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The Minimal Polynomials, Characteristic
Subspaces, Normal bases and the Frobenius Form

Polynomes minimaux, sous-espaces caractéristiques,
bases normales et forme de Frobénius

Daniel AUGOT?* Paul CAMIONT
July 27, 1993

Résumé

Divers algorithmes reliés au calcul du polynéme minimal d’une matrice carrée n X n
sur un corps commutatif k sont exposés ici. Nous n’utilisons que ’arithmétique clas-
sique. La complexité n’est évaluée que pour k = F,. Elle est exprimée en nombre
d’opérations élémentaires dans k. La complexité du premier algorithme, pour lequel la
factorisation du polynéme caractéristique est nécessaire, est de O(y/nn®). L’algorithme
fournit le polynéme minimal et tous les sous-espaces caractéristiques. On utilise la
forme de Hessenberg a décalages connue des automaticiens et qui existe pour toute
matrice. La complexité est alors réduite & O(n® + m%nz), ol mp est un parametre de
la matrice A qui en général est petit. On présente de plus un algorithme itératif pour
le polynéme minimal, qui a une complexité de O(n® + n?m?) ol m est un parametre
lié a la matrice de Hessenberg a décalages utilisée. Il n’exige pas la connaissance du
polyndéme caractéristique. Un perfectionnement fournit un algorithme ou jusqu’ & m
processeurs peuvent opérer indépendamment en parallele. Le fait important est que la
valeur moyenne de m ou mp est = logn. Ensuite nous nous intéressons a la construc-
tion d’un vecteur cyclique, d’abord pour unc matrice dont le polynéme caractéristique
est sans facteur carré. L’utilisation de la forme de Hessenberg a décalages permet
d’obtenir un algorithme dont le coit est de O(n® + m?n?). Une méthode plus élaborée
donne le résultat en O(n®) calculs élémentaires. En particulier, une base normale pour
I’extension d’un corps fini sera obtenue de facon déterministe et aussi probabiliste,
sur la donnée matricielle de 'opérateur de Frobenius, avec cette complexité. Finale-
ment la forme de Frobenius est obtenue avec une complexité moyenne asymptotique
de O(n3logn). Une retombée est I'obtention d’un vecteur cyclique pour une matrice
quelconque. Tous les algorithmes sont déterministes. Dans tous les cas, la complex-
ité obtenue est meilleure que pour les algorithmes déterministes connus a ce jour. La
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valeur asymptotique de Pespérance de m ou mp est logn. Les résultats sont repris
dans les tables 1, 2, 3 et 4. L’étude des propriétés de base de la forme de Hessenberg
a décalages aboutit a un algorithme qui construit tout élément du centralisateur dans
GL(n,k), ou peut-étre dans un sous-groupe particulier de GL(n,k), d’'une matrice
donnée quelconque. Cette étude du centralisateur nous conduit a étendre un résultat
obtenu par R.Stong [20], ce qui nous permet d’établir nos évaluations de complexité
et aussi de donner la formule explicite de la taille du centralisateur d’un opérateur
linéaire, apres calcul de ce qui est ici nommé forme de Frobénius développée.

Abstract

Various algorithms connected with the computation of the minimal pglynomial of
a square n X n matrix over a field k are presented here. Only classical arithmetic is
used. The complexity is evaluated only for k = F,. The complexity of the first algo-
rithm, where the complete factorization of the characteristic polynomial is needed, is
O(y/nn3). It produces the minimal polynomial and all characteristic subspaces. Using
the Shift-Hessenberg form, known to automation scientists and which exists for any
matrix, the complexity of this algorithm is reduced to O(n3 + m%nz), where my is a
parameter for the matrix A, expected to be low. Furthermore an iterative algorithm
for the minimal polynomial is presented with complexity O(n> 4+ n?m?), where m is a
parameter of the used Shift-Hessenberg matrix. It does not require knowledge of the
characteristic polynomial. A refinement leads to an algorithm where up to m processes
can be done independently in parallel. Important here is the fact that the average
value of m or mp is ~ logn. Next we are concerned with the topic of finding a cyclic
vector first for a matrix whose characteristic polynomial is square-free. Using the Shift-
Hessenberg form leads to an algorithm at cost O(n3 + m?n?). A more sophisticated
recurrent procedure gives the result in O(n®) steps. In particular, a normal basis for
an extended finite field will be obtained with that complexity with a deterministic al-
gorithm and with a probabilistic algorithm as well on the data of a matrix representing
the Frobenius operator. Finally the Frobenius form is obtained with asymptotic aver-
age complexity O(n®logn). As a by-product we there obtain a cyclic vector for any
matrix. All algorithms are deterministic. In all four cases, the complexity obtained
is better than for the heretofore best known deterministic algorithm. The asymptotic
expected value of m or my is logn. The results are summarized in Tables 1, 2, 3
and 4. Studying basic properties of the Shift-Hessenberg form leads to an algorithm
to construct any element in GL(n,k) or maybe in a particular subgroup of GL(n,k),
of the centralizer for any given matrix. That investigation into the centralizer lead
us to extend a result obtained by R.Stong {20], which allows the needed complexity
evaluations to be established and also the size of the centralizer of a linear operator
to be given explicitly, for k a finite field, after computation of what is here called an
Expanded-Frobenius form.

Keywords: characteristic polynomial, polynomial factorization, Hessenberg form,
characteristic subspace, minimal polynomial, cyclic vector, finite filtration, normal
basis, Frobenius form, elementary divisor, centralizer of a matrix.
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1 Introduction

We present various low complexity algorithms for computing the objects in the title. The
naive algorithm for constructing the minimal polynomial of a matrix A consists in computing
I,A,A% ... A" and then obtaining a non-trivial linear combination

t
Z CiAi = 0
1=0

with smallest possible t. The complexity is O(n*) with required memory size O(n*) as well.
Significantly better algorithms for obtaining the minimal polynomial are probabilistic. They
essentially consist in computing the minimal polynomial of A at random vectors with a
good probability but no certainty that the minimal polynomial of A over the whole space
is finally obtained. We observe that MAPLE preferred the naive deterministic algorithm.
If matrices submitted at computation were taken at random, such a probabilistic algorithm
would be satisfactory since most characteristic polynomials of matrices over finite fields have
few factors, which entails that many vectors are cyclic for such matrices. But this is not the
case in the real world. For instance the characteristic polynomial of the Frobenius operator
F of Fyn over F, is X™ — 1, and constructing a cyclic vector under F is precisely constructing
a normal element, thus a normal basis. This is of particular interest in cryptology (1, 2, 3.
That topic is within the scope of the present paper. The recent results obtained by J. von
zur Gathen and M. Giesbrecht {10] which are summarized in their introduction as follows:

‘ a fast algorithm in Section 2 for computing a normal basis of degree n over F,, requiring
an expected number O ™ (n?logq) operations in F, with fast arithmetic, and an expected
number O(n®log q) operations in F, with "naive” arithmetic; this compares favourably with
the previous known O(n3?log ¢) and "naive” O(n®log ¢) operations in F, respectively, based
on linear algebra; *

Notice that the exact value of O ™ (n?logq) is O(M(n)(M(n)logn + nloggq)) where
O(M(n)) is the cost, i.e. the number of operations in F, for multiplying two polynomi-
als of degree n with coefficients in F;. Relying on algorithms for fast multiplication, the
number n log n log log n is here taken for the value of M(n). That is known to be beneficial
only for huge values of n, i.e. more than one thousand.

An account of deterministic algorithms for the construction of normal basis is given in:
Applications of finite fields, by Ian. F. Blake et al. [5, pp. 87-89]. The algorithm of
H.W.Lenstra, published in 1991, is there described. The cost is of (O((n? + log q)(n log q)?)
bit operations which is also the cost of the algorithms of E. Bach, J. Discoll and J. Shallit.
In particular we here obtain a normal basis deterministically on the data of a presentation
of the field Fyn together with the matrix representing the Frobenius map in the given basis
of Fyn over ;. The cost is in O(n®) operations in F, for any n. To sum up, our deterministic
algorithm in O(n®) for computing a normal basis compares favourably not only with previous
deterministic algorithms but also with probabilistic algorithms when confining ourselves to
classical arithmetic. Notice that a very simple probabilistic algorithm is derived from our
processes which will give a normal basis with classical arithmetic in O(n®) steps. There is
no difficulty in deriving vectors with given exponent as was done in [10] deterministically,
and with complexity O(n?) as well. Regarding the minimal polynomial, Patrick Ozello [16]
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gives a deterministic algorithm with asymptotic average complexity O(n*log n). That goal
is here achieved with asymptotic average complexity reduced to O(n?).

Arnold Schonhage, in his encouragement to improve the deterministic algorithms for the
minimal polynomial presented by the authors at Oberwolfach in February 1993 suggested we
try to obtain a Sparse Hessenberg form for a matrix. We actually use the Shift-Hessenberg
form met in the work of Patrick Ozello [16] but first introduced by automation scientists.

In Section 2, we recall Wilkinson’s algorithm to compute the characteristic polynomial
of a matrix with O(n?®) elementary operations in F,, using the Hessenberg form for a square
matrix.

Sections 3, 4, 5 are concerned with the problem of obtaining the minimal polynomial, a
different algorithm being presented in each section. In Section 3, we introduce an algorithm
which produces the minimal polynomial and all characteristic subspaces at cost O(y/nn3).
In Section 4 the Shift-Hessenberg form is introduced. Any matrix is similar to a matrix with
that form. Thanks to that form, the complexity of the algorithm of Section 3 is reduced
to O(n® + min?), where the number myp is the size of a maximum increasing sequence
of invariant subspaces of A. Both algorithms use as data the matrix and its factorized
characteristic polynomial. Notice that the best time bound for factoring a polynomial over F,
is O(n? log n log log n. log ¢) using fast multiplication. If this cannot be reasonably considered
in the context of this paper, we here only need that it can be done using classical arithmetic
with O(n3 + n?log q) operations in F, and space for O(n?) elements of F, [11, Section 8].

Our algorithms appeal to a recurrent “divide-and-conquer” procedure. The surprising
fact is that the total complexity is the same as for the terminal stage.

In Section 5, using the Shift-Hessenberg form of a matrix, we obtain an iterative algorithm
ending in the minimal polynomial in O(n® 4+ n®m?) elementary operations over F,. It does
not need any knowledge of the characteristic polynomial. Even if we don’t consider zero-
characteristic fields here, attention is drawn to the particular interest of that algorithm for
a zero-characteristic k since factoring the characteristic polynomial is more expensive for
such a field. The number m is a parameter of the Shift-Hessenberg form, and we have that
m < mAa.

We next are concerned with the topic of finding a cyclic vector. Notice that the Frobenius
form obtained in last section solves the problem of obtaining a cyclic vector in general.
However we will obtain a cheaper algorithm for matrices whose characteristic polynomial
is square-free. Under that assumption, the Shift-Hessenberg form leads to an algorithm
of complexity O(n® + m?n?) presented in Section 6 and to a more sophisticated recurrent
procedure with complexity O(n®) presented in Section 7. In Section 9, the Frobenius form
is obtained with asymptotic complexity O(n3logn). That is better than for the algorithm
of Patrick Ozello [16], which is implemented in MAPLE.

To sum up, the algorithms for the minimal polynomial have asymptotic average com-
plexity O(n?) and the algorithm for a cyclic vector has complexity O(n3) for matrices with
square-free characteristic polynomial. Special attention is given to cyclic vectors for the
Frobenius map. Indeed those vectors yield normal basis which are of particular interest.
We will show how to compute a normal basis for Ff?" deterministically in O(n?®) elementary
operations. Furthermore we recall how a normal basis for F71"2 is constructed from the data



| Input T Complexity l Average complexityl Section TI

Factorisation of C(X) O(n3) O(n>®) Section 3
Factorisation of C(X) | O(n® 4+ n*m?%) O(n3) Section 4
matrix A O(n® + n?m?) O(n®) Section 5

Table 1: Algorithms for the minimal polynomial

" Input ] Complexity | Average Complexity | Section ”
A O(n® + n*m?) O(n3) Section 6
A O(n®) O(n3) Section 7

Table 2: Algorithms for a a cyclic vector of a matrix whose characteristic polynomial is
square-free

of a normal basis for F;“ and another for F;‘z, provided n; and n, are coprime.

This ends in an algorithm for computing a normal basis for F} deterministically in O(n3)
elementary operations, for any n.

We summarize our results in Tables 1, 2, 3 and 4.
Notice that the product of two n x n matrices over F; can be computed with O(n?37¢) oper-
ations in F, by the algorithm of Coppersmith & Winograd [7]. This reduces the complexity
O(n®?®), each time it occurs in the table, to O(n?®7€ + n?).

Note 1 For all computations, a presentation of F, is assumed. It means that we are able to
compute sums, products and inverses in F;. We are not concerned with the complezities of
those computations, and our complezity measures are given in terms of elementary operations
over F,. For instance the greatest common divisor of two polynomials of degree less than n
can be computed in O(n?) steps, and this means O(n?) elementary operations. Thus our
complezity is not the bit complexity of the problems.

It is important to keep this remark in mind, since all algorithms presented here can be
applied to matrices over any field k and in particular over Q , but we don’t give any measure
of the growth of intermediate rational numbers. Qver finite fields, we can assume that all
elementary operations are performed at constant time. However, if fields of characteristic
zero are tnvolved, we would first obtain the Hessenberg form through orthogonal transfor-
mations, ltke Householder transformations or rotations which are recommended in the book

Momplexity | Section”
I o®*) | 6,7 |

Table 3: Algorithm for a normal basis of Fyn



[ Input | Complexity [ Average complexity | Section ||

A ] On®ms) |  O(n’logn) | 8 B

Table 4: Algorithm for computing the Frobenius Form

of S.H. Wilkinson[21], then we would change the subdiagonal entries for ones thanks to a
rational transformation also given in that book, and finally achieve the Shift-Hessenberg form
for finally obtaining the Hessenberg form all pivots from there on being reduced to one.

