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Abstract: In this paper, we focus on the problem of recovering proces-
sor failures in shared memory multiprocessors. We propose an architecture
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provides a hardware supported backward error recovery mechanism. This
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Proposition d’une architecture a mémoire
partagée tolérant les défaillances des
processeurs

Résumé : Nous nous intéressons dans ce rapport au probleme de la récupé-
ration des défaillances des processeurs dans une architecture multiprocesseur
a mémoire partagée. L’architecture offre un mécanisme matériel de récupé-
ration arriere fondé sur les propriétés de la mémoire partagée récupérable
(RSM). Cette technique s’accomode de caches et de protocoles de cohérence
de caches standard et n’est pas sujette a l'effet domino en cas de retour
arriere.

Les performances de 1’architecture sont évaluées en fonctionnement nor-
mal et comparées a celles d’autres multiprocesseurs a mémoire partagée tolé-
rant aux fautes. L’étude de performance a été réalisée par simulation a partir
de traces d’adresses d’applications paralleles réelles.

Mots-clé : multiprocesseur a mémoire partagée, tolérance aux fautes, mé-
moire stable, récupération arriere.



1 Introduction

Multiprocessor systems based upon standard microprocessors are becoming
ever-more commonplace, providing significant computational power at a frac-
tion of the cost traditionally associated with systems of such power. While
multiprocessors with distributed memory have gained much attention due to
their theoretical peak performance claims, shared-memory multiprocessors
continue to be the focus of development of several manufacturers, primarily
due to the ease with which such systems can support traditional computing
environments and programming paradigms. Nowadays, shared memory sys-
tems span the complete range of computing requirements from the personal
workstation up to the supercomputer.

The dominant organisation of a typical shared-memory multiprocessor is
as shown in figure 1, with a single shared bus used to connect processing
elements to the shared memory and peripherals. Caches private to the pro-
cessing elements together with various flavours of snoopy caching protocols
minimise the bottleneck effect of the single bus. A discussion of the advan-
tages and disadvantages of such architectures is not the concern of this paper,
and we merely observe that shared bus systems are likely to continue to be
constructed. What is of concern to this paper is how such systems can be
constructed such that hardware faults affecting the CPUs in the system can
be tolerated so that a reliable processing service can be provided in spite of

those CPU failures.
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Figure 1: A typical shared memory architecture

The need for enhanced reliability is becoming an ever-more critical re-
quirement as computing systems are used for applications where even short
breaks in service are unacceptable. Moreover, it is simply infeasible with the
complexity and range of present-day software systems to expect that such
systems can be enhanced to implement hardware-fault tolerance. What is re-
quired is a hardware architecture that can transparently tolerate CPU faults,
that is, without affecting the executing software and requiring no changes to



be made to that software. The presentation of such an architecture for shared
memory multiprocessor systems is the primary purpose of this paper.

The remainder of this paper is organised as follows. The next section
examines the fundamental problems of providing fault tolerance in a shared-
memory multiprocessor, identifying the basic facilities that must be imple-
mented and exemplifying these facilities with examples from some of the fault
tolerant multiprocessor systems which are already available commercially.
Section 3 discusses further the problems of error recovery in multiprocessor
systems.

Section 4 introduces a fault tolerant architecture which directly supports
shared memory semantics. The Recoverable Shared Memory (RSM) module
which implements some of the features necessary for transparent fault tole-
rance, and which is the key novel feature in the architecture, is described in
this section. Results from simulations of the architecture are given in section
5. Finally, concluding remarks are provided in section 6.

For simplicity and brevity, the paper concentrates on the problems of tole-
rating CPU failures in a shared memory environment and the novel solutions
to these problems provided by the RSM. Other hardware fault scenarios,
such as bus failures, are not covered here, although are clearly important for
a complete system.

2 Fault Tolerance Issues

The basic principles behind fault tolerance are well understood [18]: a fault
in a system will give rise to errors; the starting point for fault tolerance is the
detection of an error, and an exception can be raised to signal that the fault
tolerance provisions in the system need to be invoked. These provisions have
to: (a) Deal with those errors, in particular to remove errors such that the
state is no longer erroneous (error recovery); and (b) Deal with the fault that
caused the errors, by identifying its location (fault location), reconfiguring
the system to avoid the fault components (fault treatment), and switching
the system back to providing its normal operation.

If the above actions are successful, such that the behaviour of the system
has not breached the specification of the system, then the system will have
successfully tolerated the fault and its effects, and no system failure will be
apparent. Preventing system failure is of course the aim of the fault tolerance
provisions.

As mentioned previously, this paper is concerned with tolerating the faults
caused by failures of the microprocessor CPUs providing the processing po-
wer in a multiprocessor with the structure as shown in figure 1, and will
therefore concentrate on the application of the above basic principles in this
situation. Thus, regarding each processing element as a component of the



multiprocessor, we are concerned with providing reliable behaviour in the
face of failures affecting these components.

To provide fault tolerance, the first requirement is that the effects of a
CPU failure are detected. One approach, adopted in the Tandem-16 system
[16], is to use a single CPU per processing element and to assume that a
failure will result in fail-stop behaviour in that the processing element simply
stops if something goes wrong in its logic. The other processors will detect
this cessation in service through the absence of the "I am alive” messages
which an active processor regularly broadcasts to all other processors. (Note,
however, that the Tandem system is not a shared memory multiprocessor, and
the single-CPU configuration for a processing element will not be considered
further in this paper.)

More active forms of error detection are provided by replication checks
where the activity of a CPU is replicated and the outputs from the replicas
compared to detect an error. When duplicated CPUs are used, a compara-
tor can detect differences caused if one of the CPUs fails and can raise an
exception (or interrupt) to inform the rest of the system of the failure of this
processing element such that the fault tolerance actions can be undertaken.
This organisation is used in the processing elements of both the Stratus [25]
and Sequoia [6] fault tolerant systems.

Higher levels of replication, such as using triplicated CPUs in a TMR
organisation, can also be used, for instance as in the Tandem S2 System
[13]. Here a different approach to fault tolerance is being taken as will be
seen. In the case of the duplicated CPU discussed previously, a failure of a
CPU results in the failure of the processing element of which it is a part: this
processing element failure is a fault in the multiprocessor system, and actions
elsewhere in the multiprocessor (as will be discussed shortly) have to provide
the fault tolerance such that overall system behaviour is not impacted. In
contrast, the application of TMR (and higher levels of replication) is simply
the application of fault tolerance internal to the processing element such
that failures of components within the processing element are never seen by
the rest of the system. (For this reason, such applications of redundancy are
sometimes referred to as masking redundancy.) Thus when a CPU fails in a
TMR configuration, the divergence of its results from the other two CPUs
can be detected by a voter which rejects the odd man out” (error recovery),
ignores the suspect CPU (fault treatment) and passes on the result of the
majority to the rest of the system without interruption.

