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Abstract: This paper tries to give some insight about relationships between Viterbi and Forward-
backward algorithm (used in the context of Hidden Markov Models) on one hand and Kalman
filtering and Rauch-Tung-Striebel smoothing on the other. We give an unifying view which shows
how those algorithms are related and give an example of an hybrid system which can be filtered
through a mixed algorithm.
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Remarques sur le filtrage de données semi-markoviennes

Résumé : Le but de cette note est la mise au clair des relations existant entre d’une part les
algorithmes de Viterbi et Baum-Welch (utilisés dans le cadre des modeéles a source de markovienne
cachée) et d’autre part ceux de Kalman (filtrage) et de Rauch-Tung-Striebel (lissage). On donne
a la fin une classe de processus semi-markoviens avec un espace d’etats hybride ou vivent a la fois
des variables discrétes et continues; un algorithme de filtrage et de lissage optimal est donné. On
résoud également de manieére exacte les équations de filtrage et lissage pour une certaine classe de
problemes non-linéaires.

Mots-clé : filtrage, lissage, Viterbi, Kalman
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1 Introduction

In this paper, we will consider estimation of the state of semi-Markov processes. These processes
arise in two quite different fields: Hidden Markov Models (widely used for speech recognition ([6]))
and Kalman-Bucy filtering; in the first case, the state-space is discrete (generally finite) while in
the second one it is the Euclidian space. However, algorithms which are used have considerable
similarities. Inspection of these similarities will lead us first to a generalization of Kalman-Bucy
filtering in a particular extention to non-linear systems and secondly to extend this model to a
state-space which is mixed continuous-discrete.

Semi-Markov processes have the state-space representation (X,,,Y,) (in some measurable space
X xY) where Y is the observation and X is the hidden state; they are determined by two functions
II and W:

e X, is a Markov chain with transition probability II(z,z’) (or II(z, z")dz’ for continuous state
space); Il may depend on n.

e Y, a random variable whose distribution depends only on X,,; that is:
P(Y, =yl X0 Y7L YN = P(Ya = ylX,) = ¥(Xo,y)
in discrete case, or
P(Y, € dy|Xg', Y™, Yok ) = P(Ya € dy|X,) = U(Xy, y)dy
in continuous case

(We put X! = (Xp, Xpy1, ..., Xg) and Y™ = Y["). An initial distribution is also given for X,. The
distribution of Y,, may depend on (X,_1,X,,) (i.e. on the transition) without serious change in the
theory.

Two problems are traditionnally addressed:

e Smoothing: what can be said of the sequence Xg, X5, ..., Xy once we are given an observation
set Yl,YQ, ceey YN?

o Filtering: how to estimate recursively X, from the observation of Y;?

In any case, the problem is strongly connected to the maximization over Xy, X3, ..., X,, of the
log-likelihood functional with has the form

'C(AXV07AX717 "'74XTL) = f(4X074X17Y71) + f(4X174X27Y2) —I_ —I_ f()(n—lv)(’rmyn) (1)

Usual filtering algorithms (Kalman-Bucy, Rauch-Tung-Striebel, Viterbi...) consists only in fast exact
maximization of such a functionnal by taking maximum advantage of this particular form. For more
general case (non-linear...), one could as well be interested on approximate solution of this equation
by fast numerical methods (which are frequently very efficient); this last aspect does not seem to
have been really explored. In this paper, we will try to extend as far as possible exact maximization
to some non-linear models.

Kalman-Bucy filtering is used when the model is linear gaussian, typically

X, = FX,_1+wyq ; Wy = N(07Q) (2)
Y, = HX,+wv,, v, ~ N(0,R)
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(for sake of simplicity, we assume that matrices F, H,Q, R are not time-dependent and v and w are
two independent sequences of independent variables). We have

W(z,2') = exp(~(z' — F2)'Q7'(a' - Fw)/Q)W
U(z,y) = exp(—(y— He) R (y— Hx)/Q)W

In the case of non-linear filtering with discrete state space (Hidden Markov Models), transition
probabilities are given by a matrix, and observation probabilities constitute a set of probability
measures indexed by the states:

H(‘XTL = leXn—l = Z) = HU
U(X,,y) = Y,(y) if X,,=7

We will show how the solutions for those two cases are related and, in last section, we give an
example where the state space is a mixed discrete and continuous space.