Note 2 All polynomials in this paper have their coefficients in k. In particular “a polynomial
p(X)” always means “a polynomial p(X) in k[X]".

2 Computing the characteristic polynomial

This section does not introduce any new result, but merely recalls how to compute the
characteristic polynomial of a square matrix. The material can be found in [21] which is
quoted in [12].

2.1 The Hessenberg form of a matrix

From [21], computing the characteristic polynomial of a n X n matrix is feasible in O(n?)
elementary operations. The computation starts with a Hessenberg form of the matrix.

Definition 1 A Hessenberg matriz H € M,(k) has the following form

[ hl,l 111_2 h1‘3 e hl,n ]
h2,1 h2,2 h2,3 o h?,n
0 h3,‘2 h3,3 o hS,n
0 0 114,3 Tt h4,n

L 0 0 0 hn,n—l hn,n J

t.e. H = h,',j such thatj <i1—-1= /L,"J' = 0.

Algorithm for computing the Hessenberg form of a matrix The following theorem

holds:

Theorem 1 Forall A in M,(k), there exists a Hessenberg matriz H and a invertible matriz
P such that H = PAP™! ie. every matriz is similar to a Hessenberg matriz. The matrices
H and P can be computed in O(n3) elementary operations.

Proof: We prove the theorem by describing the algorithm.
Input A € M, (k), where k is a field.
Output H a Hessenberg form for A, and P such that H = PAP!,
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H:=A; P:=1,; i:=1 {ith row is denoted by L;, ith column by C;}
while i < n do {treat each column, do not treat the last one.}
Search for the first non zero element in column 1
starting at 1 + 1. If such an element exists, let j be the position of that entry

if no such element has been found then i:=i+1 {that column remains unchanged up to the end

else
with H:
swap rows ¢t + 1 and J
swap columns z + 1 and j
with P: swap rows ¢+ 1 and j
pivot := 1/H[i+1,i]{pivoting element}
for | from i+1 to n do
c:= pivotxH][Lj]
with H, Ll — L1 —Cc X Li+l
with H, Ci1 « ¢ x C1 + Cipg
with P, L; — Ly — ¢ X Ly
1=i+1
return(H,P)

=

2.2 Obtaining the characteristic polynomial from a Hessenberg
form

Let us denote by px(X) the characteristic polynomial of the diagonal submatrix of H ex-
tracted from the first k& rows of H.

Computing the characteristic polynomial of A consists in computing p,(X). Observe
that the polynomials p(X) satisfy the following recurrence relations

Pe(X) = (X — arp)pr-1(X) — akh—1(
(X — ak—1,4)pr—2(X) — ar—y k-2(
(X — ak—2,6)Pr-3(X) — ar—2,x-3(

(X - aa,k)P'z(X) - 03,2(
agkp1(X) —az21a14)))...)

Computing pi(X) from pr_y(X), pr-2(X),...,p1(X) is done at cost O(k?). The total
cost for p,(X) is O(n®).

3 Characteristic subspaces and minimal polynomial
in O(n3%). Their construction.

In this section, an algorithm with complexity O(n3\/n) is presented for computing the mini-
mal polynomial of a matrix A, and a block-diagonal matrix D similar to A and exhibiting its
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characteristic subspaces. The inputs are A and the factored characteristic polynomial. The
output are the minimal polynomial, the block-diagonal form D exhibiting the characteristic
subspaces, and an invertible matrix P such that D = P"1AP.

3.1 Characteristic subspaces

We recall known facts about characteristic subspaces of a matrix A. The reader may refer
to [9].

Theorem 2 Let C(X) be the characteristic polynomial of @ matriz A € M,(k), and assume
that C(X) = P(X)Q(X) where P(X) and Q(X) are relatively prime. Then the vector-space
k™ splits as follows

k" =Vp & VQ

Vp = ker P(A) and Vg = kerQ(A)
Furthermore we can construct subspaces Vp and Vg as follows

Theorem 3 Let C(X) be the characteristic polynomial of matriz A, and assume C(X)
P(X)Q(X) where P(X) and Q(X) are relatively prime. Let Vp = ker P(A) and Vg =
ker Q(A), then

Vp = Im Q(A) and Vo = Im P(A)

Definition 2 Let C(X) be the characteristic polynomial of matriz A, and let C(X) =
[X)™ - fil( X)) be the factorization of C(X) into irreducible polynomials. By definition,
the characteristic subspaces of A are the invariant subspaces V; = ker fi(A)™, 1 =1,...,k.

3.2 Overall strategy

The strategy of the algorithm is as follows. If the characteristic polynomial of A is C(X) =
p(X)™ where p(X) is irreducible, then k™ is a characteristic subspace, and finding the minimal
polynomial of A reduces to finding the minimal exponent s such that p(A)* = 0.

If the characteristic polynomial is not a power of an irreducible polynomial, we are able
to split C(X) into C(X) = P(X)Q(X) with P(X) and Q(X) relatively prime and either
P(X) or Q(X) is of degree greater than 2n and is a power of an irreducible polynomial, or
we have that deg P(X),deg Q(X) < 2n. We recursively apply the procedure on both Vp and
Vo, given by Theorem 3. The new matrices are split in their turn, until all characteristic
subspaces of A are obtained. Finally the minimal polynomial of the restriction of A to each
of those subspaces is computed. The product of those polynomials gives the final result.

3.3 The algorithm

We now describe the algorithm more precisely.
Input Matrix A and its factored characteristic polynomial C(X),

C(X)= fL(X) ... fil(X)™,



where f1(X),..., fi(X) are the irreducible factors of Ca(.X).

Output The minimal polynomial of A and the splitting of k™ into all characteristic subspaces
of A.

Step 1: Find a splitting of C(X) = P(X)Q(.X) where P(X) and Q(X) are coprime. Three
cases are considered.

e C(X) = p(X)", p(X) irreducible. Compute the minimal polynomial p(X)* of A in
[log, 7] steps by trial and error on s. This is done with complexity O(n®\/n), using
the algorithm presented in Section 3.5.

¢ One factor, p;(X)™, has degree larger than 2n. Then P(X) = pi(X)™, i.e.

C(X) =pi(X)"Q(X), and Q(A) gives a basis for a characteristic subspace.

o All factors p;(X)™ have degree < 2n. Find a splitting C(X) = P(X)Q(X) where
P(X) and Q(X) are relatively prime and where deg P(X) < 2n, deg Q(X) < Zn. This

is described in Lemma 2, which follows.

Step 2: Compute Q(A), P(A). This gives gencrating vectors for subspaces for Vp and Vg
respectively. It is seen in Subsection 3.5 that this is done at cost O(n®\/n).
Step 3: Compute bases for Vp and Vg respectively. This is done with Gauss elimination,
at cost O(n®).
Step 4: Change basis, taking for the new basis the union of the bases just computed,
compute the matrices Ap and Ag of the restriction of A to Vp and Vg respectively. The
cost is again O(n®).
Recursive Step Recursively apply the procedure to Ap and Ag, terminal steps end in
basis for all characteristic subspaces by giving the diagonal blocks of D.

Now two main operations are to be performed.

e The splitting. How to do this is detailed in next section.
e Evaluating polynomials P(X) and Q(X) at A with complexity O(n®\/n). This is
detailed in Subsection 3.5.
3.4 Splitting the characteristic polynomial
3.4.1 A general procedure for a recursive partitioning
Definition 3 A multiset is a mapping from E into N where E is a subset of N.

Thus a multiset yields a sequence of positive integers n,,,...,n;,,... For the following defi-
nitions we assume that £ is finite.

Definition 4 A partition of E into two subsets I and J, which are the classes of the par-
tition, yields two sequences (n;)ie; and (n;);ey. A class consisting in a single integer {i} is
called an atom.

Definition 5 Given a multiset, we denote by n(E) the number ¥;cpni. A
0-equitable partition for 0 < 0 < 1 is a partition of a multiset for which the partition of
E = IUJ satisfies either




o ] or J = {i} and n; > On(F)

or
® Yicrni S On(E) and Xjegn; < On(E)

Definition 6 A recursive 0-equitable partition is a 0-equitable partition recursively applied,
treating each class of E in succession at each step, until every class is reduced to an atom.

3.4.2 The problem P(FE)

Assume that a multiset S — N is given and that all finite multisets considered subsequently
yield subsequences of that one. Given a submultiset £ — N of § — N (i.e.E C S) yielding
the sequence (n;);ck, we denote by n(E) the number }_;cg ni. Problem P(E) is a well defined
problem on a multiset £ and it is assumed that solving problem P(FE) reduces to solving
problems P(I) and P(J) for any partition I{JJ of E and that the cost of solving P(E) is
the sum of the costs of P(I) and P(J) augmented with an extra cost bounded from above
by an®. Moreover the cost of solving problem P({:}) at {i} is assumed to be An¢ where e
is the same positive real number as above. We denote by C(FE) the best possible cost of
solving P(FE) for all possible recursive partitions of E. Finally C(n) is the greatest of all
C(E) for subsets E such that n(E) = n. Consequently for any multiset £ — N, there exists
a recursive partition such that the cost of solving P(F) is at most C(n).

3.4.3 A general lemma

Lemma 1 Consider P(E) with n(E) = n defined as above. Then, provided that § > %, there

exists a recursive B-equitable partition. If 0 = %, we have that C(n) < yn® with v = 11_%%,
whenever e is at least @%ffo? ~ 1.71.

Proof: We first prove that there exists a recursive #-equitable partition provided that # is
at least 523- Next we show that assuming that there exists a recursive §-equitable partition
then the whole thesis holds. We thus have to show that given any multiset with associated
sequence n;,ng,...,ni with n(E) = n, then there exists a 8-equitable partition provided
4> % From the definition of a 8-equitable partition we can assume that n; < 0n,z =1,... k.
Now if there is an 7 such that n; > (1 — 0)n, then the partition I = {¢} and J = E\ I is
f-equitable. We thus assume that n; < (1 — 0)n,z = 1,...,k. Let J be the maximal sized
subset of E such that 3~;c;n; < 0n. We show that 3=,y n; < 0n, for I = E\ J. Else adding
any element [ from I to J, I becoming I’, we would have that

(1-0n>> ni>0n—(1-0)n=(20-1)n
i€l

That would entail 20 — 1 < 1 — 8 which contradicts the hypothesis. Next, under the stated
assumption for problem P(E), and with 0 = 2, we show that C(n) is bounded from above
by yn°. The proof is by recurrence on n. The thesis holds for n = 2 and, for n > 2 we have
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that n < n — 1. The following inequalities hold.

C(n) an® + max(C((1 — 0)n) + fn®,2C(0n))
an® + pn® 4 2C(6)

(a + B)n® + 2v0°n°.

IAIA TN

We thus have that C(n) < yn® with ¥ = 22 which is positive and finite provided that

. 1-2fe>
og 2
e> log3-log2° 0

3.4.4 Applying the partitioning procedure to the characteristic polynomial

For clarity and with a view toward applying the previous lemma in an algorithm, we state
it again since it will be used to show how the proof leads to an algorithm.

Lemma2 Letn=n;+ny+...+ng,n;>0,1=1,...,k, where n; < %n
Then there exists a partition [1,k] = I U J such that

Eni < %n and an <

i€l J€J

n.

wl N

Proof: For every subset J of [1, k], denote by S; the sum Y ;c;n;. If there exists n; > Z,
then choose I = {7}, and J = [1,k]\ I.

Otherwise choose J as the subset of [1, k] of maximal size such that que S; < 2n. Then
I = [1,k]\ J necessarily satisfies S; < %n. Indeed, if S; > Zn, let I’ be the subset of [1, k]
obtained by removing any element of I the size of which, by hypothesis, being at most .
Then Spr > %n -3=% and the complementary J’ of I' in [1, k] satisfies S;» < %n and
contains J. This contradicts the maximality of J. O

From an algorithmic point of view, this splitting can be obtained by sorting the integers
ni, ng,...,Nk, then adding them in increasing order until a value n; + ny + -- - n,yy greater
than 2n is found. Then take I = {1,2,...,t}.

Nicolas Sendrier suggested that a Huffman algorithm presented for example in (8, pp.
75-82] and used in source coding would probably provide a convenient binary tree describing
the successive bipartitions. It can indeed be shown a that Huffman tree works, i.e. it gives
a recursive f-equitable partition for § = % Yet it is not necessarily better than the one
obtained by the algorithm described here. For let the set of integers be {1,2,3,4,5,6}. The

first algorithm gives the weighted binary tree

21 = {10 = {6 = {3 = {{1},{2}}, {3}}, {4}}, 11 = {{5}, {6}}}

and the Huffman algorithm gives

21 = {12 = {6 = {3 = {{1},{2}}, (3}}, {6}},9 = {{4}, {5}}}.

Nearly all classes correspond with equal sizes to each other except two of respective sizes 12
and 9 for the Huffman tree and sizes 11 and 10 for the other.
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3.5 Computing P(A), Q(A)

We now show how p(A) can be computed at cost v/tn®, where ¢ is the degree of p(X). A
naive Horner algorithm would lead to O(tn3).

