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1 General introduction.

Large deviation theory for Markov processes is now a well developed
field with excellent expositious (see (7). [8]. etc.) Nevertheless. this mainly
concerns the cases where transition rates (or coefficients, for diffusion pro-
cesses) vary continuously in space under appropriate scaling. We consider
here some typical examples when there is a discontinuity with (generalised)
reflection. We give the definition of (defined in [1]) deflected random walks
S(t).t=0.1.....in ZY . or more generally in Z¥ x Z*. In the next sections
we give separate definitions for all the examples we consider,so the reader
can skip this introduction. Denote the points of Z{ by v = (n,...n,).
Let N € {l....ir}. We denote by \ also the face {(ny.....n,) : n; > 0.7 €
Ain; =000 € \}. Define discrete time homogeneous Markov chain with state
space Z7 and transition probabilities p, . satisfying the following maximal
homogeneity condition :

Pry = 1)(*\;.‘] - *T)vi"(-' €A (1)

That is. the transition probabilities depend only on the face to which «
belongs and also on the difference hetween the points.

We assume also boundedness of jumps @ p,, # 0 can occur only if for all
1 we have —1 < iy, — v, € d for some d > 1. Note that it is an exercise to
generalise our results to the case when d = oo but all exponential moments
exist.

The parameter space for these random walks is the direct product

P = xPy (2)

(over all faces N ) of Py. where Py = {p(A,-)} is the parameter space for
the face \.

We consider large deviation problems for such random walks.Examples of
such problems are the following:

(1) asymptotics of log P(.S(V) = [« N]), N — o for some a € R, ;

(i) logavithmic asvmptotics of the stationary probabilities 7([v.N]) for
ergodic deflected random walks:



(iii) asymptotics of log P(sup | S(z) ~ Ncp(%/—) |< 6 N) for some function
<Nt

o(t): {0,7] = RY.

We shall see that example (iii) is the most general and (i) and (ii) appear
as corollaries from (iii). Moreover, we shall see that it is sufficient to consider
piecewise linear functions o(t) : [0,7] — RY.

There are important results concerning these problems ( see for example
[2] and [3]). However, we provide here a new insight to them. First of all
we try (via a simple probabilistic approach and new tricks) to get the results
as explicitely as possible using our experience (see (1], [4], [5]) in studying
deflected random walks in Z}.

Secondly. we study an influence of the boundary parameters on the asymp-
totics. For example.we consider the following problems.

A. For which 2 does the limit

lim —izlog ([Na]) == l(x) (3)

Noa VY
not depend on the boundary jumps 7 More exactly. when does [(x) not
depend on parameters Py, A # {1,...,v}7?

B. We study ~critical surfaces” in P x {2}, where [ is no more differentiable
with respect to parameters, [ is smooth outside these critical surfaces.

We compare earlier analyvtic results for a quarter plane (see [6]) with
our results.But we have not revealed deep connections between the analytic
approach (through complex spaces) and probabilistic approach (through real
space).

Similar to stability problems (see [1]) the complexity of large deviation
problem strongly depends on the codimension of boundaries. i.e. on v. Here
we consider codimension | and 2. For larger codimensions our methods also
work in many particular cases but we have no a complete picture at the
present moment.

To make the paper readable for beginners in large deviations we included
an mntroductory section 2.1.

2 Analytic methods.
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2.1 Steepest descent and Legendre transform for sums
of independent random variables.

In this subsection we give a brief introduction to the analytic methods for
large deviation problems.

Let S(t).t =0,1,.... be a homogeneous random walk in Z¥ with bounded
jumps, starting from 0.

Consider S(.V) as the sum of i.i.d. random variables : S(N)=§& +--- +

En.

Then we have

v L 1 s, .
P(S(N)=[aN]) = 7o AT Ez7 s (1)
|z]=1
Put = = exp X and note that ESN) = (Eexp(AM)N = exp(NH())).
where
H(X) = log E exp(\¢§) (3)
is the semiinvariant generating function. Rewriting the integral (3) as
1
- exp(N(H{X) — zA))exp(—A + en)d=. (6)
2T
|z]=1
where ¢y = —[rN] + o N, we want to use the method of steepest descent for

this integral (5) and so we have to look for the critical points of the function
H(A) — aA.The function H(A) is convex and analytic in the complex plane.
so for = > 0 the critical point A, = A(x) is unique or none and we can use
the contour {(when A.. exists)




We are intercsted here only in the exponent in the integrand of (5):
L(x) = —~H(Mz)) + 2A(x) =sup(—H(A) + aA)

which is called the Legendre transform of H(x). So the method of steepest
descent gives us the following result.

Theorem 2.1.1
log P(S(N) =[aN]) ~ =L(a)N,

—_—
—~1
~—

as N o <

Let uniformly bounded & be dependent but strongly mixing. for example
assume them to be Gibbs with translation invariant two-point interaction

U=3_V(t=s)&t

with exponential decrease.Then as it is well known the “partition function”
E exp(AS(N)). which is the ratio of two partition functions

Zexp(—UHé &)

. £
Eexp(AS(N)) = < 2 exp(=U)
{&}

has the asyvmptotics
log Eexp(AS(N)) ~ N(H(U,A) — H(U,0)) + const + o(1)

where H(1".A) is called the free energy of the “partition function™ of the
numerator. Moreover it is known to be analytic and convex for real A. There
are several methods (see [10], [11]) to prove all these assertions and calcu-
late the free energv in one dimension: renormalisation group with cluster
expansions. transfer matrix method etc. They are applicable for all A. So
the theorem 2.1.1 holds for this case as well.For Markov chains (or when the
interaction has a finite radius, to get a Markov chain we can assume the
radius equal 1)

H(U.A) = pu(U, ) (8)
where p)({".A) is the maximal eigenvalue of the (positive) transfer-matrix
(pijexp(Aly — 1)) where p,, are the transition probabilities for the Markov
chain &. Note that p(I7.0) = 1.



2.2 Analytic methods in a quarter plane.

In this subsection we formulate the main results of [6] on the asymptotic
behaviour of stationary probabilities for random walks in the quarter plane
in terms of zeros of some simple polynomial equations in the complex planc.

Denote points of Z7 by (k.1) and consider a discrete time homogeneous
Markov chain with this state space. Let P((k,l) — (k',1")) be its one step
transition probabilities. Assume that they can be different from zero only
if =1 < kbM—-—k <dand =1 <V —~1 < d for some d > 0. Also assume
homogeneity conditions (putting 1 =~k — k.3 =0 =)

pij itk [1>0
(1. oy ]7:J fl=0.k>0
PUtk-1y = {l.1) = pl ifl>0.k=0

p; ifl=0.k=0.

We recall here the results of [6] where it was assumed also that

(1)d=1.

(11) inside the quarter plane only the transition probabilities po.1, P1.0s P=1.0s Po.-1
are different from zero.

{(111) components of the inside mean jump vector

M= (M. M) = (D ipys p_ jpis)
N i
are negative. and

P #0.3 P #0
‘ ]

Assumption (i) is not crucial for the applicability of the analytical meth-
ods but simplifies computations considerably.Besides the case (iii) there is
also the case when onlv one of M. A1, is negative. This case can be consid-
ered similar|y.

Introduce the polvnomial generating functions

Qlr.y) = ry(1 =3 pijr'y’).
1.3

gl y) = .r(z])gd.r'y" - 1).
I



(x.y) Zpury —1).

Consider the Riemann surface S of the algebraic functions y(2) (or 2(y))

defined by the equation
Qz,y)=0

Let a(%).y(s) be meromorphic functlons on S defining the coverings of
the a-plane and y-plane respectively of S. We formulate here some results
from [0]
1. There are exactly four branching points x; of the algebraic function
Jlorof w7 1 0 <y < w3 <1< a3 < ay. Similarly for a(y).
2. We call S, = {s : r(s)and y(s) are real} the set of real points of
S. 5, consists of two disjoint analvtic closed curves homologous to one of

y(a

the elements of the normal homology basis on S (more exactly to the one
different from o' ({& :] @ |= 1}). One of them, call it Fy. has the property
that on it : oy < a(s) < w30 y2 < y(s) < y3. Denote the other one by F. [
has an ordered set of eight characteristic points sg,....s

We show circles on the a-plane and on the y-plane : point s = (1,1) is

N

indicated and the arrows show the further correspondence hetween the values

of x(s;) and y(s;).

Po,—1 0.~
v(s7) = walsg) = 2lso) = Lalss) = 2(s1) = c(sg) = w(s2) = Ty ) =
Po. 0.1
P-10 P-1.0
y(s7) = y2. ulss) = ylso) = Loy(ss) = yls) = Y(sa) = ylsq) = y(ss) =y
Mo Pro
3] % s 5 5
. >
) Y 5
3. The function o, () =| vy |.0 < 5y < 1. has (in the domain 62! ((0. o¢)))
four nondegencrate (llTl(dl points s;(v).7=1..... 4. Any s;(7v) continuously

depends on = that uniquely defines these points if we agree that @ (s,(0)) = «a,.

6



Moreover. s2(3), s3(v) € Fo and 2i(v) = 2(s:(7)), yi(7y) = y(s.(7)) are real.
For 4 = 1. one can put &,(1) = 0, s4(1) = o0, and for the critical points
s2(1). s3(1) the above assertions hold. Equations defining these critical points
are

Q(x.y) =0, (9)

and

Y _ i
@ £Q(.y)

We have also

I <urs(l) <a3(y) < 23(0) = 23

Do,—1

Po,1

y3(0) = < y3(7) < yslv)-

It appears that the asymptotics of the stationary probabilities is defined
either by the critical points s3(y) or by the poles in the points so(v) and <{(5)
where correspoudingly q(¢so) = 0 or ¢’(sg) = 0. The Galois automorphisms
¢ and n on S are defined by

Clavy) = (, 222!
Poy

P-1,0
P1.o%

), n(x,y) = ( )

In the parameter space P x {7 :0 < v < 1} define the subsets

70,— / ) N
Pos = {17 : qlaa(y), —2=—) < 0,¢/(—222 ya()) < 0},
Poays(7) Provs(y)

Po.-1 > 0.d P-1.0

P = {(p.7) : qlas(y). .
+ {(p-7) = ales(y) Po.aya(y) O prows(y)

.ya(7)) <0}

and P_;. P4y correspondingly.



