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Méthodes de J.C. Butcher appliquées aux
équations différentielles algébriques

Résumé : Nous étudions ici la convergence des méthodes “general linear”
de J.C. Butcher appliquées aux équations algébro-différentielles d’indices un
et deux. Pour l'indice deux, ’étude n’est poussée jusqu’a son terme que dans
le cas des méthodes “stiffly accurate”. Les résultats préliminaires sont ce-
pendant établis dans un cadre général.

Mots-clé : équations algébro-différentielles d’indice un et deux, méthodes
“general linear”, méthodes “stiffly accurate”.
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1 Introduction

In this paper, we are concerned with the convergence of a subclass of Butcher’s “general linear
methods” (GLM’s) when applied to differential algebraic systems of index one and two. GLM’s
were introduced almost 25 years ago as a unifying tool for theoretical studies (see (2, 8] for an
introduction to GLM’s) but have never been promoted to practical methods since. However,
the methods introduced in [6] are easily formulated as GLM’s while no other format enables
such an easy presentation. In addition to this, Butcher himself has recently characterized a
family of GLM’s which has “considerable potential for efficient implementation” (see [3, 4, 5]).
These methods, called DIMSIM’s of type II and IV share with methods M(k,rx) of [6] good
stability properties and a high stage-order. Both families are consequently good candidates for
the integration of DAE’s. In conclusion, it seems especially appropriate to derive convergence
results for DAE’s within the framework of GLM’s. Such results have been already developped
for Runge-Kutta’s methods [9, 7] and multistep methods [1, 9] and the proofs given here are
naturally inspired by the work of [1, 9, 7]. In this paper, we will restrict ourselves to general
linear methods whose “correct value function” is easy to interprete and leads to a straighforward
generalization of the “direct approach”. In Section 2, we propose a definition of stiff accuracy
for GLM’s and we derive convergence results for stable and strictly stable methods at infinity.
Section 3 deals with the index 2 case, that raises naturally more difficult questions. Existence
and uniqueness of the solution of the non-linear system to be solved at each step is first shown.
Then, the influence of perturbations is studied and rough local error estimates are given. Finally,
the convergence of stiffly accurate methods is considered, and it is proved that for such GLM’s,
the orders of convergence are min(p, ¢ + 1) for the differential component and min(p — 1, ¢) for
the algebraic component, if p denotes the classical order and ¢ the stage-order. In Section 5,
we finally show that the methods defined in [6] behave as expected, and first numerical results
confirm theoretical investigations.

2 General linear methods for problems of index 1

We first consider systems of the form

"= f(y,z) ER™
{ g: g(y,z) € R™ 1)

with consistent initial values, i.e. g(yo,20) = 0. We assume that f and g are smooth enough.
For this problem to be of index 1, we further assume that

9:(y,2) = %(y, z) is non-singular (2)

and of bounded inverse in a neighborhood of the solution of (1). More precisely, we suppose
that there exist two constant K and C, such that

V(y,2) € R™ xR™,max(|ly - y(2)|l, [z - 2(2)||) < K = Il(%(%z))‘lll <C (3)
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2.1 Preliminaries

In the sequel, a general linear method will be denoted by the set of matrices (A4, B, 4, B, ¢)
defined as follows :

A = (a;;) €ER*™¥ B =(b;;) e R¥*, A =(a;) e R**, B=(b:j) €R™*°, c=(c1, -,¢,)T (4)

Let us define the vectors of internal stages v, = (v,{ 1" v,{ ,)T and of erternal stages u,, =
(u;l;l, ceey uz'k)T. Vector u,, approximates U(z,,h) where U(z, h) is the correct value function :
U(z, h) gives the interpretation of the method. With those notations, the forward step procedure
proceeds as follows :

Upn4+l = (4 ® I)un + h(Bi ® I)F('Un) (5)
Uy, = (A® Duy+ h(B® I)F(v,)
where F' denotes
f(zn + Clh’ vn,l)
F(v,) = (6)

f(zn + C,h, ”n,a)

and [ is the m x m identity matrix if m is the dimension of the system of ordinary differential
equations under consideration. In this paper, we will restrict ourselves to the case where the
correct value function U(z, k) is composed only of values of the exact solution evaluated at dif-
ferent points. General linear methods with such exact value function include as particular cases
Runge-Kutta methods, multistep methods, multistep collocation methods, one-block methods
(see Example 1) and DIMSIM’s.

Example 1 For one-block methods, internal stages and external stages are given by the same
equation

Yn+1 = (ABlock ® I)Yn + h(BBlock ® I)F(Yn) (7)

where Y,, approzimates (y(zn +~(cf” — DR, y(zn + (B — 1)R)T)T, cBlock ¢ R*. We have
immediatly A = A = ABiock, B = B = Bpgjocr and ¢ = cBY*_ The correct value function is
simply U(z, h) = (y(z + (e1 — VAT, -+, y(z + (ck — LA)T)T.

For ordinary differential equations, the matrix M(2) = A+ zB(I - 2B)~14, usually called
the amplification matriz, determines the stability region. In the case of differential algebraic
equations, the limit of this matrix at infinity plays a decisive role. For non-singular B, it is
given by

M(c0)=A-BB'A (8)
Definition 1 An implicit general linear method with B non-singular is stable at infinity iff

VX € Sp{M(00)},|A| = 1= X is non-defective
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2.2 The direct approach

A problem of index 1 may be seen as the limit when € — 0 of the following ordinary differential
equation

{ y’ = f(y’z) (10)

€2’ = g(y, 2).