Returning to the situation of the dual-CPU processing element, errors in
the system state (i.e. in the global memory) will have to be dealt with if
a processing element fails. Errors could have spread in the system by there
being a delay between the CPU failure occurring and the processing element
actually stopping, during which time erroneous results could have been ge-
nerated in the shared memory and hence propagated through the system.



In the dual-CPU case, there is unlikely to be such a delay and consequent
propagation. However, there may still be errors since some of the state of
the system will be contained within the failed processing element and this
information may be inaccessible. For instance, the contents of the CPU regis-
ters and indeed the program counter are all part of the overall system state,
and the caches on the processing element may also contain the up-to-date
values of some memory locations. Thus, the global memory state may not be
consistent with the processing that has been undertaken in the failed proces-
sing element, and some form of error recovery will be needed to cope with
these errors. Without such error recovery, successful fault tolerance may not
be achievable.

Two overall forms of error recovery could be applied: forward error reco-
very and backward error recovery [18]. Forward error recovery would require
the "patching” up of the system state to fix the problems - for instance, if
the failed processing element could be interrogated by another processing ele-
ment to extract the necessary values, then the system state could be updated
appropriately. However, it is unlikely that such an interrogation could take
place reliably if a CPU failure has occurred- some of the information may be
within the failed chip (e.g. in on-chip caches). Even with duplicated CPUs,
it may be difficult to determine which of the pair has failed with the aim of
extracting the information from the remaining "good” CPU. The alternative
recovery strategy of backward error recovery requires the state of the whole
system to be recovered to a prior known state (simulating the reversal of
time, and hence is called backward error recovery) such that all of the errors
are eradicated. How this can be achieved is discussed in more detail below.

The Stratus system effectively uses a forward error recovery scheme, but
avoids the need to interrogate the failed processing element by running a com-
putation simultaneously on two processing elements, each of which contains
two CPUs (i.e. on 4 CPUs in total). If one processing element fails, then the
other processing element can be used to provide all of the "internal” values,
such that a new processing element can be brought into lock-step and the
processing continued. (Alternatively, the computation can be continued on
the single processing element pair with the hope that another failure does
not affect that processing element. In this case, no error recovery is required.)
In contrast, the Sequoia system effectively employs backward error recovery,
and their scheme is described in the next section.

After error recovery has been carried out, the errors caused by the pro-
cessing element fault have been dealt with, and so the next stage of fault
tolerance is to deal with the fault itself. The location of the fault will be
identified by the exception raised in the dual CPU configuration. If the fault
was deemed to be transient (determined, for example, by running diagnostic
checks on the faulty processing element), it may be appropriate to permit
that processing element to continue to play a part in the system’s activity.



If, however, the fault is permanent, then that processing element will not
be used further, and the computation it was involved in can be restarted on
another of the processing elements in the system. If forward error recovery
has been used, for instance as in the Stratus system, no processing will have
been lost, whereas if backward recovery has been invoked, as in the Sequioa
system, some processing will have to be repeated. Note, however, that in a
shared memory environment it is trivial to ensure that a computation can be
picked up by another processing element - all of the information concerning
that computation can be in shared memory and is accessible to all of the
processing elements. In a distributed memory situation, as in the Tandem-16
system, this task can be much more complex.

Thus, in designing a fault tolerant multiprocessor, the designer is faced
with typical engineering trade-offs. By adopting triplicated (or higher) levels
of redundancy in the processing elements, the need for error recovery can
be avoided. However, the cost and difficulties associated with this approach
might suggest that a design based on duplicated CPUs and with provisions
for backward error recovery would be more effective. Detailed discussions
of such engineering trade-offs are not the purpose of this paper; indeed the
different designs taken by Sequoia, Stratus and the Tandem S2 systems sug-
gest that each approach has its place. In this paper we concentrate on the
dual-CPU, backward error recovery approach and on the design of the Re-
coverable Shared Memory (RSM) module, a special memory module which
supports backward error recovery in a shared memory environment. First,
though, the basic problems of, and terminology for, backward error recovery
in this environment must be discussed so that the facilities that the RSM
must provide can be identified, and this is the purpose of the next section.

3 Backward Error Recovery in a Shared Me-
mory Environment

The basic functions required for backward error recovery are that a proces-
sor can: (a) Establish a recovery point; (b) Recover the state back to that
recovery point;(roll back) and (¢) Commit a recovery point.

The time between the establishment of a recovery point and its eventual
commitment is termed a recovery region. A recovery point is thus a point in
a computation to which the state can be reset and hence the computation
can be restarted from that point. If the establishment of the recovery point
preceded the occurrence of a CPU failure, then recovery to that recovery
point must eradicate all of the potentially erroneous effects of that fault (as
discussed in the previous section).



To provide recovery, recovery data must be recorded, for which one of
several techniques can be adopted. For example, a checkpoint can be taken
when the recovery point is established, that is, a complete copy of the state
taken and kept somewhere safe. Since the complete state is likely to be large,
and a processor is unlikely to update a significant percentage of its state,
more dynamic and optimal facilities can be provided. Shadow paging [20]
provides a form of incremental checkpointing, by keeping a copy of only those
memory pages that have been altered. The recovery cache [19] also provided
incremental recording of recovery data. The Sequoia system makes use of a
blocking cache [6] to provide recovery: having established a recovery point,
a processor i1s not permitted to update main memory. Instead all writes are
kept local to the processor in a blocking cache (i.e. non-write-through). If the
processor fails, then the state in the main memory represents the state at the
recovery point. The commitment of a recovery point by a processor consists
of flushing its cache and its internal registers to main memory. Modified data
are flushed into two distinct memory modules under processor control in
order to handle memory and processor failures.

The CARER architecture [26] makes also use of a blocking cache with
the assumption of fault free memory and cache. Assuming that memory is
fault free avoids the need for a second memory module for recovery data and
hence avoids the loss of time that would be necessary for copying modified
data between the two modules. Assuming that caches are fault free limits
the work to be done at commit time because blocks residing in cache can be
included as recovery data. At commit time, all processor registers are first
flushed to the cache and then all modified blocks in the cache are marked UN-
WRITABLE. This terminates the commit operation. UNWRITABLE blocks
belong to the recovery point and have to be written back to memory if there
are subsequently modified or replaced (i.e. copy on write).