2 Forward-backward and Viterbi algorithms

We compare here two algorithms: the first estimates the present state X,, by maximzing it proba-
bility conditionally to the observations, while the second maximizes the probability of the whole
trajectory Xg, X1,..X,, conditionally to the observations. In the case of filtering, the observations
considered are Y7, Y3, ..Y,, whilst in the case of smoothing it is Y7,Y7,.. YN, N > n.

2.1 Forward-backward algorithm

This algorithm is designed for recursive estimation of the probability for the current state X, to
be z once we have observed Yi,..Y,; that is P(X, = z|Y™); it is actually simpler to calculate the
unnormalized probability a,(z) = P(X, = z,Y™); using Markov property and Bayes formula we
obtain

P(Y,|X, =2, Y"HP(X, =2,Y" )
=V(2, Y)Y P(Xp=a]Xpo1 =0, Y HP(Xpoq = u,Y"7)

an(z)

= \IJ(x,Yn)Zan_l(u)H(u,w). (3)

Using this formula we can estimate recursively at each time n a,(z) for all values of z.
In the same way, in continuous state space, we obtain for the unnormalized probability density
the equation

ay(z) = \Il(x,Yn)/an_l(u)H(u,:L‘)du.

In the case of Kalman-Bucy filtering, a,,(z) is a Gaussian density and last formula leads directly to
Kalman-Bucy filter equation, expressing the reestimation of mean and variance. In the same way,
after time N, we can compute recursively the backward variables 3,(z) = P(Y,,|X, = z) with

ﬁn(x) = \Ij(w, Yn) Zﬂn+1(u)H(x, u)
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The estimated filtered state at time n will be
&, = arg max a,(z).

Markov property (independence of the past and future conditionally to the present) implies that
P(X, =z,YN) = a,(2)3,(z) and the estimated smoothed state at time n will be

e# = argmax a,(z)8,(z).

2.2 Viterbi algorithm

Viterbi algorithm is designed for recursive estimation, for each state z,, of the most likely path
ending at this state, say C(z,,) = (zo(@n), ...xn-1(n), z,). Like before we have

du(22) 2= P(Czn),Y")
= sup P(zg,..z,Y")

L0 Tn—1

= sup  P(Yp,zn|20,2p 1, Y V) P(2g,..2p_1, Y1)

L0 Tn—1

= sup  P(Y,,z.|zn_1)P(z0, ..xn_l,Yn_l)

L0 Ln—1

= Ssup P(Ynaxn|xn—l)¢n—l($n—l)- (4)

Tn—1
And we have
P(Y'rm xn|wn—1) = H(wn—la wn)qj(wna Yn)

At the same time we memorize the function

fn(-rn—}—l) = arg S;lp H(xna xn—l—l)qbn(xn)

n

When the state space is discrete, this function is a state pointer; is the case of Gaussian linear
smoothing it will be a linear function (see below). The filtered estimate at time n knowing Y is

&, = arg max ¢, ().
x
Smoothed estimates over the interval [0, N] are given by the equations

ty = N (5)
a1 = &ilay) (6)

Those equation are well known in dynamic programming (cf [1]).

2.3 Comments

Forward-filtered estimate &, maximizes the a posteriori probability P(X,, = z|Y™) with respect to
x, while Viterbi-filtered estimate &, maximizes ¢, (z) which is the a posteriori probability of the
whole path; those two estimates are generally different. However, as we shall see in next section,
they are identical in the case of Gaussian linear filtering. Next sections we will consider smoothing
only under Viterbi aspects for the following reason: nothing guarantees that the sequence z# =
argmax, P(X, = $|YN), n = 0,..NV, has a non-zero probability for the Markov chain; this sequence
fondamentally different from (z7). However, in the case of Gaussian linear smoothing, those two
sequences are identical.
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3 Fast filtering in continuous state space

In the case of continuous state spaces, the problem in the application of previous formulas is that we
have to memorize functions ¢, and &,, which is impossible unless those functions are parametrized
by a vector, say # € R®. This is what happens in Kalman-Bucy (filtering) and Rauch-Tung-Striebel
(smoothing) algorithms where the these functions are Gaussian densities.