Now, when applying a general linear method to (10), we get :

W = (A®In)u4+ h(B® In,)F(vY,v:)
61): = 6(’;i ® Imﬁ)uf\ + h(‘é ® I‘m2 )G(v}(, vvz;) (11)
W = (A®In)uf+h(B® In, )F(vY,vz)
iy, = €(AQ® In,)ui +h(B ® In,)G(vY,v2)

where

J ("g,l ’ ‘":,1)

F(vg,v3) = (12)

F(0kar v
and similarly for G(v¥, vZ). We now suppose that matrix B is non-singular. From (11), we have
hG(vY,v2) = (B! ® Imy )V — (B A ® I, )uZ] (13)
50 that
€ulyy = €(A® Iy )uZ + €(B @ Iy (B! ® I, )vi — (B71A® Iny )u] (14)

This last relation defines uj,, independently of €. In the sequel, we consequently take ¢ = 0
(“direct approach”) and get the scheme for (1) :

v = (AQIn,)u¥ + k(B ® In,)F(v},v7)

0 = G(”g,"fu) (15)
“Z+1 = (AQ®Im)u} +h(B® I@x JF(v,v7)

u:+1 = (M(oo) ® Iﬂu )u: + (BB_l ® Imz )v,ﬁ

Remark 1 uY denotes a vector of approzimations to the y-component of the solution. uZ is
defined accordingly. Similarly, U¥(z, k) stands for the correct-value function of the y-component
and U*(z,h) for the correct-value function of the 2-component.

Example 2 The recursion of multistep methods

k k
> aiynti = kD Bif (Yn+i) (16)

=0 =0
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can be easily rewritten as a one-step formula

%=1 ., ... _2 B ... ...
a (7% g Qg
1 0 0 --- --- 0
Ungr = ( . : ®Iu, + h( : : QI F(v,) 17
1 0 0 0
A eiikxk Be R:x(k-&l)
_%k—1 . L., _20 & ... ... B
ok ax (o 1Y ok
1 0 0 0
vy = ( : ®@Nu. + (| : : | ®)F(v,)  (18)
1 0 0 --- .-« 0
1 0 -+ «-- 0
Ae RZ;'H)’U‘ Be R(:-;l)x(ki’l)

where u, = (yZ‘H_l,---,yZ)T and v, = (y,{#,---,yz')T. Clearly, ¢ = (k,k —1,---,0)T. It
should be emphasized that the direct approach for the corresponding general linear method leads
to g(yYn,2n) = 0 for all n and is consequently equivalent to the indirect approach for the
multistep method!

2.3 Stiff accuracy for general linear methods

Stiff accuracy is determinant for Runge-Kutta’s methods with respect to the order of conver-
gence. In the following definition, we extend this notion to general linear methods.

Definition 2 A general linear method (A, B, A, B, c) whose correct value function is composed
only of values of the ezact solution is called stiffly accurate if for alll € {1,---,k} there ezists
m € {1,---,8} such that

VJ € {1" "ak}’ a5 = &m,j (19)
Vi €{1,--+,8}, bij = bm,;. (20)
For a stiffly accurate general linear method, one has
8
(BB '); = D bibr} (21)
r=1
' ~ ~
= Lok}
r=1
= bm,

where 6 is the Kronecker symbol, and

8
(A - BB_I A)I,J = Gai; - Z(BB_I)I,r&r'j (22)
r=1
= a5 - Zémvr&ﬁj
r=1

= @, —Gm; =0
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Hence, the I** row of the fourth equation of (15) reduces to

ufx+1,l = [(Oa Tty 0) ® Img]u: + [(6m,1a Tt 6m,a) ® Img]v:

z

= vn,m

The same relation obviously holds for u¥ 4110 particular, we have

vie {1’ .t ’}k}9 g(“g.“,z,“:ﬂ,l) = 0’

(23)

(24)

so that the approximation provided by the method lies on the manifold ¢g(y, 2) = 0. This means
that the numerical solution of (1) by a stiffly accurate GLM coincides with those of the same

GLM applied to the reformulated problem

{ v = f(¥,6(v))
z=G(y)

which is obtained by application of the Implicit Function Theorem to (1).
Example 3 A Runge Kutta method ts characterized by its Butcher’s array

crx | ARk
b

where Ark is 8 X s real matriz or equivalently by the equations

s
Yoi=wu+ hzagxf(yﬂd)

i=1
Yn+1 = Yn + hzbjf(yn.j)
J=1
. _ - T T T . .
With up = yn, vn = (Y, 1,+--,Y,,)" , we have immediately

A=1, A=1€R’, B=Agrk, B=0bT, c=crx
and U(z,h) = y(z). Since a stiffly accurate Runge-Kutta method satisfies

Vie{1,---,s}, aﬁf = b;,

(25)

(26)

(27)

(28)

(29)

its formulation as a general linear method is obviously stiffly accurate (with respect to Defini-
tion 2). Conversely, if a stiffly accurate general linear method can be written as a Runge-Kutta
method, then it satisfies (29) (nothing prevents us to ezchange two rows of Arx and the cor-

responding components of cri ).
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2.4 Convergence

For the direct approach, we have the following convergence result, which is a straightforward
generalization of Theorem 1.1 pp. 408 of [9].

