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Abstract

Nous considérons un systéme de polling sur un graphe avec des temps d’inter-
arrivées, de services et de déplacements du serveur qui forment des suites 1.1.d. Nous
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abstract

We consider a polling system on a graph with general independent arrival, service and
walking times. We present necessary and suflicient conditions for stability, based on drift
analysis of both the workload and the residual interarrival times within some embedded

times called cycles.

Keywords: Polling systems, stability condition, general arrival, service and walking

times.

1 Introduction

We consider a polling system on a graph G; a single server follows some fixed path L that
starts at some point 0 and returns to that point after having scanned the whole graph
(not necessarily in a cyclic way). We consider some general independent arrival process
of customers. The location of the arrivals are i.i.d. If the probability distribution of the
location of arrivals have some mass at some points then queueing may occur there. The
server can serve one customer at a time. In addition to the service time, the server also
requires some random time (that may depend on its trajectory) to move from one customer

to another.

Such systems have been widely used as models in wide areas of applications in telecom-



munication systems in general and for Local Area Networks in particular, computer sys-
tems, reader-head’s movement in a computer’s hard disk, flexible manufacturing systems,
road traffic control, repair and maintenance. For overviews on polling systems, see Takagi
[20] and [24]. Growing attention was given in recent years to establish rigorously sufficient

and necessary stability conditions for such systems.

Several different approaches were used to obtain ergodicity as a measure of stability, see
[3], [5], [6], [12], [13], [19] and [25] for the stability of “discrete” polling systems (consisting
of N queues). Kroese and Schmidt [14], [15], studied the stability of polling on a graph (i.e.
“continuous” polling models), and Altman and Levy [4] studied the stability of non cyclic
polling in two and higher dimensional plains. In [3], and [6] Altman et al. further present
sufficient and necessary conditions for stronger notions of stability, namely the geometric
ergodicity and the geometric rate of convergence of the first moment of the process of
queues’ length, (embedded at polling instants). Sufficient conditions for Central Limit
Theorems and the Law of Iterated Logarithm were given in [6]. All the above references
assumed Poisson arrivals and general independent walking times and service times. The

contribution of this paper is to consider polling with general independent arrival process.

We study several notions of stability in this paper, and obtain in particular necessary
and sufficient conditions for the expected workload in the system to be uniformly bounded
in time. We show that under some second moment conditions, if the rate p at which work

arrives to the system (defined later) is smaller than one then the system is stable.

An alternative sample-path approach for studying the stability of polling systems is
given by Altman et al. [1]. Different type of conditions are imposed on a single sample

path, which yields several kinds of notions of stability under suitable assumptions.

The structure of the paper is as follows. In Section 2 we present the model. We define
a “cycle”, and present a drift analysis of the behavior of the workload (Section 3) and
the residual interarrival times (Section 4) within a single cycle. The stability results are

finally presented in Section 5.

2 model

Consider a polling system on a graph G. We assume that a single server follows some fixed

path L that starts at some point 0 and returns to that point after having scanned the



whole graph. Define such a scan as a cycle. Note that in a cycle, some points (including
0) may be scanned several times. Moreover, n consecutive cycles can be considered as one

large cycle.

Customers arrive to the system to arbitrary locations on the graph. Arriving customers
are routed to some location according to a routing sequence, assumed to be i.i.d. If the
distribution of this location has mass at some points, then queueing phenomena may occur
there. The processes of inter-arrival times and service times of customers are assumed to

be independent, and each of them forms i.i.d. sequence.

It takes some time for the server to move from one point to another on the graph. The

total walking times at different cycles are i.i.d. and independent of arrival and service

processes.

The number of customers that are served at point | € L on the graph at each visit is
determined by some polling discipline (such as the gated, exhaustive etc) which may be

random and may depend on the history of the processes.

3 Drift analysis in a single cycle

We first focus on drift analysis within a single cycle. We are interested to upper bound in
some sense the difference between the work present at the beginning of the cycle and the

end of the cycle.