This is a variant of Shank’s procedure “baby step, giant step”, and it needs to keep v/t
matrices in a table.

Theorem 4 For all A in M,(k), for all p(X) with deg p(X) at most t, we have that p(A)
can be computed with complezity O(v/tn®), the size of memory space being O(v/tn®).

Proof: For the sake of simplicity, we describe the algorithm in case t = d® — 1, for some
integer d. We have to evaluate

U(A) = up + u1 A + up A2 + ... +u, Al (1)

Let B = A? we split the polynomial U into polynomials of size d

UA) = uo+uA +uA%+ ... +ug A4
+(ug + uge A + ud+2A2 +... 4 ud+d_1Ad_l)B
+(ugq + Ugap1 A + Ugar2 A% ... + Ugapq 1 A%TH)B?

+(uga-1) + vga-1+1A + ... + ud(d-—l)+(d—1)Ad_l)Bd—l
= Up(A)+ U(A)B +Uy(A)B--- 4 Uy, B!

Precomputation is performed to store the following matrices

fAJA?[A]... AT B=A[B*[... [B"!]

The cost of these precomputation is 2d —3 matrix multiplications. Computing each U;(A)
does not require any matrix multiplications, since each A*,0 < ¢ < d — 1, is in the table.
Then each U;(A)B' is left to be computed, this leads to d extra matrix multiplications.

Hence the total cost is O(dn?). 0

3.6 The complexity

Theorem 5 Using the previous algorithm, it is possible to compute the minimal polynomial
of any square matriz over a finite field k and a block-diagonal matriz similar to A ezhibiting
its characteristic subspaces with time complezity O(n®\/n), and memory size O(n3,/n).

The theorem is proved by making e = 3.5 in Lemma 3.4.3.

The result does not hold as it is stated for any field k because the bit-complexity of
elementary arithmetic operations and the cost of factoring the characteristic polynomial
cannot be evaluated in general.



4 The Shift-Hessenberg form and the centralizer of a
matrix

We now use the same algorithm on a particular form of the Hessenberg matrix, which will be
called the Shift-Hessenberg form. The main point is that evaluating a polynomial at a matrix
1s less expensive when that matrix has the Shift-Hessenberg form. The average improvement
is, as will be seen, considerable. Before going to the use of the Shift-Hessenberg form for
our algorithmic purposes, we show how Shift-Hessenberg forms shed light on the subgroup
of GL(n,k) commuting with a given fixed linear operator on k™. In fact, properties arising
from our investigation lead to an algorithm to actually construct any matrix commuting
with a given matrix. We write “operator” for linear operator T and use the notation T for
the matrix representing T in the canonical basis of k™.

4.1 Shift-basis

Definition 7 For A in M,(k) and v in k", the minimal polynomial of A restricted to v is
the lowest degree monic polynomial ©,(X) such that 7,(A)v = 0.

Notice that 7,(X) | #(X).
Definition 8 Let T be an operator on k™. A shift-basis for T is a basis which has the form
[’Ul, TU], e ,Tnl-l'l)l, (%N TUQ, ey Tnz—l’l)g, ce ey Um, Tvm, e ,Tnm—l'l)m] (2)

It is understood that a shift-basis is actually an ordered basis. Given T, a shift-basis for
T can be obtained as follows. First select any v;, and introduce the linear independent
set T'vy for ¢ = 0,...,n; — 1 where n; is the smallest value of ; for which T?v, linearly
depends on all previous vectors. Then select v, independent of the previous vectors up to
v; and proceed with T'vy, 2 = 0,...,n5 — 1 as for v;. The process ends in a shift-basis with
m+n,+...+n, =n

Definition 9 We call a matriz which represents an operator T in a shift-basis a Shift-Hessenberg
matriz.

It is important to observe that the Frobenius form of a matrix, also known as the Rational
Canonical Form, is a particular Shift-Hessenberg form. Notice that if T is the zero operator,
then any basis of k™ is a shift-basis for T. The other extreme situation is when the charac-
teristic polynomial of T is irreducible: we have that m = 1 for whatever v;.

Clearly, to every shift-basis there corresponds an increasing sequence Vi, ..., V,, of invariant
subspaces of T. We have that V; is a k[T]-module, : = 1,...,m and consequently V;/V;_;
is a module . Such a sequence of modules is known as a finite filtration (see for example
Serge Lang [13, page 126]). In the present particular situation, we have that each of those
quotient modules is generated by a single element T; which is the class of v; in V;/V,_;.
Denote by f;(X) the minimal polynomial of 7;, and observe that the ith diagonal block in
the Shift-Hessenberg matrix is the companion matrix of f;(X). Notice incidentally that it
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can be seen that h(T)T; generates the k[T)-module V;/V,;_; as well as 7; if and only if h(X)
is prime to f;(X). Since the annihilating ideal of V,;/V,_; contains the one of V; and since
fi(vi) is in V,;_; then f;(X) divides the minimal polynomial of v;. We just have pointed out
a structure induced by any shift-basis which leads to a converse statement. If V,,...,V,
is a finite filtration of k[T]-modules such that V;/V,_; is a module generated by the single
element 7;,z = 1,...,m, then vy, v,,..., v, yield a shift-basis for T.

As we will next see, a unique Shift-Hessenberg matrix will represent the operator T in
diverse shift-basis obtained from the same increasing sequence Vi,...,V,,. There exists
a partition of all shift-bases with respect to the Shift-Hessenberg form to which they cor-
respond. We will see that each class yields a unique subgroup af GL(n,k) that will be
investigated. The following property clearly follows from the above definitions.

Property 1 Given any two shift-bases By and Ba:

ny—1 ny—1 Nm—1
[0, Tos, ., T 0,05, T, ., T 0y, U, T, -, Ty (3)
! ! ny-=1,1 1 / ny=1,1 ] [ m—1
[o1, T}, .., T 20p, 0, T), . T2 e, o), T, TPl (4)

such that
[vi,v; € Vi = TW;vg,v5 € Vo \ V1, Vo = TVo; 0,00 € Vin \ Vine1, Vi = TV, (5)

with
wcw,c...CVn. (6)

If T™v; depends on the preceding vectors with the same coefficients as T™v], 1 = 1,...,m
respectively, then to B, and B, there corresponds a unique Shift-Hessenberg form.

Here we use the same notation for a basis B and for the matrix whose columns are formed
with the elements of B represented in the canonical basis of k™. We now start with an exam-
ple illustrating Property 1 to introduce a construction for the group of matrices commuting
with a given matrix.

Example: Consider the extension F;g over F,. For this example, we thus have n = 4. Let
T be the Frobenius map represented by the matrix F in the basis By = {1, X, X2, X3},
the presentation of T being given by the irreducible polynomial 1 + X + X*. A natural
Shift-Hessenberg matrix similar to F is the Rational Canonical Form (Frobenius form) of F
which here is the permutation matrix P

OO = O
O - O O
—_— 0 O O
OO O =

whose minimal polynomial is Z" — 1, n = 4. Now let B; be the matrix whose columns are the
successive elements { X3, X%+ X3 1+ X + X? 4+ X3, X + X3} of a normal basis expressed in
the basis Bg. Then B, is a shift-basis for T in which T is represented by the Shift-Hessenberg
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form P. Here v; = X3 and m = 1. Taking v{ = 1 + X3, then Property 1 applies, since
1 + X3 generates another normal basis whose vectors will form the columns of B’y. We thus
have that B{'FB, = P = B, "'FB, which shows that G = B1B} ™' commutes with F. The
integer n being a power of 2, there are exactly 2* — 2"~1 = § polynomials of degree less than
4 and relatively prime to Z™ — 1 in F,{Z]. There are consequently 8 cyclic vectors such as
v1. As above, 8 distinct matrices which commute with F are obtained. After computation
we observe that they form the abelian group F,F2,F3 1, together with the coset containing
G. We notice that F is the cube of BiP7!B;!. We will soon prove Theorem 6 which shows
that this is the whole centralizer of F in GL(n,2) for n = 4. Its proof moreover gives an
algorithm for constructing any matrix in the centralizer of a given matrix T.

4.2 An algorithm for the centralizer of a matrix

We here give an algorithm for constructing any element to be selected in the centralizer
Z(T) of a matrix T over a field k and for enumerating Z(T) in the case where k = F,

4.3 The k[X]-module induced by a matrix

Definition 10 The Ezpanded-Frobenius form of T in M, (k) is the following matriz D sim-
dlar to T,

FB].B] 0 ... 0
D — 0 FB2'B2 < 0
0 0 .. FBd.Bd
where each matriz Fp, g, is a Frobenius matriz
C s o - 0
Py
0 Coz --- 0
P
0 0 - Coim,
Py

with si1 < 8i2 < ... < 8;m, and the polynomials p; are such that gcd(p;,p;) =1 ifi # 5.

We thus have that p;"™ is the minimal polynomial of Fp. p,. The subspaces for which
the matrix i1s a companion matrix are denoted by ‘/p’l,l , Vps.,z e Vpa.',m,- . respectively.

Now k™ being viewed as the direct sum

d m,

@ @ ‘/p:") '

=1 j=1

we consider k™ equipped with the natural structure of k[X]-module induced by T'. Then
the module k™ can be represented as the product of rings

R‘—:Rl'lXR]'gX"'XR],ml XR?’,] XRQVQX"'XRQJnQ X"‘XRdy] XRd'QX"'XRd'md
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considered as k[X]-modules where
R ; = k[X]/p;".

For any vector u, we denote by wug,, the component of u in the ring R;;. Thus from
now on ug,, is considered indiscriminately a vector or a polynomial of degree less than

si;deg(pi).

4.4 Shift-bases for the Expanded-Frobenius form

By Property 1 every shift-basis for the Expanded-Frobenius form is defined by a sequence
of vectors
! ! / ! ! ! !
Vi V122 Vlmy s Vans s V2mgr - o3 Vds -+ s Vamy
such that for every couple z,; the polynomial with minimum degree cancelling u; ; is P,
Notice that in the k[X]-module decomposition of k", the vector u}; may have non zero
coefficients in other rings than R, ;.
However we can state more precisely the following

Lemma 3 Let u be a vector in k*, such that p;"’u = 0. Then the components of u viewed
in the k[X]-module decomposition of k™ satisfy

up,, =0 tf bk #1.

Proof: Suppose there exists k, 1, k # i such that ug,, # 0. Then p;"’ug,, cannot be zero,
since g, , is not zero and p;'” is a unit of Rk, = k[X]/p;**. This contradicts the assumption

on u. ]

We characterize all components in R, ;, [ # j of a vector u whose minimal polynomial is
36

D:

Lemma 4 Let u be a vector in k™, whose minimal polynomial is p;"’. Then the components
of u in R;; are described as follows.

o | < j;upg,, can be any element of R,

o | =j;up,,, considered as a polynom:al, is prime to p;,

t,u "S5,y

o I > j;up,, is a multiple of p;

Proof: Since the minimal polynomial of u is p;'’, then we have that p;"’v = 0 for any vector
v in R;;, whenever [ < j, since p;"', which divides p;*’, is the minimal polynomial of T
restricted to R;;. This establishes the result for the case | < j.

In case | = j, we have seen that a vector is cyclic for a companion matrix if, considered
as a polynomial, it is relatively prime to the minimal polynomial of that matrix.

In case { > 7 we must have that

piu =0
and this implies in R;; that
Sy, Syt
p;" wr,, = 0 mod p;*",
and thus we must have that p;"' ™™ divides up, ,. a
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Property 2 All shift-bases for an erpanded Frobenius matriz D described as in definition
10 have the form

! [ nyy=-1,7 ' / ny2—1,1 ’ i ngmy—1,,/
v; 1Dy, D V11,V 0, DUy g, D V) s+ v s Udin g DVms - s DMma oy

where n; ; = s;;degp; and where each v; ; 7 is its minimal

; is any element in Ry such that p
polynomial.

The proof follows straightforwards from Property 1. Moreover Lemma 4 gives an explicit
construction of all v ; and consequently of all such shift-bases.

4.5 From shift-bases to the centralizer of a matrix

Theorem 6 Given an operator T, then every Shift-Hessenberg matriz similar to T yields
the group Z(T) of operators commuting with T, i.e. the centralizer of T in GL(n,k). A
one-to-one mapping from the set of shift-bases onto Z(T) can be constructed from the data
of the Ezpanded-Frobenius form of T.

Proof: We first show how to any Shift-Hessenberg matrix similar to T there corresponds the
centralizer of T. Notice that we use the word centralizer for the group of matrices commuting
with T even if T is not invertible. Let By and B2 be two basis satisfying the assumption
of Property 1 and denote by Hj the Shift-Hessenberg matrix B;'TB; = B2"'TB,. Then
G = B,B; 7! which commutes with T can be constructed from the data of B; and Ba.
Clearly any two Shift-Hessenberg matrices similar to T are conjugate. If Ho = C™'H;C,
then B;C = B) and BoC = B are shift-bases in which T is represented by Ha. We
thus have that B4B, ™! = B2B;~! which shows that the group obtained from the bases
corresponding to H2 is the same as the one obtained by considering the bases corresponding
to Hy.

We next prove that all matrices commuting with T can be obtained in the form BBy ™!
where B;7'TB; = B2"!TBs,. Therefore let Q be any invertible matrix commuting with
T. We see that QB; is a shift-basis corresponding to the vectors Qu;, Qus, ..., Quv,, since
TQu; = QTv;,2 = 1,...,m. In addition Property 1 entails that T is represented by the
same Shift-Hessenberg matrix Hy in that basis. Thus B;(QB,)~! = Q belongs to the group
constructed from the data of the set of all shift-bases in which T is represented by Hj;.