Theorem 1 Suppose that (1) satisfies (2) and that the initial conditions are consistent. Consi-
der an implicit general linear method (A, A, B, B, c) of order p, stage order g (withp > q), stable
at the origin and having a non-singular matriz B, and suppose that the error of the starting
procedure ®(h) satisfies

&Y(h) - UV(z0, k) = O(h?) (30)
87(h) — U(zo, h) = O(RTH) (31)

Then the global error of the integration procedure (15) satisfies

—UV(zp, k) = O(RT) (32)
— U (2, h) = O(R) (33)

v
Uy,
z
n

whenever nh < Const, where

a) if the method is stiffly accurate, then uZ — U*(z,, h) = O(hP).

b) r = min(p,q+ 1) if the method is stable at infinity and 1 ¢ Sp{M(o0)}.
¢) r = min(p — 1, g) if the method is stable at infinity and 1 € Sp{M(oc)}.
d) If the method is not stable at infinity, the solution u? diverges.

proof : Part a) has already been discussed. For the remaining cases, we introduce the vectors
V¥(z,h) = (y(z + eth)T, -+, y(z + eoh)T)T (34)
and V*(z, h) defined accordingly for the z component. We have

Vi(2n, h) = (A ® I, U (Zn, h) + R(B & I, V' (2, h) + O(RIH) (35)
U (Zny1,h) = (A Q I U (T, h) + h(B ® I, )V (20, h) + O(RIY) (36)

Since B is non-singular, we can compute V'*(z,, k) from (35) and insert it into (36). This gives
U(Zn41, k) = (M(00) ® I, WU (2, h) + (BB @ I, )V* (2w, h) + O(RIHY) (37)

We then denote the global error for the z component by AUZ = % —U*(z,, k) and we denote
AV? = vZ — V*(z,, h). Substracting (37) from the fourth equation of (15) yields

AUy = (M(00) ® Img)AU; + (BB ® I, )AVE + O(RTH) (38)

Now, since the first three equations of (15) define u},, independently of uZ, u¥ , coincides
with the solution of (25) by the same method. In particular, we have

AUY = ey(z)h? + O(hPH1) (39)

r’d 1)
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due to convergence results of GLM’s for ODE’s and the existence of an asymptotic expansion.
Now, writting equation (35) for the y-component, and substracting the resulting formula from
(15), we get

AVY = (A® Iy JAUY + h(B @ L, ){F (28, G(12)) = F(V¥(2, h), G(V¥(zn, b))} + O(hT)(40)

Using a Lipschitz condition for F and the uniform boundness of (g;)~! leads to AVY = O(h")
with ¥ = min(p, ¢+ 1). Now, the second equation of (15) gives AV;? = O(h") and (38) becomes

AUz = (M(00) ® InyJAUS + O(h"). (41)
Writting the recursion in full leads to

AV = (M(00)" @ Iny) (8(h) = U (20, ) + 3 (M(00)"™ © I, ) with 6 = O(h*) (42)

=1

5():()(’!""1 )

This proves the statement when 1 belongs to the spectrum of M(oo). If 1 does not belong to
the spectrum of M(o0), we can write (42) by using the Partial Summation of Abel as

3 (M(00)"™ ® Iy )6 = [(I = M(00)™ )(I = M(00))™* ® Iy (43)

1=0
£ 31U ~ M(oo)™"*1)(I - M(00))™* @ Iy (6 — 6i-1)
=1

and the result follows easily by noticing that (§ — 6;—;) = O(h¥*!). O

3 General linear methods for problems of index 2

We now consider problems of the form

’=f ’z) € R™
{ 0 =y((yz; € k™ 49

with consistent initial value, i.e. g(yo) = 0 and g,(vo0) f(¥0, 20) = 0. We will assume that f and
g are smooth enough and that g,(y)f.(y, ) is non-singular in a neighborhood of the solution
of (44). More precisely, we suppose that there exist two constant K and C, such that

99 9f

V(y,z) € R™ x R™,max(|ly - y(z)|l, l|z - (=)|) < K = II(%E(% 2))7<C. (45)

3.1 The direct approach
Similarly to index 1 problem, a general linear method applied to (44) reads
Y (A ® Im, )u4 + h(B ® Im,)F(vY, v})
0 G(v¥)
Ui (A® Im,)ul, + H(B ® I'g: YF (0%, v7)
(M(00) ® Imy)uf; + (BB~ ® Im; )v7;

vy

(46)

z
Up41
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3.2 Existence and uniqueness of the numerical solution

We first have to show that the first two equations of (46) have a unique solution. Once this
solution is found, we can compute u} ., and u},, from the last two equations of (46). Here and
in Section 3.3, we will denote vz,i and vy ; by v/ and v? respectively for sake of clarity.

Theorem 2 Suppose that for a solution y(z), 2(z) of (44) the following estimates hold :
uY —UY(zn, h) = O(h), G(u}) = O(h?) (47)

If B is non-singular and if (9, f.)(y, ) is non-singular in a neighborhood of the solution, then
the nonlinear system

v?:ZIS___ &,-"uf,'+hzq= Si,'f vl v} :
0=g(v;1.7’)l JUn,j J=1"% (J J) t=1,---,8 (48)

has a locally unique solution for h sufficiently small, satisfying v} — y(zn) = O(h) and v? —
2(zpn) = O(h).

proof : We put
k
=) &jup; (49)
i=1

and we define ; close to z(z,) such that g,(n;) f(mi, ¢;) = 0. Let us first notice that "%, a;; = 1
due to the preconsistency conditions, so that

k
3 @i i(wh; — y(za)) (50)

ni—y(Tn) =
i=1
= Ek: 8;;(un ; — U (zn, k) + O(h)
- o
It comes further,
9(m) = 9(¥(zn)) + 9y (¥(za))(m = y(zn)) + O(llmi — y(za)II*) (51)
= 9y(3/(zn))?; @i j(un; = Y(zx)) + O(h?)