While the changes a processor makes to memory can be undone by state
restoration techniques such as those described above, not all of the manipu-
latable entities in a system can be recovered. For instance, as discussed in
the previous section, the processing element itself is unrecoverable in that
its contents (registers etc.) may not be accessible if that element has failed,
so these have to be explicitly recorded when a recovery point is established
(e.g. the program counter must be recorded to allow the computation to be
restarted from that point). This topic is returned to in the next section. Also,
a processor may manipulate other unrecoverable objects, such as peripherals,
and the fault tolerant system must cope with the problem of backward reco-
very in this situation also. This point is not addressed in this paper and the
discussion will concentrate on recovering from memory updates.

Since recovery data occupies some system resources, it is normal to com-
mit recovery points at some interval, to allow this recovery data to be dis-
carded. For example, in CARER a recovery point is committed each time



modified data in the cache has to be replaced, while in the Sequoia system
a recovery point has to be committed when the blocking cache of a proces-
sor becomes full. For the tolerance of CPU faults it is, in general, sufficient
to allow a processor to have a single extant recovery point such that the
commitment of a recovery point can be synonymous with the establishment
of the next recovery point, and thus two distinct operations (establish and
commit) are not needed. In a more general situation, for instance if provi-
ding software-fault tolerance by recovery blocks [11], nested recovery regions
and hence multiple extant recovery points and separate establish and discard
operations make sense. As will be seen, even in the simple case it is useful to
be able to separate the completion of a recovery region from the commence-
ment of the next, and hence the two separate operations will be used in the
following discussion.

In a shared memory multiprocessor, there is another complication to reco-
very that must be dealt with, concerning the parallel processors that will be
executing simultaneously and the possible flow of information between these
processors (via shared memory). Consider the following simple situation: two
processors P1 and P2 have separately established recovery points, and P1 has
written to a memory location that P2 has subsequently read from and acted
upon. Now if P1 fails and backward recovery has to be applied, then it is also
necessary to recover P2 to its recovery point which preceded the interaction
with P1. Only by recovering P1 and P2 is a consistent system state restored.
The recovery points of P1 and P2 which correspond to a consistent state are
termed a recovery line [18].

One strategy for identifying a recovery line is to ensure that all processors
establish recovery points simultaneously - that is, a system-wide recovery
point. If recovery is then required because a processor fails, all processors
have to be rolled back. This strategy has the disadvantage of unnecessarily
recovering processors when no interactions between a processor and the fai-
ling processor have occurred. To avoid this disadvantage effectively requires
processors to be recovered independently (rather than globally), and hence
requires some other means for solving the problem of interdependencies (i.e.
the problem of identifying a recovery line). One method is to avoid the need
to identify a recovery line by ensuring that there are no inter-processor de-
pendencies. This can be achieved by not actually providing shared memory
(a strategy adopted in the Sequoia architecture) or by committing after each
interprocessor interaction in order to remove the dependency (this is essen-
tially what happens in CARER where a processor has to commit its recovery
point each time one of its modified blocks in cache is accessed by another
processor).

The Sequoia architecture prohibits direct data sharing between proces-
sors, leading to significant complications being imposed on the operating
system software. While all memory modules can be accessed by all proces-



sors, shared data structures must be accessed within explicit critical sections
protected by test-and-set locks, and the operating system has to carefully
establish and commit recovery points and flush the blocking cache appro-
priately, to ensure the correct semantics [6].

An alternative solution to identifying recovery lines, which removes the
need for the software complexities of the Sequoia approach and the frequent
commitments of the CARER approach, is to actually compute a recovery
line if recovery is required [18]. In order to do this it is necessary to record
inter-processor dependencies which can be used to determine the set of pro-
cessors which are dependent upon the processor which has failed [3]. Such a
mechanism is provided by the Recoverable Shared Memory module described
in the next section.

It should also be noted that in the Sequoia system it has been necessary
to provide custom caches to provide the blocking behaviour. This precludes
the use of standard snoopy caches and protocols in such a system. However,
the speed of the latest generation of RISC chips is such that their manu-
facturers provide cache control logic (and chips) as part of their offerings,
and it is increasingly difficult (and cost-ineffective) to design custom caching
systems (and CPUs). Hence, it is desirable that standard processors, caches
and caching protocols can be used in a shared memory multiprocessor, and
yet fault tolerance using backward error recovery can be provided. This is
another novel feature of the architecture to be presented in the next section.

4 Architecture of a fault tolerant shared me-
mory multiprocessor

This section presents the salient features of a novel fault tolerant shared me-
mory multiprocessor architecture ! designed to transparently tolerate proces-
sor failures. The general architecture, which is depicted in figure 2, mainly
consists of processing elements, and a Recoverable Shared Memory (RSM)
module which provides normal memory functionality as well as a backward
error recovery mechanism which is discussed in more detail below. The pro-
cessing elements access the shared memory through private caches holding
the most recently referenced memory locations.

The architecture has been designed to require specialised hardware only
for the RSM. Standard processors, caches and cache coherence protocols
can be used, and thus memory can be freely shared between processors. In
particular, the recovery protocol avoids the use of dedicated blocking caches
which require custom hardware and penalise the overall performance of the
architecture. In principal, it should be possible to plug an RSM board into

LA description of this architecture can also be found in a previous report [5].
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Figure 2: The recoverable shared memory architecture

an off-the-shelt shared memory multiprocessor to provide an error recovery
mechanism for that system.

In the following, we present the backward error recovery protocol that is
used in the architecture to obtain tolerance of processor failures, and discuss
how this protocol is implemented by the RSM. Section 4.1 introduces the
basic features and operation of the RSM with the simplifying assumption
that there are no private caches interposed between the processors and the
RSM. Section 4.2 then considers the additional complexities added when
private (snoopy) caches are part of the multiprocessor.

4.1 Basic Features of the Recoverable Shared Me-
mory

As discussed earlier, the backward error recovery protocol has to permit
recovery points to be established, recovered to and committed, and must
permit a recovery line to be identified when recovery is required. The basic
mechanism in the RSM for providing recovery is to record recovery data for
each memory location, by maintaining two copies of each location. When a
recovery point is established, each copy contains the same data. Subsequent
updates to a location are made to only one of the copies and thus the second
copy retains the state of that location at the time the recovery point is
established. As only a single extant recovery point is needed for tolerating
CPU faults, only two copies of a location are ever needed.