Theorem 2.2.1 (See [6]). Let m,n — oo so that £ = «. Then in P__ we
have

const -
"(’”~n) ~ \/’m (73(‘))?/3(7))
Otherwise
const(xo(M)yg(1)) ™™ in P_y
m(m.n) ~ ¢ const(xs(7)ys(y))™ ™ m P, _
const(xo(7)ye (7)™ + const(as(y)ys (7)™ in Py

Jhere S N : Po.—1 . P—1.0
where 1 < (7)) < 03(3). 1 < yo(y) < ro v (o) and 1 < x5(y) < s L <

ys(~) < y3(n) are defined from the systems

Q(z,y)=0,q(z,Cy) =0 : (11)

Q(r.y)=0.4'(nz,y) =0 (12)

correspondingly.

3 Probabilistic method.

3.1 General definitions.

The main goal of this paper is to prove the large deviation principle and to
find explicitely the action functionals for the class of random walks defined
below. This large deviation principle will be used to get asymptotics of the
stationary probabilities in a quarter plane.

Random walks We consider the random walk Si(x) in Z§ x Z* start-
ing at the point 2. Let A C {l...,r}. We denote by A also the face
{(vy.owy) 0 > 0.7 € Ajey = 0,8 € A} x R* C R x R*. Define dis-
crete time homogeneous Markov chain with the state space Z§ x Z* and
transition probabilities p,. . satisfving the following maximal homogencity
condition :

ey =p(Aiy—x), 0 €A (153)

v



That is. the transition probabilities depend only on the face to which
belongs and on the difference between the points.

We assume also boundedness of jumps : p,., # 0 can occur only if for
all 7 = 1.....v we have for the R -components : —1 <y, — a; < d and for
R*-components —d < y, — @; < d for some d > 1.

Large deviation principle For any 7 € R, consider the set C([0, ], I x
R*) of all continuous functions o @ {0.7] = R4 x R*. Let be given function-
als £,. mapping the space C'([0. 7], R} x R*) into [0. +oc]. Consider for any
s > 0 and for any @ € R x R the set

b, -(s5)={p € C(0.7]. R} x B*): 2(0) = » and L.(p) < s}

Definition 3.1.1 We say that the random walk S, satisfies the large de-
viation principle with action functionals L, if for any > 0 and for any
r € R x [ the following three conditions hold.

(1) (compuctness ) For any s > 0 the set @, ,(s) is compact.

(1])( large deciation lower bound.) For any § > 0. 59 > 0, &' > 0 there
exists Ny such that for any N > No, p € ®,.(s0). the following estimate
holds

1 . ¢ . s
P{ osip SN = Ale) < 8} > exp{—8'N = NL,(¢)}  (14)
f:Um..[.\'T] -\ ~'\'
(iit) ( large deciation upper bound.)For any § > 0. 8" > 0, s¢ > 0, there
exists Ng such that for any N > Ny, 0 < s < s¢ the following estimate holds
P{ sup | 2S(Na]) = o) [2 6 for any ¢ € Br(s)} <
t=

0...[\7) (15)
<exp{d'N — Ns}

Let us note that. due to the boundedness of the jumps of the random
walk S for any path » € C([0.7]. B, x R*)(and even for discontinuous )
for which there exist 0 <1 < t' < 7 such that

| 2(t) = (') |> d(t’" —t)
we have

I t .
P{ sup | 7\—,5’,([1\"3‘]) - 39(?) <6} =0

t=0.....[V7]

9



for sufficiently small § > 0 and sufficiently large N. and consequently if the
random walk satisfies the large deviation principle with the action functionals
L, then for such

Lagrangians

In the next sections we shall prove the large deviation principle for linear
paths (in a stronger version, see conditions (ii) and (iii) of Theorem 3.1.1).
We shall find also explicit expressions of the action functional for linear paths.
We shall sec that it will have the following form.

Let for any face A of ¥ a function

L(:A): R* x R* - R, U{+oo}

be defined. where & is the dimension of A.Define the lagrangian. i.e. the
function L : (12, x R*) x R*** — Ry U{+o0} such that for all A and for all
z €A
L{x,v) = L{va: A),
where vy 1s the projection of v onto A.
For a linear path 2 : [0.7] = R x R* define its speed vector

(1) — »(0)
T

(o) =

and the face A = \(y) to which this path belongs. Then we shall prove
that £.() = 7La(v(y2)). In other words to find the action functional we
should find the constants L(A.v).

To satisfy condition (iv) of theorem 3.1.1 we should. for any 7 > 0. define
the functional

Lolo) = [ Lioth. 3()t.
0
if ¢ is absolutely continuous. and
L:(p) = +o0

otherwise. Then from nice properties of the functions L(.\.v) the conditions
(i) and (iv) of theorem 3.1.1 will follow.
From linear to arbitrary paths

10



Theorem 3.1.1 Let for the random walk Sy the functionals L, be given such
that for any 7 > 0 the following conditions are satisfied:

(i) the functionals L, are lower semiconlinuous,

(it) for any & > 0. & > 0 onc can find o > 0 such that for any x.y €
R4 x R* such that | ¥ —y |< o and for any linear path o € &, ;. the following
estimate holds

1 t
P{ sup | =5([Ny]) —pl) [< 8} 2 exp{=d'N - NL,(p)}  (16)
=0 [N7] N N
for all sufliciently lurge N.
(iii) for any & > 0 one can find 6 > 0, o > 0 such that for any .y €

Ry x R sueh that | v —y |< o and for any linear path o € .., the followiny
estimate holds

1 Q t I AT T —
P{ sup | =S([Ny]) = e(5) I< 6} Sexp{+&'N - NL, ()}  (17)
t=0...[N7] N A

for all sufficiently large N.
(iv) for any x € R} x R*, p € ., and for any € > 0 there exists a
pieceswise linear path @ € &, ; such that
sup | o(t) = @(t) |< e and | L.() — L.(3) |< €
0<t<r
Then the random walk satisfies the large deviation principle with the action
functionals L.

Proof. Denote by @, ; the set of all continuous paths @ : [0.7] = R x R"
for which £,(y) < 00. Since for anv ¢ € 9, ,

] | (1) — (') |
sup ——————
0<t<t’<r t'—t

<d

then the set &, ; is relatively compact. So if the for any 7 > 0 the functional
L, is lower semicontinuous then the sets ¢, .(s) are compact.

To get large deviations bounds we go first from linear paths to piecewise
linear and then to arbitrary paths.

For any piecewise linear path o : [0.7] - R x [?* consider its lincar
PIECEs 2. ... Pkl

L1



let0=19< 7 <... <7y <7 =7 and let  be linear on each interval
(7, Tier). J =000, k —1 then

F)=pt+7). 0t <74 -7

Lemma 3.1.1 Let for any 7 > 0, x € R, x R* and for any lincar palh
2 € O, the following two conditions hold:

(i) for any § > 0. 8" > 0 one can find 0 > 0 such that for anyy € R x "
such that | v — y |< o the following estimate holds

1. t
P{ sup | =S[Ny]) - o(5) |< 8} 2 exp{-8'N - NL.(¢)}
t=0...[N7) -V N
for all sufficiently large N.
(ii) for any &' > 0 one can find § > 0,0 > 0 such that for anyy € R x ¥
such that | @ — y {< o the following estimate holds

P{ sup | =SV = o) < 8} < exp{+8'N — NL, (o)}
t=U....[\7] N N
for all sufliciently large N.
Then for any T > 0 the following conclusions hold
(it) for any & > 0, & > 0 one can find o > 0 such that for any 2.y €
R, x R* such that | x —y |< o and for any piecewise linear path ¢ € O, .
the following estimate holds

1. ] t
P{ sup | =S{{Ny]) — (=) 1< 8} > exp{=8'N —= NL,(¢)} (18)
t=0...[N7) ¥ N
for all sufliciently large N
(iii) for any &' > 0 one can find § > 0, o > 0 such that for any v,y €
R x R such that | v — y |< o and for any piecewise linear path p € ¢, ;
the following estimate holds

| t
P{ sup | Si([NY]) = o(5) 1< 8} S exp{+8'N = NL(9)}  (19)
t=0...(Nr] -V SV
for al sufliciently large N
with the action functional

k
‘CT(‘F;) = Z[:T,“—T,((r?j)
1=1
where sy, .. .. 2 arc the linear pieces of .

12



One can easily prove this lemma using the induction with respect to the
number of linear pieces.
]

Lemma 3.1.2 Let for anyt > 0.2 € R}, x R for any p € ., and for any
€ > 0 there exvists a pieceswise linear path o € ®,, such that

sup | 2(t) = 2(t) [< c and | L,(p) — L (D) [< €
0<t<r
and let for any v > 0 and for any picceswise linear path o € &, ; lower large

deviation bound ( [8) and upper large deviation bound ( 19) hold.

Then lower large deviation bound { 14) and upper large deviation bound
( 15) hold.

Proof. Let v € Ry x R*. o € ®,. 6 > 0,8 > 0 be fixed. Choose a
piecewise linear path > € &, , such that

!