We are left with identifying a Shift-Hessenberg form for which all bases in which it rep-
resents T can be easily constructed. We choose the Expanded-Frobenius form F of T. It
is actually easier to construct the centralizer of F and afterwards go back to the one of the
given T by conjugation. Indeed, a straightforward shift-basis for F is given by the identity
matrix. In addition all other shift-bases may be constructed by using Lemma 4. ]

Corollary 1 The centralizer of the direct sum of two matrices s and t whose minimal poly-

nomials are relatively prime is the direct product of the centralizers of s and t respectively.

The Corrollary follows from Theorem 6 and Lemma 4.
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Note 3 The proof of Theorem 6 together with Lemma 4 clearly describes an algorithm to
construct the whole of Z(T). To be more specific, let us observe that the first step of the
algorithm consists in reducing the given matriz to its Fzpanded-Frobenius form. How to do
this is dealt with in Section 9. The obtained basis B in which the given matriz is represented
by the Frobenius form, i.e. B-'TB = F allows the final computation: BZ(F)B~! = Z(T).

4.6 The size of the centralizer of a matrix over a finite field

In the case where k = F, we can derive from the previous results the enumeration of the
centralizer of any given matrix.

Theorem 7 Let T be an operator whose Expanded-Frobenius form is as in definition 10.
The number of shift-basis for T which yield the above Frobenius form is

d m, _ )
[T IT g*esr (Ewms suutlmemdons J g ). (™)
i=1j=1

where ¢(g) is the number of polynomials of degree less than deg(g) prime to g.

Proof: Each such shift basis is given by a sequence as

! / ! ! ! ! !
vl,l,v1,2, e ,vl'ml,vzyl,. .o ,v2'm2,. . .,vd'l .o .vd‘md

in which for every couple ¢, j the polynomial with minimum degree canceling v ; is pi.
In formula (7), the outermost product is due to lemma 3. The innermost product enu-
merates for each p;"’ the number of vectors v such that p;"’v = 0. The sum

j-1
Z Siw
w=1
is for the rings R;;, ! < j, in which any vector v satisfies p;*’v = 0. The term

(mi —J)si;

=S

is a result of the fact that for every [ > j the number of polynomials multiple of p; in
K[X]/p{" s qiostries

Finally, ¢(p{*’) = ¢* 98(P)(1 — g~ d&(»)) is the number of polynomials prime to p;*”, i.e.
the number of units in R; ;. O

4.7 The centralizer of a matrix

By Theorem 6, any shift-basis for the Expanded-Frobenius form yields a matrix commuting
with T, and any commutator of the Expanded-Frobenius form gives a shift basis for the
Expanded-Frobenius form. Since the group of commutators of T' and the group of commu-
tators of its Expanded-Frobenius form are conjugates, we have proved the following
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Theorem 8 The size of the centralizer of ¢ matriz T in M,(q), whose Ezxpanded-Frobenius
form is given as in definition 10 1is given by formula (7).

Corollary 2 Let F be the Frobenius map from F} over Fy and let fi,..., f, € R[X] be the
distinct irreducible factors of X™ — 1 in F,[X] and n; = degf;. Then the size of Z(F) is

vin,g) =q¢"(1 —¢"™)...(1=¢™)

Proof: This is an immediate consequence of the previous corollary and of the fact that the
given size is exactly the number of polynomials relatively prime to X™ — 1, since Lidl &

Niederreiter[15, (1983),Theorem3.73] give v(n,¢)/n as the number of normal polynomials.
O

Corollary 3 Let F be the Frobenius map from F} over F, where n is some power of the
characteristic of F,. Then the size of Z(F) is (¢ — 1)¢"".

4.8 The average number of factors of a characteristic polynomial

R. Stong gives in [20] the following result.

Theorem 9 Let X,, be the random variable assuming as values the number of factors of the
characteristic polynomials of matrices in GL(n,q) counted with multiplicities, and let EX,
be the expectation of X,,. Then EX, is asymplotically equivalent to logn.

We shall prove the following

Theorem 10 Let Y, be the random variable assuming as values the number of factors
counted with multiplicities of characteristic polynomials of matrices in M,(q), and let EY,

be the expectation of Y,. Then for every € > 0 there exits ng such that EY, < 2(1 + ¢)logn
for n > ng.

The proof of the Theorem needs two lemmas that will be first established. For any matrix
A € M,(q) we consider its Expanded-Frobenius form as follows

t

where s is a Frobenius form with characteristic polynomial X™ for some n;, and t is an
invertible matrix of size n, = n — n;.
The following holds true.

Lemma 5 The average number EZ, of factors counted with multiplicities of the character-
istic polynomial of t |, for matrices A in M, (q), satisfies: Ve > 0,Ing | n > no = EZ, <
(1+¢)logn.
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Proof:

Let S, be the set of Frobenius matrices with characteristic polynomial X™ and let S,,
be the set of invertible Frobenius matrices whose characteristic polynomial has degree n.

We denote by z,,, the size of the centraliser of s € S,, and by z:,, the size of the
centralizer of t € S,,,.

Given s and t in S,, and S,, respectively, then by Corollary 1 the number of matrices
having Frobenius form

s 0
B 0

|GL(n, )|

Zs,ny Zt,ng

1s

Then the number of matrices having X™' in the decomposition of their characteristic poly-
nomial and a fixed matrix ¢ in their second diagonal block in their Expanded-Frobenius form
presented as in (8) is

5€Sn, Zsny Bty Zting $€Sn, Zs,n

= L x(n,n,0)

where
1

X(nlan’ Q) = lGL(n’ Q)I E
$€ESn, “3m
Now let C,, ¢ be the set of polynomials C(X), C(0) # 0 of degree n, that split into
k factors counted with multiplicities and S,,x be the set Frobenius matrices of size ng
whose characteristic polynomial belongs to Cy, . The number of matrices in M, (q) whose
characteristic polynomial is X™ C(X), for C(X) in Cp, k, is

1
x(ni,n,q) Y.

t€Smy . Stim2

Denote by 8 the random variable assuming as value the size of the non-singular part of a
matrix, and denote by 1 the random variable assuming as value the number of factors of the
characteristic polynomial of the non-singular part. The conditional probability P,{n = k |
6 = ny} that C(X) belongs to Cn, i for a matrix in M,,(¢g) whose characteristic polynomial
is XM (C(X), is thus

A(n:l,naq) teSZ"?,k zt.‘nz tESZ'Q,k Zg'nz
- [GL(nz,9)|
X(nlanvq) 1625: 2 N Z T—
ny ! t€5n2 M2
= Pp,{n=k}



where P,{n = k} is the probability that an invertible matrix in GL(n, q) has a characteristic
polynomial which splits into & factors.

Now we can conclude: the expected number of factors of the invertible block of any
matrix in M,(q) is given by

n

zn:k P{0 =n3} P, {n="Fk} = Z P{O—ng}Z/\PM{n—k} (9)

k=1 mnz=1 no=1

Z P{0 = ny}EX,,. (10)

ny=1

This is an average over the EX,,, ns =1...n
Let € be given. Since FX, ~ logn, there exists n; such that n > n; = EX,/logn <
1+ ¢€/2. Thus

m=1 P{0 = n} EX,, Yoy P{0=n}EX,,

— &m= 0 = Koy 11
logn logn + nz_zn;ﬂ s ng} (11)
Zn =1 EX“?
< Zme=l WM =
< ogn T m;ﬂ?ﬂ P{0=n}(1 4 ) (12)
< Log=1 EXoy +14% (13)
logn 2

And since nl_l_{& 1/log n = 0, we can choose ng such that, for all n > ng, we have that

The proof of Theorem 10 will be completed by the following Lemma.

Lemma 6 Let Z,, be the random variable assuming as values the number of factors X of
characteristic polynomials of matrices in M,(¢). Then the expectation EZ, is asymptotically
bounded by logn.

Proof: Let us consider the translation M + M + [,,. The factor X™ of a matrix M becomes
(X — 1)™ in the factorization of the characteristic polynomial of M’ = M + I,,. Consider
the Frobenius form of M’
s 0
]

where s is nilpotent and t is invertible, then (X — 1)™ is the largest power of X — 1 which
is a factor of the characteristic polynomial C(X) of t. By Lemma 5 the expected number of
factors of C(X) is asymptotically log n, thus n; is asymptotically bounded by logn. O
Theorem 10 now follows from Lemma 5 and Lemma 6.
Example of construction of a subgroup of Z(T).
The construction that we have described in the proof of Theorem 6 consists in construct-
ing the matrices like G which commute with T by first obtaining matrices as B; and Ba.
921
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We now show on an example how this can be systematically done when restricting the se-
lection of such matrices in a particular prescribed subgroup of GL(n,q). The example is
concerned with a subgroup of a centralizer in which every matrix is taken from the group of
automorphisms of the Hamming (8,4,4) binary code.

We consider the subgroup G'L(n,q); of GL(n,q) consisting of all matrices in which the
sum of entries in every column is 1. Let us recall that the general linear affine group GA(n, q)
is the group of all transformations of the form z — Gz + b, (G,b) € GL(n,q) x k™ We
first prove in a few lines a property which is a particular case of the well known theorem of
Kasami-Lin-Peterson [17].

Property 3 The group of non-projective automorphisms of the extended first order Reed-
Muller code over F, , i.e. the group of permutations on the set of positions of the code-
words preserving the code, is the general affine group GA(n — 1 q) Moreover GL(n,q); is
isomorphic to GA(n — 1,¢). .

Proof: Let us first prove the last assertion. Let Q be the n x n matrix in which the first
n — 1 rows are the transposed of the first n — 1 unit vectors and the last row is the all-one
vector. Then it is easy to see that QGL(n,¢):Q~" represents GA(n — 1,¢) as a subgroup
of GL(n,q). Next let M be the matrix formed by all columns summing up to 1. Then
GL(n,q), is seen to be the whole group of non-projective automorphisms of the linear code
(¢" ', k = n,¢""%(¢—1)) whose generator matrix is M, the code being known as the extended
first order Reed-Muller code over F, (Properties of that code are described in [17]). a

For n = 4, ¢ = 2 we get an instance of such a matrix M which also is the generator
matrix of a Hamming code. We have that

01111000
10110100
—[T’I]:11010010
11100001

Denote by Z(T), the subgroup of matrices of GL(4,2); commuting with T. By theorem
6, we are able to construct any matrix G commuting with T. Many matrices of GL(4,2), do
not commute with T. Thus we are able to constuct an increasing sequence of subgroups of
Z(T), by adjoining new commutating matrices to the group just obtained, those subgroups
being properly contained in GGL(4,2),.

For instance:

1 000 1 000

0110 1 010

Bi=lo 1o |®™B2=1) ¢

0100 0100

are, by Property 1, two shift-basis associated with the Shift-Hessenberg matrix

0111
1 011
H= 0010
0 0 01

[S™)
o



Clearly there is no difficulty in constructing shift-basis with all vectors with odd weights.
Then by theorem 6, we have that

1000

- 11 0 1

G1= BBy’ = 1011
0001

commutes with T. Constructing an other shift-basis, say

100 1
1011
Ba=1,00 0]
0101
we have that
0010
_ a_|1 110
Gz=BsBy =11 ¢ ¢ ¢
101 1

is another matrix in Z(T), which does not commute with G1. That could have been expected
since T is not diagonizable: indeed the characteristic polynomial of T is (X + 1)* and its
minimal polynomial is (X + 1)2.

We now construt two shift-basis which are not in GL(4,2),.

1 000 1100
, 1100 , 10110
Bl“0110’}32‘1001
0011 0010

they both correspond to the Shift-Hessenberg matrix

1 001
,_ 10100
H = 0011
0 001
Then
0100
/' _wim-1_ 10010
Gi=B:Br =191 11
1110
is in Z(T).

We observe that G is in GL(4,2); as well.



In fact we have as in the proof of the theorem 6 that

0110
) 0101
GiBi=1, 1 11
1 01 1

is a shift-basis associated to H. We incidentally observe that G2 = T and that G{Gy #
G1G3.

There unexpectedly exists an algorithm derived from the well known Hessenberg algo-
rithm presented in Subsection 2.1 to directly derive a shift-basis for any operator T without
the need of selecting a vector at random. This is done in next section.

4.9 The Shift-Hessenberg form

The Shift-Hessenberg form for a matrix is a particular Hessenberg form. The cost for the
Shift-Hessenberg form is still O(n®). The following definition clearly is equivalent to the
previous one. It was used in [16], as an intermediate matrix for computing the Frobenius
form of a matrix.

Definition 11 A matriz H in M, (k) is Shift-Hessenberg if it has the following form

[ X X X ]
1 X X X
1 x X X
0 x X
1 X X
H=
X
1 x X
0 X
1 X
L o ]

i.e. H is a Hessenberg matriz such that (hiy1; # 0) = (hiy1; =1 et Vj <1 h;; =0).
The parameter m of a Shift-Hessenberg matriz is defined to be the number of zeros on
the first subdiagonal, plus one.

Note 4 The number m is the number of diagonal blocks, each block being a companion
matriz, i.e. a matriz of the form

r -

Ci
1 Cn—-2
1 Cn-1 |




The characteristic polynomial of such a matriv equals its minimal polynomial and is
X'n. X'n-l X-n—l Yl
= Cn-1. = Cn-2. B & % Sl 1

In the case where the parameter m = 1, the Shift-Hessenberg matriz is itself a companion
matriz. The other extreme situation is for m = n where we have an upper triangular matriz.