We explore here a more general setting where ¢, and £, can still be parametrized. We study
only the stationary case (i.e. corresponding in the Kalman-Bucy context to the case where the
variance of the first state is such that no matrix has to be reestimated during the algorithm). The
assumption on the model is constituted by equation (7):

Theorem 1 We assume that the transition and observation probability may be expressed as
logP(X, =2"Y, =y |Xp_1=2) = —U(z—Az") = V(&) +V(2)+ 002 - 2z() (7)

where U and V' are convex fonctions and 8 and Z are arbitrary fonctions. We assume that the a
priori probability for Xq is proportional to exp(—V (zo) + 61 x0); in that case, functions ¢, and &,
may be parametrized with a sequence 8, and filtering and smoothing equations are

0, = AT6,_,+0(Y,) (8)
nlz) = Az + V() (9)
&, = Vh(8,) (10)
where g and h are Legendre transforms of fonctions U et V :
o(0) = sup6a — U(2) (11)
h(8) = sup 0Tz — V(). (12)

and equations (5) are used for smoothing.

Proof The proof is elementary if one uses equation (4); it consists in verifying by induction that

n

log(¢n()) = bz = V(2)+ Y _g(0i-1) = Z(Y)

=1

Equations (10) and (9) come from the fact that the & which realizes the supremum of equation (11)
(resp. (12)) is Vg(8) (resp. Vh(8)). |

The correspondence with Kalman-Bucy filtering and Rauch-Tung-Striebel smoothing (with the
notations of equations (3)) is

A = P F'p!

U(x) e(FTQ™'F + PNz /2
V(z) ot Pta )2
6ly) = H'R™'y
Z(y) y'R™1y/2 4 const
0, = Polaf

T —1 A
Ao, = P i,
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where Py and P_ are variances of prediction errors of 2 = E[z,|Y"] = &, and &, = E[z,|]Y" '] =
Fi, (P = FPyFT + Q and P7' = P' + HTR™'H, cf [3] table 4.2.1 and 5.2.2). In order to
verify this, observe that the dynamic of the linear model is

log P(z',y'|z) = —(a'—Fa)'Q Yo' — Fz)/2 — (y' — H2"\'R™Y(y' — Hz")/2 + const
— 2T FTQ Y Fz/2 4+ 2T FTQ ' — 2™ (Q~ ' + HTR'H)2'/2
—yTR™ Yy /2 — y"" RV H &' + const

and the choice of (U,V, A, Z) above leads to

—U(z — Az') = V(') + V(e)+6(y) 2" - Z(y)
= —(z— Py FTPTYN(FTQ'F + PN (x — PLFTPT'a") )2
—ac’TP_lflx’/Q + wTP_;lx/Q + Jc’THTR_ly’ — y’TR_ly’/Q + const
= —2TFIQ™'Fz/2+ T (FTQ™'F + P;Y P, FT P o
— (P PPy FTQ PP FT P2 + PTY PP FTPTY + P )22
—I—x’THTR_lyl - y’TR_ly’/Q + const
= —2TFTQ'Fe/24+ 2T (FTQ Y (P. — Q)P  + FT PN
—e"T(PZH(P- = Q)Q7 (P~ — Q)P=' + PZN(P- — Q)P! 4 P )a' /2
—I—JL"THTR_lyl - y'TR_ly'/Q + const
which is the same.

When dealing with non-linear cases, the most interesting situation seems to be the following;:
We are given (A4,U,0,7), that is the probability given the past and the future

log P(z',y'|z,2") ~ —U(x — Az") — U(z' — Az") + 0(y) ' — Z(y)

(the Markov chain is considered as a reciprocal process) and V' has to be computed; for smoothing
purpose, an approximation will be enough because this function is utilized only for the obtention
of the filtered estimate of the state at last time N. In other words, a replacement of V by V has
the same effect as remplacing the likelihood of the sequence (zg, ...z x) by

P(zg, ..acN)eV(IN)_V(ZN)

which has a small influence on the estimates except close to the end.

4 An hybrid model

The state is now represented by a vector and an integer (z,e). As we shall see below, the model
considered here is interesting if we are given the distribution of the observation and the state at
time n conditionally to the state at times n — 1 and n 4+ 1 (the Markov chain is considered as a
reciprocal process (cf [4],[2])), and if we want to smooth data.