. d -
sup | 2(f) = 3(8) [< 5 and | Lo(p) — L+(P) < 5

0<i<r -~ -
Then | Sy ([e V) ;
. AV R VL
Ay log P{zzoﬁ.l.l.,l[):\fr] | N el N) <}
! SifaN]) Lt 1)
> —log P{ s — —lx 5
- N °8 {I=OS..l.l..]’[);’\"r] I N y( ‘IV) |< 2}

and so to prove (ii) one should prove (ii)’.
Consider the upper bound. From compactness of the set ®, . it follows
that for anyv « > 0.6 > 0.§ > o > 0 one can find finite number of paths

Cleee . ok €D, \ D, (s)

such that

Si(le N t
{ sup | '([_l’, ) — (=) |>d forany ¢ € ®,(s)} C
1=0....[N7] \ A
K Sl N
- U{ sup | —t(%/—]—z < o}
j=1 t=0....[N 7]



Moreover. as for cach o € @, and any ¢ > 0 one can find a piecewise linear
path o € ®,, such that

b L8
sup | () = 2(1) |[< 5 and | Lo(9) = L+(3) [< 5
<<t z 2
then the paths 2. ....0r € @, \ P, () can be chosen to be piecewise linear.
In other words for any s > 0,4 > 0,4" > 0 one can find a finite number

of piecewise linecar paths oy, ..., 08 € ®.,\ ®,,(s) such that

Si({p(0)N
P{ sup ]———H([ (o) ])—

t
— o(=)|> 8 forany o € &.(s)} <
1=0....[\7] N N

u 5' :7\7.,,.. 0
<> P{ sup [_i[_*’f_i()_]_)ka}
i=1 ’=0.....[.’\’r] ‘/\
So, (iii) follows from (iii)". Lemma 3.1.2 is thus proved.
|

Theorem 3.1.1 is proved.

3.2 One-dimensional random walk.

Consider a random walk in Z} with transition probabilities p;.i.7 € Z}
such that

piy=p,= forall i >0.j€ 7} (20)

pi, =0 ifeither = 1> ) ~1¢or j—1>d for some finite d >1  (21)

Note that there are only two constants Ly = L(v.0) and L(v) = L{v: {1})
to be determined. The second one L(v) concides with the corresponding
constant for the homogeneous random walk on Z with transition probabilities
pj—; and is delined below. The first one. Ly. is zero for recurrent random
walks. 1.e. when the mean deift M/ =35 p, <0.

More interesting is the case when the random walk is transient (i.e. when
the mean drift M = 5, /p; > 0). In this case Ly undergoes a kind of phase

14



transition with respect to change of parameters. We study this case in the
rest of this section.

Assume the initial random walk defined on the probability space (2, Z, P).
In the sequel we use the following family of random walks S;’.t € Z,. a € k.
with transition probabilities

o _ Pyt o
Pij = Ej Pijea(j—i), Pi; = Dij

We can define these random walks on the space (2, ¥) and shall denote
the corresponding distributions and expectations by P,, £, and the random
walk itself by 5. Let

Hi{a) = log Z pi;eUTY,
J

Then H;(a) = H{(a) for all : > 0. Note that

is the variance.

Now we can define the function L(-). It is the Legendre transform of the
function /1;.

The graphs of H (a) and Hy(c) can either intersect each other on the
negative a-axis (case 2) or not (case 1)



Here o is snch that Hy{ag) = min, Hy(a). In case 2. i.e. when
Hy(oo) > Hi{ap),

there exists oy € It such that

Hyloy) = Hy(o,) and (—lHl(O'l) <0
da
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Theorem 3.2.1 The large deviation principle holds for for ouwr random wallk
with the action functionals defined by the constant

Hy(ao) if Ho(ao) < Hy(av)
Lo =
Hi(ar) if Ho(ao) > Hi{ao)

Proof.Choose 8 > 0 sufficiently small and let | 2 |< % Consider the random
walk Sy starting at the point [x N]. Denote Axs = { sup Sy < N§}. Then

t=0...., [NT]
[N7]-1
PolAxs) = EulLiy, exp{—aSyn + 3 Hs (o))
t=0

where [ 4., is the indicator of Ays.
Case 2. Putting a = a; we get the lower bound

Il

Po(Axs) E. Liysexp{—a, Sy + [NT]H (o)}

exp{—|a; | 6N + [NT]H (1)} Ea, L1y, (22)

v

Note that

Eo [Si41 — 5S¢ ] Se =1] = Mi(ay) <0, (23)

and thus the random walk Sy is ergodic, and

Em[_q'.\_.“ =1 a N oo (24)

From ( 22) and ( 24) we get the lower bound.
In case 2 the upper bound follows from

Po(Ans) = Lo Lo exp{—o S+ N7 Hi(a1)} < exp{(N7|Hi(a1)+ | o1 | SN}
(25)
Case 1.
The upper bound is again trivial
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{Nr]-1
PolAns) = Eolagsexp{—ooSing+ Y. Hspyloo)}
t=0
< exp{[N7]H(co)+ | a0 | N} (26)

To get the lower bound consider the event

Bns = Ans[{Si #0fort =0,....[N7]}

Then
[NVr]-1
Po(Axs) > Po(Bxs) = Ea Ipysexp{—aoSiyrj+ Y Hs, (o)}
t=0
> constexp{—{ao | SN + NtH{ay)}Es, By,

But due to
Eoo{Sis1 = St | S =1} = Mi(ag) =0.7 > 0.
it is easy to show that for some constant v > 0
EoolB., > vexp{—3d'N}

Remark 1 The surface R = {H (ao) = Holao)} is called a Reynolds surface
separating the two phases. The domain of parameters. where Ly does not
depend on the paramcters pg;. defines phase 1.Phase 2 is when Lo depcnds
on the purametors py;. Ly depends continwously on the parameters but in
general it is not differentiable at the points of R.

3.3 Random walk in Z} x Z

Consider a random walk Sy(i.2) in ZL x Z* starting at the point (i,x) and
having the following transition probabilities p((:.2) = (J.y)) = pij(x,y).
i,J € Z}. r.y € 7Z". We shall assume that

.“1:

(1) (houndeduess of jumps)



pije.y) =0, ifeither y —i < =1, or max{[1—j[.]x—y |} >d.

for some fixed d > 0.
(i1) (homogeneity)

pij(x,y) = prj—isi(y — ) forany 1 > 0,5 € Zi..r,y € z".

poj{r.y) = pojly —x) for any j € Zi,.r,y € Z*,

(iii) the induced Markov chain with the set of states Z} and transition
probabilities

pi; = Y pijly) i.j€ Z}
yezr

is irreducible and aperiodic.
Consider

Hi(a.B) = log{3_ pi(y) exp{a(j — 1) + By} }
YJ

i€ Z).a € R, 3€ R
Due to the homogeneity assumption

Hi(a,B8) = Hi(a, B)

for any 7 > 0. Denote by d,,ds the partial derivatives with respect to o and
B correspondingly. Here d3 = (dp1,...,03s). We shall assume that jacobians
of Hy and 11, are nowere zero:

for any .3

&2 a2 '
det @__;;THO(“*W Faga Ho(a ) 40
El;-f:'u?HU(aaﬁ) (T:,C_'WH()(O,B)

and

':-‘? 4 1 _ﬂf_ i
det | T Hilen?) "f's?;"-gH‘(a’d) 4 0.
—L‘—Hl((\',ij) 2 ][1(03)

ERRE] ©3)?

Let us consider the equations

I H(a,3) =0 (27)
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Ho(a,3) = Hi(a, ) (28)

One can easily show that for any 3 € R* there exists a unique ag(/3) for
which ( 27) holds.Let us note that for any 3 for which

Hi(ao(3). 3) < Holao(B),5)

there exists the unique a;(3) for which ( 28 ) holds and

d.Hi(a,B) < 0. (29)

Consider the following function

{ ao(3) if Hi(ao(8),8) 2> Holao(B), )
a(4) =

a1(3) if Hi(ao(B),8) < Ho(ao(B),B)

Lemma 3.3.1 The function H(3) = Hi(a(B),B) is conver and it has con-

tinuous first derivatives.

Proof. Consider the sets

Co = {3 € R : Ho(ao(B),B) < Hi(aw(B3).3)}

Ci = {3 € R": Ho(ao(B),3) > Hi(xo(5),0)}

It is easy to see that the function Hj(ao(B),) is convex and it has a
continuous first derivatives. Moreover one can easily show that the function
Hi(a(3). %) defined on the set C; is also convex and it also has continuous
first derivatives inside of C;.

So to prove the lemma it is sufficient to show that for any /3 for which

Holoo(F).:1) = Hl(%(ﬁ)»ﬁ)}

the following equalities hold

Hilog(3).3)=lim  Hi(ay(3'),3")

3—=p.p'€C)

Dilli(an( 3).3)= im0y Hi(ay(8),3) = O3 Hy (a1 (). 3)

31 5.3.37€C,
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The first one 15 obvious. The second one can easily shown by a simple
calculation.
||

Consider the Legendre transforms of the functions I1,(-.-) and H(-)

L(2°.T) = sup {av®+ 37— Hy(a.3)}
a€R.BERH

Lo(T) = sup {3t — H(F)}
JERM

Let
Li(2%.7) if2l=0

0
Lo(T) otherwise

LTy (00 7) = {

For each continuous path 2 :[0.7] = RL x R* we define

. f L(Z(t). 2(t))dt. if o is absolutely continuous ,
LT(;):: Q

+2 otherwise.

Theorem 3.3.1 The random walk S, satisfies the large deviation principle
with the action functionals L, .

Proof.Due to the theorem 3.1.1 we should show that for any 7 > 0 the
following conclusions hold.

1. The functional £; 1s lower semicontinuous.

o

For anv o € RL x R, p € ®,, and for any ¢ > 0 there exists a
picceswise linear path 3 € @, such that

sup |20 = () < eand | L,(2) = L,(3) [< ¢
u<t<~

3. The lower large deviation bound { 16) and the upper large deviation
bonnd ( 17) hold for any linear path .



The proofl of the two first conclusions is quite standard.Let us prove the
lower large deviation bound ( 16) and upper large deviation bound ( 17).

