
HAL Id: inria-00074701
https://inria.hal.science/inria-00074701

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextual typesetting of mathematical symbols taking
care of optical scaling
Jacques André, Irène Vatton

To cite this version:
Jacques André, Irène Vatton. Contextual typesetting of mathematical symbols taking care of optical
scaling. [Research Report] RR-1972, INRIA. 1993. �inria-00074701�

https://inria.hal.science/inria-00074701
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

appor t

de r ech er ch e

1 9 9 3

PROGRAMME 3

Intelligence artificielle,

systèmes cognitifs

et interaction homme-machine

 Contextual Typesetting
of Mathematical Symbols

Taking Care of Optical Scaling

Jacques André & Irène Vatton

N˚ 1972
23 juin 1993

Contextual Typesetting
of Mathematical Symbols

Taking Care of Optical Scaling

Jacques André
�

& Irène Vatton
���

Programme 3 — Intelligence artificielle, systèmes cognitifs
et interaction homme-machine

Projet Opéra

Rapport de recherche n˚1972 — 23 juin 1993 — 24 pages

Abstract: Typesetting of mathematical formulae has conflicting requirements: on the
one hand, optical scaling is a need for large symbols; in the other hand, large symbols
are made of composite items that are neither easily nor nicely put together.

In this paper it is shown that such large symbols should be computed at print time
so that they reach the quality of metal typesetting. An implementation of such dynamic
fonts is in progress in the Grif editor.

Key-words: Mathematical symbols, dynamic font, optical scaling, Grif.

(Résumé : tsvp)

This study is partly financed by the EEC/Comett II project no 90/3697/Cb (Didot: Digitizing and Design
of Types).

�

Irisa/Inria-Rennes, Campus de Beaulieu, 35042 Rennes cedex – jandre@irisa.fr
���

CNRS/Inria-Rhônes-Alpes, 2 rue de Vignate, F–38610 Gières, France – vatton@imag.fr

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)

Téléphone : (33) 99 84 71 00 – Télécopie : (33) 99 38 38 32

Composition des symboles mathématiques
avec ajustement optique

et tenant compte du contexte

Résumé : La composition des formules mathématiques pose encore quelques pro-
blèmes : d’une part, il faut que les symboles suivent les règles d’ajustement optique
; d’autre part, pour cela, on compose ces grands symboles à l’aide de morceaux plus
petits, mais ce faisant on perd la qualité désirée.

Nous montrons ici qu’il est possible de calculer la taille et la forme des grands
symboles de façon dynamique, c’est-à-dire lors de l’impression, et d’obtenir ainsi la
qualité du temps du plomb.

L’implémentation d’une telle fonte mathématique et son utilisation depuis l’éditeur
structuré Grif est en cours.

Mots-clé : Symboles mathématiques, typographie, ajustement optique, fontes dyna-
miques, Grif,

Contextual Typesetting of Mathematical Symbols 1

Contextual Typesetting of Mathematical Symbols
Taking Care of Optical Scaling

Formatting of mathematical formulae is a hard task. Significant progress had been
made by the end of the 70s when the tree structure of formulae was used in batch systems
such as EQN [1] and TEX [2]. At the beginning of the 80s, systems like Titus [3] allowed
interactive formatting of formulae. Today, almost all of the commercial products offer
facilities to handle high quality mathematical formulae.

In this paper it is shown that problems still exist: Optical scaling is a must for large
symbols: to do so, they are made of smaller items. However, today fonts1 dedicated to
mathematics allow only discrete patterns. A solution is then proposed: it is based on
the PostScript font machinery that allows the drawing of a character on the fly and to
extend its shape to the correct size according to its context. Finally, an implementation
of these principles into the Grif editor is described.

1 Fonts for mathematical formulae

1.1 The needs

Mathematical formulae are made of letters from different families (“a”, “a”, “ � ”, “
�

”,
“ � ”, etc.) and of a “menagerie” (as Lamport says [5]) of mathematical symbol (“ � ”,
“ � ”, “ � ”, “ � ”, “ � ”, “ � ”, etc.) at different point sizes (if, in 	�
 , 	 is at 12 point size then�

is at 10 point size). Furthermore, miscellaneous rules (e.g. for fractions, determinants,
etc.) are needed, as well as a set of variable-sized symbols (integral sign, summation
sign, parentheses, horizontal or vertical braces, brackets, arrows, radical sign, etc.).

These variable-sized symbols have to follow the so called optical scaling rules:
if a 50 point size integral sign was magnified through some affine transformation to
100 point size, this magnification would apply as well to its thickness: the stem would
be excessively bold (figure 2). Metal character collections offered large sets of w � h
integrals, parentheses, braces, etc. For a given width w measured in points, there was a
set of symbols of different heights h. The figure 1 show braces (here numbered from

1Here font is used with the same meaning as used in Page Description Languages: a font is a set of
(algorithms to describe) characters of one familly (e.g. Helvetica-Narrow-BoldOblique) that may be rendered
in any size, any direction and with any colour.