Theorem 2 We assume that the transition and observation probability may be expressed as

log P(2', €',y |z, e) = —Ueer(z — Ax’) — V(') + Vo(z) + H(y’)Tx' — Ze(y) (13)
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where the functions U and V. are convex and the functions 0. are arbitrary. We assume that the
a priori probability of (zo, eo) is proportional to po(eg) exp(—V (zo) + 0L 0); filtering and smoothing
may be performed by estimating the continuous and discrete states through the equations

no = log(po(e))
0, = AT6,_, +06(v,) (14)
'nn(e) "7n—1(€n—1(€)) + gen_l(e)e(gn—l) - Ze(Yn)
en(€) = argmaxin(en)+ g, e(0n)
fn(xye) = Aw—l—VgEn(e)e(On)
én = argmax{n,(e)+ he(0,)}

&, = Vhe,(0,)

where geer and h. are Legendre transforms of functions U..r and V. €,(e) the most likely discrete
state at time n knowing e,+1 = e (it is independent of x,,11).

Proof By using formula (4) one shows straightforwardly by induction that

N
log oy (an,en) = max log(po(€o)) + 3 Genren(On1) = Zen(Yn)

n=1
+0)an — Vey(2n)
= nn(en) +0%any — Vo (zn)

where 7, is given in the statement. Taking the supremum over zy, we obtain 23 = Zy = Vh., (0n)
and the probability of the best path arriving at ey at time N is

logon(en) = nn(en)+ hey(On)

The optimal sequence (e) which will maximize this quantity corresponds to the equations given
in the statement. |

Comments:

e Storage requirements of this algorithm are still reduced: for smoothing it will be N state
pointers (as in Viterbi algorithm) and N vectors.

e One has
Hn = VUe;_16;($:L - Ax:;—l—l)

where (27, €e*) is the optimal sequence. This can be checked instantaneously by differentiation

n’-n

of the global likelihood of the sequence (expressed in the form (1)) with respect to z,: the
three terms which appear lead to the relation (14).

e We can model a signal whose law is a mixture of linear models: each element of the mixture
will be indexed by a pair (e, €’) and U.s(z) will be (with some abuse of notation)

Ueer(2) = —log(p(e, €) + 2T Uperz
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where p(e,€’) is the probability of the transition from e to e’. As before, functions V,(z)
will be quadratic forms 2’ V.z and 6(y) is a matrix product Oy. If we drop indices in the
(e,€')-dependent linear model (F.o/, Qcery Heery Reer), we have to identify the likelihood (13)
to
(@~ Fo)T Q7N (a' — Fa)/2— (y - HaY Ry — H')/2

and this leads to

H'RT'H+ Q' =24TU. A+ 2V,

FTQ™'F =2U.., — 2V,

FTQ_l + Q_lF = U A+ AT(]ee’

R7'H = 0.
With those notations the process may be described this way: starting with a discrete state

(e, ), the process jumps to another one ¢ with probability p(e,e’), and a new state 2’ is
chosen with the dynamics of (Fier, Qcer) and an observation y’ is then produced with z’ and
(Heer; Reer) (cf eqs (2)).

Setting e = ¢’ in the equations above (steady state), we see the principal restriction of this
model: the matrices R~'H (= ©) and Py FT P~ (= A) are independent of e.

e Functions V. have weak importance for smoothing (with an infinite number of observations,
the smoothed estimate of X,, is independent of functions V,).

e Reciprocal point of view: We are given (A, U..r, 8, Z.), that is the probability given the past
and the future; it will have the form

log P(e' 2’ y'|e,z,e" 2") oc —Ueer(z — Aa’) — Ugron (2’ — Az") + O(y’)Tx' + Za(y')

(the Markov chain is considered as a reciprocal process) V. has to be computed in such a
way that the formula for P(e’,2’,y'|e, ) given in the theorem is a probability (i.e. exp(—V)
should be an eigenvector of the operator f — 3", [ f(€',2") exp{—U.or(z — Az') + 0(y") 2’ —
Ze(y')}da'dy'). As we said before, for smoothing purposes, a reasonable approximation is
enough.
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