8i,i9y(y(2n))(u ; — y(zn)) + O(h?)

LY
Il
—

I I
= i~

ai,{9(u} ;) — 9(3(za)) + O(llu ; - ¥(za)lI*)} + O(R?)

LT3
Il
(=

From (47) we consequently get

9(m) = O(h?) - (52)
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Now, we write (48) as

v ~ni—h Y biif(v!,vi) =0 (53)
J=1
1 .- 1
[ au+ (08 = mddr. 3" Big ok, v3) + Fa() = 0 (54)
et
For h = 0, the values

v =1 = e = y(zn) (55)

vf =G = (= 2(zn) (56)

satisfy (53) and (54), since g(mi(h)) = O(h?) and g,(m:(0))f(ni(0), (:(0)) = gy(me) f(ne, ) = O
In addition to this, the derivative of (53,54) for b = 0 with respect to (v} ;, -+, ¥ ,, %% 1, -+, V% ,)
at point (¢, -+, e, ey -+, ¢c) is of the form

I, 0

1

P 0
0 Im1 * (57)

L (I‘§ X I){gyfz (ﬂc, Cc)}

Since the blocks on the diagonal are non-singular, matrix (57) is non-singular. In fact, using
the uniform bound for the inverse of g, f; in a neighborhood of the solution, we see that if h is
sufficiently small the inverse of matrix (57) is bounded in a neighborhood of the solution, and
the result follows from the Implicit Function Theorem. O

3.3 Influence of Perturbations
The following theorem will be the main tool to establish convergence results.
Theorem 3 Let v!, v? be given by (48) and consider perturbed values 3}, 97 satisfying
o =k a8+ hY 0, 5i.jf(ﬁ;!s'7f) + hé; } isleees.
0=g(8f)+6; »TT
In addition to the assumptions of Theorem 2 suppose that
@y —u¥ = O(h?), § = (&7,---,67)T = O(h), 6 = (6],---,6T)T = O(h?). (59)
Then there ezists a hg such that for all h < hy we have the following estimates
|AVY|| < C(laU]| + Rl8l| + 1i81)

(58)

. N 60
AVl < § (Shey llau (8,055 5 — w3 )l + AIATE] + kiis] + 181 (60)
where ‘
T X i T
AVY = ((vi‘ - vil)T’ Tty (vg - vg)T) y AUY = ((“ﬁ.l - ugt,l)T’ T (u:,k - uz,k)T) ’
lAVY|| = maxigjc, |19 — VY]], lAUY|| = maxi i<k || ; — 6, 51l

and likewise for the z-component.
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The result now follows by noticing that An = O(h?) and “z,k - n; = O(h), so that

gy (%)(@ — m)ll + Callfs — m)*) (77)
llgy(n:)(i% = na)ll + (C1Cah)h| |5 — mi)l
llgy () (M — m)ll + AC i — )|

where C is independent of the constant involved in the O-term of An = O(h?), i.e finally,

g () — g(m)ll

IAIA LA

() — g(m)ll < Hlgy(up ) (F = m)ll + AC||%i: = i)

k
< WY aigy(ud )@Y 5 — ub ) + RCyllA — n)l.
Jj=1

Remark 2 It must be emphasized that the constant C in (60) is independent of the constants
involved in O-terms of the assumptions of Theorem 3. For a sufficiently small hy, this constant
depend only on bounds of the derivatives of f and g, uniformly for h < he.

3.4 Projections P and Q

In order to study the local error, we focus on the following projections that constitute an
important tool of convergence proofs.

Definition 3 For given y, z for which (g,f;)(y,2) 8 non-singular we define the projections

Q= (fz(gvfz)_lgv)(ya z), (78)
P=I-Q. (79)

Interpretation : let us consider the following example

fo B - K (80)
(v1,¥2,2) —  f(w1,92,2) = (i, 42, 2), falwr, 92, 2))T

g: R? — R (81)
(v1,92) — 9(v1,92) = 9(31,%2)

and let us assume that g, f, is non-singular at point (32,39, 2°). The equation g(y) = 0 defines
a curve G in the affine space (O, y1,y2) (see Figure 1). The tangent space Ty to G at point y°
is the kernel of g,(y°),

Tg = Ker(g,(3%))- (82)
In fact, it is here the set of vectors w = (wy, w2)T such that
ag g
e w, + — w, =0 83
ayl y=y° ! 33/2 y=y° 2 ( )
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A}

— Y1

o 4
Figure 1: Geometric interpretation of P(z) and Q(z)

and it is represented on Figure 1 by a line orthogonal to [g,(y°)]T at point y°. Similarly, the
equation y’ = f(y°, 2) defines a parametric curve F, and the tangent space Tx to F at point
20 is the image of f,(3°, 2°),

Tr = Im(£,(3°,2%)). (84)

Here, 2% is taken to satisfy the “hidden constraint” g,(y°)f(y°, 2°) = 0. With f defined as
above, Tr is made of vectors colinear to f;(y°,2%), and it is represented by the tangent line
to F at point z = 20 (see Figure 1). Considering Figure 1, we see that the space T’r can be
interpreted as the set of directions in which z bring the solution to the constraint g(y) = 0.
Furthermore, P is then to be seen as the projection onto Ty along Tr and @ as the projection
onto Tr along Tjg.