2 Jacques André & Irène Vatton

Figure 1: Metal founders offered large sets of variable-sized symbols, at various thick-
ness, and for each, at different sizes. Here, 6 point braces from the Fonderie Générale
(courtesy Musée de l’imprimerie, Lyon).

Contextual Typesetting of Mathematical Symbols 3

Figure 2: Left: a) “ text” integral sign at point size; b) “display” integral sign at 50 point
size; c) the same “text” integral as a), magnified about 2 times: note how the thickness
changes. (Lucida fonts). NOTE: due to copyright problems, the Lucida font can not
be included into this PostScript file for distribution through ftp. So, the corresponding
characters have been replaced by a bitmap representation of them.

1 to 27) having the same 6 point width. These widths did not vary much (from 3 to
7 or 8 points). However today, bolder symbols are required: if one wants to draw a
mathematical formula such as “ � 	
�� ” to be printed on a slide for an overhead projector,
one needs to use a large point size, e.g. 60 points, for the “ 	 ” and parentheses must
have the same boldness (see figure 11 right). This means that, for each given point size,
there is a set of variable-sized signs, whose height is adaptable to any factor and whose
boldness is (almost) constant.

1.2 Computerized mathematical fonts

Although there are thousands of fonts available on laser printers or phototypesetters,
only few of them are concerned with mathematics. Today, the main ones are:

� cmexnn (math extension) fonts created by �����
	���
���� for TEX ([4], appendix F);

� Symbol font , one of the four fonts that have always been installated on any
PostScript system (the three other ones are Times, Courier and Helvetica); refer
to [6], appendix E.11;

� The Lucida familly that offers both a LucidaMath-Symbol almost equivalent to
Adobe’s Symbol and a LucidaMath-Extension where one can find symbols that
belong to TEX’s cmex and some other ones; refer to [7].

� Two new versions of Times (by Spivak and by Jungers) that offers TEX’s math
extension as Lucida does.

4 Jacques André & Irène Vatton







⌠


⌡











↑




Figure 3: Variable-sized symbols are generally drawn as composite symbols. The spaces
between items are only present, here, to indicate the miscellaneous parts of symbols.
(Symbol font).

As shown in the previous section, two main problems arise with mathematical fonts.
Here is the way computerized fonts solve them:

Character set All of these fonts offer a large set of special characters, although always
too small. (Another problem with mathematics is that mathematicians are used
to inventing new symbols according to their own needs. In that way, any system
must be open.). There is no major problem to get bigger character sets. One way
is, like Lucida, to offer two or more fonts (with the meaning of footnote 1) like
Adobe Expert fonts do. This is only a problem of software engineering or rather
of coding standard (Unicode, a 16 bits encoding scheme, will allow many more
symbols; however it will be space consuming).

Variable-sized symbols While mathematics oriented hot metal fonts contained a large
set of symbols of any size in any point size, computerized fonts replace variable-
sized symbols by a discrete set of composite symbols. For example, the ends of
an integral sign are made of the upper spur and of the lower spur while the stem
is assembled with a set of spare bars. See figure 3.

1.3 Remaining problems

If formatters use these fonts as they should (by using the complete character set, correct
metric, etc.), rather good quality formulae can be drawn. However some problems
remain.

1. The construction of composite symbols can be easily done only with truly hori-
zontal or vertical stems (figure 3). However, good mathematics require slanted
integral signs. Symbol does not offer such slanted integral while TEX’s cmex and
Lucida offer only a limited set of (2 or 3) sizes. This is true as well for other
symbols such as the radical sign, big parentheses, horizontal braces, etc.

Contextual Typesetting of Mathematical Symbols 5

\overbrace � x � = \overbrace � a+b+c+d � � �������	�
 � ��� �	
�����������
\widehat � x � = \widehat � a+b+c+d ��� �	�
 �	������������

Figure 4: LATEX produces unexpected results with unextensible symbols such as “wide
hat”.

Figure 5: Gaps in variable-sized symbols ar more important in Symbol (left) than in
Lucida (right).
The body size is indicated by the “A” cap height. See figure 2 about the use of bitmaps
here.

6 Jacques André & Irène Vatton

2. Extending horizontal or vertical strokes does not apply to characters that are not
made of single strokes. For example mathematical fonts give the wide hat2 only
a limited set of sizes and no general extension at all. Unexpected (i.e. wrong)
results may occur as in figure 4.

3. There is a gap between some character sizes. Symbol, see figure 5 left, offers
a left parenthesis “ � ” with a height3 equal to 0.864em and offers three symbols

to compose big right parentheses. The upper part “
�

”, the lower part “ � ” and
the middle part “ � ”. The upper part and the lower part have the same height:
1.220 em. Then, the minimum height4 for a big parenthesis is 2.440 em. In this
font the cap height is 0.673 em. While the parenthesis is approximatively 30%
higher than the caps, the minimum big parenthesis is about 330% higher than
caps. With such a metric, it is not possible to get parentheses at the right size for
expressions as frequent as � 	
 � . Formatters using Symbol have to put extra blanks

above and under the 	
 or to draw bad parentheses like “

�� ”.