To permit the identification of recovery lines it is necessary for the re-
covery protocol to (a) detect and record the existence of inter-processor de-
pendencies which arise through their sharing of data in the memory; and (b)
synchronise the recovery protocol operations of those dependent processors.
This synchronisation is a vital part of the recovery protocol. Suppose, for
instance, that processor P; reads a cell previously modified by processor P,
within its current recovery region. If P; is recovered because the processor on
which it was executing fails, then P; must also be recovered. Suppose now
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that processor P; writes into a cell previously modified by processor P; within
its current recovery region. If P; is recovered then P; must also be recovered
since the value written by P; has been overwritten by F; and so cannot be
recovered. In both previous cases, an extant recovery point is required for
P; so that the recovery line linking P; and P; actually exists. Thus depen-
dent processors have to synchronise their actions on establishing, recovering
to, and committing recovery points. One simplification can be obtained by
ensuring that a processor always has an extant recovery point, by ensuring
that a new recovery point is automatically established when a previous one is
committed or restored. Thus the RSM protocol does not provide a separate
establish operation. (For the interested reader, a more formal description of
the recovery protocol may be found in [5, 14].)

Clearly, a key part of the recovery protocol is in detecting and tracking
inter-processor dependencies. This is achieved in the RSM by means of re-
cording dependency relationships. A dependency has to be recorded by the
RSM in two cases :

e Whenever a processor P; reads a cell previously modified by processor
P; within its current recovery region.

e Whenever a processor F; modifies a cell previously modified by proces-
sor P; within its current recovery region.

A processor p is said to be the active writer of a cell ¢ if p has written to ¢
within its current recovery region and ¢ has not been written to subsequently
by another processor.

This dependency information is stored within the RSM and used to com-
pute recovery lines, that is the dependency group of processors involved in
the commitment or restoration of a recovery point. Recovery of a processor
P; must induce recovery of its dependency group; this requires the values
of all of the memory locations which have been updated by any processor
in that group to be restored by the RSM to their prior values, using the
recovery data recorded by the RSM for this purpose. Similarly, commitment
of a process will induce the commitment of all processors in the dependency
group; in this case the values of all of the memory locations which have been
updated by any processor in that group must be committed. This entails the
RSM in making the two copies of the memory location identical.

One important assumption for dependency tracking is that the RSM is
only connected to the bus of the architecture and dependencies are tracked by
snooping bus information. In order to record dependencies, when a memory
location is accessed by a processor, the RSM needs the following information:

e The identity of the processor performing the access. This is achieved by
fitting each processing element board with a unique identifier which is
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transmitted whenever this processing element generate a read or write
request.

e The type of access (read or write)
e The identifier of the processor that is active writer of the cell if any.

The commitment of a recovery point by a processor obeys a simple dis-
tributed two-phase commit [10] protocol. Processors are participants while
the RSM is the coordinator of the protocol. In contrast to the standard two-
phase commit protocol where the coordinator is responsible for triggering
the protocol, it is a participant which initiates commitment; yet it is the
coordinator itself which is responsible for actually committing data. When
a participant wishes to issue a commit request, it must first flush its inter-
nal registers out to the RSM (since the values in these registers, which form
part of the global state, cannot otherwise be accessed). It can then send a
do_commit command to the RSM and wait for an interrupt meaning that
commitment has terminated and that the processor can resume processing.

Upon receiving a do_commit command, the RSM scans its dependency in-
formation (to determine the recovery line) and informs all of the processors in
the dependency group. A dependent processor can then flush its registers into
the RSM if necessary and must acknowledge its completion of the first phase
of the protocol. When all acknowledgements from the participant processors
have been received, the RSM enters the second phase of the commit protocol.
During this second phase, the recovery data of the cells whose active writers
belong to the dependency group are discarded. Once this has been achieved,
commitment is complete and a new recovery point is established for each
processor belonging to the group. Thus the processors in the group are no
longer dependent upon each other, and hence the dependency information
in the RSM can be discarded and the participants allowed to proceed with
their computations.

Let us consider now the implementation of the RSM in greater detail.

Servicing read and write requests

The RSM actions are best described by a finite state automaton. The automa-
ton includes an tnitialisation state together with a service and commsit_pha-
se2 states. In the service state of the RSM, most of the work is concerned
with dependency management. Assume that dependency data is stored in
a n * n boolean matrix M; n being the maximum number of processors in
the architecture. A matrix item M(¢,7) is set to true when processor P; is
dependent on P;.

While read and write requests may refer to RSM cells, the RSM itself may
record dependencies on a larger granularity. In the following, it is assumed
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that the RSM physical space is divided into a set of contiguous blocks of
identical size which is a power of two cells. Each block consists of (i) current
values of the cells, (ii) a tag field containing either the identity of the active
writer to the block (if any) or the nil value, and (iii) recovery data.

Basically a read request involving cell ¢ requires the RSM to compute the
identity of the containing target block b, record a dependency between the
processor making the request and the active writer processor of the block (if
any) in the matrix M, and deliver the current value of the cell. A write to a
cell ¢ will compute the target block b, record a dependency with the active
writer if any, change the active writer of the block, and update the current
value of the cell within the block b.

First phase of the commit protocol

Upon receiving a do_commit command from processor P;, the RSM has to
scan the dependency information it has recorded in matrix M during F;’s cur-
rent recovery region to determine the group of processors which are required
to commit atomically with P; according to the recovery protocol. Once the
dependency group has been computed, each processor in that group has to
be informed that it is required to participate in this commitment, by means
of a prepare_to_commit interrupt. This can be implemented in a variety of
ways, using interrupt or message passing facilities provided by the bus. The
RSM could generate such interrupts directly. Alternatively, the RSM could
broadcast on the bus a bit vector conveying the group of dependent pro-
cessors, with dedicated logic on each processor board checking whether the
processor it is attached to has to participate to the group and generating
the prepare_to_commit interrupt appropriately. (This checking could also be
implemented in software.) Each processor in the dependency group must also
issue a do_commit command in acknowledgement, meaning that as far as it
is concerned, the first phase of the commit protocol is OK.

It should be noted that within the interval between the initial do_commat
command and the receipt of acknowledgements from the dependent proces-
sors, some new dependencies may have been created as the RSM can continue
servicing read and write commands from processors that are not blocked wai-
ting for the end of the commit protocol. These processors have to be added
to the dependency group if this concurrency is permitted. It may also occur
that a processor not already part of the group decides to commit its current
recovery point and sends a do_commit command to the RSM. This proces-
sor is added to the (current) group as well as all the processors dependent
upon it. This mechanism provides a simple means for implementing multiple
concurrent processor groups.