3.5 Local error

Let us now consider two initial vectors u§ = U¥(z,h) and u§ = U*(z, h) on the exact solution
and let us denote u} and uf the numerical solution of the GLM (46) after one step. We define
the local error by

6uy = uj —UY(z + h, h), (85)
buj = uf —U*(z + h,h). (86)

Theorem 4 Suppose that a zero-stable GLM (A, B, A, B, c) of order of consistency p and with
non-singular matriz B satisfies

U(z + h,h) — (A® IU(z,h) — k(B ® IV'(z,h) = O(h?*1) (87)
V(z,h) - (A® DU(z,h) — (B ® I)V'(z,h) = O(RIt!) (88)



14 Philippe Chartier

with p > q > 1. Then we have

bul = O(hminlpat1)) (E @ I, )6ul = O(hmin(p+14+1)) (89)
{P(2)}6u}, = O(h™nPa¥D) {P(2)}(E ® Im, )bu} = O(h™nP+10+2)) (90)

and
ouj = O(h?). (91)
If in addition, the method is stiffly accurate, then
dul = O(R™P(P*2)) (B @ Iy, )oul = O(hmin(p+1.a+2)) (92)
proof : Let us consider the following auxiliary system

uYy = (AQ® I, JU¥(2z,h) + H(B @ In, ) F(vY,,, V*(z,h)) (93)
v, = (A® Iy WY (2, h) + h(B ® I, )F(vY,,,V*(2,h)). (94)

By definition of the order of consistency of a GLM applied to an ordinary differential equation,
we have

by, — UY(z + h, b) = dy(z)h? + O(hPH) (95)

where d,(z) depends on f(y(z), 2(x)). We further have

aur?

wl — ul,, = h(B ® Im, ) (F(v*,v%) — F(v,,,V*(z,h))) (96)
D

D can be divided into three parts :

D = F(w,v%) - F(W(z,h),v%) + F(V¥(z,h), v") - F(W(a,h),V*(,h))  (97)
D, D,
+ F(V(2,h),V¥(, 1)) = F(tby, V¥(2, ). (98)
Ds

A Lipschitz condition for f and application of Theorem 3 with #¥ = V¥(z,h), § = O(h?) and
0 = 0 give

Dy = O(h?t), (99)
The same Lipschitz condition for f and relation (88) with V¥ give

D3 = O(h*). (100)
As for D, we have

Dy = {£:(V¥(z, h), Vi(z, 1) }icy, ., (v° = V*(z, B)) + O(lv* = VZ(z, R)]|?). (101)
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Theorem 3 gives ||[v* — V*(z, h)|| = O(h?). From V!(z,h) — y(z) = O(h) and V?(z,h) - 2(z) =
O(h), we obtain

D2 = {£:(y(2), 2(2))}izr, e (v° = V(2. h)) + O(RTHY), (102)
Gathering all partial results, we get
buf = h{fo(y(2), 2(2))}iz1, e (B ® Imy )(v* = V*(2, h)) + dy(2)h? + O(RP*!) + O(RT*?)(103)

and the result follows from (E ® I, )dp(2) = 0 and P(z)f:(y(z),2(z)) = 0. As for the z-
component, it comes immediately

bui = (BB ® Iy, )(v* - V*(z,h)) + O(h**?) (104)
O(h9).

Now, for stiffly accurate methods, we have

G(w) =0, (105)
s0 that
Vie{1,---,k}, 0 = g(u‘l"'-) —g(UY(z + h,h)) (106)
= gy (U (z + h, h))((6u}):) + O(lI(8uh):ll?)- (107)
From g,(U}(z + h, h)) = g,(y(2)) + O(h), we get
0 = {g,(y())}6u + O(hl|sui]l). (108)
Pre-multiplying by {f.(g,f:)™'(y(z), 2(z))} leads to
{Q(=)}6u}, = O(hin(pt1.at2)) (109)

and (92) is obtained from (90) and relation P(z)+ Q(z)=1.0

3.6 Convergence for the y-component

Due to the form of the scheme, the convergence of the y-component can be treated indepen-
dently. As already mentioned in the introduction, we only deal with the case of stiffly accurate
methods.

Theorem 5 Suppose that g, f.(y, z) is non-singular in a neighborhood of the solution (y(z), 2(z))
of (44) and that the initial values (Yo, 29) are consistent. Consider a zero-stable stiffly accurate

GLM of order p and stage order ¢, with p > 2 and ¢ > 1. Then the method (46) is convergent

of order r = min(p,q + 1), i.e.

u¥ — UY(zn, h) = O(AT) (110)

for 2, — zo = nh < Const.
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proof : We still denote the global error by AUY = u¥ — UY. In addition to the numerical
solution u¥ given by the scheme (46), we consider the following auxiliary system at point z, :

Wy = (A® Iny JU¥(Zn,h) + h(B ® In,)F (0%, 95)
8 = (A® Iy YU¥(zn,h) + (B ® Imy )F (oY, %) (111)

and we suppose for the moment that we have
AU < Coh?. (112)

From Theorem 4, we have éu¥(z,) = O(h"). If C; denotes the constant involved in the O(h")-
term, the assumptions of Theorem 3 are satisfied with

lunss = nall = 1AUR,, = uf(za)ll < (Co+ C1h7?)A? < C2h2. (113)

It comes further

AU,’:“ = (“g.+1 - ﬁgs-}-l) + (f4‘.+1 —UY(2p41,h)) (114)
= (A® Iny)AUY + h(B® In,) (F(v8, 0%) — F(%,82)) +6ul(zs).
AF,

Using a Lipschitz condition for F, we get
AR € L||B @ Im, || (lI(v = 82)I| + [I(v2 — 92)II) - (115)
Now, the method being stiffly accurate, we have
Vie{1,---,k},9(up ) — 9(UY(2zn, h)) = 0 (116)
so that
0 = gy(U¥(zn, ))U(zn, h) = up ;) + O(IUE (za, b) — uf 1% (117)

= gy(up YUY (zn, h) — ;) + OR? U (2, b) — uy ill)
= gy(un ) (Zn, h) = up ) + O(BIUY (2, B) = ugg ).