Lemma 3.3.2 Let o : [0.7] > RL x R*, o(1 ) = (L%t).B(1)) be a linear palh
such thal for any 0 <t <7 P%t) # 0 and $(t) = v

Then the lower large deviation bound ( 16) and the upper large deviation
bound ( 17) hold with

L:(p) = T1Li(v)

This lemma casily follows from the large deviation principle for homoge-
neous random walks in Z**! (see [9])

Lemma 3.3.3 Ll > [0. 7'] ——> R‘ R*_ . ( ) = (). B(8)) be a lincar path
such that for any t € [() 7] ¥ =0 and B(t) = T.

Then the lower large rlﬁvmfzon bound ( 16) and the upper large devialion
bound ( 17) hold with

L. (p) = 7Lo(v)
where T = (1)

Proof. Let T =3({). »(0)=0. v € R, x R*. | v |< 3. Consider the

random walk S, = (.S).5) starting at the point [+.V]. Denorc

!\rs—{ _sup | §9 |< N6}

Alvs = { sup l?, - Tt |< N§}.
t=0..
and

t . .
.-\\'x = { sLl]) l \ — u,/( 1< 1\'(5} = -"9\'6 ﬂ—‘l\‘,

t=0....\'7 \

Cousider a family of random walks in Z} x Z#*with transition probabilities
addps L a3 _
P ) (goy)) = py (e y) =

poeoy)espfal(j =)+ 8y —2) — Hi(a. )} =

pilroy)exp{aly = i)+ 3y = x)}
\“,;,,(1 y)exp{a( J—1)+ Hy—-T)}

[S™
8]



Then
V.0 — 0 (7 N AT VA
polecy) =pislayy), .J€ L, . a.y€”Z
We shall denote the corresponding distributions and expectations by
P. 4 E. 4. One can easily show that for any a € ', 3 € R*

P{~";\'.§} = 'U.U{AN&}:
. [Nr]-1
= Euos(lan, exp{—a-.S'[oN,] - BSiNe + Z Hgo (o, i3)}) (30)
t=0

where /4., 1s an indicator of Ans. ,
Let us consider .4 = (3%....3%), 32 € RPU{xtoc} j = 1..... 0 such
that

Lo(®) = ip,f{ﬁ/.? - Hy(a(3).8)} =
= U0 — Hi(a(B), F) (31)

Let us first prove the lower large deviation bound and upper large devi-
ation bound for the case when

| 32 |< oo forany j=1.....u (32)
Then from the definition of the function «(/3) it follows that
| a(iF) |< o0
From ( 30) for .3 = 4. a = a(/%) we get
P(Axs) S exp{=[N7]Lo(T)+ | 3z | No+ | a(FF) | Né}) (33)

So for the case when ( 32) holds the upper large deviation bound is proved.
Let us prove now the lower large deviation bound for the case when ( 32)
holds. We consider here two cases:

(ase 1.

Ho(a(35). %) < Hi(a(3s). 3) (3-1
(ase 2.

Hyla( %), %) > Hola(3:). 3%) (35)

-)-;



Let ( 34) be satisfied. Then by definition
a(/¥}) = aoFr)
and consequently for az = a(3z)

A Hilaz),37) =0

(36)
d3H,(ag),3s) =T
From ( 36) it follows that
Eniam (St = SIS =1,5) =0
B _ (37)
EL\(,%)__,%(.S',+1 - Sp | S,O = I S;) =T
forany i € Z,. i > 0. Consider iy € Z}, 1o > 0 and y € Z* such that
palio y) > 0
Let
I’/\(I.'Ov y) =q
Then for Ny = [V/N]
P(Avs) = Eagsn.aLay, exp{—aolB5)Siv. — BcSiv- +
[Nr)=1
+ > Helowl(3).55)}) 2
t=0
> ¢Mexp{—[N7]Lo(T)— | Bz | N6— | a(3=) | N6} x
X P.m(_:?;)._,.a—.{B.-\’,.Ns | 5}{', = oV, F\n = Ny} (3%)
where
By,vs={ inf  ]SY]>0, sup | S?|< Ve,
=Ny Nr t=Ny...., Nt
sup | Sy =Tt {IN}
'=‘\"|.....:\‘T
From ( 37) it casily follows that there exists ¢ > 0 such that
/)..(,(.;,—).,7,-{/'f‘\’,.;\'s | 5'}{,1 = €V, ?3\', = Nl!/} 2 (39)
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From ( 33) and ( 39) we get for the case 1 the lower large deviation bound.
Let us consider now the case 2. For this case by definition

a(B7) = ai(Fr)
where a() is defined by the system
Hola1(83). B7) = Hi(au(B3), 35)
Oa Hy(0y(B5). 35) < 0.
Therefore from ( 30) for a = a,(,3:). J = % one can easily get
P(Ans) = Byl Lags exp{—ai(35) Siny—BeSina+HIN T Hi(on (Br). Br)}) >
> exp{=N7Lo(T) = N&(| ar(F) | + | Be 1)} x

X Po,(;B;r).ﬁr(‘ANtS)

Let us prove now the following lemma.
Lemma 3.3.4 et ( 33) holds then
Pom5(Avs) 21 as N = oo

Proof Consider for any a, 3 the induced Markov chain with the set of states
Z4 and transition probabilities

3
=> 5 (y)
Yy

Let ( 33) be satisfied. Then for a = ay(53),3 = 3 the induced Markov
chain is ergodic. Consider for any a.;3 for which the induced Markov chain
is ergodic the stationary probabilities of this chain

o3 . 1
T, J€ 4,
and consider the vector

Vola.3) = mg ZUPO, (v) 1_70')2‘/1’1 i(y)

y.J
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From the theorem 4.1.1 it easily follows that to prove the lemma 3.3.4 it is
sufficient to show that

v = Volai(Bz). B3)

Let us calculate 15(a, 3). For this let us first note that for any «, 8

S upiPy) = 0. Hi(a, B) (40)

1.y

Moreover using the method of generating functions one can easily show that
for each a7 for which the induced Markov chain is ergodic
a d. Hy(a, B)

T = A Holc B) — D Hh(0,3) (1)

From ( 40) and ( 41) we get

o) = 0u(Ho(a, B) — Hi(a. 3) (42)
O T 9, Hy(a, 8)05Ho(a, B) — 0a Holar. 3);3Hy (0. B) B

By a simple calculation one can easily show that for those 3 for which
Ho(f) = [‘]0(01(,&’3),,3) = [10(0‘1(,3).,'3)
the following equality holds

d Hol ) = Jo(Ho(a. B3) — Hy(a. 3))
d3 T O, Hy (@, 8)d3Hola. B) — daHola. 3)33Hy (a. B)

(43)

But for 3 = :3- from the definition of 3; it follows that

Consequently from ( 12) and ( 43) we get
Vol (B7). 35) = 7.

Lemma 3.3.1 is proved. :
We have proved the lower large deviation bound and upper large deviation
bound for the case when for anv jy = 1..... p

| 32 |< o0
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To consider the case when for some 1 < 53 <
| 33 |= o0

let us note that for any y = 1,...,y, for which ,37’ = oc, if the trajectory
belongs to the event Ays then

S =t forany t =0,...,[N7]
Considering now conditional distributions under the condition
S{ =t for any t =0,...,[Nr)for any j for which | ,’3% |= .

and using for these conditional distributions the same arguments as in pre-
vious case one can easily get the lower and upper large deviation bounds.
The lemma 3.3.3 is proved.
u

3.4 Random walk in Z/™' with a discontinuity on a
hyperplane

Let us consider the Markov chain with the set of states Z#*! ( denote its
state at time t by Si(7,2) if the Markov chain starts from the point (7, 2))
and having the following transition probabilities

plix)y = (5,y) = p((4,2), (j,y)). 1,5 € Z', 2.y € Z".

We shall assume that
(i) (boundedness of jumps)

piy(x,y) = 0. if either max{| i —j|,|a —y |} > d. or (j — i)sign(i) < —1

for some d > 0 :
(i1} (homogeneity) for all (z,2), (7, y).(k, =) such that sign(i) = sign(;)
we have

pl.x). Qo)) =plli+ ke + 2).(J+ by + 2))

Put
pleca) (Jey)) = pij(y — )
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(iii) the induced Markov chain having the set of states Z! and transition

probabilitics
Pis = 2_Pii(y)
y

is irreducible and aperiodic.
Define the following functions

Hy(a.3) = log( Ep” yexp{a(s —7) + By})
where i > 0. a € R'. 3= (3'....8%) € R*, and for y = (y',....y") we put

I
,"3}/ = Z ﬁkl k,

k=1

H_(+.3) = log(3_pii(y) exp{—v(j — i) + By})
1y

where 1 < 0. 5 € R. and

Hol(a. 3.5) = log( 3 poj(y)exp{aj + By} + D po,(y)exp{-vj + By})

y.g20 ¥,J<0’

Assume that the jacobians of H,, Hy and H_ are nonwhere zero.
Let us consider the following equations

0. Hi(a,8) =0 (44)
HH-(7,8) =0 (43)

[t is easyv to see that for each # € R* there exists a unique solution
(ao(.3).3) of the equation ( 44) and a unique solution (vo(;%),3) of the equa-
tion ( -15).

