate definitions reminiscent of logic programming. The development presented here was fully checked in the current distribution version Coq V5.8. We just state the lemmas in the order in which they are proved, omitting the proof justifications. The full transcript is available as a standard library in the distribution of Coq.
Type de document :
[Research Report] RR-2009, INRIA. 1993
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 16:01:55
Dernière modification le : vendredi 16 septembre 2016 - 15:11:13
Document(s) archivé(s) le : mardi 12 avril 2011 - 18:10:08



  • HAL Id : inria-00074663, version 1



Gérard Huet. Residual theory in lambda-calculus : a formal development. [Research Report] RR-2009, INRIA. 1993. 〈inria-00074663〉



Consultations de la notice


Téléchargements de fichiers