4. Both cmex and Lucida fill this gap by offering intermediate medium-size paren-
theses. See figure 5 right. This solution gives relatively good results according to
the respective sizes of these parentheses and of the cap height.

Nevertheless, perfection is not reached. Let us consider the following LATEX
instruction:

\[\left(Aˆ{AˆB}\right)+
\left(Aˆ{Aˆ{AˆB}}\right)+
\left(Aˆ{Aˆ{Aˆ{AˆB}}}\right)

\]

that gives the following displayed formula:�����
	��
��
 ���
� 	�� ��
 ���
� � 	 �

The first pair of parentheses is set with “big parentheses”. The second one with
“big big parentheses”. The third one too, although the inner box is bigger than
in the previous expression. That is why the “B” goes out of the enclosing paren-
theses of the last expression. Finally, no one parthensis has the right size: good
typography would require that each parenthese of this line has the same size, a
bit larger than the height of the righter pair. However, this size is not at TEX’s
disposal. Obviously, this is a matter of hair splitting. However, if things can be
upgraded, why not to do so?

2It seems that this symbol is more used in France that in English speaking countries.
3We call height of a character the difference ������������� , where ����� and ����� are respectively the ordinates

of the upper right corner and of the lower left corner of its bounding box (see [6], 5.4); it is given in terms of
em, i.e. relative to the current point size.

4Actually, this height may be reduced by 20% by using overlaping of the straight parts of these items.

Contextual Typesetting of Mathematical Symbols 7

a b c d e f

Figure 6: Deforming a “L” with scaling (b to d) and after not-affine transformations (e,
f)

The length of the horizontal rule of a radical sign generally is adapted to the specific
length of the expression under it. This rule is drawn “on the fly”.

If this was possible for any variable-sized symbol, most of the problems quoted in
this section would be solved. As it is shown in the next section, this is possible by using
the new font machinery available with Page Description Languages such as PostScript5.

2 Context dependant fonts and PostScript

2.1 PostScript font machinery

Let us consider the following description of the outline of an “L” in a type 3 PostScript
font and let us name Myfont this font and a call:

...

/L{% algorithm to describe ‘‘L’’
0 270 moveto
0 0 lineto

200 0 lineto
200 50 lineto
50 50 lineto
50 270 lineto

closepath stroke } def

...

/Myfont findfont 150 scalefont setfont
... (L) show % figure a

5We assume the reader familiar with PostScript’s fonts. If not, he should consider reading [6], [8] and [9].

8 Jacques André & Irène Vatton

The problem of the variable-sized symbols is: “how to get the figure 6.e instead
of figure 6.a, id est how to increase the size of the stems without increasing their
thickness”. The instructions

... 1.5 1 scale (L) show % figure b

... 1 1.3 scale (L) show % figure c

... 1.5 1.3 scale (L) show % figure d

would respectively give the figures 6.b to 6.d. This is not the expected solution: the
boldness of the stems is increased (respectively the vertical bar, the horizontal bar and
both are thicker).

The only one way to get the correct shape is to use analytical variables as follows:

/movetoy {dy add moveto} def % x y+dy moveto
/linetoy {dy add lineto} def % x y+dy lineto
/linetox {exch dx add exch lineto} def % x+dx y lineto

...

/L{% algorithm to analytically describe ‘‘L’’
0 270 movetoy
0 0 lineto

200 0 linetox
200 50 linetox
50 50 lineto
50 270 linetoy

closepath stroke } def

and to run the following calling instructions:

/dx 100 def % 200x1.5-200
/dy 90 def % 270x1.3-270
(L) show % figure e

Such analytical computing of characters outline is possible with � ���
	���
���� . It
is used, for example, to compute arabic or khmer ligatures [10] [11] or even random
fonts [12]. However, ��� � 	��
 � � computes the shapes before bitmaps are loaded:
analytical variables are not re-evaluated every time a character is used.

Even here, if the following instructions are run:

/dx 120 def
/dy 130 def
(L) show % expected figure f

the “L” would have exactly the same size as in figure e. Indeed, PostScript font machi-
nery uses a cache memory: when (L) show is called the first time, the bitmap of “L” is

Contextual Typesetting of Mathematical Symbols 9

Figure 7: This Punk poster has been printed by using a single call (EP - EP - EP - EP)
show – After [16].

computed then saved into a cache memory. At the second call, this cached bitmap is
reused, whatever the new values of dx and dy are. (This is equivalent to a “by value”
passing of parameters in programming languages).

However, this caching mechanism may be disabled: the procedure setcharwidth
with its appropriate parameters6 has to be used instead of setcachedevice from the
BuildChar procedure. Parameters are then passed “by name” and the figure f is
really printed when no cache is used.