One crucial point is that computation of the dependency group has to
be atomic with respect to read and write accesses to the RSM. If it is not
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atomic, the group could be incorrectly calculated by the RSM. A simple way
to implement this atomicity is to serialise the group computation and read

write accesses.

The dependency group computation algorithm is given in the C pro-
gramming language in figure 3, with the assumption that the number of
processors n can be encoded within an integer variable, and the matrix M
is implemented by an integer array where each array ‘element is conside-
red as a bit vector indexed by a processor identifier. Upon reception of a
do_commit command, the RSM executes the do_commit procedure. The bit
vector group denotes the processors which are members of the dependency
group, while do_commzt_recetved is the bit vector denoting the processors
that have completed the first phase of the commit protocol. The do_commit
procedure of figure 3 will cause a state transition of the RSM automaton
into the commit_phase2 state implementing the second phase of the commit
protocol if the following condition is verified :

Q : ((group = do_commit_received) A (Vi : i € group : immediate_ancestors(i) € group)

This condition expresses the requirement that all processors belonging to
the group of dependent processors have completed the first phase.

() may not be satisfied in two situations. Firstly, some processors that have
already been informed that they are group members have not yet completed
the first phase, in which case the RSM must wait for the reception of their
do_commit acknowledgement commands. Secondly, some new processors have
become group members since the last computation of group and thus must
be informed. Notice also that the dependency computation algorithm must
avoid interrupting a given processor more than once.

There are many ways to devise an algorithm satisfying the previous re-
quirements. In figure 3, a simple solution is given. The algorithm checks the
Q) condition and as a side-effect computes a new value of group. If the new
value of group is different from the last value, the new members are infor-
med. The complexity of the algorithm is O(n), with the do_commit procedure
being executed at most n times. The first phase of the commit protocol is
thus O(n?). Note that termination is obvious from figure 3 assuming that a
processor acknowledges a prepare_to_commit request within a finite time and
since the number of processors is bounded.

Second phase of the commit protocol

The basic actions which have to be performed in the second phase of the
commit protocol are the following:

1. Discard the recovery data of all the blocks whose active writers belong
to the dependency group and establish a new recovery point. This can
be achieved by setting the active writer field of those blocks to the nil
value and by setting the recovery data values to the current values.



14

int state; /* current state of the automaton */
int group; /* dependency group computed so far (bit vector) */
int do_commit_received;/* bit vector of do_commit commands */
/* received from the processors */
int M[n]; /* dependency matrix */

INITIALISATION:

do_commit_received = 0; group = O;

for(j=0;j<mn;j++) M[j] = (1<<j); /* a processor is an ancestor of itself */
state = SERVICE;

SERVICE:
read(address) {
/* create a dependency if necessary and
return the value stored at address */

}

write(address, value) {
/* create a dependency if necessary and perform the write */

}

do_commit(int i) /* i is a processor id */

/* the processor i is willing to commit or acknowledges a request of
the RSM following a commit request from a dependent processor */

{
int dependent_members;
int j; /* processor id */

/* add processor i to the group */
group |= (1<<i);
do_commit_received |= (1<<i);

/* compute new dependent members */
dependent_members = group;
for(j=0; j<m; j++)
{ /* if processor j is a member of the group */
if ((group & (1<<j)) != 0)
dependent_members |= M[j]; /* add immediate ancestors */
}

/* {dependent_members = group ==> group is exact} */

/* check for termination condition Q and
inform new members if necessary */

if ((do_commit_received == group) &&
(dependent_members == group))
state = COMMIT_PHASEZ2;

else if (dependent_members != group)

{ /* broadcast (dependent_members&~group) on the bus */
group = dependent_members;

}

} /* do_commit */

Figure 3: Computing a dependency group
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2. Break the dependencies by updating the dependency matrix M appro-
priately.

3. Broadcast a commit_done interrupt to the processors belonging to the
dependency group to permit them to restart computations.

As in the first phase of the commit protocol, these operations need to be
atomic with respect to processor accesses.

The implementation of the second phase of the commit protocol has a
great impact on the overall performance of the architecture since a processor
must not modify a block for which the recovery data has yet to be recorded.
Several implementations of the second phase can be devised. A trivial solution
would consist of sequentially checking every block of the RSM and copying
the current value of the block to its recovery counterpart if necessary. This
leads to the second phase of the commit protocol taking a time proportional
to the size of the RSM, which may not be desirable. Moreover, the processors
must be prevented from restarting before this copying has been completed.

Several refinements to this straightforward algorithm can be made. The
RSM could maintain a per processor linked list of modified blocks. The time
needed to perform the second phase is then proportional to the number of
memory blocks which had been updated by the processor group, but at the
cost of an extra storage within the RSM.

Alternatively, it is possible to permit the RSM to start normal memory
operations, and to delay the effective copying of a block (to provide reco-
very data for the new recovery point) until it is really needed, that is, if a
processor attempts to modify that block. This copy on write mechanism al-
lows the second phase time to be interleaved with normal processor accesses,
and processors do not need to be stalled until copying has finally completed.
However it is still necessary to mark blocks within the RSM to determine
whether a given block has to be copied or not on a subsequent write ac-
cess. One approach is to use checkpoint identifiers [26]. In this approach, a
checkpoint identifier is associated within the RSM with each block and with
each processor. When a block is modified, the current value of the checkpoint
identifier of the active writer is stored along with the block. When a processor
commits, its checkpoint identifier is incremented. Upon each write access, if
the checkpoint identifier of the block is less than the checkpoint identifier of
its last active writer, the current value of the block is needed for recovery
data and so needs to be copied. Before allowing the write to perform, the
block is copied to its recovery counterpart and the active writer and check-
point identifier fields of the block are set accordingly. Similar optimisations
were provided in various implementations of the recovery cache [18].
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Tolerating processor failures

In this paper we have assumed that the processors used are fail-stop [21], and
that a failed processor can be easily identified. This is not a severe constraint
on the architecture for fail-stop processors are common practice in the field
of hardware fault tolerance (e.g. through the use of duplicated CPUs). In
case of failure, the processor ideally will signal a failure interrupt on the bus
which will be caught by one of the live processors. This processor can trigger
the recovery process by issuing a do_rollback(i) command to the RSM, where
¢ denotes the processor that failed.