Applying Theorem 3 with § = 0 and § = 0 and taking into account last equation we obtain the
following estimations

llvi — 931l < Cal|AUX||
{ Iog — 9% < CollATE] (119)
and finally ||AF,|| £ C4||AUY||. We have consequently a recursion of the form
AUY,, = (A® In,)AU? + hAF, + 6ul(zy,) (119)

with |AF,|| < C4l|AUY||, bul(zn) = O(h") and (E @ I, )dul(zs) = O(h™*1), where the last
two equations come from Theorem 4. Now, following the same ideas as in Lemma 8.12 and
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Theorem 8.13 from [8], pp.394-395, we can assert that there exists a positive constant Cj,
independent of Cy such that

Vn,n.h < Const => |AUY|| < Csh'. (120)
A careful look at Lemma 8.12 from [8] shows that we have in fact
¥n,n.h < Const = ||AUY || < Ceh". (121)

where Cg is independent of Cy (see Remark 2). We can now validate assumption (112) by in-
duction on n, by taking Co = Cée, and restricting the size of h. Since the assumption (112) is
trivially satisfied for n = 0, we get from (121), ||AUY|| < Coh™ < (Coh™2)A? for all h < hg, ho
sufficiently small but independent of n. The same relation holds at point z,, and the induction
is then straighforward. O

4 Convergence for the z-component

The global error for the 2-component is easy to estimate. It is essentially given by the local
error.

Theorem 6 Suppose that g, f.(y, 2) is non-singular in a neighborhood of the solution (y(z), 2(z))
of (44) and that the initial values (yo,29) are consistent. Consider a zero-stable GLM strictly
stable at infinity such that the global error of the y-component is O(h™), g(un;) = O(h™*1) for
all i =1,---,k and the local error of the z-component is O(h") with r > 2. Then we have for
the global error of the z-component :

uy, —U*(zq,h) = O(A") (122)
for , — g = nh < Const.
proof : We can write the global error for the 2-component as
Wiy~ UH(Ena1, ) = (Whgn = Bign) + (241 — U5 @ntr, 1) (129)
where iy, satisfies the auxiliary system

42, = (M(0)® I, U*(zn,h) + (BB ® Im,)7

o = (A® In, U¥(@n,h)+ h(B ® In,)F(Y,92) . (124)
0 = G(i)
It comes
u:+1 - uz(xn+lvh) = (M(oo) ® Imz)(u:z - uz(zm h)) + (BB ® Imz)(v: - i’n) + 6;(1:.,;). (125)
Taking into account relations g(un;) = O(h™+1), i = 1,---,k, we can show as in Theorem 5
that
llva — %all < C(llun — U*(zn, B)| + A7) (126)

and the result immediately follows from the hypothesis. O
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Remark 3 Theorem 6 ts valid for stiffly or non-stiffly accurate methods as well. For stiffly
accurate methods, g(u,;) = O(h™*1) becomes g(un ) = 0, while M(o0) = 0. In that case, the
proof is even more simple.

5 Application to M(k,r;) methods

In [6] has been introduced a class of parallel one-block methods of orders varying from 2 to
8. If k denotes the size of the block, those methods are constructed in such a way that they
are of order k and stage order k — 1. In addition to this, they satisfy A = A and B = B
with non-singular B so that M(oc) = 0. From Theorems 1 and 5, we consequently expect the
following orders of convergence for index one and two problems (see Table 1).

Method | Index 1 | Index 2

v _z |y =z
MK, re) |k Kk |k k-1

Table 1: Order of convergence of methods AM(k, ;) when applied to DAE’s

5.1 Numerical verification for index one problems

In order to numerically verify the behaviour of methods AM(k,ry) on index one problems, we
have integrated the following examples. The first one is a slight modification of Kap’s problem
(see [10])

y’ = _(2 + 6-1)!/ + 6_1221 y(O) =1 (127)
0=y-2(142)+e%  20)=1"
with exact solution
z)=e"%
{ Zgzg =e* (128)

The second one is a test equation obtained by transformation of a linear optimal control problem
with quadratic cost functional

Find y and u in C'([0,1],R") such that,
¥ = Ay + Bu+g(z), y(0)=yo , (129)
J(u) = 1 5 (y(z)TCy(z) + u(z)T Du(z))dz is minimum

where C and D are assumed to be positive semi-definite. Such problems are completly solved
when g(z) = 0, but need to be reformulated as a DAE otherwise (see for example [12], pp.289).
It can be shown indeed that y and u are solution of the following two points boundary problem