In section 4 this mechanism is compared with other ones such as ��� �
	���
���� or as
Adobe Master fonts.

2.2 Drawing characters on the fly

Although this mechanism has been exhibited some years ago [13], it does not seem
that its power has been significantly understood. Indeed, drawing a character on the
fly allows to take care of its context (see [14] for a survey on these contextual fonts).
Different contexts may be involved:

1. No context: i.e. purely random. A typical example is the Scrabble font where
each piece randomly stirs as if they were an earthquake [15]. In [16], the Knuth’s
Punk font [12] has been reprogrammed in such a way that each instantiation of
any letter gives a new shape (see figure 7) and, furthermore, hazard is introduced
into the curve definitions to give the impression of inkspreading. Other fonts now
use these possibilities to simulate antique fonts or to create degraded letters [17],
[18]. Commercial products, like PhotoShop, allow such deformations; however,
they are not dynamic: every time degraded letters are reused (for example from
Illustrator), the same distorsions are produced. Truly degraded letters require
computation at any letter occurrence, like in figure 8.

2. The context of a character may be its neighbours. Ligatures may be automatically
defined, like in [19]. Ends of lines or of words are special cases of neighbouring:
a contextual font may decide to change the shape of a, say, “s” at the end of
a word; or to modify the bearing of a character at the (right or left) end of a
line [20].

6Because setcharwidth does not ask for any caching mechanisme, the bounding box coordinates have not
to be passed to.

10 Jacques André & Irène Vatton

Figure 8: Pochoir simulates inkspreading caused by stencil on sackcloth. It recomputes
each character degradation at each occurrence (look how each “F” and each “E” are
different) – bitmaped fonts (see figure 2).

3. More generally, any typographical requirement such as kerning on the fly, optical
scaling, etc. may be considered as a contextual problem. Even, researches are
done to get automatic kerning [25].

4. Other contexts may be used, such as phonetic [21] or even stack-mechanims [22].

5. While in the examples 2 to 4, this could be decided by an intelligent editor and
by using large sets of characters, more interesting are the fonts where you need
continuous variations, like for arabic characters [23] and for ����� mathematics.

Math-Fly is a font we are designing to handle dynamic mathematical symbols.
It uses movetox, movetoy, linetox, ����� operators as described in section 2.1. Various
classes of problems have to be solved.

2.3 Getting outlines

In this first prototype, we are working with public domain fonts and, when needed,
products like Ikarus, Fontographer, etc. are used from hand drawings. In any case, we
get outline descriptions with numerical values for each outline point7. Examples shown
here are inspired by Symbol.

2.4 Making analytical computation

The main problem is, having outlines described with numerical coordinates, to decide
which ones have to be transformed into analytical variables and which values are to be
assigned to them.

2.4.1 Linear symbols

7We call “ outline points” the ends of lines and curves as well as Bézier control points.

Contextual Typesetting of Mathematical Symbols 11

δx

δy

δy

δx

Figure 9: Abscisses of outline points are incremented by
� 	 if they are in the cor-

responding box; ordinates of outline points are incremented by
���

if they are in the
corresponding box. Both coordinates are incremented if outline points belong to the
two boxes.

12 Jacques André & Irène Vatton

Figure 10: A Math-Fly symbol may have its horizontal or vertical straight lines extended
while keeping the same thickness. Upper right corner: the regular � – see also figure 9

Most of the symbols are made of linear strokes, with outline points only at the ends
(junctions, serifs, etc.). Extension of such symbols requires only to globally translate
these ends. Horizontal symbols (such as ��� or � ���) abscisses have to be incremented
by

� 	 (this value has to be computed by the formatter according to the “content” of
this symbol). Vertical symbols (such as � , � or �) ordinates have to be incremented by
���

. Some symbols, such as 	 , � or
 may support both translations
� 	 and

���
. See

figures 9 and 10.

2.4.2 Non-linear symbols

The same rule could be applied as well to parentheses, braces, etc. when they are made
of linear segments (like in figures 3 and 5). However, if they are curved, a perpendicular
deformation is needed as well (see figure 11.right). The same occurs with linear symbols
that are not in one direction only, such as hats (figure 11.left).

2.4.3 Optical scaling of large symbols

Outline descriptions of particular symbols, such as integral signs and braces, intensively
require Bézier curves. The goal of our font is to increase the size (e.g. the height of an
integral sign) without modifying the stem thickness.

Linear scaling can not be used (see figure 2) and optical scaling has to be used
instead. However, nonlinear scaling methods (and even principles) have remained
largely unexplored. We may only quote recent theses by Bridget Lynn Johnson [24]
and by Claude Betrisey [25]. Johnson proposed a nonlinear scaling model, used it to
generate letters and compared them with handcut fonts. Betrisey, in the other hand is,

Contextual Typesetting of Mathematical Symbols 13

a + x = 0

abcde + x = 0

abcdefghi + x = 0

abcdefghijklm + x = 0

abcdefghijklmnopq + x = 0

a
b
c

Figure 11: Math-Fly transforms non-linear symbols such as hats or parentheses in one
direction with a slight perpendicular deformation

more concerned with spacing between letters; however his model should be useful for
further developments.