An algorithm for obtaining a Shift-Hessenberg form similar to a given matrix
We have a theorem analogous to the one concerning Hessenberg matrices.

Theorem 11 For all A in M, (k), there exists a Shift-Hessenberg matrizc H and an invertible
matriz P such that H = PAP~!. The matrices H and P can be obtained in O(n®) elementary

operations.

Proof: Again, we prove the theorem by giving an algorithm.
Input A € M,(k), where k is a field.
Output H, a Shift-Hessenberg form for A, and P such that H = PAP™,

H:=A; P:=1,; i:=1{ith row is denoted by L;, ith column by C;}
while i < n do {treat each column, do not treat the last one.}
Search for the first non zero element in column i
starting at row indez 1 + 1. If such an element exists, let j be that position
if no such element has been found then 1:=i+1
{that column remains unchanged up to the end}
else
with H:
swap rows ¢ + 1 and j
swap columns ¢ + 1 and j
with P: swap rows ¢ + 1 and j
c := 1/H[i+1,i] {pivoting element}
with H
Liyy — Liyy x ¢; Ciy1 — Cigr/c {h[i + 1,1] is now a 1}
withP L, «— L;;y xc
for [ from 1 to n suchthat / #i+1 do
h:= H[l,i]
with H: LI — L1 —h x L,’+1; C[ — h x C[ + C,'_H
with P: Ll — L1 — h x Li+l
1:=i+1
return(H,P)

O
We now investigate more precisely the number m of diagonal blocks of the
Shift-Hessenberg form for a matrix A. Let us introduce another parameter ma associated
with a matrix A, which is involved in the complexity assessments.



Definition 12 Let A be a square matriz in M,(k). We denote by ma the mazimum size
of an increasing sequence of invariant subspaces of k™ under A:

Vlcvzc...va

It follows that for any Shift-Hessenberg form of a matrix A with parameter my, we have
that parameter m is bounded from above by m,, since each zero on the first subdiagonal
yields an invariant subspace. The invariant subspaces are nested.

Property 4 The number ma equals the number of irreducible factors of the characteristic
polynomial of A, counted with multiplicities.

We recall without proof the following theorem by Richard Stong. [20]}

Theorem 12 ([20], Proposition 12) The asymptotic value of the average number of ir-
reducible factors, counted with multiplicity, of the characteristic polynomial of an invertible
matriz of size n is equivalent to logn, with an average deviation of logn.

That result, which 1s completed by our Theorem 10 leads to the corollary
Corollary 4 The ezpected value of mp is O(logn).

For clarity, the complexity of some algorithms will be given in terms of n and m4. This
will lead to complexities in terms of n and logn. Notice that the algorithms here presented
all are deterministic. However the complexity is a random variable bounded from above.

4.10 Evaluating a polynomial at a Shift-Hessenberg matrix

In this subsection we introduce some results about the complexity of computations with
a Shift-Hessenberg matrix. The next subsection is concerned with solving some problems
concerning companion matrices.

First observe that a Shift-Hessenberg is a sparse matrix, with at most m + 1 non-zero
entries in each row. This leads to the following lemma.

Lemma 7 Let H be a Shift-Hessenberg matriz of size n, and let M be any matriz of size
n x n'. Then product HM can be computed at cost O(mnn').

Furthermore a Shift-Hessenberg matrix has some properties regarding cyclicity, as already
seen in definition 9, which can be exploited for reducing costs. A new definition is introduced.

Definition 13 Let H in M, (k) be a Shifi-Hessenberg matriz. The matriz A is polycyclic
for H if its columns C; have the form

ny-1 ny—1 Nm—1
[vl,Hvl,...H’ v1,ve, Hog, ..., H™ 1y, ..., vy, Hopy,y ..., H™™ vm] (14)

where ny,nay,...n,, are the sizes of the diagonal blocks of H, and vy,vs,...,vy are vectors

of k™.

VThis result was brought to the attention of one of the authors by Jeremy Johnson, from Drexel University,
Philadelphia, USA at a meeting in Oberwolfach organized by Thomas Beth in February 1993.
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Notice that linear independance , required in the definition of shift-bases, does not show
in this definition.

Proposition 1 Let H be a Shift-Hessenberg matriz, let A,B be two matrices which are
polycyclic for H. Let a, 8 be any field elements, then aA + B, I,, H, HA and HB all are
polycyclic for H.

In other words, the matrix H defines a k[H]-module of polycyclic matrices which is a k[H]-
submodule of M, (k).

Proposition 2 Let H be a Shift-Hessenberg matriz of parameter m. Then the product HA
can be obtained with complezity O(mn?) for any matriz A in M, (k) and with complezity
O(m?*n) whenever A is polycyclic for H.

Proof: For a polycyclic A, the product HA is performed by modifying A as follows. Delete
v1, shift all vectors to the left. Then replace v,,...,v,, by HH™ tyy,... HH"™ 171y _,
respectively.

Finally, put HH""~!v,, as nth column. The whole cost is m(mn). 0

Corollary 5 A polynomial p(X) of degree at most t can be evaluated at H with complezity
O(tm*n).

Proof: We apply Horner’s rule for evaluating a polynomial p(H) = p,H' + p,_.H*" ' + .- +
pmH + pol. We compute h, = pH + p,_11, h, = Hh, + p,_.1,... h, = Hh,_; + tcI. From
proposition 2, h; is computed from h,_; at a cost O(m?n), thus a total cost of O(tm?n) for
p(H). o

We now can refine our algorithm for Shift-Hessenberg matrices, using the fact that eval-
uating a polynomial at a Shift-Hessenberg matrix is cheap.

Input A Shift-Hessenberg matrix H and its factored characteristic polynomial C(X).
Output The minimal polynomial of H and the splitting of k™ into all characteristic subspaces
of H.

Step 1: Find a splitting of C(X) = P(X)Q(X), as in step 1 of 3.3 for the general algorithm.
Step 2: Compute Q(H), P(H) as in the proof of Corollary 5. This gives generating vectors
for subspaces for Vp and Vj respectively.

Step 3: Compute a basis for Vp and ¥ respectively. This is done with gaussian elimination,
at cost O(n?®).

Step 4: Change basis, as in step 4 of 3.3. Next compute the matrices Hp and Hg of
the restriction of H to Ve and ¥, respectively. The cost is again O(n3). Compute the
Shift-Hessenberg forms H, and Hy, for both matrices Hp and Hg,.

Recursive Step Recursively apply the same procedure to H and H{,. This ends in ex-
hibiting all characteristic subspaces.

O]
-]



Corollary 6 Using the evaluation rule given in the proof of Corollary 5, and the algo-
rithm described in Section 3 and modified for Shift- Hessenberg matrices , it is possible, given
the factored characteristic polynomial of H to compute the minimal polynomial of a Shift-
Hessenberg matriz and a block-diagonal matriz D similar to H in O(n® + m§jn?) elementary
operations.

Remark 1 The term in n® in the above evaluation is due to the computation of the Hessen-
berg form of the given matriz and to construct bases for invariant subspaces.

A deterministic algorithm giving the minimal polynomial in O(n®m,) steps has been ob-
tained by Patrick Ozello ([16]). That algorithm is thus slightly more expensive than the
present algorithm, but it does not require knowledge of the characteristic polynomial. It
however does not produce the characteristic susbspaces.

Remark 2 A Shift-Hessenberg form for the given matriz A being computed first, then all
results of Corollary 6 are obtained at total cost O(n® + m4n?) by Theorem 11.

Remark 3 Note that the worst case complezity is O(n*), when the parameter ma of ma-
triz A is n. However, since mp is known when the factorization of Ca(X) is known, the
algorithm descibed in section 3 could be used for a worst-case complezity of O(n3/n).

4.11 Linear algebra with a companion matrix

Since the diagonal blocks of a Shift-Hessenberg matrix are companion matrices, we will use
the fact that companion matrices appear in linear representations of algebras of polynomials.
This subsection is dedicated to describing very simple and efficient procedures for solving
relations involving a companion matrix. This will lead to low complexity algorithms.

From now on, given a companion matrix C' with minimal polynomial 7(X) of degree n,
and a vector v = (vg,...Vn-1), the vector is identifyed with a polynomial

v = (V0,V1,...,0n_1) & (X)) =vo + 11X + 2 X2+ -+ + v, X! (15)

We first consider the computation of Cv for any vector v € k™. Observe that Cv =
Xv(X) mod n(X). This means that computing Cv is only a shift-add on the vector v,
modulo 7(X). We state this in a lemma.

Lemma 8 For a companion matriz C, Vv € k*, Cv is computed with complezity 2n.

This entails the following lemma.

Lemma 9 For a companion matriz C with minimal polynomial n(X), for all v in k™, for
all P(X) of degree at most n, then P(C)v can be computed at cost O(n?).

Proof: Computing P(C)v reduces to computing P(X)v(X) mod 7(X). O
The solution for specific systems of equations is obtained as shown in the proof of the
next statement.

e
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Lemma 10 For a companion matriz C with minimal polynomial #(X), for all v in k", for
P(X) prime to n(X) and of degree at most n, solving the following system at u

P(Clu=wv (16)
can be done at cost O(n?).
Proof: Since P(X) is prime to 7(.X), there exists @(X') such that
P(X)Q(X) =1
(mod w(X)). The solution u is given by u = Q(C)v. Computing Q(.X') can be done in O(n?)

by the extended euclidean algorithm, and computing Q(C)v is done in O(n?) by Lemma 9.
)

Let us state a lemma for computing the minimal polynomial of a vector for a companion
matrix.

Lemma 11 The minimal polynomial 7,(X) for of a companion matriz C restricted to a
vector v is given by
7(.X)
v X) = -
) = A X o)
where w(X) is the minimal polynomial of C

(17)

Proof: Let 7,(X) be the polynomial of smallest degree such that 7,(C)v = 0. From previous
remarks, we have to find 7 (X) of smallest degree such that

7:(X)v(X) =0 (mod n(X)). (18)

Tu(X) = gca_wT%,)WS is a solution. Let 7,(X) be any solution for 7,(X)v(X) = 0 mod
7(X), then
(X)) | mu(X)o(X),

and thus ()
s
i 4 l 7rUJ(A,)
ged(x(X), v(X))
Hence 7,(X) is the polynomial with smallest degree that we are looking for. 0

5 A direct algorithm for the minimal polynomial

We now give another algorithm for computing the minimal polynomial of a matrix A, given
a Shift-Hessenberg form for A. This algorithm is a direct algorithm, it does not appeal
to any “divide-and-conquer” process, and it does not require any previous knowledge on
the characteristic polynomial. The drawback is that is does not produce a diagonal-block
decomposition of k™ into the characteristic subspaces of A.

Assume that we are given a Shift-Hessenberg form H for matrix A. Then H is described
by blocks as follows.

HBlvB) HBl.B'z co HBxme
po| 0 Hem o Hes.
0 . 0 HBm,Bm



Notation 1 We denote by By the set of indices of block k. We also denote by B>, the set
of indices By U Biyy ... U By, For any matriz A € M, (k) we denote by Ap, p, the matriz
obtained from rows in B; and columns in B;. We denote by Apg,, the square matriz obtained
from all rows and columns from the k™ block up to the end.

5.1 Nested ideals related to H
Property 5 Let I, denote the set of polynomials g(X) such that

gH)g, 5, =0, i=1,...,m, and g(H)g,B, =0, i <J, 4,j =k,...,m, (19)
We have that I, is an ideal of k[X]. Morcover the following chain of inclusions holds,
LCL - Cl,. (20)
We have that
L= ((pe(X),k=1,...,m and pp(X) | prr(X), bk =2,...,m (21)
Finally p)(X) is the minimal polynomial of H.

Before giving the proof let us introduce some notation.

Notation 2 Since we will have that pry1(X) | pe(X), we will denote by ¢u(X) the polyno-
mial such that pp(X) = ¢p(X)prs1(X). The minimal polynomial of the companion matriz
Hp, g, , which lives on the last column of that matriz is denoted by f;(X),2=1,...,m.

Proof: Consider the case where £ = 1. We have that
gH)p,B, =0,i<j; 4,5=k,...,me gH)=0

and the ideal I; = (p1(X)) is the ideal annihilating the matrix H, i.e. the ideal defining the
minimal polynomial p,(X) of H.

Now let I be the set of polynomials such that (19) holds.

Then I is an ideal of polynomials and k[.X] being a principal ideal domain, we have that
It = (px) C Ix4q and thus pry1(X) | pe(X). From now on ¢x(X) is well defined.

Let g(X) € Ii41, then, focusing on blocks with row index set By and column index set
B;, k < j < m, we consider the result of computations with H and we obtain the relation

(Hg(H))B, .8, = Hp, B, (9(H))B,.B,

Let now p(X) be a polynomial of the form ¢(X)pi41(X), which is the general form for
polynomials in I;,;. We then have that

p(H)s,.8, = ¢(H), .5, (Pr+1(H))B,.B, = ¢(Hp, B, )(Pr+1(H))B, B, k < j < n

Thus p(H)p,,8, =0, k < j < nif and only if ¢(Hp, 8, )(px+1(H))B, B, =0, k < j < n
i.e. iff ¢(Hp, B, ) annihilates the space generated by columns of all matrices (pi41(H))s,,5,,
j=k,...,m.
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We conclude that ¢, (X) is the minimal polynomial of Hg, p, restricted to the subspace
generated by the columns of all (pxyi(H))p, .5,,7 = k,...,m. Now pr+1(X) is, by the def-
inition of Jx,y, the polynomial with smallest degree such that all pyy (H)p,,, B, = 0,5 =
k,...,m. Consequently we have that I, = (¢u( X )prs1(X)) a

Notice that, since fi(X) is the minimal polynomial of Hp, g, on kB*, we have that

¢x(X) | fe(X).