Lemma 3.4.1 [«
max{ /4 (ag(:3).3). H_(ao(3),3)} < Ho(ao(3). 13, 70(/3))

Then one of the following conclusions holds



to

. either

Hilao(3). 3} < Ho(~0(3). ) < Holaow(:3). 3, 70(:))
and there exists ay(.3) such that
Hy(a(:3)..3) < H_(70(B). 8) = Hola1(3),3.70(:3))

and

O Hi(a(3).3)<0

or

H_(~0( 3). 3) < Hi(ap(3),3) < Holao(:3). 3. %0(:3))
and theore exists ~1( 3) such that
H_(5:(3).3) < Hylao(3). 3) = Holao(3), 3. m1(3))

and

O-H_(m1(3).3)<0
or there exist ay(.3) and ~3(.3) such that
Hi(02(.3).3) = H_(72(3).3) = Ho(az(/3).3.72(3))

and

D Hy(aa(3),3) <0
a»,H_(“/'-z(B),ﬂ) < 0

Proof of the lemma 3.4.1
Let us consider the case when

Hi(oo(3).3) < H_(70(3)..3) < Ho(ag(i3). 3. v0(3))

The case when

H_{~0(3). 3) < Hiloo(3), 3) < Holoo(3). 3. 70(/3)).

can be considered similar]y,



Note that Hy(a,/3.~) is monotone increasing in a for all 3, v, and the
function H,(a.:3) is convex in a for all 3. From this it follows that either
there exists o (:3) < ag(/3) such that

Hy(a(3).3) < H-(70(73), 8) = Hola1(53),3,7(53))

and
anH-f-(aI(:B)sﬂ) < O

or there exists a(:3) < ag(3) such that
Hi(6(3)..3) = H_(0(;3),3) < Ho(a(3). 3. 50(3)) (46)

Let us show that from ( 46) it follows that there exist az(3) and ~,(:3) such
that

Hy(ao(3).3) = H_(42(3),3) = Ho(aa(i3). 3. 52(3)) (47)

and

Do Hy(az(8),3) <0
O H_(v2(83).3)<0
For this let us consider the equation
Hi(a,3)= H_(v.3) (48)

If ( 46) holds then one can easily show that for each v < ~g(:3) there exists
the unique a(3.~) < a(43) such that (a(3,v), 3.+) is a solution of ( 48), and
moreover o(:3.~) is monotone increasing in . and

a(3.v) > —oc as vy — —o¢

Note that .
H_(~.3) = Hi(a(3.54).3) > +x

as v — —oc and the function Ho(a(d.5).5.+) is monotone decreasing as
~ — —oc. Then there exists the unique ~,(3) < ~0(3) such that

Ho(a( 3520 3)). 3) = H_(52(3). 3) = Hola (3. 72(:3)). 3. v2(:3))
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Since ,(i3) < ~o(F) and a(3.v2(/3)) < o(3) < ay(/4) then
01' I[+(O(‘Q 72(/)’))7/7’) <0

O H_(72(8).3) < 0

So, putting a(3) = a(3,72(3)) we get ( 47).
Lemma 3.4.1 is proved.
|
Let us define the function H(3) by putting

H(:A) = max{Hi(ao(3).3). H-(ay(:3). 3)}

if
max{H(ao(8).3). H-(ao(3).3)} 2 Holao(13). 3. 50(3))

Otherwise we put

H(3) = H_(10(3), 3)

if the case 1 of the lemma 3.4.1 holds, or
H(B) = Hi(ao(3).5)
if the case 2 of the lemma 3.4.1 holds. or
H(;3) = H_(72(8),8) = Hylaz(3). F)

if the case 3 of the lemma 3.4.1 holds. Then the function H is defined for all

3.
Lemma 3.4.2 The function ‘H is conver and belongs to C'{ R*).

Proof of the lemmma 3.4.2.
Introduce the following sets

Co = {3€ R H(B) = Hy(aol3). 3}

C.o={3€e R HB) = H_(v(3). )}
Co=1{36€ R H(3) = Helaz(3).3) = H_(32(3). 3)).

Inside of each of these sets 'H is convex and smooth.
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Let Cy NCy # B. Consider 3* € C4 NCo. It can be verified by the direct
calculation that the function H is continuous in 3* and

im  YVH(3)= lim VH(3)

3% 3€Cy B—B*.3€Co

Then the function H is convex on the set C; Cy and it has continuous first
derivatives inside this set.

Similarly. one can show that H is convex on the set C_ N Co and also has
continuous first derivatives inside this set.

Note also that C;, NC_ = 0. Then H is convex on the set

C+ ﬂcomc_ = R“

and it is of the class C'(R").

Lemma 3.1.2 is proved.

n

Let L. L_ and Ly be the Legendre transforms of the functions H,, H_
and H correspondingly.

Li(u,v) =sup{au+ fv — Hi(a, B)}
aB

L_(u.v)= su]a){'yu + Bv— H_(v,3)}
il
Lo(v) = sgp{ﬁv - H(a, 3)}
Consider the following function L .: R+ x R**' 5 R
Ly(u,v) ifa®>0

L((u.v),(vo.2)) =< L_(u,v) if2%<0

Lo(v) if29=0
For cach 7 > 0 let us define on the set of all continuous paths
21 [0.7] - R
the functional L.

Lolo) = [ L) (D)
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if the path 2 1s absolutely continuous. and
L:(yp) =00
otherwise.

Theorem 3.4.1 For the random walk S, the large deviation principle holds
with the aclion functionals L, .

3.5 Optimal paths.

Consider a vandom walk St € Zp in Z] x Z" defined in section 3.1.Assume
that this random walk satisfies the large deviation principle with the action
functionals C..

For any v.y € R x [t let us consider the set of all continuous paths
going from . 1o y.\We shall denote it by ®¥,

Definition 3.5.1 Consider two points v,y € R, x R*.

A path 2 0]0.7) - R x B, € &Y ds called to be an optimal path
from the point x to the point y if for any v’ and for any path o' : [0,7'] —
R, x R*. "€ &%V the following inequality holds

L(2) € Lol

Define
L., =infr in L.(2).
ay ;:[0,7]—)R6’XR".$€®"'U T(‘r’)
If there exists an optimal path 2 : [0.7] = R} x R* from the point z to the
point y then
Lyy = Lo(5)

Consider some properties of the optimal paths.

Lemma 3.5.1 (Additivity.) Let o2 [0.7) = Ry x B be an optimal path from
the point x lo the point y. Then for anyt € [0,7] the path o 2 [0.1] = R x R”
is optimal from o to z = p(t). the path o {t.7] = B < R* is oplimal from
ztoy. and

Loy=Lr:+L.,
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This lemma easily follows from the integral representation of the action
functional.

Definition 3.5.2 We shall say that an affine mapping
G:R, xR — R, x R¥
is a proper mapping iff for any face A
G(A)=A

It is easy to see that for any proper mapping G there exist & € Fy and

b=(0,0% € R x R* such that
G(a) = kx +b.

Lemma 3.5.2 ( [nvariance with respect to proper mappings.) Let o : [0.7] =
R, x R* be an optimal path from a to y.

Then for any proper mapping G(x) = ka + b the path o' : [0.k7] —
Ry < R where /(1) = ko(kt) + 0. t € Ry, is an optimal path from the
point G(x) to the point G(y)

This lemma easily follows from the definition of the random walk S;. Let
pllx,y) = (2" y"). (e y) (2 y') € ZY x Z* be the transition probabilities of
the random walk S;. Then. by definition. for any face .\ and for any (r.y) €
ANZy x zZ*

pllaecy) = (2 y)) = pA " =2y —y), (' y) € ZL x Z~.

For each face .\ consider the function

H{"(a.:3) = Z P(A (2, y))explox + 3y}
AI'GZ_‘;.AUGZ“

For v = 0 we should consider only the face A = {@} and then
H?‘})‘,;(o.._?) = H"(J)

Consider the Legendre transform L#(-) of the function H*(-).
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For 1 = 0 the random walk S; in Z* is homogeneous by definition and i1
satisfied the large deviation principle with the action {functionals £, wheve

T

Lolo) = [ (20t

0
if the path o : [0.7] = /2" is absolutely continuous and
L:(p) =00
otherwise (see [9] ).
Theorem 3.5.1 Let v =0. and
VH"(0) # 0.

Then for any x # y € R* there exists the unique optimal path - [0.7] = R"
from the point x to the point y. This optimal path is linear

t

olt) =a+ —(y — 2),
T

and
Low=Lolo) = (Bry — 1)
where (3.7) is a unique solution of the system

H*(3) =0,
rVH*Y 3=y —x (-19)
T>U

Proof. lrom the lemma 3.5.1 and lemma 3.5.2 it easily follows that if
the optimal path from the point @ to the point y exists then it is lincar. For
any linear path

t
Pl)=2+ —-(y - )
T
one has
LY
L(p) = 725
T



Therefore for an optimal path ¢ : [0,7] - R*

y—2a - T
A WS N T #Y T

T t>0 t

T L¥( )}

Let us note that the function tL*(£3=) it convex with respect to ¢ for any
y # @ and
— 2
fL"( . ) 200 ast—0 ort — oo.

From this it follows that 7 is a unique solution of the equation

d Y- -
(,t(l‘L( " ))=20 (50)

It is casy 1o sce that t = 7 is a solution of the equation ( 50) if (7, 3), where
3 = VIL#(£=). is a solution of the system ( 49). Due to the convexity of
the function [*(-) this system has a unique solution.From this it follows the
theorem 3.5.1.8

Let us consider now the case v = 1.Consider the following equation
()oH{l}( ﬁ)-—O (51)

For any ‘7 there exists a unique solution (ao(3),3) of the equation ( 51).
Note that for any 3 for which

H 5 (ao(B8). 8) < High(ao(B), B)

there exists a unique solution (a;(/3).3) of the system

{‘1‘;<o 3) = Hgy(a, B)

—_
Ny
[E]

-

(‘onsider the function

H{ (o). 3) if Hi(ao(B),8) = H{gi(ao(B). 5)
Hl N )

/'/{li’;((_\ 1(3),13)  otherwise.
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Theorem 3.5.2 Let V'Hé'“(O) # 0. Then for any v = (2. 7).y = (y°.7) €
RL x R* such that 2 = y° =0 and T # Y there crists the unique optimal
path o [0.7] = RY x R* from x toy. this optimal path is lincar

t
st)y=x+

—(y =)
T

and
‘C.r.y = L,(p) = (3.9 -7)
where (3.7) s a unique solution of the system

(53)
TV‘H(},'“(,B) =y —T.