Upon reception of the do_rollback(i) command, the dependency group of ¢
is computed by the RSM, thus identitying the group of processors which must
be recovered in order to reset the system state to a consistent state, that is
the state at a recovery line, in a manner similar to the second phase of the
commit protocol discussed earlier. However, the values of the blocks modified
by the members of the dependency group have to be reset to their prior state,
by copying the values held in the recovery data associated with those blocks.
Each dependent processor must be interrupted by a roll_back interrupt, to
cause them to abandon their current processing. The dependencies are broken
by resetting matrix M appropriately, and the RSM reenters the service state.
Recovering back to a recovery point is a simple protocol requiring a single
phase compared to the commit protocol which requires two phases.

A particular situation may occur if group commitment is in progress
when recovery is demanded. Since the same processor may belong both to a
recovery group and a commit group, it is necessary to check for this at the
end of the recovery procedure. Members of the recovery group are removed
from the commit group. If the remaining commit group is not empty, the
do_commit procedure of figure 3 is executed taking one member of the commit
group as an argument.

Finally, after recovery has taken place, the global system state is consis-
tent, and the processors which have been recovered can recommence exe-
cution of normal computations. The computation that was running on the
failed processor can be re-executed on one of the remaining processors and
hence a system failure will have been averted. Moreover, the processor failure
will have been tolerated transparently, since no alterations were required to
the software of the application to provide these tolerance actions.

4.2 Cache coherence protocols

The previous section described the basic operation of the RSM and how the
recovery mechanisms work. This section addresses the complexities added
when the multiprocessor architecture contains caches private to each proces-
sing element, as is the case with any realistic multiprocessor. In fact, the
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primary changes needed to the RSM concern the dependency tracking me-
chanisms. Thus, this section examines the influence of the cache coherence
protocol on these mechanisms.

Most hardware cache coherence protocols proposed so far rely on the fact
that bus traffic can be monitored (snooped) by all caches attached to that
bus. Snoopy caches maintain a tag field stored along with each loaded line
to indicate the state of that line. The tag field generally encodes whether
the line has been modified with respect to the contents of the corresponding
shared memory location, and whether the line has been loaded into another
cache. Two main classes of snooping cache coherence protocols can be distin-
guished depending upon the actions performed by caches when a shared line
is modified. Write Invalidate protocols cause an invalidation message to be
broadcast on the bus whenever any data potentially loaded into other caches
is updated, to cause cache lines to be invalidated. Write Update protocols
broadcast the new value whenever data potentially resident in other caches
is updated. For the sake of brevity, only the Berkeley protocol [15] is exami-
ned below, as a representative of the write invalidate family of protocols. The
changes necessary for write update protocols such as the Firefly protocol [24]
are not detailed here for space reasons.

In the Berkeley protocol, a cache line can be in one of the four following
states (line states are described according to the terminology found in [23]) :

1. Invalid (I). The cache copy is not up-to-date.

2. Non-modified Shared (S). The line has not been modified since it was
loaded into this cache. Other caches may also have a copy; one of these
copies might be in state O while others must be in state S.

3. Modified Exclusive (M). The line is modified with respect to shared
memory. No other copy exists. This cache is the owner of the line.

4. Modified Shared (O). The line is modified with respect to shared me-
mory. Other caches may have a copy (in state S). This cache is the
owner of the line. (Hence the abbreviation O.)

Figure 4 depicts the state transition diagram for the Berkeley protocol.

Recall that the RSM maintains dependencies on memory blocks. In contr-
ast to the previous section, where the block granularity could be as small as
a RSM cell, when caches are present the RSM must record dependencies on
at least a cache-line size granularity, since a cache-line is the minimal unit of
transfer on the bus. In the following, we examine the operations performed
by the cache protocol and the various actions taken by the RSM so as to
track the dependencies when a processor performs respectively a read miss,
a write hit, and a write miss on its cache. (A read hit does not generate any
action on the bus and thus does not need to be considered further.)
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Processor P; performs a Read Miss If there exists a cache with a copy
of the line in state M or O, this cache must supply a copy of the line
to the requesting cache and set its state to O. Otherwise the line must
come from shared memory. In both cases, the line is loaded in state S
in the requesting cache.

It the target block containing the line has an active writer P;, a de-
pendency must be created in the RSM between P; and F;. As far as
dependency management is concerned, no distinction is made whether
the requested line comes from another cache or from the RSM, although
the inter-cache transfer must be detected by the RSM snooping on the
bus.

Processor P; performs a Write Hit If the line is already in state M, the
write proceeds without delay. Otherwise, (in state S or O) an invali-
dation signal must be sent on the bus (see figure 4). All other caches
matching the line address must invalidate their copy. The line state is
changed to M in the originating cache.

The invalidation signal is snooped by the RSM. If the corresponding
block has no active writer, P; becomes its active writer. Otherwise, if
P; was the active writer, a P; dependency is created and P; becomes
the active writer of the block.

Processor P, performs a Write Miss Like a read miss, the line comes
from its owner or from shared memory. All other caches invalidate their
copy if any. The line is loaded in state M.
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The RSM snoops the data transfer if the line comes from another cache.
As above, if the corresponding block has no active writer, F; becomes
the active writer; otherwise, a dependency is created between P; and
P; and P; becomes the active writer of the block. Since cache lines can
contain several processor addressable cells and the line is now cached by
P; in state M, the RSM cannot detect a further read on a different cell
of the line because it would not generate any bus traffic (see figure 4).
So, a dependency between P; and P; is also created to prevent the case
in which a cell previously modified by P; would be locally read by F;.
In other words, the RSM adopts a conservative approach by creating
some dependencies which are not strictly required by the protocol to
preserve the coherence of processor checkpoints.

It should be noted that the RSM must keep pace with the information
exchange rate on the bus due to the cache coherence protocol. If this were not
the case, the RSM might miss some dependencies that need to be recorded.
Satisfying such a requirement typically depends on the detailed specifications
and timings of the bus and caches and will not be examined here in greater
detail.

The commitment of a recovery point when caches are present is simi-
lar to the situation where no caches are present. What is required is that
when a participant processor initiates commitment or acknowledges a pre-
pare_to_commit request from the RSM, the processor must flush its cache as
well as its internal registers. Similarly, recovery must cause a cache invalida-
tion.

In summary, no special purpose caches or coherence protocols are needed
in the architecture being presented here, which can accommodate standard
cache behaviour with the RSM performing dependency tracking by snooping
the bus traffic. This is a notable difference with other proposals for fault
tolerant shared memory multiprocessors [6, 26, 1].