We introduce the following random variables, defined on some probability space (2, F,P).
T is a random variable representing the time at which the cycle begins.
V is a random function V : G — R, representing the distribution of workload in the graph
at time 7.
V = [.cg V(z)dz is the total amount of work in the system at time 7",
X is the residual interarrival time (i.e. the time between 7" and the next arrival).
{m;}2, are i.i.d. random variables representing the interarrival times; 7y is the time be-
tween the arrival that occurs at time 7 + y and the following arrival. We shall assume
that 0 < Er; < o0.
{0:}:2, are random variables representing the service times; o; is the service time required
by the ith arriving customer (after 7"). We shall assume that 0 < Fo; < .
p:=FEoy/Em.



{a;}2, are random variables representing the location of the arrivals.

D is the total walking time in the cycle.

We assume that 0 < F[D] < oo; {0, ;}32, are assumed to be i.i.d, although o; and

«; may be dependent.

Define

7:= a nonnegative integer-valued random variable representing the number of arrivals that

occur in the cycle.

Define F' to be the g-algebra generated by {{;}is1, {0:}is1, {a;}isi}. Foralll =0,1,2, ...,
{n <1} is independent of F' (1)

and {n =0} = {V 4+ D < x}. We further assume that

—

(T,V,x, D) are independent of F° (2)

G:= a nonnegative random variable

(1) VIl = 0,1, ... and for all sets A € F, the event {G € A} N {n = [} is independent of F'.
(2) G < 7, a.s. on the event n > 1;

(3) G =V 4+ D on the event {n = 0}.

(4) G is the past interarrival time of the last arrival that occurs in the cycle, on the event

{n > 0}.
Denote 19 = ¥, (so that G < 7, a.s.).

Introduce
Ty =T+ G+ Y], 7, which represents the random time at which the cycle ends (where,
by convention, >°9_, ; = 0).
X1 = T, — G which represents the residual interarrival time at time 7) (i.e. the time
between 77 and the next arrival).
= 23721 o; is the total work arriving during the cycle.
Veul:= the amount of work that left the system during the cycle. It satisfies V4 + D =
T -T.

/1:= the amount of work at time 73. Thus V; = V + T — Vo,



Lemma 3.1 Assume E[n] < co. The following hold:

E(T|T,V,x,D)= E(T,V,x,D)Ec;  a.s.

n
EN " n|T,V,x,D)=E(|T,V,x,D)En

=1
E(T|T,V,x, D)= pE(Ty+x1 =T - X|T,V,x, D)

Proof. Follows from Wald’s identity, (1), (2) and the fact that

n
Nitxi—-T-x=) 7

=1

Denote

A = E(T\T,V,x,D) - pE(Ty — T|T,V,x, D)

Then it follows that

A:E(XI_X|T7V7X7D) a.s.
We are now ready to present the main result of the section.

Lemma 3.2 Assume E[n] < co. Then

EMWL|T,V) =V = pE[D]+ (p - VE(V"|T,V) + pE(x1 — X|T., V)

Proof. Follows from (5).

4 Residual interarrival times

4.1 The Poisson case, and Borovkov’s conditions

Below are some cases where the term £(x1—x|7, ‘7) can be evaluated. A general treatment

of this issue is delayed to the next section.



(i) In the case Poisson arrivals, xy and x; are both independent of 7" and V, and have the

same distribution with finite mean. In that case (6) simplifies to
EMW|T, V)=V = pE[D]+ (p - VE(VT,V)  a.s. (7)

(ii) In our case the following holds. The conditional distribution of x; given n > 1,G, T, ‘7, X, D
depends on G only, i.e.

P(x1 > tn,G,T,V,x,D)= P(ry >t + z|my > ) a@.s.
on the event {§ > 1} N {G = z}. Assume now that for some ¢ < oo and for all ¢,z > 0,
P(ri >t+4 x|l >z) <cP(r > 1) (8)

(This condition is known as Borovkov’s condition, see [9]). Then
pE(: = XIT,V) < pE(IT, V) = B [E(aln, G, T,V x, D)|T,V] < cE[n] <00 a.s.
Hence we get

EMW|T,V) =V < pE[D]+ (p— VE(V|T, V) + cET  a.s. (9)

4.2 2nd moment conditions: Exhaustive and Gated type policies

In this Section we present a drift analysis for the residual interarrival times. For simplicity,
we restrict to a cyclic polling system composed of N queues, and begin by analysing the

case where each of the queues is surved by either a gated or an exhaustive policy.