To prove this theorem note first that for any linear path o : [0.7] —
R x R such that (1) = (22(). B(1). £°(t) = 0. we have

‘C'(YA) = ’.LW

where Lg(-) is the Legendre transform of the function 'Hé'“('). Then it is
sufficient 1o repeat the proof of the theorem 3.5.1.
For arbitrary w.y € R x R* one can easily get the following theorem.

Theorem 3.5.3 Lt V'Hé‘“(O) # 0. Then for any x = (2°.F),y = (y°.%)
there existx an optimal path o2 [0.7] = Ry x R* from x to y, this optimal
path is piccewisclincar

f .
o+ — (e — 1) for0<i<m
!
,—‘I_l |
o) =9¢ o+ (g —ay) form <t< 74+ 7
]
-7 -7
ryt————(y~22) form+mn<I<n4+n+mn
3

where vy = (0.7,). 05 = (0.73). and

- TIPS it g2 — w Y
L,,-.,,=T|/f}|/}(_l7__)+7'"-’[4;)l( 1)+T:s['}l,}(—“7_ 2'):
1 3
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sz — T Yy—
t3
where Ly(-) is the Legendre transform of the function H{li‘;('). Lo(-) is the

Legendre transform of the function ’Hé'“(-).

)+ t3L1y(

. L, Ty =X
= inf f.//;’;}(‘T) + to Ll )

H2004220.1. 20,77 7

Let us consider the case v = g = 1.We shall assume that

d 1

5H (0 #0 (54)

Then from the construction of the function Hy'(0) it follows that
vn{‘il}(o. 0) # 0.
Consider the following equation
Hy'(3) = 0.

Due to { 54) this equation has exactly two different real solutions .3, < 0 <
32, B # #4.Consider also the svstem

Hijy(a.8) =0

TVH{lil}(a.J) =2 (:

(1]
ot
-

> 0.

u

For any » = (2% ') # 0 this svstem has the unique solution a*(x). 3*(x). 77(2).

Theorem 3.5.4 Lct ( 34) be satisfied. Then for any a = (a°.2') € Ry x R
the following conclusions hold :
(i) Let 3y < 37(@) < 3y then
Lo, =a ()% + 37(r)2!

and the optimal path from O to x is inear

S = ‘).1'. t €[0,77(x)].



(it) Lt 37(0) < 3y then
60.1* = O‘].’I'O + _/31.’1'1

where oy is defincd by the system

1-1{‘;'}(01.;31) =0.
(36)
0,.,11{‘3}(0'1,&) >0
and the optimal path from 0 to x is piecewise linear
1
- ; ()
- if0<t<rl.
o) =
- TE 0 0
ot —(v—z) It 41
T
where =_ = (0.21). 2L <0, 72 >0, 72 > 0 are defined by the system
1 1.1 {3 _ T — Jo
VII{l}(O'laIL 1) = e
1,1 :]
OsHy (5) = ==
3 1] (r 1) TE
(iii) Lel 3y < 3™(x). then
L:U'J. = 0'-21'0 + 1321'1
where oy is defined by the system
11{1i1}(0‘2~.,‘32) = 0-.
(57)

0o Hyjy (2. d2) > 0

and the optimal path from 0 to x is piecewise linear

{ .
— T+ {IOSISTf.
A=3  o
t—r1y D p .
Iy + = (v —zy) fri<t<rti+r7]



where =4 = (0.:1). =} >0, ‘rf > 0. 75 > 0 are defined by the system

Fr—2I
VIl g By) = S,
| =
1

,_/,Hl.l( f ) I o
- i) = .
d3 ' "0 T_?.
Before starting the proof of the theorem 3.5.4 let us give a geometric
interpretation to the conditions (1),(ii) and (iii) of this theorem.For this let

0= r(2)siny(x)

r =

us introduce the polar coordinates in R} x R'\ {0}.

r(r)cosy(x),
r(r)>0. 0<y(2) <m.

1
ro=

clav = dsH(ar, Bi1)
I = 9 H(ar, B)

Let us consider two angles 5,. < ¥, such that

and .
1y = DoHlen, )
: 9 = S
" 0.H (a2, 2)
~1 is the angle between the positive direction of the axis 2!, (2% = 0) and the

H(a,8)=0

normal vector to the curve

at the point (a,..3))
2 1s the angle between the positive direction of the axis 2! and the normal

vector to the curve
H(a.3)=0

at the point (a,. 3,)
One can casily show that 0 < v, < 4 < .
Let us note now that for any x € R, x R

and morcover



37(r) < 3 = () > 5;.
IH(r) > 3 <= y(2) < 1.

Due to the theorem 3.5.4 for any v € R} x R! the following conclusions hold.
(i) Let 79 < () € 71. Then the optimal path from the point 0 to the

point 2 is lincar.
X

(ii) Let ~ () > ~;. Then the optimal path from the point 0 to the point «
is the piecewiselinear path 2 consisting of two linear segments: the optimal
path from 0 to :_ = (0.z1) and the optimal path from z_ to xr. where

22 =(0.21). ! <0 is uniquely defined by the equality

k)
ti

(i) Let ~(r) < =~ Then the optimal path from the point 0 to the

point 2 is the piccewiselinear path ) consisting of two linear segments: the
optimal path from 0 1o zy = (0.z}) and the optimal path from z4 to .

where =, = (0.:2}). z} < 0is uniquely defined by the equality

11



Proof of theorem 3.5.4. For any r = (29 2!) for which 2% = 0 this
theorem easily follows from the theorem 3.5.2.

Consider o = (2% 1) € I?,L x R', 2% # 0. Due to the theorem 3.3.3 there
exists a piecewiselinear optimal path from 0 to x

3 if0 <t <7
T
() = »
t —
T+ ~‘T (r—z) P <t<P4 7
and ¥
Low=T"Lig () + L;;}( — )=
1 (53)
_ . L1~ 1 s
- t.zo,rgélt}.f:(u.:')tlL@ (tl )+ t2L{l}( t, )
where z_ = (0.:!). 7 > 0. 7= > 0 are defined by ( 33).
Consider for any = = (0.2') # 0
. 2! I
1-(:) = fl>10|]'f>0{f L‘D t ) +f L{l}(T)}
and
F(0) = ;gg{flm o)
Then
o = "(= 56
Lo, = _inf, F(2) (59)

One can easily show that

FI0) = () iy =) =



a*()a? + 3 (r)!

e

)

[J}‘ll}(r’(a' - z)

and ¥
I'(z) = Tw(:)LW(T‘;(: )+ (> — )
= ')"0(:)~l +o (- )2+ 37 — )2t = =Y
z). (@ = z2), 77 (x — z) is a unique solution of the svstem

HiMa,B8) =0

r— <

(a.3) = -

5 71,1

(z) 1s a unique solution of the system

)

and 3%(z). 7(=
Hiy(3) = 0.
d 411 :!
ﬁ'H{{o}(/j) ==
Note that
:5@(~)= ,’31 if:1>0
! - /32 if .3‘1 < 0.
Therefore
Sl ta (v =)V + (=)t =2 <0
F(z)=<{ a(x)a% 4+ 3*(x)at if-=0
St tat (e =2+ (e -2t =Y ifP>0
Note also that
Fla—2)>23>0as2=(0.2").' - —«
st o 4

and
Flo—2)—>3<0as z=(0
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where (a.3). (@. 3) are the two different solutions of the system
Hi 0, 3) = 0
OoH{li]}(a,ﬁ) = 0.

It i1s easy to sece that the function F(-) is continuous and it is convex on
each of the sets {z! < 0} and {z! > 0}, but it should not be convex on It!
.Therefore

F(:) 5 0 as z! - o0

So to get the infimum { 57) we must consider

d

F'(0) = lim - F(z) = B8 - (),

10~ (>

and |
Fi(0) = lim —=F() = B, - B(x).

Let us consider three cases.
(i) Let ;3 < 3%(x) < B2 Then FL(0) <0 and F(0) > 0.
i

F(z)

In this case the function F(-)is convex on R! and it has a unique infimum
in the point = = (.

(i) Let #7(w) < 3. Then F7(0) > 0, and F{(0) > 0.
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F(2)

In this case the function F(-) has a unique infimum in the point z_ =
(0.:1). =1 <0 which is defined by the following equation

Flo—z)= 3. ==(0.21)

(iii) Let 4, < #~(x). Then F.(0) < 0. and F,(0) < 0.

F(z)

2!

In this case the function F(-) has a unique infimum in the point z, =
(0.:4). =L > 0 which is defined by the following equation

e —z) =3 2 =(0,23).

In the first case

Lo = F(0)=a ()2 + 3(a)a"

and the optimal path from 0 to 2 is linear

A1) = . .T).'If. te€0,77]



In the second case
0 1
Lo, = o2 + B

where ay is defined by the system ( 56) and the optimal path from 0 to @ is

piccewise linear

4
— 3- ifo<t<rl,
T_
s = .
f—
s _T_(.r—:_) ifrl <t <47
TC
where z_ = (0.z'). 21 <0. 72 > 0. 7= > 0 are defined by the svstem
CHMa ) = 22
1.1 =!
DaHy (3)) = —=.
Iy ( l) T9
In the case (i)
Lo, = a2’ + 32!

where o, is defined by the svstem ( 57) and the optimal path from 0 to » is
piecewise linear

t
0t

- _ +

(= t—7
ot —

~i

where =, = (0.z1). L > 0. T_?_ > 0. 75 > 0 are defined by the system

= T4

T2 3) = —

f)_;'H:b'l( _32) =

+~‘s:|+ -

The theorem 3.5 1s proved.
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Theorem 3.5.5 Let ( 54) be satisfied. Then for any 2 = (2% 2') € RL x B!
the following conclusions hold.
(i) Let 3) < 37 (=a) < 35 then
Lro=—a"(=2)® =37 (=)
and the optimal path from x to 0 is linear

t
oty =0 — ———a, t €(0,77(—2)],
™(—x)
(it) Let 3=(=x) < 3y, then
Lio= —011 - B!

where $ is defined by the system

H{l}( 3):05

(),,11{1}(01,/)'1) 0

and the optimal path from x to 0 is piecewise linear

t
T4 —(zy—x) 0Kt

i
o) = ;
_7-' .
Ty — 0+:+ lfr;‘gfgrf%—r;
T
+

where =y = (0.:4). 2L > 0. 72 > 0. 77 > 0 are defined by the system

4+ — T

VH(af,81) =

DMy (3) = —*.
(iit) Lel 5, < 37 (=2). then
L,o= —o-g;ru — Fyu!
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where ag ix defined by the system

Hi5y(a5.i3;) = 0,

Do H (5. 32) <0

and the oplimal path from v to 0 is piecewise linear

t
r4+ —(o—x) 0Lt
T_
T:(I) = {— 71"
- <t <l
T’
where =_ = (0.21). z1 < 0. 7% > 0. 72 > 0 are defined by the system
¢ -2
V/l{l (03,32) = —
1
IsHy' (32) = ——5.