As opposed to regular letters (where optical scaling concerns mainly small body
sizes), optical scaling concerns large mathematical symbols which can be more than 4 or
5 centimètres high: in that case, measurements are easily done without much precision
errors.

We are studying8 the way large metal symbols are designed according to their size.
The method is to start from old mathematical symbol collections, such as braces in
figure 1. Different variable sized braces are scanned and their bitmaps are vectorized
(we used Agfa PressView). The figure 12-left shows three such braces (magnified 3
times more on 	 than on

�
). Irregularities on the curves are probably due to the gouge.

Hairlines at the end have been dropped because there was too much noise on them. The
figure 12-right exhibits the upper part of these three braces (magnified at the same size9)
with the Bézier points on it. In this example, the following can be seen: Bézier control
points of the bowl are on a linear set (and the ratio A5A4/A5A2 is approximatively the
same as (50-40)/(50-20), where 50, 40 and 20 are the point size of the curves where the
points A5, A4 and

�
2 respectively are. This is less true on the ends of the braces, which

may be caused by very small defects at punch time.
Other experiments show that finally linear functions may describe the set of these

Bézier control points.
So, we have used the following method

8The first results, even if significaint, have to been confirmed with further important set of measures on
various fonts, either from printed material, from punches or, better, from “smoked proofs”.

9If we were using the same scale factor, large braces are less curved than small ones: outlines are
overwritten and figure would be less ligible.

14 Jacques André & Irène Vatton

A5 A4

A2

Figure 12: Study of the optical scaling deformation of hot metal braces: left: three
braces at the same point size but with different heights; right: their control points are
linear.

Contextual Typesetting of Mathematical Symbols 15

1. Draw a small integral,

2. Draw a large integral with the same weight as 1.

3. Use linear interpolation between the corresponding outline points. Note that
these lines may be parallel or not depending on the Bézier curves (in other words,
symbols in the whole do not follow linear scaling).

2.5 Implementation problems

Math-Fly is a true “type 3” PostScript font. However, such fonts are defined as read-
only dictionnaries: passing parameters (such as

� 	 and
���

), use of variables (to keep
intermediate results out of the stack) and of operators (such as movetox, movetoy)
require the use of a dictionnary out of the font dictionnary.

Furthermore, the standard font metric file has to be modified to give the formatters
information on the way symbols are extended.

3 Use of Math-fly from Grif

Due to its possibility to receive parameters, a font like Math-Fly could not be fully
used by editors such as TEX, Interleaf [30] or Framemaker [28] without modifications
of the way they call formulae symbols. Due to our involvement into the Grif project,
this editor was a good place to check this font.

3.1 Grif overview

Grif is an interactive system for editing and formatting complex documents [26] [27]
where documents are represented by their logical structure rather than by their gra-
phical aspect. In this respect it is comparable to syntax-driven editors used for editing
programs. It is based on SGML [29] Document Type Definitions (DTD), which sep-
cify the logical organization of the document to be processed. More precisely, a DTD
specifies the types of the elements constituting a document and of the relationships
these elements can have with each other. For example an Article is defined as having
a title, one or more authors, an abstract, a body and a bibliography; the body contains
a sequence of sections and each section has a heading followed by a variable number
of paragraphs, and so on. Grif uses the SGML language to define many DTDs, one for
each class of document.

Using such a model, Grif builds a document with a logical structure conforming to
the DTD. It lets the user enter the content of the document (essentially character strings
constituting the atomic elements of the structure) and assists him by automatically crea-
ting some parts of the document according to the DTD. Grif offers only those elements
that may be created at the current position in the document. It computes all numbers
(chapter numbers, section numbers, formula numbers...) and updates references when

16 Jacques André & Irène Vatton

referenced elements are moved or changed. It permits selection and moving across the
document following its logical structure.

All editing commands are performed through a formatted picture of the document
displayed on the screen, as in WYSIWYG systems. When modifying the structure or
the content of a document the user acts directly on this formatted picture and sees the
results of the commands immediately thereon.

As well as the logical structure, the visual aspect of documents (on the screen or
on a sheet of paper) is specified on a generic basis. When defining a new DTD, the
user gives presentation rules for each type of element defined in the generic logical
structure, and Grif uses these rules for building the picture of a document. Thus, the
user who edits a document has only to enter its logical structure as well as its content,
and the system automatically generates its picture.

Grif handles objects of the various types which appear in documents in exactly
the same way, whether they be tables, mathematical formulae drawings or pieces of
program; in fact all those types of objects which are logically structured and can be
described by a DTD. There is no specialized editor for these objects, but a unique
environment which handles in a homogeneous way the whole document and all the
structured objects it contains.