In order to have a “stable” behavior of the residual interarrival times, it is not necessary
to require that p < 1. However, if queue n is served according to the exhaustive service
discipline then we need to assume that the rate at which work arrives to that queue is less
than 1, or equivalently,

E[r] > Elo1I{a; = n}]. (10)

We shall consider 2N phases in the cycle: at phase 2n — 1, n = 1,..., N, queue n are
visited and served. At phase 2n, n = 1,..., N, the server moves (walks) from queue n to

the next queue, during a random time D".



Let x,, be the residual interarrival time at the beginning of phase n, and x(¢) be the

the residual interarrival time at time f. Let Yf_;n denote the vector of workloads in the
different queues at the beginning of the nth phase. In particular, we have y; = x, and we
shall understand xan4+1 = X’ (where x and X’ were defined in the previous Section, as the

residual interarrival time in the beginning and in the end of the cycle, respectively).

Since we consider gated and exhaustive policies only, it is easily seen that (Vn,xn)

constitute an embedded Markov chain.

We assume throughout the Section that the interarrival times have finite second mo-
ments. It then follows from standard renewal arguments that there exists some finite
constant C' such that

sup E[x(1)] = € (11)

Lemma 4.1 (i) For each n = 1,2,...,2N, there exist some finite constants M,,C,, and
€, > 0 such that

E[Xn-l—lﬂ_/;m Xn] < (Xn - €)I{Xn > fwn} + CnI{Xn < Zun} (12)
(ii) There exist some finite constants M and C such that
Elxan41lVioxal € (i — oI {xa > M} + Cl{xa < M)

where € = 2N ¢, > 0.

n=1

Proof. If phase n corresponds to a visit to a station where the service discipline is gated,

then it follows from (11) that
E[Xn—|—1|‘7n7Xn] S (Xn - ‘/n)I{Xn > "fn} + CI{XTL S "[n} S ma‘X(XTH C)
Hence (12) is satisfied with e =0, M,, = C and C,, = C'.

Assume that phase n corresponds to a walking time D' for some i. Choose M such
that
E[(D'+ C)I{D' > M}] < E[D']/2.

Then it follows from (11) that

E[Xn-l—l |‘7n7 Xn]



< El(xn = D){xn > D'} + CI{xn < D'} ]

< Iy > M} [B(max(x, — D', 0)|xn) + CP(M < DY)] + [{xn < M}max(C, M)
= {xn > M} (xn — E[D+ E[(D'+ C)I{D" > M}]) + I{xn < M} max(C, M)
< x> M} (xn — E[D/2) + [{xn < M}max(C, M).

Hence (12) is satisfied with

6, = E[D'/2, M, =M and C,, = max(C, M). (13)

It remains to establish the case that phase n corresponds to a visit to a station, say k,

where the service discipline is exhaustive. We have:
If x, >V, then x41 = xn — Var. (14)

Assume now that x, < V,,. Denote

t,: the moment when phase n begins (and thus ¢,4; is the moment when it ends).
Xn + Tin + ...+ 71t the (I+ 1)st arrival epoch after time ¢,

01 the amount of work brought by the customer that is the Ith to arrive after ¢,,

a1 the queue to which is routed the customer that is the [th to arrive after ¢,,,
ﬁl = Tn,l — O-n,ll{an,l = k}v

Si =Y B
¢(t) =min{l > 1: 5, > t}, for all ¢ > 0.

Note that {7; ,,,0i 0, a;n} =4 {7, 04, a;}. Then
For xn < Vi, Xnt1 = SqS(Vn) - Va. (15)
It follows from Gut [11] p. 58, that there exists some finite constant C' such that

sup B[Sy — 1 < C (16)
>0

By combining (15) and (16) we conclude that x,43 < C. Hence (12) is satisfied with
e=0, M, = C and Ch =C.