¥y = Ay + Bu +g(z), ¥(0)=yo
v = —ATv - Cy, v(1)=0 , (130)
0=BTv+ Du
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which is of index one provided D is definite. f D = 0 and BTCB is positive definite, than
(130) is of index 3. We consider here the simple case where A, B, C and D are scalars with the
following values

a(z) = ~1,b(z) = log(2 + z),¢(z) = 1 + (1 — z)(1 — 2a — 2),d(z) = b(z)>. (131)
and initial condition yo = 1. The corresponding system (130) has
y(z) — e(a—l)x+:r:2/2’

u(z) = (z — 1)log(2 + z)el>-V=+=*/2, (132)
v(z) = (1 — z)ele~N=+a?/2

as exact solution. In fact, we have integrated here the initial value problem with same exact
solution

y=ay+bu, y(0)=1
vy =—-av—cu, v(0)=1 . (133)
0=bv+du

[ Method /h | 1 | 0.5 | 0.25 | 0.125 | 0.0625 | 0.03125 [ 0.015625 | 0.0078125 |

M(2,r;) y|[1.35]1.85] 2.24 | 2.59 | 2.93 3.28 3.66 4.07
z (5701619 658 | 6.93 7.28 7.63 8.00 8.42
M(3,r3) y| 183|248 3.11 | 3.74 | 4.38 5.06 5.80 6.64
2617|683 | 746 | 8.08 | 8.73 9.40 10.14 10.98
M(4,r4) y | 220]3.03] 3.92 | 4.91 6.16 7.18 7.56 8.32
z|654]|737| 826 | 9.26 | 10.50 11.52 11.90 12.65
M(5,rs) y| 240 3.40 4.50 | 5.70 7.06 8.74 10.24 12.53
2 |6.75]7.74| 8.84 | 10.05| 11.40 13.08 14.59 16.87
M(6,7¢) y 260|376 5.08 | 6.54 | 8.10 9.66 11.08 12.48
2695|810 9.42 | 10.88 | 1245 14.00 15.42 16.83
M(7,r7) y|2.77|4.08] 5.60 | 7.31 9.15 11.05 13.01 15.42
z| 711|842 995 | 11.65( 13.49 15.40 17.35 19.77
M(8,73) y| 293|439 6.14 | 811 | 10.27 12.53 15.18 17.57
2{7.28|8.74]10.49 | 12.46 | 14.59 16.87 19.52 21.92

Table 2: Number of correct digits (A) for Problem (127) with € = 1072 on [0, 10]

5.2 Numerical verification for index two problems

We now consider the case of index two problems and integrate the following two systems. The
first one

1—4H+Um+ew,mm—l
vy = el_‘ y2(0)=1 (134)
0=y —w(l+m)+ n #0)=1
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is once more a modification of Kap’s problem, with exact solution

yl(z) - e—2z
n(z)=€e* . (135)

2(z)=V1+z
The second one is a test example from [11] and has the form

1= - + sin(vz)z + q1(z)
5 = —y2 + cos(vz)z + q2(2) (136)
= sin(vz)y; + cos(vz)ys + r(z)

Y
Y
0

with q1(z) = e*(2 + "—';1_1;32), @(z) = €2+ “;;i?), and r(z) = —e*(sin(vz) + cos(vz)). Its
exact solution is simply

n(z) =€
v(z) =€ . (137)
z(z) = _2e_z

6 Concluding remarks

In this paper, we have established convergence results for general linear methods when applied to
DAE’s of index one and two. In the case of index one, the proof we give is a direct generalization
of the corresponding proof for Runge-Kutta methods. For index two problems, we have studied
the existence and uniqueness of the solution of the non-linear system involved at each step,
together with the influence of perturbation on this solution, in a general context. Namely, no
special assumption has been used for these proofs. These results gave us the opportunity to
derive estimations of the local error of GLM’s. Stiff accuracy leads here to more stringent
estimations. For general case, these estimations are not optimal, and more attention should be
paid. For this aim, we intend to use in a future work the series of Butcher.

The main result of this paper is the convergence proof for index two systems. We still do
not provide convergence results for non-stiffly accurate GLM’s, and this excludes DIMSIM’s,
but the use of stiff accuracy enables much more simple proofs of convergence results in the case
of Runge-Kutta methods, and it is likely that the same holds also for GLM’s.

Finally, and this was the original motivation for considering the convergence of GLM’s when
applied to DAE’s, we have applied the theorems derived here to methods M(k, ri) of [6]. Since
these methods are stiffly accurate, the results obtained are optimal. Numerical tests on index
one and two problems show the correctness of our analysis.
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Method | Average order | Asymptotic order | Predicted order

y 2|y z|y z
M(2,7r3) | 1.3 13114 14| 2 2
M(3,73) | 2.3 23| 2.8 283 3
M(4,7r4) | 2.9 2925 25| 4 4
M(5,75) | 4.8 48176 76 |5 5
M(6,716) | 4.7 4.7 | 4.7 4716 6
M(7,r7) | 6.0 6.0 | 8.0 80 |7 7
M(8,75) | 6.9 69|79 8.0 |8 8

Table 3: Observed orders for Problem (127).

| Method /h [ 0.1 [0.05]0.025] 0.0125 | 0.00625 | 0.003125 |

M(2,r3) y]|-021]037[ 0.93 | 1.51 2.09 2.69
z]-021]037] 093 | 1.51 2.09 2.69
M(3,73) y| 0.72 | 2.03| 3.62 | 3.85 | 4.60 5.43
z]0.72(203| 362 | 3.8 | 4.62 5.45
M(4,7q) y| 1.31 | 2.30| 3.34 | 4.44 | 559 6.76
z| 131 (230 3.34 | 444 | 559 6.76
M(5,r5) v | 1.52 | 3.01 | 4.54 | 6.08 7.62 9.15
z| 152 [3.01] 454 | 6.08 | 7.62 9.15
M(6,76) y | 2.67 | 4.22 | 5.74 | 7.37 | 9.08 10.87
z| 267|422 574 | 737 | 9.08 10.87
M(7,77) y| 2.46 | 4.38 | 6.38 | 8.44 | 10.50 12.61
z| 246 | 4.38) 6.38 | 844 | 10.50 12.61
M(8,7s) y | 4.06 | 6.31 | 8.23 | 10.30 | 12.56 14.88
z| 4.06 | 6.31 | 8.23 | 10.30 | 12.56 14.88

Table 4: Number of correct digits (A) for Problem (133) on [0, 5].