T

One can easily prove this theorem using the same argument as in the proof
of the theorem 3.5.4.

3.6 Stationary probabilities for an ergodic random
walk in Z°
Let us cousider a random walk Si(d,7), t € Z4 in Z2. starting at the point
(i.j)€ Z7:
So(i,3) = (2.7)
and having the transition probabilities as defined in the section 2.2, We do

not asswme here that d = 1.
Consider the following functions

H{a.3) =log{d_ piexp{ai + 3j}}
()

In(a.3) = log{ Z p;J exp{ai + :35}}

(+.5))
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hata.3) =log{>_ /):»'J exp{ai + 3j}}

[

For any a let us consider Jy(a) such that
dsH(a.d(a)) = 0.
and for any 4 let us consider (.10(,3-) such that
d. H{ao(:3).3) = 0.
Consider

Y )= H{a. 3p(a)) if H(a.B3(a)) > h(a. Js(a))
apla) = H{a.3(a)) otherwise,

where .J(a) is defined from the system

H{a.3) = I(a.8(a))
{ dsH{(a.3(a)) <0 (60)
Consider also
sy = | 0D ) Hao(3).8) 2 (ool 3). 5)
PRI 11(a(3).3)  otherwise,
where a( 7) is defined from the system
H(a(.3).3) = hy(a(B).i3) 6l
B, H(a(3).3) < 0 (61)

Let L(-). Li{-). L2(-) be the Legendre transforms of the functions H(-), Hyy(-). Hix(+)

correspoudinglyv. Consider the following function
Lisv) fi>0,73>0
Li(vY)y ifi>0,7=0

Ly(v?) ifi=0,j>0

0 ifi=j=0

19



where v = (V1. 0%).

From the large deviation principle for the random walk in Z} x Z' ( 3.3.1)
it easily follows the large deviation principle for an ergodic random walk in
Z2.Tor the transient case in the quarter plane there is an open problem for
the path identically equal to (0.0). We do not touch this case in our paper.

Theorem 3.6.1 Le¢t the random walk S, be ergodic. Then it satisfies the
large dcviation principle with the action functionals £, such that for any
T 2 0 and for any continwous path

;0.7 = RY

() /L t))dt

if the path » is absolutely continuous, and
L:(p)=noc
otherwise.

Let the random walk S; be ergodic.Clonsider the stationary probabilities
m(x).x € Z; of this random walk. Using the large deviation principle we shall
get now a logarithmic asvmptotics of 7([xN]) as N — oc for any v € 2.

We shall assume here that

(Ho):

(0) The Markov chain corresponding to the random walk S; is irreducible
and aperiodic.

(1) The induced Markov chain with the set of states Z; and transition
probabilities

m.0 Zp 1.0y = (L4 A1)

is irreducible and aperiodic :
(2) The same for the other induced Markov chain with transition proba-
bilities

pa{h b Z/) ((k,1) = (K1 4+ 1Y)

(H):
Y H(0.0) # 0.
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d
E”m(O) #0

d
d—ﬁﬂ{z}(o) #0

Using the same arguments as in the section 3.5 one can easily show that
for any two point there exists an optimal path from one point to another.
Consider for any z € R2 an optimal path to go from the point 0 to the point
z

@z 2 [0, 7] = Ri

and consider

£0,x = ‘C'r, (LPJ:)
Theorem 3.6.2 For any z € R%

.1
Aim —logm([zN]) = Lo,

Proof.
It’s easy to see that:

([zN1) 2 7(0) P(Sn+(0) = [zN])
Using the lower bound for the last factor we obtain the following bound:
%log T([xN)) > Loz — € (62)
To get the upper bound:
% logm([zN]) < —Loz +e

we consider the interval [0, Nr + N7] for some large r and 7 > 7., where 7,
is the time of optimal way from point 0 to point z.
Let 4o be the last moment of time when random walk hits 0, such that

Yo € (1,1 + Nr + N7]

Then we have:

Nr

P(S14nrsn+(0) = [zN]) =3 P(yo = F, (63)
k=1

o1



S14nr4N7(0) = [N]) + P(v0 2 1 + N7, S14nryn-(0) = [z N])

Let us note that for each term of first sum we have:
1
N log(P(70 = k7Sl+Nr+N‘r(0) = [IL'N]) S _‘CO,J: +¢ (64)

for N > N(e), and N(e) doesn’t depend from k.In order to estimate the
second term in ( 63) we note that for our case of ergodic random walk in
quarter of plane the following bound takes place:

P(v > Nr) < exp(—arN), (65)

—a is some fixed constant. The upper bound ( 65) was proved in ([5]). Note
that r may be taken sufficiently large. Then keeping in mind exponential
convergence to the stationary measure we can obtain the upper bound for
+ log m([z N]) by simple reasoning. Thus the statement of theorem 3.6.2 is
proved.

|

Let us calculate for any z € R2+ the value Lo .. For this let us consider
the system

H(a,B) =0,
VH(a,p) =z, (66)

> 0.

For any = € R}, there exists a unique solution of this system a*(z), 87(x), 7*(z).
Consider also the following equations

H{l}(a) =0 (67)

and
H2)(B) =0 (68)

Due to the convexity of the functions H;(+) and Hyg)(-) from the assump-
tions (H) it follows that each of these equations has exactly two different
solutions. Let )y < afl} and By, < B{22} be the solutions of the equations
( 67), and ( 68) correspondingly. One can easily show that

afy £0 < afy
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By S0 < By
%'H{l}(a}l}) <0, %'H{,}(a%l}) >0

and
%H{Q}(ﬁ{lz}) <0, %'H{?}(ﬁfz}) >0

Theorem 3.6.3 For any z € R% the following conclusions hold
(i) Let a*(z) < af,y and B*(z) < sz} then

Lo, = a*(z)z! + B (z)z?
and the optimal path from 0 to x is linear

t

T l) = ——= ’ t ’ * ’

pelt) = e te(0.7°(o)

(ii) Let o*(x) > a%l} and B*(z) < sz} then
Loz = ofyya’ + By’

where ﬂfl} is defined by the system

{ H(ail}aﬂfl}) = Oa

OpH(atyy, Bfy)- 20

For 12 = 0 the optimal path from 0 to z is linear
{1) = Sz, tef0,7)
pr - le, » T s

where 7! > 0 is defined from the equation

d N !
aHmle) = 5
For 22 > 0 the optimal path from 0 to z is piecewise linear
t
-—121 ifOStSTll,
1

Pe(t) =

21 + ;21(z—zl) frl <t <rl+7}
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where z; = (21,0), 2} >0, 7} >0, 72 > 0 are defined from the system

r—23

7z

VH(aly, By =

zl

= Huy(ely) = -
i
(iti) Let a™(z) < af,y and §*(z) > B}y then
Loz = a%g}ml + ﬁfg}l‘z
where af,y is defined by the system
{ H(afz},ﬁ{%}) =0,
%H(a%ﬂaﬁf?.}) >0
For z' = 0 the optimal path from 0 to z is linear
4
‘pi(t) = ;31:’ te [037-2]7

where 7% > 0 is defined from the equation

d x?

dp
For z! > 0 the optimal path from 0 to x is piecewise linear
¢
522 f0<t <7,
71
@i(t) =
t — 7'12

z2 + 3 (z—2) frf<t<ti+r7}
2
where z = (0,22), 23 >0, 7] > 0, 77 > 0 are defined from the system
r — 29
VH(afyy,By) = —5—»

T2

22

wH (B = T_E"
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(iv) Let a*(z) > a%l} and 3*(z) > sz} then
Loz = min{a?l}xl + ﬂfl}mz,af2}:cl + ﬁfz}:cz}
and the optimal path from 0 to z is the following

{ (1) zfa%l}a:l + ﬁfl}mQ > a%z}xl + ﬁ{22}$2

wz(t)
pi(t) if afpyz! + B2’ > a%z}xl + ﬂfg}xz

One can easily prove this theorem using the same arguments as in the proof

of the theorem 3.5.4.
It is useful to consider the following conditions which are equivalent to

the conditions (i),(ii),(iii) and (iv) of the theorem 3.6.3

L. ~ (i) hi(e*(2), 87(2)) £ 0, ha(a™(z),B%(2)) < 0.
2. ~ (i) hi(a*(2),5(z)) > 0, ha(e*(2),(z)) < 0.
3. ~ (iii) hi(a*(z), B%(z)) <0, ha(c”(x),B(z)) > 0.
4. ~ (iv) hy(a*(z),87(z)) > 0, ho(a’(z),B(z)) > 0

This equivalence easily follows from the definition of the functions ;)
and Hs).