We establish (ii) for N = 2. The proof then follows a simple inductive argument for
arbitrary N. Let M = max(My,C3) + €1 + €2, C = max(My, ¢, ¢3).

Elxs|Vi,xa] < El(xz2 — e)I{x2 > Mz} + Col{x2 < Ma}|V1, x1]



< IHxi> Mi}(xi— e — €)P(x2 > Ma}[Vi, x1) + C2P(x2 < Ma}| Vi, x1)
+1{x1 < My} (Cl —€1)P(x2 > MQ|V17X1) + CyP(x2 < AM2}|‘717X1))
< IH{xi>M}x1i—a —€)
+I{M; < x1 < M}max(M,C3)+ I{x1 < M1} max(Cy,C3)
< Hxi>M¥xi—a—e)+l{xi<M}C

The fact that € > 0 follows from (i) and the fact that E[D] > 0 and from (13). g

Remark 4.1 The results of the previous Lemma easily generalize to any mizture of gated-
type and exhaustive-type policies, which are defined in a way similar to [3] and [16]. A
gated-type policy is characterized by a function f : Ry — Ry such that of upon arrival to
a station the amount of work in that stalion is V, then the amount of service lime given by
the server in that station is f(V). (f may even be a random variable, independent of any
other quantity). A pure gated policy is then characterized by f(V) = V. An exhaustive-
type policy is characterized by a function f : Ry — Ry such that if upon arrival to a
station the amount of work in that station is V', then the amount of service lime given
by the server in that station is such that when leaving the station, the amount of work
remaining there is V. — f(V). (f again may be a random variable, independent of any
other quantity). A pure exhaustive policy is characterized by f(V) = V. In the proof of
the previous Lemma, we simply replace V,, by f(V,,), in (14) and (15).

4.3 General stopping-type policies

Next we generalize the last results to a much larger class of policies. We consider again a
cyclic polling system composed of N queues, where in each station the policy to be defined

as follows.

Assume that the phase n corresponds to a visit to some station, say k, with an initial
workload of V,; and residual interarrival time y,. We shall use again the notation intro-
duced in the previous Subsection. For each phase n, we define the customers that arrive
after the beginning of the phase (i.e. after ¢,) to be “new customers”. Consider phase n.
Denote by ¢, (u) the number of the last new customer, being served during the phase n,

if policy w is used.

10



Definition: We say that a policy u is of the stopping type (ST policy) if it satisfies
(i) Upon arriving to the station, some of the initial work in the system is served. The

amount of work served is a function of the amount of work found at ¢,, in the station, say

F(V,) (with [(V,)) < Vi),
(ii) After that, some of the new customers are served according to the FCFS policy.

(iii) for each 7 > 0, the event ¢, (u) < is independent of the sequences

{rnbisi{ointisi {ain}si).
Note that the exhaustive and gated type policies are special cases of ST-policies.

Lemma 4.2 Assume that ST-policies are used in all stations. Then the sltalements of

Lemma 4.1 still hold.

Proof. Consider a ST-service u that uses some function f in step (i) above. Consider
the exhaustive type policy @ with the same f (i.e. service will be given until the amount

of work in the system decreases by f(V,)). Note that {x, > V,,} C {g,(u) = 0} and
en(u) < @p(a). Then

on(u)

tn—l—l -1, = f(‘/n) + E Sz(k)

=1

where s;(k) = 0; ,I{a;, = k}; and
Xn4+1 = (XTL - f(‘/n))I(X Z f(‘/n)) + (S,u,n + Xn — (tn—}-l - tn))I{XTL < f(‘/n)}

where S, =71+ ...+ 7 and g = min{l > 1: 5, + xn > ({n41 — 1)} The second

term in the right hand side of the last equality can be rewritten in the form:

[(Sun + Xn = (tng1 — 1) ) I {en(u) = @n(@)}
+  (Sun + Xn = (ng1r = ) H{en(w) < on(@)I{xn < f(Va)}

But on the event {¢,(u) = ¢,(4)}, we have
p=en(u) =@n(d)  as.
and on the event {p,(u) < ¢,(@)}, we have
p> on(u) a.s.