5.2 The algorithm for the minimal polynomial of H

From Property 5, the algorithm consists in constructing p,(X), pm-1(X)...p1(X), step by
step.
First step

Polynomial p,,(X) is to be computed. Since all diagonal blocks of p,,(H) vanish, then
Pm(X) is the least commun multiple of all f;(X),z =1,...,m.
Iterative step: computing pi(X) from the data of pgyi(X)

Assume that pi41(X) is already computed. We have that

[ 0 pk+1(H)Bl,B2 e e pk+1(H)Blan ]
Pen1(H) = 0 prr1(H)s,.Bey, Pr+1(H)B, B (22)
0 0 0
_ 0 0 o

From the proof of Property 5, we have to find ¢(X), the minimal polynomial of Hp, g,
restricted to the subspace generated by the columns of matrices pyy1(H)s, B,, £ < 7 < m.
We then shall have pi(X) = ¢u(X)pr+1(X). We compute ¢i(X) as follows.

Let *a' = (a},a3,...,a}, ) be the first non zero-column of the array formed by all matrices
pr+1(H)B, ,B,, 7 > k. We compute the minimal polynomial ¢ .1(X) of Hp, s, restricted to
a'. Thus ¢ 41(X) is a factor of ¢x(X) and Hy 51 = ¢ o1 (H)prs1(H) is then computed.

Next the process is repeated on the first non-zero column a? of column of Hy .1, to get a
new factor ¢y 42(X) de ¢x(X). We compute again Hy ,2 = ¢y o2(H)Hj 41, and proceed with
the first non-zero column of the array {(Hyq2)s,,8,},J = k. The process is stopped when
all columns are canceled. We then have that ¢x(X) = @4 01 (X) Pk o2(X) - - - ¢ 1(X) where a
is the last non-zero column which was met.

The key is that computing the minimal polynomial of Hp, g, restricted to a column is
easily performed by the use of Lemma 11. It reduces to a gcd computation on polynomi-
als. That cost is negligeable, and the most expensive computations are the evaluations of
Hi,Hj .1, Hy ,2. Fortunately the cost is much reduced by the use of Corollary 5.

5.3 Complexity bounds

The most expensive computations lie in the computation of matrices p,,(H), pm-1pm(H),
Pm-2Pm-1Pm(H)... At each step the polynomial obtained divides p;(X). The total cost
1s thus bounded by the cost of evaluating a polynomial of degree n at a Shift-Hessenberg
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matrix, which is, by Corollary 5, O(m?n?) a number of times which is bounded by m,, the
number of factors of the characteristic polynomials.

Each computation of a minimal polynomial over a vector is done at cost O(n?). The
number of such computations is also bounded by ma. This results in O(man?) elementary
operations for all those gcd computations.

Theorem 13 Given a Shift-Hessenberg form of a matriz, its minimal polynomial can be
obtained in O(mam®n?) elementary operations without any previous knowledge the charac-
teristic polynomial.

This compares well with Ozello’s procedure, which is O(n’m).

Remark 4 Note that the worst case complezity, when m is n, is O(n®), which is bad.
When m is large, one can use the following technique for computing the matrices p,(H),
Pm-1Pm(H), pm—2pm_1pm(H). ..

Let dy,ds, ... ,d,, be the degrees of the polynomials py,p2,...,pm. First note that p,,(H)
is computed at cost dmm?*n by corollary 5. Let Cry1 be the matriz pry1pi - - - pm(H) which is
a polycyclic matriz for H, and let pp(X) = X% +ag, 1 X* '+ +a, X +ao. We compute
px(H)Cryy as follows:

(Hd" + a,,z,‘_lHd“"1 +:+aH+4a0)Cpryy = (Hd"_1 '*'ad,‘—ll'ld"_2 +:--+a1)HCi41 + a0Cir

Now the product HC,,, is computed at cost O(m?*n) by lemma 2, and the product agCy4y
at cost O(n?), and the sum of these two matrices is computed at cost O(n?). Thus computing
pe(H)Chyi is performed at cost O(dg(m®*n+n?)), and the final cost is O((dy+- - - +dp ) (m*n+
n?)) = O(m?*n? + n3). This method is thus better when m is large, and leads to a worst case
complezity of O(n*).

Corollary 7 The minimal polynomial of any matriz A can be obtained in O(n®+m3n?) el-
ementary operations without any previous knowledge on the characteristic polynomial, where
the term in n® is only due to computing a Shift-Hessenberg form of the given matriz.

Proof: Tirst compute a Shift-Hessenberg matrix H for A. Since parameter m of H is not
greater than mp, then the statement is entailed by Theorem 13. 0O

6 Searching for a cyclic vector

6.1 Normal basis
6.1.1 Introduction

We now are going to find a cyclic vector for a matrix A. Though a construction will come
to light as a by-product of the Rational Canonical form obtained in last section without
any assumption on the matrix A, this section and the next one are dedicated to this goal,
and both assume that the characteristic polynomial of A is square-free. The reason is
that a better algorithm is constructed under that assumption. Moreover, factoring the
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characteristic polinomial is not needed for these algorithms. Checking that a polynomial is
square-free is done by derivating and then computing a g.c.d.. This is especially attractive for
the zero-characteristic. Now the characteristic polynomial is square-free for instance when
A represents the Frobenius operator o of Fyn over F, when n is prime to the characteristic
of F,.

Next we generalize the construction for the Frobenius map to any n. Thercfore we write
n = nyng where n, = p*, where p, which does not divide ny, is the characteristic of the field
and we give a very simple proof of how a cyclic vector of Fyn over F, is merely the product
in Fyn of a cyclic vector of Fyn, over F; by one of Fyn, over F,. Let us first observe that a
straightforward probabilistic search could easily give the result for Fn since the number of
normal elements in that field is (1 — é)q"z. This is because if v is cyclic, then f(o)(7) is
cyclic in its turn if and only if f(1) # 0. Thus the straighforward probabilistic algorithm
succeeds in O(n?®) steps on the average. That is the cost of verifying whether a random
element in the field is cyclic. However a cyclic vector can be deterministically obtained in
O(n®) elementary operations as will be shown at the end of Section 9. The whole procedure
ends in a deterministic algorithm for computing a cyclic vector of Fgn over F, and from there
a normal basis for any n in O(n®) operations in F,.

6.1.2 A cyclic element for the composite of two fields with relatively prime
degrees over F,

For this subsection, we put n = n;n, where ged(n;,ny) = 1.

Notation 3 In this section, Fyn 1s denoted by Iy and Fyn, is denoted by K,. Also Fyn is
denoted by K and F, is denoted by k.

From our assumption, K is the composite of K; and K,. Recall that every element in K

can be written in the form
Z an,ﬁn.a (23)

i€[0,n2|

where all a,, belong to K; and all 3,, belong to K;. The reader may for example refer
to A.Albert [4, p. 101, Theorem 10]. But this is straightforward from the fact that if
K; = k(6;) then K; C Ki(0;). We thus have that K;(6;) D K and since §; € K, then
K = K;(02). We now recall a basic fact among the properties of Galois extensions.

Notation 4 We write o] for the group generated by o which is the Galois group of K over
k.

Property 6 The Galois group of K over K, is the subgroup [o,] of (0] of order ny, and the
Galois group of K, over k is the subgroup [01] of [o] of order n;.

The corresponding property for K, is obtained by interchanging 1 and 2 in the statement.

We now state the property which allows to obtain a normal basis for any K in two steps.
In step 7 a normal basis for K;j in constructed, : = 1,2. The algorithm for the first basis
is completely different from the one for the other. But the algorithms in both cases have
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complexity O(n®). That property is well known and we recall the few lines of its proof. The
reader will find more on the topic in [5].

Property 7 Let 0; be a cyclic element of K; over k, 1 = 1,2. Then 0 = 6,0, is a cyclic
element of K over k.

Proof: Under our assumption, we can write
diny +dyny, = 1.

Hence o = 0,0, where 0, = ¢¥™ is a generator of the subgroup of order n, of [o] since
ged(di,nz) = 1. Similarly oy = 0%"™ generates the subgroup of order n; of [o]. By (23)
and under our assumption then we know that {036,.0302}ic[o.n,[.jcoms] SPan the whole K
over k. We are thus left with verifying that aiol.aéﬂg is 0'6,0, for some integer . For let

i/ = ny'i mod n; and j' = n7'j mod ny. Let then [ be the integer i'ny + j'n;. We have that
o' = (0103) = 0i™el™ = olal.

Then
o' =c'0,0, = o10301.01030; = 0,0,.030,.

O

For practical implementation it is important to note that § can be computed with no

presentation of Fyn. In fact we are able to compute the minimal polynomial of . Therefore
we here describe an algorithm which is suggested by M.Mignotte [19, p. 137]

_ Let P, denote the minimal polynomial of 8,, P, the minimal polynomial of §; and finally
P5(X,Y) = X™ Py(%). Consider the following resultant:

R(YY) = Resx(P)(X,Y), (X))
= I P(BY).

B.P1(8)=0

We have that R(Y) = 0 if and only if there exists 8 such that

{Ifl(ﬂ)=0 o P1(5)=,0
By(8,Y) =0 BraPy(%) =0

that is, R(Y) = 0 if and only if Y is a product of a root of P; and a root of P;. Thus the
polynomial R(Y') has nyn; roots, which is the number of conjugates of 6,6,. Since 8 = 6,6,
is a root of R(Y'), the polynomial R(Y') is the minimal polynomial of 6.

6.1.3 The case where the characteristic polynomial is square-free

Let us introduce some definitions.

Theorem 14 [9, Ch. VII §3 th. 2] For all A in M,(k), there exists a vector v in kK™ such
that 7,(X) = n(X) where n(X) is the minimal polynomial of A.
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Definition 14 Let A be a matriz in M,(k). A vector v in kK* such that 7,(X) = n(X),
where w(X) is the minimal polynomial of A, is called a cyclic vector for A.

First we here show how to compute a cyclic vector at cost O(m3+m?2n?) for a square matrix A
whose characteristic polynomial is square-free. This implies that the minimal polynomial of
A equals its characteristic polynomial. Also the minimal polynomials fi(X) of the diagonal
companion matrices of a Shift-Hessenberg form for A are pairwise relatively prime.

6.2 Technical lemmas

Notation 5 Given a vector v in k™, the vector of size ny, projection of v into kP!, is denoted
by vp,. We denote by vp, the unique vector of k™ such thal its projection into kB! equals vg,
and such that its projection into kB is 0, where J is the complementary set of I in [1,n]:
(UE,)BJ =0.

The following lemma sets up the recurrence which ends in the sougth for cyclic vector.
We state the lemma for a general matrix A although we aim to finally exploit the Shift-
Hessenberg form for the computations. In particular the recurrence needs the matrix to be
split into blocks as it is the case for the Shift-Hessenberg form.

Lemma 12 Let A be a block matriz with the form

ABlyBl A31.32
0 ABzsz

and vp,, vp, be cyclic vectors for Ap, g, and Ap, p, respectively, matrices with respective
minimal polynomials fi(X) and fo X). If f1i{X) and fo(X) are relatively prime, then the
relations

v, = Uup, (24)
vp, = fZ(ABl,Bn)'U'Bx+(f2(A)u*Bg)Bl' (25)

can be solved at u = (up,,up,) and the unique solution is a cyclic vector for A.

Proof: The leading idea is that if u is cyclic for A then up, should be cyclic for Ag, p,.
Moreover we then have that f,(A)up, = 0 and f2(A)u will next be annihilated by the
action of fi(Ap, B, ). We have to develop that argument formally. Since by hypothesis
fi(X) f2(X) is the minimal polynomial of A , we then have to prove that fi(X)f2(X) is the
minimal polynomial of the restriction of A to u. Assume that p(A)u = 0 for a non-zero
polynomial p(X) with minimal degree. Then p(.X) is a divisor of f1(X)f2(X) and we must
have that p(X) = pi(X)p2(X) with the condition that p(X) | fi(X), p2(X) | f2(X) and
(p1(X),p2(X)) = 1. We then have the following implications.

p(Alu=0 = (p(A)u)g, =0 (26)
= P(ABQ,BQ)UBQ =0 (27)
= pl(AB'z,Bz )p?(ABz.B2)UBz = 0. (28)
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Since (p1(X), f2(X)) = 1, there exists h1(X) such that p;(X)h;(X) =1 (mod fo(X)), i.e.
h1(Ap,.8,)p1(AB,.B,) = In
Applying h1(AB, B,) on both sides of (28) we get
p2(Ap, 5, )up, = 0.
This )implies that f2(X) | p2(X) because up, is a cyclic vector for Ap, g, Thus pa(X) =
f2(X).

For the first block of coordinates, we have the following implications

p(AJu=0 = (p(A)u)s, =0 (29)
= (p(A)up,)s, + (p(A)up,)s, = 0. (30)
But
P(A) = pi(A)p2(A) = pi(A) f2(A) (31)
and
f2(A)g, = 0. (32)
Thus
Vz € k™, (f2(A)x)p, =0 (33)
and
p1(A)p2(A)z = pi(AB, 5,) f2(A)s,z. (34)
We finally have that p(A)u = 0 writes
p1(Ap, .5, )(f2(AB, B,)us, + (f2(A)up,)B,) =0 (35)
By hypothesis, fo(Ap, B, )us, + (f2(A)up,)s, is cyclic for Ap, B,. Then by (35), f1(X) |
p1(X). Thus p1(X) = fi(X) which gives the proof. D

Remark 5 Solving equations (2{) (25) needs three main computations. Matriz f,(Ap, B,)
is to be computed, then wpg, = (f2(A)up,)p, is a vector to be computed, and finally the system
f2(AB, B, )u, = vp, — wpg, is to be solved.