Let us give geometric interpretation to the conditions (i) - (iv). For this
let us introduce the polar coordinates in R? \ {0}.

z' = r(z)cosy(z), z*=r(z)siny(z)

r(z) >0, 0<~y(x) <

o3

Let us consider 0 < +; < 7 and 0 < v, < 7 such that

2
wH(ad1y, BYy)
aH(adyy, By)

tgn =

%)



and 2 (a2 \
251 (a{2), B())
= H(a{z}’ﬂ{z})

tgy: =
Note that for any z € R},
a’(z) = ofyy == 7(z) =,

B*(z) = ﬁ{zz} <= ¥(z) = 72,

and moreover

o (z <af1}¢:)7(z >,

3

“(z) )
o (z) > oy = 2(2) <,
B*(z) < Bl <= 7(z) < 72
)

B (z) > Blyy = 1(z) > 1.

Due to the theorem 3.6.3 for any z € R2 the following conclusions hold.
(i) Let 4, < 4(z) < 742. Then the optimal path from the point 0 to the

point z is linear.

4

(ii) Let v(z) < 7, and y(x) < v;. Then the optimal path from the point 0
to the point z is the piecewiselinear path ¢, consisting of two linear segments:
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the optimal path from 0 to z; = (2!,0) and the optimal path from z; to z,
where z; = (2!,0), 2! > 0 is uniquely defined by the equality

YTz —z1)=m

T2 x

(iii) Let y(z) > v and y(z) > 7v2. Then the optimal path from the
point 0 to the point z is the piecewiselinear path ¢, consisting of two linear
segments: the optimal path from 0 to z; = (0, 2?) and the optimal path from
z3 to x, where z2 = (0,2%), 2% > 0 is uniquely defined by the equality

(T — z2) = 7

Y,
/)

kA

0

(iv) Let y(z) < v and v(z) > 2. Then the optimal path from the point
0 to the point z is the path ¢! or ¢? which provides the minimum of the
action functional.
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Define the sets
P_={z€ R v <y(z) <72}
P, ={z € Ri cy(z) < m,v(z) < 72}
Py ={z € R} :m <7(z),12 < ()}
p++ = {-’L' € R2.+_ ‘)’(.’Z?) <M,72 < 7(:1:)}

From theorem 3.6.3 it follows

Theorem 3.6.4 For any z € R%

Llog n([Nz) ~ — min{aty(z)a’ + By (2)a?, oty (@) + By ()2}
if z € Pyy and
~a*(z)z! — B (x)x? fzeP__
Slogn([Na]) ~ § —ofy(e)e! - Bhy()s? ifz € Py

—afy(2)a! = By (z)2?  fz e Py

One can see that these results coincide with the results of the theorem
2.2.1. It is suggestive to find deeper connections between analytic and prob-
abilistic approaches.
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4 Appendix.

4.1

Let us consider a countable Markov chain with a set of states X and transition
probabilities p; j, ¢,7 € X. '

We shall assume that the following conditions are satisfied

D:

(1) This Markov chain is irreducible and aperiodic.

(ii) There exist functions f : X — R4 and k: X — Z, such that

(a) forany b >0

> exp{-bf(5)} < o0

jexX
(b) there exists d > 0 such that for any 7,7 € X

pii =0if | f(7) — f(z) [>d
(c)

sup k(7) < oo
(d) there exists a finite subset X, C X such that for any i € X' \ X,

A SG) < 1) -

where ¢ does not depend on : € X \ Xj.
From these assumptions it follows (see [5] ) that this Markov chain is
ergodic and moreover the two following propositions hold.

1. for any h > 0 there exist ¢ > 0 and A’ > 0 such that for any i.7 € X
and for any t € Z,
Pft]) < cehf)=h'10) (71)

2. for any h > 0 there exist ¢ > 0 and & > 0, such that for any i € X and

for any t € Z
> 1) = 7(3) IS et/ (72)
JEX

where m(j), 7 € X are the stationary probabilities for this Markov
chain.
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Let consider a Markov chain having the set of states Z, and transition
probabilities p; ;, 7,7 € Z; such that

pi; = pi—i and 3 pji(j ~i) <0
J

for all 7 > d;, and
pi;=0if |7—1|>d;

with some positive constants dy, d,. Then this Markov chain in ergodic and
satisfies the conditions D with the following functions

fG)=Jand k(5) =1, j € Z4

The Markov chain with the set of states Z! and transition probabilities
Dij, 1,7 € Z' such that

pij = p+,j-i and ZP+,j—i(j —i)<0foralli>d; >0,

2

pij = p-j-i and 3_p_; i(j —i) > 0forall i < —d, <0,
J
and
p,',j=0if |j—-i|>d2
with some positive constants d, dz, is also ergodic and satisfies the conditions
D.

These two examples are trivial. To get not trivial examples one can con-
sider the almost homogeneous random walk in Z} satisfying some additional
conditions (see [1], [4], and [5] for examples ).

Let &(2), : € X, be a random walk in X corresponding to our Markov
chain starting at the point ¢ .

Theorem 4.1.1 Kolmogorov inequality Let V;(1,5),1,7 € X,t € Z,, be

independent random vectors with the values in R*, such that for anyt,57 € X
the vectors Vi(1,3),t € Z; are identically distributed and

1 Vi3, ) IS Co < 00 a.s (73)

where Co > 0 does not depend on 1,j.
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Then for any i € X there exists ¢ = c(t) > 0 such that for any 6 > 0 and
foranyT € Z,

¢
. . : : c .
P{ sup |l 2_ Valéa(d),€ns1()) = EVa(6a (i), nni (1)) 1> 6T} < 7 (74)
T=1,..., n=0
To prove this theorem we shall need the following
Lemma 4.1.1 For any 1 € X there exist ¢, > 0 and a; > 0 such that for

anyn,m € Z,

I E(Vn(&l(l)’{n+l(l)) - Evn(gn(i)v§n+l (Z)’ Vm(gm(i)’fm-f-l(i))_

(75)
—EVi(€m (1), Emsa (1)) | < cremilnm!
where (.,.) is a scalar product in R*,
“' - .
(z,y) = > o'y, 2,y € R*.
1=1
Proof of lemma 4.1.1
Let 1 € X be fixed, and
Vn = Vn({n(i)s§n+l(i)), an = EVna n € Z+-
For any n,m € Z,,n > m, one can easily get
E(Vn — Qn, Vin — am) = Z P,(',r;)Pi'.i" X
i aEX
X 20 (P = w ()i (76)

i'a"eXx

X(EVn(i',1") = am, EVa(3', ") = an)
From 76 by 73 it follows that
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| E(Vn — Qyn, Vm — am) |S 403 z"l'jlex Pf::#l) x

PN — w5 |

tI’JI
From ( 77), ( 71) and ( 72) one can easily get ( 75).

Lemma 4.1.1 is proved.
|

Proof of theorem 4.1.1
Let 7 € X be fixed, V,, = V,(£.(2), E&n i1 (7)),

a, = EV, and S, = E(VJ —a;),n€ Zy .
7=0

For given 6 > 0 and T € Z, let us consider the following events

An = {l| Suss > 6T, |l So |< 6T, .|| Su l|< 6T} ,n =0, ..., T.

Let I, be an indicator of the event A,,.. Then

t—1 t—-1

ENS P2 S 1850l —25 3 | E(Salu,Vi—a) = Ji(t) = Ja(t) (78)

n=0 n=o j=n+1
Lemma 4.1.2 There exists C > 0 such that for any t

L(t) < C (79)

Proof. From ( 78) and ( 73) it follows that for any A > 0 there exists

C, > 0 such that

S | E(Saln Vi~ 0) IS CiE(] S | Inexp{he}(m)})  (30)

j=n+l

Note that due to ( 73)

3t
I, =0a.s. forn < 55; (81)

Then from ( 73),( 80) and ( 81) we get
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t-1

L <G Y nE(Iexp{het(n)})

n=~6t
where 6 = =&-
2Co°

Consider the following event

B, = {& (n) > et}
Let Ig, be its indicator.Consider

t—1

Jo(t) = 3 nE(Ia,Inexp{h€l(n)})

n=60t

t—-1

J(t) =3 nE((1 = La,)Inexp{h&; (n)})

n=0t

For J3/(t) for small € > 0 one can easily get

t—1

Jy £ 3 nE(I,exp{et}) < Crexp(—pt)

n=0t
because of
E(I,) < Cjexp(—0't)

For J; we have

t—1

J3 <Y nE(Ia, exp{h€}(n)}) < Csexp(—7t)

n=0t
because of
E'(exp(hfﬁ(n))) < 00
for small h > 0.
From ( 82),( 83) and ( 84) it follows ( 79).

Lemma 4.1.2 is proved.
|
From ( 78) using lemma 4.1.1 we get

t—1
ElSIP2Y ElS.IPI.-C

n=0
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where ¢’ = ¢/(z) > 0.
Let us note now that

t—1

STE|Sa|? I > 82 P{ max | Sn ||> €t} (36)
oy n=l1,...,
From ( 85) and ( 86) we get
E|S|?+C "
Pl 1150 1y < ELSLEC s

Let us now estimate the value F || S; ||*.

t t t
ESIP<YENVi—a; P +2d> > | E(V;—aj,Ve—ac)|  (89)
i=1

J=le=3+1

From ( 88) using ( 73) and lemma 4.1.1 we get

E| S |°< ', (89)
where ¢’ = ¢’(z) > 0
From ( 87) and ( 89) we get ( 74)
The theorem 4.1.1 is proved.
]
From the theorem 4.1.1 by the ergodicity of the chain £, it easily follows

Theorem 4.1.2 Let the conditions of theorem 4.1.1 be satisfied, and

V=23 mpi;EVo(3, ) -
ijEX
Then for any 1 € X there exists ¢ = ¢(t) > 0 such that for any § > 0 and for
anyt € Z, the following estimation holds

P{ sup | 3 Vallald), bnpr(3)) = VT |I> 81} < é (90)
= t n=0

.....
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