11



So

o

Sp,,n = ng:n(u) + Z Tni-
Sﬁn(u)‘i‘l

Therefore

en (i)
< E{(Sp,n T Xn — E si(k)) XmVn} <C

=1

where ' is given in (16) (and the last inequality follows from Gut [11] p. 58 exactly as in
(16)). On the other hand,

E{(Sun +xn = (tut1 =t ) {ea(w) < pal@)} X0, Vi }

= F {(Su,n + Xn — (tn—l—l - tn))I{S(pn(u),n + Xn — (tn—}—l - tn) < O} Xnv‘_/)n}

1
= F F Tin
1=¢n(u)+1

X I{Sgan(u) + Xn — (tn+1 -1, < 0}

fwn(u)} + Xn + Sg@n(u) + (tny1 — tn))

Xns f@}

CE{I{S )+ X = (b1 — b < 0] x, Vo }

C a.s.

IN

IN

Here Fy, (v is the o field generated by

—

‘/’rHX?w {Ti,nyai,nyai,n; 1 S { S @n(u)}

Finally we get

E (Xn-l—l Xn7‘7n) < (Xn - f(Vn))I{Xm > f(Vn)} + 2CI{Xm < f(Vn)}

We can thus choose M,, and C', in the same way we did in the proof of Lemma 4.1 for the

gated or exhaustive policies. g

12



5 Positive recurrence.

In this section we consider quantities that correspond to the sequence of consecutive cycles.
We add the i = 1,2, ... to the quantities defined in Section 3 in order to denote a quantity
refering to the ith cycle. Thus 7'(¢) is the beginning of the ith cycle etc. Let X(7) =

(T(5), V(i), x(0))-

Define
U(1) = {7, 05, 0;}72;. (17)

Let 6™ be the shift operator, such that
(Tnti» Ontsr ntj) = (75,05, ;) 0 8" (18)
a.s. Define recursively
U(i+1) = U(i) 007D = {r;(i + 1), 05(i + 1), 0;(i + 1)}52,. (19)

As before, we assume (i) to be a stopping time (for each 7), i.e. we make the following

assumption:

(A) (X(2), {m(7),05(1), a;(i); 1 < 5 < m(i)},n(i),G(¢)} are independent of U(i + 1) for
each 7 > 1.

As a corollary of this assumption, we have:

(i) for each ¢

U(i) =q U(1); (20)

(i) each of the sequences {X (i)} and {Y (i) = (V (i), x(i)} forms a time-homogeneous

Markov chain.

Theorem 5.1 Assume that there exist some finite constants M,C and € > 0, such that
B{x(i + 1)/ X()} < (i) - ) - T(x(i) > M) + C - I(x(i) < M) (21)
a.s. for all 1.

Then

13



(i) for each initial condition X (1)
A=min{i: > 1:x(i) < M} < x (22)
a.s.;
(i) sup E{A/X (1)} < o0,
where we take a supremum on all non-random initial conditions X (1), such that x(1) <

M.

Proof. Follows directly from the Tweedie’s criterion ([22] Section 6). [ |

Corollary 5.2 Assume, in addition to the conditions of Theorem 5.1, that
(i) En(i) is finite for all i;
(i) there exisls a non-negative function h, such that h(V) — oo as V — oo, and
B{V“(i)/ X ()} = h(V (i) (23)
a.s. for all i;
(iii) p < 1.
Then one can choose constants L and M, such that
(i) for each initial condition X (1)
A=min{i > 1: V(i) < L;x(i) < M} < (24)
a.s.;
(ii) sup E{A/X (1)} < oo,

where we take a supremum on all non-random initial conditions X (1), such that V(1) <

L and x(1) < M.

(iii) For arbitrary initial condition X (1), introduce a sequence {¢,}, ¥p41 > ¥, a.s.,

where

¢y =min{i > 1: V(i) < L; x(i) < M} (25)

14



and forn > 1
Upy1 = min{i > b, + 1: V(i) < L; x(i) < M}. (26)

Then there exists a constant U < oo, such that
E{t¢nt1 — ¥n|Fy,} <U (27)

a.s. for all n.