We however observe the striking fact that those computations can be performed at low cost.
Therefore we point out how equation (25) can be solved very cheaply.

Lemma 13 A solution u to equations (24) and (25) may be computed in O(n®) elementary
operations.

Proof: Proceed as follows. First compute wg, = (f2(A)up,)s,. This done at cost O(n3).
Then solve equation (25) by finding an inverse hy(X) of fo(X) mod f1(X). Then the solution
up, 1s given by

ug, = ha(Ap, 5, )(ve, — ws,)

which is evaluated with complexity O(n?). &)
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6.3 The nalve recurrence

Let us first recall that we denoted by Hpg,, the square submatrix obtained from matrix H
using blocks starting at k*" block

HBk-Bk HBkak+1 T HBk,Bm
HBk+l,k+1 T HBk+l,n

Hng = -
Hs,..5.

Notation 6 We denote by up,, a cyclic vector for Hg,,. We moreover assume that all
diagonal blocks have pairwise relatively prime characteristic polynomials.

First step: Compute ug,,. Hp, p,, is a companion matrix, the vector ?(1,0,...,0) is a
cyclic vector for Hg_, 5,,.
Iterative step: Suppose that the problem has been solved for Hg,,,,, i.e. we have a vector
UBs,,, Which is cyclic for Hg,, .

Using Lemma 12, we will construct up,, = (up,,us,,,,) which is cyclic for Hpg,, as
follows.

The minimal polynomial f,(X) of Hp, B,, and UBy,,, are now at disposal.

We have that
((fk+1fk+2 T fm)(H)(u*sz“))szﬂ =0 (36)

Now denote by wg, the vector
wp, = ((fra1frez fm(H))(“EZH]))Bk
By Lemma 12, the following relation is to be solved at up, .
(fo+1fes2 - fm)(Hp, 5,)us, + wp, = o' (37)

with a given v' cyclic for Hp, p,. For instance v' can be chosen as (1,0...0).
The polynomial fi41(X):--- fm(X) is prime to fi(X) and has as inverse hi(X) mod
fe(X). We thus have that

up, = hk(HBk.Bk)(vT - ka)

6.4 An upper bound on the complexity

We now evaluate the number of operations to be performed to achieve the recurrence pre-
sented in 6.3. The most expensive calculations lie in computing the vectors

WB,,_ ;s WB,._,»- - -, WB,, Which are obtained in succession, starting with wg,, which can be
chosen as vt in the previous subsection.

WB,_, = (fm(H)ug,)s,._,
me_2 = ((fm—lf7n)(H)uEZm—1)Bm—2

we, = ((ferifrsz ) (H)hsess) By
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Computing each vectoi!; wp, consists mainly in applying at most n times matrix H at
vectors with n component,. The cost is n.mn for each of the m values of k. Moreover each
up, needs O(n%*m) steps and a separate cost of O(n?) is required for computing each of
m gcd’s. Taking into acccunt the construction of H itself, this amounts to O(m?n? + n3)
elementary operations.

Theorem 15 If the chardcteristic polynomial of the matriz A is square-free, the recurrence
described in 6.3 ends in a-icyclic vector for A on the data of a Shift-Hessenberg form H of
A at cost O(m?*n? +n3). |

Corollary 8 If the charmi;terisz‘.ic polynomial of the matriz A is square-free, a cyclic vector
for A can be obtained in ()(n® + min?) steps.

Remark 6 Note again th,?zt the worst case complexity is O(n*) for m = n.

7 Obtaining aicyclic vector in O(n’) elementary oper-
ations |

The previous procedure isinot efficient for large m. We thus develop a more sophisticated
procedure, whose complexity is O(n?), for any value of m.

The present algorithm x!:omputes a cyclic vector for a matrix whose minimal polynomial is
square-free. The algorithrr; is rather sophisticated and uses a “divide-and-conquer” approach
as in Section 3, we then fi:st present its global structure, before going into details. We also
set out separately a technique of splitting, and finally give the complete description.

7.1 Overall strateigy

First a Shift-Hessenberg form for the given matrix is to be computed. Then our strategy
is some kind of “divide-and conquer” method on the Shift-Hessenberg matrix, by splitting
it into two parts, whose sizes remain under control. We use the same notations as in the
previous section. The matrix H has the following form

Hgp, s, Hp, B, -+ Hp 5.

. 0 H32,32 e HB2,Bm
H= . . )

0 E 0 Hp, 5.

We introduce some notation.

Notation 7 For every I = [1,n],J C [1,n], we denote by H; ; the sub-matriz formed with
the rows of H in I and th: columns of H in J. The size of I is denoted by ny. Whenever I
is reduced to a block By then the size of I 1is denoted by ny.



Roughly, the splitting consists in finding a matrix H,pi: equivalent to H with the form

S HIBI»BI HIBI-BJ
Hsplll = 0 H’BJ,BJ 3 (38)

which moreover is a Shift-Hessenberg matrix, such that n; < %n,nJ < %n We recursively
apply the algorithm on both matrices H, g, and Hp, g, in order to find vg,, vg, which
are cyclic vectors of Hp, g and Hy g, respectively.

It remains to compute a vector u’ cyclic for Hy,i¢, v, and vg, being known. Changing
the current basis for the original one , we finally transform u’ into a cyclic vector u for H.

7.2 The splitting

We give a lemma for splitting the matrix into two submatrices. Before stating this lemma,
we explain a technical but important phenomenom that appears when permuting rows and
columns of Shift-Hessenberg matrices in order to move the blocks.

Consider the following Shift-Hessenberg matrix:

] H31,31 HBlsz T HBlyBk e HB]:Bm ]
0 Hgp,p, -+ Hp,p, -+ Hp,s,
H = . . . .
. HBkyBk s .
0 0 N 0 e HBm.Bm i

Let us perform the permutation of rows and columns which places Hp, g, in the upper-
left corner. This leads to the matrix Hyy,p:

[ Hp, 5, 0---0 0 Hp, B., 1
HB[2,k—1]’Bk HB[Q,k—l]»B[2.k—1] HB[2,k—1]vBl HB[2,k—l]vB>k
H,uop = : : : :
Hp, 5, Hp, B -y Hp, B, Hp, B,
| HB)k»Bk HB)kyB[l?,k—l] HB)kal H3>k,5~>k

We now use the algorithm for computing a Shift-Hessenberg form for H,:. This leads
to the matrix

i ' ' ’ ' 1
H31,31 HIBI»B2 T H’Blka U le \Bm
0 HB2,32 T HB?ka t B;,Bnm
HI — M . . .
: ’ :
: By ,Bi :
/
i 0 0 ... 0 . BB

The next lemma establishes a relation between the companion polynomial of block Hy 5
and the companion polynomial of block Hp, p,.

Lemma 14 Let fi be the companion polynomial of block Hp, B, of the matriz H, and let
fi be the companion polynomial block Hy g of the matriz H' obtained in the previous
transformation. We have that f;, divides f].
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Let us introduce the follov»iiixlg
Notation 8 We denote by ¢x the vector from the basis of k™ such that (¢;)g, = (1,0,...,0).

Proof: We have that f; divlides the minimal polynomial of H relatively to ¢,. Swapping from
H to H,,., is placing vector €, as the first vector of the new basis.

The Shift-Hessenberg reduction algorithm computes a matrix whose first block is a com-
panton matrix whose com;_';anion polynomial is the minimal polynomial of the first vector.
Thus f] is the minimal polynomial of ¢, which is a multiple of f;. 0O

Now we can state our ilhlportant lemma for splitting Shift-Hessenberg matrices:

Lemma 15 (Splitting tl‘:\e matrix) Let H be « Shift-Hessenberg matriz. It is always pos-
sible to find a Shift-Hessenberg matrix H,,i: and an invertible matrizx P such that H =
PH,,;:P~! with H,,,; of the form

8,8, Hb, B
H, = 0’ ! /B”B’ (39)
J:OJ

and such that one of those three possibilities occur
. ’ . i . 2 . . 2 ’ . l
1. either Hp, p, is a companion block with size 2 5n, and Hp, g, has size < 3n.
’ . o . . . 2 ’ . 2
2. orHp g, isa compinion block with size < 5n, and Hp, g, has size < 5n

3. or both blocks Hg 1‘3.T and Hg g, are nothing else that Shift-Hessenberg matrices with
size smaller than in,

The computation of H,pii; and P can be performed in O(n®) operations.

Proof: Two main distinct cases are first considered.

3k € [1,m] | nx 2> 212, Choose I = By, J = [1,m]\ I. We have that n; < In but the
block Bj may not be the fitst block. By permutations of rows and colums, block By is put in
the first place. This gives a matrix H,,,, which is not Shift-Hessenberg. We now can clean
up matrix Hsyep by apply,ng the reduction algorithm producing a Shift-Hessenberg matrix.
The size of the first blockican only grow, by Lemma 14, and then remains larger than %n
This gives matrix HS,,I,, s}iaped as in Case 1 at cost O(n3).

Vj € 1,m]yn; <2 N Suppose first that all n; are smaller than 1n. In the sequence of

3
sets I; = {1,2,...1}, we choose the largest, I;, with the condition that del n; < in. Then
I =BUB;-- B,0 and [ = Bjj41 U Bjjy4q-- U B,. both satlsfy ny < -n and nJ < n .
Indeed since MNBiyyr < ;n we have that nj; < —n + Nigt1 < 2 sn. Then the matrix H,p,,, 1s
the unchanged matrix H This is case 3.

If there exists ng > r;, we choose / = By, J = [1,m]\ I. We have n; < in, n; < In.
By swapping rows and colummns we put the block Hy ; in the first place, then clean up
the resulting matrix by thke Shift-Hessenberg reduction algorithm in O(n®) steps. The first
block can only grow. As d result the size of the remaining block remains lower than %n; if
the size of the first block is larger than 27, then we are in Case 1, else we are in Case 2. O
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7.3 The algorithm itself

We now present the complete algorithm for computing a cyclic vector for a matrix A such
that its minimal polynomial is square-free.

Step 1*: computation of a Shift-Hessenberg form of A. As stated in Theorem
11, this is done in O(n®) operations. This step needs only to be performed once, in the first
decomposition, and is not needed in the remaining recursive applications of the algorithm.

Step 2: splitting the matrix. We perform the splitting indicated by Lemma 15, and
obtain two submatrices H'g, g, and H'g, p,.

We recursively apply the algorithin on all submatrices which occur with size < %n

Step 3: reconstruction of a cyclic element in a new basis. We get the two vectors
up, and up, for (24) and (25) from applying the algorithm at H'g, 5, and H'g, 5, . By
Lemma 13 we can construct a cyclic element for Hpi; at cost O(n3). :

Step 4: reconstruction of the cyclic element in the original basis. From a cyclic
vector of H,p¢, changing basis gives a cyclic vector for H at cost O(n?>).

Step 5*: reverting to the original basis. From a cyclic vector for H, we compute a
cyclic vector for A by changing basis. This costs O(n?), and is performed only once, at the
end of the algorithm.

7.4 The complexity

The cost of each step is here evaluated.

Step 1°: This is done at a cost O(n®), only once.

Step 2: The splitting costs O(n®) = a;n>.

Step 3: The reconstruction costs O(n3) = ayn3.

Step 4: Changing basis is done in O(n®) steps.

Step 5*: Changing basis from H to A for obtaining the cyclic vector in the original
basis. This is done in a3zn® steps only once.

Notice that obtaining a cyclic vector for a companion matrix is done at negligeable cost.

Only steps 2,3 and 4 are applied recursively . The total cost for those steps is (a;+a;)n® =
an3. The important point is that those steps are recursively applied at matrices whose sizes

are reduced by a factor %

Let us assume that the cost C(m) of the algorithm is at most ym? for all m < n, we then
have that
C(n) <€ an®+2C

(3n )
< an +7(§>

This leads to C(r) < yn® with:

Let us now conclude.



Theorem 16 Given a mcjtrix A € M, (k) whose minimal polynomial is square-free, a cyclic
vector for A can be compuilted in O(n®) elementary operations. This is a worst-case complez-
i

Zty. i

Proof: The whole cost is {ndeed C(n) + 2a3n® i.e. the cost of the recursive algorithm plus
the cost of obtaining a Shift-Hessenberg form plus the cost of reverting to the original basis.
Corollary 9 When n is p;irime to p, it is possible to compute a normal basis of Fyn in O(n®)
elementary operations on the data of a matriz representing the Frobenius map.

Proof: The minimal polyriomial of the Frobenius map is X™ — 1, which is square-free when
ged(n,g) = 1. Given the rfilatrix F. of the Frobenius map (computed in O(n?%)), we are able
to compute a cyclic vectcr for the Frobenius map in O(n®)logg. This vector is a normal
element. ,5 )
Theorem 17 For all n, ¢ normal basis of Fy» can be computed deterministically in O(n®)
elementary operations.

Proof: Merging Property 7 and the algorithm in Section 9.5 yields the result. O

8 An easy projbabilistic algorithm

The investigation in [10] establishes that the expected number of operations in F, for ob-
taining an element in F,». whose conjugates are linearly independent is essentially the cost
of computing the conjugates and then verifying if they are independent. Given the matrix
representing the Frobenius map in the given basis, this can be done very simply in O(n®)
elementary operations in [, as follows.