5 Performance Evaluation

This section presents the performance evaluation of a shared memory mul-
tiprocessor machine incorporating a RSM (which will be termed the RSMM
- Recoverable Shared Memory Multiprocessor - in the following discussion).
Through simulation, the performance of the RSMM is compared against the
performance of a standard multiprocessor architecture without any fault tole-
rance capabilities and against that of two other approaches for fault tolerant
shared memory multiprocessors, namely CARER and Sequoia.
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5.1 Methodology and workload

The simulations were conducted using an instruction level simulator driven
by a set of memory references generated by instrumenting application code
with the Abstract Execution technique [17]. The simulator implements an
efficient execution driven simulation method similar to that described in [7].
(Further information on the simulation tool may be found in [9].) Execution
driven simulation controls the address trace generation to ensure that the
trace corresponds to that which would be obtained if that application was
actually executed on the architecture being simulated. This technique thus
supports the derivation of simulations which accurately model the architec-
ture. The simulation models were parameterized with the characteristics of
Sun multiprocessor SparcServers, with a 320Mbytes/sec. synchronous bus,
64kbytes unified direct-mapped caches with 32 bytes lines and IEEE write
invalidate cache coherence protocol. To simplify the performance compari-
son, all of the fault tolerant architectures are modelled with these parameters
in common.

For RSMM, the error recovery protocol is that described in section 4. For
the second phase of the commit protocol the stable memory implements the
copy on write mechanism described in section 4.1. Since the extent of reco-
very regions in the RSMM is not controlled by any hardware or application
parameter, it is necessary to fix a rate for the frequency of recovery point es-
tablishment (and hence commitment) for the simulations. The only situation
where RSMM may be forced to commit a recovery point and to establish a
new one is to prevent the loss or duplication of an operation on an unre-
coverable object, for instance, /O devices [18]. This classical technique for
dealing with unrecoverable operations is used by CARER and Sequoia, and
ensures that an 1/O operation cannot be repeated. Thus, for the RSMM si-
mulations, each I/O operation leads to the establishment of a recovery point.
To obtain an average 1/O rate, the interrupt rate on a NFS file server was
measured, and from this measurement a rate of 1000 interrupts per second
was used in the simulations.

For the CARER simulation, a recovery point is committed and a new
one established whenever a modified line in a cache needs to be replaced and
whenever a modified line is read by a different CPU. For Sequoia, recovery
points are established and committed as described in section 3, that is, whe-
never a blocking cache is full or a modified cache line needs to be flushed, or
whenever a critical section which requires coherence of the shared memory
is exited.

The workload comprises 4 parallel applications drawn from the SPLASH
benchmark suite [22]. Application cholesky performs sparse matrix facto-
risation; mp3d simulates rarefied hypersonic flows; pthor simulates digital
circuits at the logic level; and water simulates the evolution of a system of
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water molecules. Only the parallel phase of the computation was simulated,
resulting in 65 to 80 million memory references for each application. The four
applications were simulated on the four architectures for 1 to 8 CPUs.

5.2 Experimental results
5.2.1 Performance of the architectures

Figure 5 shows the MIPS (million instructions per second) performance of the
four architectures for the four simulated applications. The performance de-
gradation for the RSMM compared against the standard (non fault-tolerant)
architecture is relatively small, despite a high commit rate for the RSMM
(1000 per second). Performance degradation with eight CPUs remains below
15% except for mp3d where it is about 30% (for reasons discussed below).

For the other fault tolerant approaches, the performance of CARER is
relatively close to these of RSMM for cholesky and water (10% performance
degradation) but the degradation grows to 65% for pthor and mp3d. CA-
RER achieves these results despite the restrictive failure hypothesis (i.e. the
caches are fault-free) that permit a very efficient implementation of its com-
mit protocol. The Sequoia approach appears to offer the lowest performance
of all three fault tolerant architectures. Performance remains below 100 MIPS
independent of the application or number of CPUs used. The performance
degradation for this architecture always exceeds 20% for one CPU and can
be as high as 85 % (pthor with 8 CPUs).

These results are very encouraging for the RSMM approach to fault tole-
rance. Some degradation in performance over a non fault tolerant architecture
is inevitable, due to the error recovery provisions in the RSMM. Nevertheless,
these simulations suggest a relatively modest degradation in general. When
compared to the other fault tolerance approaches, the simulations suggest
that the RSMM approach provides the best overall performance.

5.2.2 Behaviour of the applications

It may be observed from figure 5 that for all the architectures considered, the
performance degradation varies significantly and is application dependent.
This section studies the characteristics of these applications that have the
most influence on performance degradation.

Figures 6 and 7 show, for each application the distribution of bus tran-
sactions for 10000 memory references: (a) misses serviced by shared memory;
(b) misses serviced by caches; (c) write invalidations; (d) write backs arising
from the replacement of a modified cache line (only for RSMM since Sequoia
and CARER use blocking caches); and (e) write backs arising from cache
flushes for RSMM and Sequoia or from the replacement of UNWRITABLE
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cache lines for CARER. The figures also show the number of recovery points
established for 10000 memory references. Three reasons for establishment are
distinguished: the recovery points established because of interrupts (only for
RSMM), the recovery points established before replacing a modified cache
line (for CARER and Sequoia) and the recovery points established because
of data sharing. For RSMM the latter are the recovery points established
because of dependencies; for CARER they are established because of a miss
on a cache line that has been modified in another cache; and for Sequoia they
are the recovery points established upon exit from a critical section.

cholesky

The standard architecture attains good performance for cholesky, with a
speedup of 6.8 with 8 CPUs. This good behaviour is caused by a high cache
hit rate of 99.2%. Data sharing is at a coarse granularity in this application.
Although the 6% write ratio is comparable to other applications, the caches
contain a low proportion of modified data due to the good locality of write
references. Only 30% of replacements require a write back.

These characteristics allow performance degradation for RSMM to re-
main always below 10% for this application. The caches do not contain a lot
of modified data; on average with 4 CPUs, 360 cache lines are flushed at each
commit. Also, the data sharing pattern of the application only creates a small
number of dependencies (the average size of the group of dependent proces-
sors is 2.8 with 8 CPUs). These two factors explain the good performance of
RSMM for this application.

The performance of CARER is close to that of RSMM for this appli-
cation despite disproportionate recovery point establishment rates (CARER
establishes 15 times more recovery points than RSMM), due to the low cost
of establishing a recovery point in CARER. Most recovery points are esta-
blished when modified cache lines are replaced; only a few result from data
sharing.