Remark 5.1 The statement of corollary 5.2 means, thal the set
B =10,I] x [0, M] (28)

is uniformly positive recurrent for the Markov chain {Y (¢)}.

Remark 5.2 The condition (23) is satisfied for ST policies with f,(V)> K -V for each

phase n (where K > 0 is some fized constant).

Proof of Corollary 5.2: Set

X =(T,V,x). (29)
Lemma 3.2 implies the inequality:
EWVi/X)<V+p-ED)+(p—-1)-KV +p-C. (30)
Therefore for each R > 0
E{(Vi+ R -x1/X}< (31)

V+R(x—¢€) - I(x>M)+RC-I(x <M)+ pC + pE(D)+ (p— 1)R(V).

Choose R >> 1 such that

R-e—p-(C+E(D))=6 >0, (32)
and L >> 1 such that
(1= p)-h(V) = (R+p)-C — p-E(D)= 6> 0 (33)
for all V > L. Set
6 = min{éy,d5}. (34)

15



Therefore, if either x > M or V > L, then
EVi+R-x1/X)<V+R-x-96 (35)
a.s., and if x < M and V < L, then
EVi+R-x1/X)<L+ R -max(C,M)+p-C+p-E(D). (36)

So we can apply Tweedie’s criterion [22] Section 6, and this completes the proof. g

Remark 5.3 For arbitrary initial condition X (1), introduce a sequence {1, }, ¥p41 > ¥y,

a.s., where

¢y =min{i > 1: V(i) < L;x(i) < M} (37)

and forn > 1

Ypgp1 = min{i > o, + 1: V(i) < L; x(1) < M}. (38)

It follows from Corollary 5.2 [22], that there exists a constant U < oo, such that
E{ i1 — Gal Fu} < U (39)

a.s. for all n.

Next we restrict to the setting and assumptions of Subsection 4.2. In particular, we

restrict to a cyclic polling system composed of N queues.

Proposition 5.3 Assume that ST policies are used in all station. Assume moreover that
p < 1 and conditions (i) of Corollary 5.2 holds.

Then (21) is satisfied, En(t) < oo; and hence the statements of Theorem 5.1 and Corollary
5.2 hold. Moreover,

sup E{T'(\) — T(1)/X (1)} < oo, (40

~—

where we take a supremum on all non-random initial conditions X (1), such that V(1) < L

and x(1) < M.

Proof. The result follows from the comparison with the exhaustive policy. Indeed, for

each 7 the r.v. n(¢) can be represented as a sum
(i) = m(i) + ...+ mn(i), (41)

16



where 72541(?) is a number of arrivals during the service phase on the station k, k =
1,...,N. Then we can use the induction arguments. Assume, that for fixed k a r.v.
Vak41(7) has a finite expectation. Consider an exhaustive policy on this phase (with the
same initial conditions), and denote for it by #x+1(¢) a number of arrivals during the

service phase. Then nyx4+1(¢) < fl2k41(7) a.s. and

~ . . . n . i
far1(i) = min{n  xopgr (V) + 0. Torgrg > Vaesa () + 3. o241} =
min{n : Z:Zl(TzkH,j = 02%k+1,5) > Var41(8) — Xar41(8)}

Since E(Tor411 — 02k+1,1) > 0 and EVop44(i) < oo, then Efjpiq1(i) < oo ( see, e.g., [11])
and, therefore, Enyp11(i) < oo and EVyp42(7) < 0o. The similar arguments can be used

to prove Engio < oo and (37).

Remark 5.4 Note, that if p > 1, then V(i) — 00 a.s. as ¢ — oo. Indeed, for each t

denote

Aty =min{n : x(1)+ 71+ ...+ 7 > t};

A(t) = Eigon: the amount of work, the customers bring to the system during time

interval [0,1);
S(t): the amount of work, is served during the time interval [0,1).
By definition, S(t) <t for all t, and renewal theorem implies
M)/t — (BEr)™ (42)
a.s. Since T(i+ 1) —T(7) > D(t) a.s. and ED(1) > 0, then
MT(0)/T(i) — (Er)™! (43)

and
A(T(@)/T(0) = LAT @)/ MT @)} - AMT ()T (D)} — p (44)
a.s. But V(i) =V(1)+ A(T(¢)) — S(T'(¢)). Therefore

lim inf V'(2)/T(¢) = lim A(T(¢))/T(:) — lim sup S(T'(¢))/T (i) > p—1>0 (45)
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and
V(i) — o (46)

a.s. as it — 00.