3.2 Abstract Picture

A specific language, called P language, is used to describe presentation rules for each
type of element defined in the DTD. Interpretation of these presentation rules is based
on the concept of abstract pictures [31]. When Grif has a document to print or to
display in a window, it first builds an abstract picture which is a high-level description
of that document image. This description is device-independent and allows the editor
to update the image dynamically in a simple way. In a second step, it translates this
abstract picture into the real image which is displayed on the screen or printed on paper
sheets. The abstract picture is the support of interaction between the application and
the user.

An abstract picture is a hierarchy of abstract boxes, the concept of box being the
rectangle which delimits a document element as defined in TEX [4]. In an abstract
picture, boxes are organized as a tree, where each node is a box which encloses all its
children. These boxes are termed abstract because all their attributes are defined in a
relative way. Let us examine a simple example like the following centered formula:

�

��

�����

 �	� 1

��

sin2 	 � � 1 �
The abstract picture describing this formula 1 is shown in Fig. 13 while boxes

represented by this abstract picture are shown in Fig. 14
As opposed to PostScript [6], this kind of picture description does not locate docu-

ment elements in a virtual space, but relative to one another. The tree structure gives
a first approximation of relative positions only giving the enclosures amongst boxes.

Contextual Typesetting of Mathematical Symbols 17

Formula

String
"m = "

Sum

Lower_exp

String
"k = min(1,i)"

Symbol
"∑"

Upper_exp

String "n"

Operand

String
"sin"

Superscript
"2"

String
"x"

Subscript
"k"

Figure 13: Abstract picture corresponding to the formula 1

m =

n
Formula

Operand

Sum

k = min(1,i)

sin

2

x

k

Figure 14: Boxes corresponding to the formula 1

18 Jacques André & Irène Vatton

Each node is decorated with position attributes and dimension attributes which express
geometric constraints between boxes. These attributes result from constraints expressed
in P language.

Therefore each box is located relative to its enclosing box or to one of its sibling
boxes, with a fixed distance between two parallel edges or axes of the two boxes. In
each direction the position can be defined with reference to a different box. In our
example, some position attributes are:

Sum: HorizontalPosition:
Left = Previous String.Right;

VerticalPosition:
BaseLine = Previous String.BaseLine;

Symbol: HorizontalPosition:
HorizontalCenter = Lower_exp.HorizontalCenter;

VerticalPosition:
Bottom = Lower_exp.Top;

Upper_exp: HorizontalPosition:
HorizontalCenter = Lower_exp.HorizontalCenter;

VerticalPosition:
Bottom = Symbol.Top;

Operand: HorizontalPosition:
Left = Symbol.Right;

VerticalPosition:
BaseLine = Symbol.BaseLine;

....

Positions may use the four edges of a box (Top, Bottom, Left, Right), its center and
its base line. The base line of a box may be defined relatively to the box itself or to any
of its children. In the example, base lines are defined by:

String: BaseLine = Default;
Sum: BaseLine = Symbol.BaseLine;
Symbol: BaseLine = Self VerticalCenter + 0.4;
Operand: BaseLine = Child String.BaseLine;

The result of the previous set of constraints is that:

� String “m =”, Symbol “ 	 ” and String “sin” are displayed on the same
baseline, Symbol base line being 0.4 below its middle;

� Upper exp is displayed centered above the Symbol “ 	 ”;

� Symbol “ 	 ” is displayed centered above the Lower exp.

The dimension of a box can also be specified relatively to the dimension of its
enclosing box or one of its sibling boxes. The relation then specifies the difference
between the dimensions of the boxes, or a ratio between them. A dimension can also
be fixed independently of any other box. Examples of dimension attributes are:

Contextual Typesetting of Mathematical Symbols 19

k=min(1,i)

n

sin2xkm =

Figure 15: Formule 1 as seen by Math-fly + Grif

Symbol: Width = Lower_exp.Width;
Height = Operand.Height * 1.2;

This set of constraints express that:

� Symbol width depends on the Lower exp width;

� the height of the Symbol “ 	 ” is equal to 1.2 times the height of the Operand.

The abstract picture permits an incremental display and so ensures high performance
for interactive applications such as an editor which frequently modifies some small parts
of a picture. This description allows the application to do the minimum of change to
the abstract picture.

Tree structure and constraints between boxes offer a powerful mechanism for descri-
bing such complex pictures as frequently found in mathematical formulae. The logical
organization of mathematical constructions is described using a DTD and their graphi-
cal aspect is specified using the P language. After that, the user has just to manipulate
mathematical formulae in logical terms; Grif being in charge to maintain their real
images.

3.3 Output drawing

P language allows us to express how to calculate the better size of mathematical symbols
(more precisely the size fo their enclosing box), but it’s also necessary to have a correct
drawing of these symbols. Only Math-fly is able to exploit this optimal size evaluation.