1. The matrix representing the Frobenius map F in the given bases of Fgn over F, is
known. '

2. An element o from; Fgn is taken at random. A new basis is formed by substituting
that element to the first ¢ne in the previous basis and the corresponding representation F’
of F is computed. '

3. The Sparse-Hessenberg algorithm is applyied to F’ which gives F”. Remember that
the first basis element is '_|'he same in the basis in which F” or F' is represented, i.e. a. If
F” is a companion matrix|, then the columns of that matrix are a and its conjugates in the
basis for which F is represented by F". If not, a new « is selected from Fn.

9 Computatio|n of the Frobenius Form

9.1 Definitions a:|1d Notations

Let T be an operator. VVe will consider k™ equipped with the natural structure of k[X]-
module induced by T.




Notation 9 Let p be a polynomial and v a vector, we use the module notation pv for p(T)v.

It is sometime convenient to use the same notation pv when p is a polynomial p(Tg,)
evaluated at the restriction of T to the subspace k? and when v is a vector in kBi. We do
so without mentioning it.

Furthermore we neced a specific notation for the columns of a Shift-Hessenberg matrix.

Notation 10 Let H be a Shift-Hessenberg matrix

Hg, 5, Hp B, -+ Hpg .
0 ... 0 Hg,g,

We denote by €; the unit vector from K™ such that (¢;)g, = ‘(1,...,0). All columns of H
have the form T'(¢;) for suitable ¢, ;.

We also set e; = fie;. Informally, e; is seen to be the vector “above” block i in the
Shift-Hessenberg form complemented to n components with zeros.

We now recall the definition of the Frobenius form, which is known as Rational Canonical

form, briefly RCF , as well.

Definition 15 The Frobenius form has the following structure

Copy 0 - 0
0 C,, - 0
0 0 - C,

where py | pa | -+ | pe- The polynomials p;, i = 1,...,t are the elementary divisors of the
matriz.

Theorem 18 Elementary divisors are invariants for similiraty classes, and a set of elemen-
tary divisors characterizes such a class.

9.2 Preliminary computation

We assume that a block-diagonal matrix A exhibiting the characteristic subspaces of a given
matrix has been computed. From Section 3, this can be obtained in O(n*®) elementary
operations, or by using the Shift-Hessenberg form with average complexity O(n3).

Our goal is to find a Frobenius form for each characteristic subspace. This is because
it is easy to recover the Frobenius form from the Frobenius forms of the restrictions to
characteristic subspaces. Indeed let us be given a block-diagonal matrix similar to A:

Fp, 5, 0 0
p=| O FEm o0
0 0 .-+ Fg,p,



1

where each matrix Fpgpg, is a Frobenius matrix

(:ps“l 0 e 0
0 C 1,2 0
pl
0 0 <o Cosim;
P
and where s;; < s;2 - < sim,, ¢t = 1,...,d. We thus have that pfi""‘ is the minimal

polynomial of Fpg, p;. Suc}f a matrix D is called Expanded-Frobenius form. Extensive use of
that form is made in Section 4. The subspaces for which the matrix is a companion matrix
are denoted by fo.,; , fo.‘_z e Vps;,mi and a cyclic vector for each of those subspaces is a unit

vector denoted by €%
We consider the subpages

Wl = Vp"l,ml @ V 2,my @ e @ V "d,md
1 Py Pq
M/Q = ‘/ $1,my =1 @ ‘/ 2,mp—1 EB e @ V’d,md—l
Py P2 Py

formed by taking the ¢xponents of each irreducible polynomial in decreasing order.
Let us now consider th|e vectors
El = Cp:l,ml + 6p;2,m2 + e + Cp:d,md

92 = € _s1,m; -1 + € 32,mpy—1 +---4e€ 2d,mg—1
Py P2 Pa

It is easily checked that 117.' is a cyclic vector for W;, for each value of . Each cyclic vector
thus defines an invariant subspace such that the minimal polynomial f;;; of A restricted to
the minimal invariant subspace containing E;;, divides f;, the minimal polynomial of A re-
stricted to the minimal invariant subspace containing E;. The matrix representing the restric-
tion of A to the minimal invariant subspace containing E; in the basis {E;, AE;, A%E;,...}
is a companion matrix.

9.3 Computing the Frobenius form for the restriction of the
given operator to characteristic subspaces

From now on, we confine ourselve to the case where the characteristic polynomial of the
considered matrix is C(X) = p(X)" , with » > 1, for some polynomial p(X) irreducible.

We apply the reduction process to get a Shift-Hessenberg form H for the matrix. The
matrix H can be written in the form

Hp, 5, Hp, -+ HpB.
0 0 HBm,Bm
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The minimal polynomial f; of the companion matix Hg, g, is p*. Step by step the submatrix
of H with row indices in B; will be cleaned up in order to get a matrix similar to H with
two diagonal blocks, the first block being a companion matrix. Once this has been done, the
procedure is applied to the remaining block.

The favourable case occurs when each e, is such that (¢;)p, = e,Tp"', r; > s;, where e
prime to p. We then introduce the vectors

1

1

1s

! _— Y. ra—s
€, = €2 — PP 7%¢
r t,ra—s
€3 = €3 — e3P P
6I — € — eT 7'171—57716
m m -mp 1

For those vectors we have that (p®e!)p, = 0 since p*¢; = e;. The first basis-vector ¢
remains unchanged. As a result they yield a basis in which the matrix has the following form

Con O
0 H/ bl
The process is next applied to H'.

Otherwise, there exists ¢ such that r; < s;. Let ¢; be the vector such that s; — r; is the
largest. We permute the basis vectors in order to have ¢; in the first position. By applying
the reduction algorithm, we compute a new Shift-Hessenberg form, the first block being a
companion matrix, for which the companion polynomial is the minimal polynomial of ¢; as
proved for Lemma 14. We claim that the exponent of the minimal polynomial of ¢; is larger
than s;. The size of the first block has then grown and as a result the sizes of the other
blocks had to decrease. The process stops when we have s; < r; for all 2. The first rows can
then be cleaned up as above.

We now prove the claim. Assume that »; < s;. We then have to prove that the minimal
polynomial of ¢; has degree larger than the minimal polynomial of ¢;.
Proof: We first compute p>¢;. We do so because p’(H)g, p, = 0 and consequently (p*¢;)s,
vanishes. This leads to

pe; = (€)p, + ()5, + -+ (&)p,_,

where Notation 5 is used. The coordinates on block B;_; will vanish in their turn, when
applying the minimal polynomial p*-t of (Gj_l),éj_l. We have that

Moipte = phi(e,)g, +v(i — 2).

P
Here v(j — 2) is a vector with support in blocks By U By -+ - U Bj_,. We proceed in this
way and at each step we get a new relation

ML A

p . .p J—lpslfj = p’\k . .p’\]—l(ej)B] + U(k —_ 1).



This ends after all other coordinates vanished except those in the first block. We then
have that
A2 ...pAJ—II)sJé]» —_ 1)/\2 ...p’\‘J—l(ej)B1 +v(1)

= p'\z .. .pAJ—le}prJ + v(l).

p

Recall that applying the polynomials ¢(H) to vectors with supports in the first block reduces
to computing in k[X]/(p**(X)). We thus are left with determining the minimum exponent
[ such that
p'(p* -+ phelp™ + v(1)) = 0 mod p
and we write v(1) = p™v(1)! where gcd(p,v(1)t) = 1.

Two cases are to be considered.

* o2 A+ 4+ Ao+

The exponent [ is

l=s1— M+ + X1 +715)
and the exponent of the minimal polynomial of ¢; is
I+ X+ + AN +s;=8s1—1;+58;>8
since r; < §;.

e rog< A+ + A+
The exponent [ is
l=s1—r0>s1— Ao+ -+ X1 +15)

and the exponent of the minimal polynomial of ¢; is

s1—=ro+ A4+ A0 +s; > si—(Ae+ o+ Xt F A+ + Ao+ s
> S1—1r;+8;>8

]

Remark 7 The algorithm for the Frobenius form presented here requires the factored char-
acteristic polynomial of the given matrixz. It however can be adapted in order to get rid of that
requirement. Indeed the companion matrices which are diagonal blocks of a Shift-Hessenberg
matriz yields factors of the characteristic polynomial. If the polynomials which show in that
way are not powers of a unique polynomial, then by g.c.d. operations the characteristic poly-
nomtal can be split into relatively prime factors and a dirvect sum of invariant subspace is
then obtained as in Section 3. Neat the algorithm just described can be applied to the restric-
tion of the linear operator to each subspace. Shift-Hessenberg forms are then computed for
each restriction and we can proceed until companion matrices exhibit polynomials which all
are powers of a unique one, say q(X). The algorithm described is then applied as if ¢(X)
were irreducible and if it should fail, we then would get new factors and then new invariant
subspaces and we would proceed as above. This leads to an algorithm which is attractive for
fields with zero-characteristic for which factoring polynomials is expensive.
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9.4 Complexity

Either cleaning up the matrix when 1t is possible, otherwise augmenting the size of the first
block is done at cost O(n>). The number of times those processes are performed is bounded
by r. Notice that matrices for changing bases are also obtained. Thus the complexity in the
case of a characteristic subspace is bounded by O(n®r).

The complexity for all characteristic subspaces is bounded by
OM3r) + O(n3r2) + -+ + O(ndry) S OMP(ry +ry + -+ +74))

The number r; + 72 + - -+ + 4 is the number of factors of the characteristic polynomial
counted with multiplicities. This number is logn on the average.

Theorem 19 The Frobenius form of a matriz A and the matriz for changing basis can be
computed in O(n®mp), where my is the number of factors of the characteristic polynomial
of A, counted with multiplicities. The asymptotic average complexity over a finite field is

O(n®logn).

Patrick Ozello gives a bound for his algorithm, which is 8»¢ 4 2n®. The number of irre-
ducible polynomials, counted with multiplicities, was not taken into account for computing
this bound, which may be rough.

Remark 8 Note that the worst case complezity of our algorithm is O(n*) when m = n.

9.5 Normal basis and the Rational Canonical form of a Frobenius
map

It easily follows from Definition 15 that computing the RCF leads to exhibiting a cyclic
vector. In the case where the considered operator T is a Frobenius map, then a normal
basis is obtained. However, this is not a wise procedure for this purpose in general since the
number of factors of X™ — 1 over F; is far from logn on the average. Yet, in the particular
case where n = p' where p is the characteristic of the field, then the algorithm presented
above is the most efficient. For, we have that X™ — 1 = (X — 1)* in that case and the
minimal polynomial of T restricted to any single vector is a power of X — 1. Considering
the matrix H of Section 9.3, it is easily seen that the minimal polynomial of €, is X™ — 1.
For we first observe that X™ — 1 is the minimal polynomial of one of the ¢’s. Now if ¢
were cyclic with | < m, we would permute the basis vectors in order to have ¢ in the first
position. Applying next the reduction algorithm, it is seen that the last rows and columns
would remain unchanged and in particular the zero in the subdiagonal located in the column
preceding ¢,, would remain unchanged. This contradicts the fact that ¢ is cyclic, since
putting it in the first position would lead to a new Shift-Hessenberg form which has to be a
companion matrix.

To sum up, a reduction of any representation of the Frobenius map into a Shift-Hessenberg
form exhibits €,, which necessarily i1s cyclic and thus yields a normal basis for F»t over F,.
All other cyclic elements are obtained here by applying polynomial f(o) to a fixed cyclic
element, where f(X) runs over all polynomials of degree less than p* such that f(1) # 0.
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9.6 A distributed algorithm for the minimal polynomial

While proving that the presented algorithm for producing the Frobenius form of any linear
operator is well-founded, we had to go through the computation of the minimal polynomials
of vectors ¢;,7 = 1,...,m of a Shift-Hessenberg H form in the particular case where the
minimal polynomial of H is some power of an irreducible polynomial. However the technique
is applicable to any Shift-Hessenberg form and computing next the least commun multiple
of all minimal polynomials produces the minimal polynomial of the given matrix. That
algorithm is less efficient than others presented here. However it can be distributed for a
huge matrix on several computers, each one dealing with a single ¢;. Moreover that algorithm
applies to any field k since knowledge of the characteristic polynomial is not required.

10 Conclusion

The efficiency of the presented algorithms is due to two major procedures here introduced.

The first one is the use of a divide-and-conquer algorithm which splits matrices of size n
into submatrices of size < 2n. Therefore we obtain a general result: such an algorithm has
the same global bounded cost as the one of “dividing” and “recombining”only once. Since
we applied that procedure in view of diverse aims, there probably are other opportunities to
be found where the same procedure could be exploited.

The second is the use of the Shift-Hessenberg form which is very sparse on the average,
and very well reflects algebraic properties of the matrix. It can be computed at low cost and
above all it allows one to make the most of the isomorphism from the algebra generated by
the given matrix onto an algebra of polynomials by converting operations on matrices into
operations on polynomials. What is more, the ring of polynomials dealt with in the last
section is a local ring. Advantage is taken of that as it was done in solving equations over a
ring in [6].

Considering the results of this paper, a natural question raises. Does there exist a de-
terministic algorithm for obtaining the Frobenius form of any matrix in O(n>) elementary
operations on the average?

The moral of the present endeavour to obtain good deterministic algorithm is that one
should not grow slack after very satisfactory probabilistic algorithms have been conceived.
Indeed, the way to deterministic algorithm sheds light on structures and leads to new results
as for example the algorithm for the centralizer of a matrix which is presented here.
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