Remark 5.5 If we assume the Borovkov’s condition on the inter-arrival times, then the

condition (21) is always true (even for an arbitrary graph G ).

6 Ergodicity

There is a family of well-known additional sufficient conditions, when positive recurrence
implies the ergodicity (and, moreover, coupling- ergodicity) of the sequence {X ()} and
of the continuous-time processes (see, e.g., Asmussen [7], Lindvall [8], Meyn and Tweedie
[17], and others.). We present two examples for sets of such sufficient conditions. We

restrict to the setting and assumptions of Subection 4.2.

6.1 Example 1
Assume that

e (i) A r.v. 7y has a non-lattice distribution.

e (ii) The ST-policy on each station is fixed (i.e. it is the same for all cycles) and such,

that f(V) =V forall V.

e (iii) There exist some constants ¢; and ¢z, such that
g =Plo1<e1)>0, 2=E(D(1)<¢3)>0 (47)

and

g3 = P(ry > L+ max(C,e;) + ¢3) > 0. (48)
e (iv) There exist some constants 0 < a < b and p > 0, such that
P(D(1) e G) > p- MG) (49)

for each Borel set G C [a,b] (here A is a Lebesgue measure).
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Proposition 6.1 Under the above conditions one can construct a stationary ergodic se-

quence {Y'} on the same probability space with {Y (i)}, such that
PY(j)=Y) V¥j>i)—1 (50)

as 1 — 00.

Proof. For each integer m > 1 we can represent a set B = [0, L] x [0, M] as a union

of the sets:
B = Ul 1Ur ) (I—=1)/m,L-l/m]x [M-(r—1)/m,M -r/m]. (51)

Since the set B is uniformly positive recurrent for the Markov chain {Y'(7)}, and a "non-
latticity” of 7 implies irreducibility and aperiodicity of {Y(¢)}, then for each m one can

choose at least one pair (I,,, 7 ), such that a set

B(m)=[L-(ln—1)/m,L-ly/m]x [M-(rp —1)/m, M - r,,/m] (52)
is uniformly positive recurrent.

Choose m >> 1 such that 1/m < (b —a)/2. Then

P(Y(i+3)e ()Y()=2p-7() (53)

a.s. on the event {Y(7) € B(m)}, where p = const > 0 and v is a probability measure on
[0,00) X [0,00), and p and 7 can be represented in terms of ¢, ¢z, ¢3,p. So the Markov
chain {Y(¢)} is Harris ergodic, and this completes the proof. g

Corollary 6.2 Let V, be a vector of workloads on the stations at time t. Under the

above conditions, there exists a probability distribution P(-), such that the distributions

P(V; € (-)) converge weakly to P(-), as t — .

6.2 Example 2

We present below conditions that imply not only ergodicity, but also the finiteness of the
first moment of the workload in steady state, and the convergence of the first moments of

the workload to the steady state moment.

ASSUMPTIONS:
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(Ai) In all stations, a ST policy is used.

(Aii) p < 1 and the following stronger version of conditions (ii) of Corollary 5.2

holds. There exists some K > 0 such that
E{Vo(i)/Y (i)} > KV(i) (54)
a.s. for all ¢;

o (Aiii)
P(r>D(1)+ D(2)+ 0+ M and D(1)> M) >0

where M is given in (21) (which is satisfied according to Proposition (5.3).

(Aiv) Let By be a Borel set in R.
P({—-2L+7m1—01—-D(1)-D(2) € Bo}n{m > D(1)+D(2)+0+2L}n{D(1) > M}) >0
implies

—QLHSHZPgM PH{l+m—01—D(1)-D(2) € By}

N{r > D(1)+ D(2)+ o+ 2L} N {D(1) > M}) > 0

where L is given in (32).