Grif computes the abstract picture and its geometrical constraints to obtain the
correct position and precise size of symbols to print on paper. Above, the dimension of
the box symbol is width=lower exp.width. Conventional formatters fill this box with
the nearest available symbol in the font, i.e. with a too small 	 , and add exaggerated
blank side bearings, like in formula 1.

In conjunction with Math-fly font metric file, Grif computes the precise extensions� 	 and
���

to be made on the 	 symbol, and passes these values to the font through a
dictionary. Formula 1, when handled by Grif, becomes as in figure 15.

20 Jacques André & Irène Vatton

4 Comparaison with other mechanisms

Let us compare four ways of font generation, namely PostScript (with and without
cache mechanism), �����
	���
 � � and Adobe Master fonts[32][33]. Other ones exist,
like MultiType by URW [20], however they resemble one of these.

1. PostScript, with cache mechanism, works at print time. It receives outline des-
criptions. At the first instantiation of a character, its bitmap is computed (and
cached). Any new instantiation causes to recall the cached bitmap. Analytical
variables in the outline description are evaluated only once.

2. PostScript, without cache mechanisms, works at print time. It receives outline
descriptions. Any character instantiation causes to (re)compute the bitmap. Any
analytical variable is evaluated at each ocurrence.

3. �����
	���
���� works before print time. It receives outline and ductus description,
mostly in terms of variables (�����
	���
���� is a meta-font processor). It computes
bitmaps that are loaded into the printer then used at any character instantiation.
Variables are evaluated during the creation of bitmaps, not when they are used.

4. MultipleMasters work in two times: first, a setup is processed: starting from an
analytical “master” description of outlines. A large set of fonts is created. These
fonts are PostScript regular fonts (with cache mechanism) and handled as such:
analytical variables are not reevaluated at print time. Furthermore, the number of
control points can not be changed from one font to another one.

According to the kind of work, any of these methods has its own advantages. We
think that for characters having a great number of variations (like arabic extended
characters [23]) or mathematical symbols, dynamic fonts are the best ones. In the
other hand, computation of large ligature sets, like for Khmer language [11], may take
advantage of ��� �
	 �
 � � possibilities.

5 Conclusion

Math-Fly is still in progress, as well as its integration into the Grif editor. However the
first results are sufficiently promising to carry on with studies on optical scaling of large
symbols and on the automatic marking of outline points to be incremented.

Contextual Typesetting of Mathematical Symbols 21

References

[1] B.W. Kernighan and L. L. Cherry, “A system for Typesetting Mathematics”,
Communications of the ACM, 18, 151–157, 1975.

[2] D. Knuth, “Tau Epsilon Chi, a system for technical text”, Stanford Computer
Science report number STAN-CS-78-675, september 1978. Now appears as [4].

[3] V. Quint, “Editing Mathematics on the Buroviseur”, in N. Naffah (ed.), Office
Information Systems, North-Holland pub., 1982, 149–159.

[4] D. Knuth, The TEXbook, Addison-Wesley: Reading, 1984.

[5] Leslie Lamport, LATEX, a document preparation system – user’s guide & reference
manual, Addison-Wesley, 1986.

[6] Adobe Systems Incorporated, PostScript Language Reference Manual, second
edition, Addison-Wesley: Reading, 1991.

[7] C. Bigelow and K. Holmes, “The Design of Lucida: an Integrated Family of Types
for Electronic Literacy”, in J.C. van Vliet (ed.), Text Processing and Document
Manipulation, Cambridge University Press, 1986.

[8] Adobe Systems Incorporated, Adobe Type 1 Font Format, Addison-Wesley: Rea-
ding, 1990.

[9] Adobe Systems Incorporated, PostScript Language Tutorial and Cookbook,
Addison-Wesley: Reading, 1985.

[10] Yannis Haralambous, “Towards the revival of traditional Arabic typography �����
through TEX”, EuroTEX 92 proceedings, (Jiři ZLATUŠKA ed.) Prague, Czechoslo-
vakia, 1992, 293–305.

[11] Yannis Haralambous, “ Typesetting Khmer ligatures”, paper submitted to EPODD,
june 1993.

[12] Donal Knuth, “A punk meta-font”, TUGboat, vol. 9, no. 2, August 1988, 152–168.

[13] Jacques André and Bruno Borghi, “Dynamic fonts”, in raster Imaging and Digital
Typography (J. André and R.D. Hersch eds.), Cambridge University Press, 1989,
198–203. See also, The PostScript Journal, vol. 2, no. 3, 1989, 6–8.

[14] Jacques André, Fontes dynamiques, Mémoire d’habilitation à diriger les re-
cherches, Université de Rennes, july 1993 (to appear).

[15] Jacques André, “The Scrabble font”, The PostScript Journal, vol. 3, num. 1, 1990,
53–55.

[16] Jacques André et Victor Ostromoukhov, “Punk: de METAFONT à PostScript”,
Cahiers GUTenberg, 4, 1989, 23–28.