Method | Average order | Asymptotic order | Predicted order

y z|y z|y z
M(2,r2) | 1.9 1.9 2.0 202 2
M(3,73) | 3.1 3.1] 2.8 283 3
M(4,74) | 3.6 3.6 | 3.9 394 4
M(5,75) | 5.1 5.1 5.1 515 5
M(6,76) | 5.4 5459 596 6
M(7,77) | 6.7 6.7] 7.0 707 7
M(8,75) | 7.2 72| 7.7 7.7 8 8

Table 5: Observed orders for Problem (133).
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| Method /h [ 0.1 [0.05] 0.025 [ 0.0125 [ 0.00625 | 0.003125 | 1.562510~° | 7.812510~* |

M(2,7r2) y | 047|117 1.81 2.43 3.04 3.65 4.25 4.86
z 1157|221 2.68 3.09 3.44 3.77 4.09 4.40
M(3,r3) y|1.20]2.10 | 2.99 3.88 4.78 5.68 6.59 7.49
z| 250|334 | 4.13 4.88 5.58 6.24 6.88 7.50
M(4,74) y | 166|291 4.14 5.35 6.56 7.77 8.98 10.18
z | 3.00 | 4.27 | 5.57 6.97 9.26 9.03 9.77 10.61
M(5,r5) y|245([3.95] 545 6.95 8.46 9.96 11.51 12.97
z|379 530 6.83 8.43 10.22 11.73 12.44 13.47
M(6,r¢) y|294|4.77 | 6.60 8.42 10.23 12.09 13.96 15.70
z | 4.25] 6.07| 7.88 9.66 11.52 13.04 14.62 16.29
M(7,r7) y|3.77| 586 7.97 | 10.08 12.12 14.63 16.51 18.55
z|508(7.16] 9.25 | 11.33 13.34 15.03 17.12 19.14
M(8,rg) y| 429|668 9.11 | 11.46 14.42 16.75 18.89 21.23
z | 560 7.99 | 10.42 | 12.73 14.43 17.79 20.33 24.43

Table 6: Number of correct digits (A) for Problem (134) with ¢ = 10~2 on [0, 4].

Method | Average order | Asymptotic order | Predicted order

y Z\Yy Zly Z
M(2,12) | 2.1 1.3] 2.0 1.0]2 1
M(3,73) | 3.0 24| 3.0 2.1 3 2
M(4,74) | 4.0 3.6 | 4.0 2.8 | 4 3
M(5,75) | 5.0 46|49 345 4
M(6,7¢6) | 6.1 57]58 55| 6 5
M(7,7r7) | 7.0 6.7 | 6.8 677 6
M(8,75) | 8.0 8978 136 | 8 7

Table 7: Observed orders for Problem (134).
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[ Method /h | 0.1 [ 0.05] 0.025 | 0.0125 | 0.00625 | 0.003125 | 1.562510~° | 7.812510~¢ |

M(2,r3) y 267|293 3.36 3.96 4.65 5.35 6.02 6.66
z| 100|130 ]| 1.63 1.99 2.34 2.65 2.96 3.27
M(3,r3) y|3.49|4.55| 5.17 6.08 7.07 8.05 9.00 9.94
z|214 | 2.83 | 3.67 4.41 5.05 5.65 6.25 6.85
M(4,r4) y|3.97|5.73| 6.27 7.41 8.71 10.06 11.38 12.61
z 260|466 | 5.58 6.84 8.06 8.59 9.40 10.27
M(5,r5) y|219]|5.28| 7.77 9.42 11.08 12.73 14.37 15.96
z]1.06 | 3.88 | 6.95 8.85 10.48 11.31 12.43 13.60
M(6,1¢) y|4.16 | 555 | 9.27 | 11.00 12.85 14.85 16.82 18.75
z| 233|410 8.11 9.87 11.67 13.53 15.22 16.81
M(7,r7) y|270(3.05| 9.19 | 12.96 15.24 17.53 19.81 22.05
z|1.01|0.73 | 8.18 | 11.83 14.07 16.20 18.19 20.07
M(8,rg) y | 3.55| 3.51 | 10.32 | 14.64 17.13 19.70 22.29 24.85
z| 184|171 | 9.04 | 13.61 16.12 18.70 22.39 23.57

Table 8: Number of correct digits (A) for Problem (136) with » = 10 on [0, 1].

Method | Average order | Asymptotic order | Predicted order

y zZ1y zZ\y z
M(2,712) | 22 1.1 21 102 1
M(3,73) | 3.2 2.0 | 3.1 ~ 203 2
M(4,r4) | 4.3 28] 4.1 29| 4 3
M(5,r5) | 5.4 3953 395 4
M(6,7c) | 6.4 5865 536 5
M(7,17) | 1.5 68|74 6.21|7 6
M(8,1s5) | 8.5 83|85 398 7

Table 9: Observed orders for Problem (136).
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