Conditions (Ai) and (Aii) will ensure the positive recurrence. Condition (Aii) will
imply moreover the existence of first moments of the workloads. Conditions (Aiii) and
(Aiv) are required to construct a “small set”, as will be required in Theorem 6.4 below.
A simple sufficient condition for both (Aiii) and (Aiv) to hold is both D(1) and 7 have

both positive probabilities to belong to Borel sets having finite measures.

Proposition 6.3 Under the above assumptions, {Y (i)} is ergodic and V(i) has finite
expectation for all ©. Let w be the steady state distribution of the workload. Then

E[V] < 0, lim E[V(i)|X(1)= 2] — E[V] (55)

11— 00

Jor all x € X.

To prove the proposition we shall use the following Theorem ([23, 24, 17]):
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Theorem 6.4 Consider a strongly aperiodic Markov chain X, on a state space X with
transition probabilities P : X X B(X) — [0,1]. Assume that there exists a set K € X and
a functions g, f: X — R, ¢(-), f(-) > 1, such that

(i) there exists some € > 0 such that E[g(X,41) — 9(X,)|X,] < —€f(X,,) for X, € K¢;
(77) Elg(Xn41)|X,] < 00 for X, € K;

(7i7) K is a small set.

Then
(a) X, is ergodic.

(b.1) The steady state expectation exists: E[f(X)] < oo;

(b.2)

E[f(Xn)| Xy = 2] — E[f(X)]

Jor all x € X.

Remark:

In the above Lemma, a set K is said to be small if there exists some positive measure ¢

on X, such that for any B C X with ¢(B) > 0 there exists j such that

J
inf » P*(z,B)>0.
zeK

n=1

where P(z, B) is the transition probabilities of the Markov chain.

Proof of Proposition 6.3: Let Y = (V, x). We apply Theorem 6.4 by identifying ¢g(Y)
with g(Y) = 14+V 4+ Rx where Ris givenin (32),and Y = (V,x), f(Y) =1+ (p—1)KV/2,
K ={(v,x):v <2L,x < M}; The measure ¢ related to the small set K is defined as
follows. Let By = {x|(0,x) € B}. Then

¢(B) = P({-2L+m1—01—D(1)=-D(2) € Bo}n{m > D(1)+D(2)+o1+2L}N{D(1) > M})

With the above choice of g and f, (31) implies conditions (Ai) and (Aii) of Theorem 6.4.

Next we show that I is small.

Assume that we are at the beginning of a cycle, say cycle 1, in some state (V(1), x(1)) €
K. Then

e (C1) D(1) > M implies that an arrival will occur during cycle 1, since x(1) € K and

hence smaller or equal to M.

21



e (C2) 1 > D(1)+ D(2) + 01 + 2L implies that the next arrival will not occur in the
current cycle nor in the next one. Indeed, in that case, the total length of cycles 1

and 2 is

V())+D(1)+ D(2)+ 01 <D(1)+ D(2)+ 01 + 2L

since V(1) € K.

Hence (C1) and (C2) imply that V(3) = 0. x(3) is then given by
¥3) = x(1) + 7 — [V(1) + D(1) + D(2) + ]
Assume now that B is such that ¢(B) > 0, i.e.
PH{-2L+71 —01—-D(1)-D(2) e Bo}n{m > D(1)+ D(2)+ o1 +2L} N {D(1) > M}).
Then for any Y (1) € K

P(Y(3) € BY (1))
> P(Y(3)€ Bn{n > D(1)+ D(2)+ 01 + 2L} n{D(1) > M}Y (1))

P(x(3)e Bon{r >D(1)+ D(2)+ o1+ 2L}n{D(1) > M}|Y (1))
P(x(1)+ 7 — [V(1)+ D(1)+ D(2) 4 01] € By
N{r1 > D(1)+ D(2)4+ o1+ 2L} N {D(1) > M}|Y (1))

_QLHS’SM P(l4+ 7 —[+D(1)+ D(2)+ 01] € By

v

N{r > D(1)+ D(2) + o1 + 2L} N {D(1) > M}|Y (1))
> 0

uniformly for all Y (1) € K. This follows from the definition of the measure ¢ and from
condition (Aiv). [ |
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