22 Jacques André & Irène Vatton

[17] Erik van Blokland and Just van Rossum, “Different Approaches to Lively Out-
lines”, Raster Imaging and Digital Typogaphy II (R. Morris and J. André eds.),
Cambridge University Press, 1991, 28–33.

[18] “ Erik van Blokland & Just van Rossum”, Emigre, number 18, 1991, p. 23–25.

[19] Jacques André et Christian Delorme, “Le Delorme: un caractère modulaire et
dépendant du contexte”, Communication et langage, 86, 1990, 65–76.

[20] Peter Karow, “hz-program, Micro-typography for advanced typesetting”, URW,
1993.

[21] “ Pierre di Sciullo”, Emigre, number 18, 1991,6–22.

[22] Michael Cohen, “Blush and Zebrackets: Two Schemes for Typographical Re-
presentation of Nested Associativity”, Proceedings IEEE Workshop on Visual
Languages, October 1992, Seattle, Washington, 264–266.

[23] Johny Srouji and Daniel Berry, “Arabic formatting with ditroff/ffortid”, EPODD,
Electronic Publishing – Origination, Dissemination and Design, vo.5, issue No.
4, December 1992, 163–208.

[24] Bridget Lynn Johnson, A Model for Automatic Optical Scaling of Type Designs
for Conventional and Digital Technology, Master of Science, School Printing in
the College of Graphic Arts of hte Rochester Institute of Technology, May 1987.

[25] Claude Bétrisey, Génération automatique de contraintes pour caractères typo-
graphiques à l’aide d’un modèle topologique, PhD Thesis, Lausanne, 28 juin
1993.

[26] V. Quint & I. Vatton, “ Grif: an Interactive System for Structured Document
Manipulation”, Text Processing and Document Manipulation (J.C. van Vliet ed.),
Cambridge University Press, 1986, 200–213.

[27] R. Furuta, V. Quint, and J. André, “ Interactively Editing Structured Documents”,
EPODD, Electronic Publishing – Origination, Dissemination and Design, vol. 1,
issue No. 1, April 1988, 19–44.

[28] FrameMaker, Reference Manual, Frame Technology Corporation, San
Jose(Calif.), May 1990.

[29] Goldfarb, The SGML Handbook, Oxford University Press, Oxford, 1990.

[30] R.A. Morris, “Is What You See Enough To Get?”, Protext II, (J.J.H. Miller ed.),
Boole Press, Dublin, 1985, 56–81.

[31] V. Quint and I. Vatton, “An Abstract Model for Interactive Pictures”, Human-
computer interaction, Interact’87, H.-J. Bullinger and B. Shackel eds., North-
Holland, September 1987, 643–647.

Contextual Typesetting of Mathematical Symbols 23

[32] Adobe, MultiMasters specifications, 1992.

[33] Jonathan Seybold, “Adobe’s ‘Multimaster’ Technology: Breakthrough in Type
Aesthetics”, The Seybold Report on Desktop Pubishing, vol.5, Number 7, March
4, 1991, pages 3–7.

24 Jacques André & Irène Vatton

Projet OPÉRA

Récentes publications internes IRISA–PI

Les publications suivantes sont disponibles :

� sous forme papier ; s’adresser au Service documentation, Irisa, campus de Beau-
lieu, F-35042 Rennes cedex, France ; FAX: (+33) 99 38 38 32 ;

� pour les plus récentes, par ftp anonyme à ftp.irisa.fr (131.254.254.2), dans le
répertoire /techreports, sous forme compressée PI-xxx.ps.Z (où xxx=numéro de
publication).

The following research reports from Opera team are available

� in paper form, on request to Service documentation, Irisa, campus de Beaulieu,
F-35042 Rennes cedex, France ; FAX: (+33) 99 38 38 32 ;

� by anonymous ftp at ftp.irisa.fr, directory : /techreports, as compressed files
PI-xxx.ps.Z where xxx= research report number.

609. Hélène RICHY, Patrice FRISON et Éric PICHERAL, Intégration d’un correcteur
typographique dans l’éditeur structuré Grif, Publication interne Irisa no 609,
1991.

636. Jacques ANDRÉ et Roger HERSCH, Un curriculum pour la typographie numérique,
Publication interne Irisa no 636, 1992.

676. Jacques ANDRÉ, Font metrics, Publication interne Irisa no 676, 1992.

677. Hélène RICHY, Grif et les index électroniques, Publication interne Irisa no 677,
36 pages, septembre 1992.

715. Jacques ANDRÉ, Dominique DECOUCHANT Vincent QUINT et Hélène RICHY, Vers
un atelier éditorial pour les documents structurés, Publication interne Irisa no

715, 15 pages, mars 1993.

747. Jacques ANDRÉ and Irène VATTON, Contextual Typesetting of Mathematical For-
mulae Taking Care of Optical Scaling, Publication interne Irisa no 747, 24 pages,
juin 1993.

Unité de recherche INRIA Lorraine, Technôpole de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105,
78153 LE CHESNAY Cedex

Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS
Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex

(France)
ISSN 0249-6399