Sequoia suffers from an even higher recovery point establishment rate
that CARER, mostly caused by critical sections that require frequent cache
flushes. Moreover, the invalidation of unmodified cache lines on entry of a
critical section contributes to lower hits rate from 99.2% to 98%.

mp3d

The behaviour of mp3d is clearly worse than cholesky for the standard archi-
tecture with a speedup of 5 for 8 CPUs. Cache hit rate is lower (98.3%) due
to a worse write locality and to a 10% write ratio with 70% of replacements
leading to write backs. Data sharing is very prevalent in this application;
77% of reads and 87% of writes reference shared data. Due to this heavy
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data sharing, half of the misses are serviced by caches. The large number
of cache to cache transfers lowers the performance since a cache servicing a
miss cannot service requests coming from its CPU.

Of all four applications, RSMM has the worse performance degradation
for mpd3. Performance degradation is 13% for one CPU and attains 33% for
eight CPUs. The major factor contributing to this result is the large amount
of modified data loaded within caches when a recovery point is committed
- with four CPUs, an average of 1250 cache lines are flushed to memory.
Moreover, due to the heavy data sharing, all processors are dependent. This
considerably lengthens the duration of the first phase of the commit protocol.

CARER also does not behave well for this application because of the
heavy data sharing that forces the establishment of a large number of recovery
points. Moreover, a high number of modified cache lines are replaced.

Although synchronisation operations are infrequent, Sequoia suffers from
the large number of modified cache lines replaced.

pthor

The standard architecture obtains low performance for the pthor applica-
tion, with a speedup of 4 for 8 CPUs. Cache hit rate is low (97.5%) due
to a large working set. Caches perform a significant number of write backs.
Data sharing, although less intensive than for mp3d, contributes to limit
performance.

Performance degradation for RSMM is much less for pthor than for mp3d
(13% degradation for 8 CPUs). This behaviour is caused by the different
amount of data flushed to memory prior when a recovery point is committed.
With 4 CPUs, 570 cache lines are flushed, compared to 1250 for mp3d.

For CARER, although data sharing is less intense for pthor than for mp3d
(38 cache to cache transfers vs 89 for 10000 memory references), the number
of recovery points established because of data sharing is higher for pthor
than for mp3d (12 vs 5 for 10000 memory references). This is caused by the
data sharing pattern which is different for the two applications. In pthor,
shared variables are accessed within short - but frequent - critical sections,
thus leading to the establishing of a lot of recovery points.

The large number of locking operations and the large data set that causes
a lot of replacements severely limit Sequoia performance for this application.
No improvements of performance are achieved above 3 CPUs. Due to data

cache invalidations upon exit of critical sections, the cache hit rate is lowered
(84% instead of 97.5%).
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water

The water application offers high performance for the standard architecture
because of a high hit rate (99.88%) and a small data set. Moreover, data
sharing is negligible.

As might be expected, RSMM performance is very good for this appli-
cation because of the small amount of modified data within caches when
recovery points are committed and of the few dependencies (2.6 dependent
CPUs in average for 8 CPUs). CARER also behaves well for this applica-
tion because of the small working set that only causes a few replacements of
modified cache lines.

For Sequoia, only a small number of recovery points are established be-
cause of the replacement of modified cache lines, since the working set is
small. Most of the recovery points are established because of critical sec-
tions.

5.3 Recoverable shared memory implementation

As there are several ways in which an RSM could be implemented, as men-
tioned in an earlier section, it is important to consider the influence such im-
plementations would have on the performance of a system incorporating an
RSM. Of particular concern is the potentially expensive operation of copying
the current values of RSM cells for use as recovery data, when a recovery
point is established. This is addressed in this section. The following section
investigates the cost of implementing dependency tracking in the RSM.
Figure 8 shows the influence of this aspect of the RSM implementation on
performance degradation. Three implementations are considered: one using
copy on write, one using a per processor list of modified memory blocks and
the last which is a control case where the copying time is assumed to be nil.
As can be seen, and as might be expected, the different implementations
greatly influence the performance degradation suffered by an application. Ho-
wever, the degradation ratio between the different implementations remains
constant independent of the application. The copy on write implementation
behaves better than the implementation using a per processor list of modified
memory blocks, although the number of blocks to be copied (and so the time
needed to copy those blocks) is the same for both. With the list of modified
blocks implementation, the duration of the copy is concentrated at the end
of the first phase of the commit protocol. Although the CPUs restart their
computation at the end of the first phase, they are not allowed to access the
bus until all blocks have been copied and so quickly become delayed waiting
for the bus to be released. If copy on write is used, the copying can be in-
terleaved with CPU memory accesses. Thus the CPUs are only kept waiting
for short periods of time resulting in better overall performance. The per-
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formance is naturally the best for the control (no copy) case, which hence
indicates the upper performance bound for the RSM.

5.4 Dependency management

Dependency management adds some complexity to the implementation of
the RSM. In a simple implementation, all CPUs could establish a global
recovery point thus avoiding the burden of dependency management within
the RSM. In this case, a standard memory interface is sufficient for the RSM
since it no longer needs to snoop bus transactions to log dependencies The
commit protocol is also simpler. However, the potential gain of dependency
tracking is in minimising the number of processors that have to be recovered
in the event of a failure of one processor. Thus, it is necessary to study the
impact of dependency management on performance to investigate whether it
is worth the added implementation complexity.

Figure 9 presents for each application the performance degradation obser-
ved with eight CPUs, for RSM with and without dependency management.
The figure also shows the average number of dependent processors at each
commitment of a recovery point. For pthor and mp3d, the performance of
the two versions of the RSM are nearly identical since for these applications
all processors are dependent, and hence the presence of dependency tracking
is irrelevant. In contrast, for cholesky and water, where the average group
size never exceeds three processors, the dependency management shows its
efficiency since it reduces the performance degradation by a factor of two.
The main reason for this is that with dependency management the number
of blocks flushed when a recovery point is committed is reduced since less
CPUs are dependent and hence forced to flush their caches. For example,
with the water application, 190 cache lines on average are flushed to memory
each time a recovery point is committed. When dependency management is
suppressed, the number of cache lines flushed grows to 330.

5.5 Summary of the simulation results

These simulations have demonstrated that the CARER and Sequoia ap-
proaches to implementing a fault tolerant shared memory multiprocessor
both exhibit similar performance behaviour. Both require the commitment
of a previous recovery point and the establishment of a new recovery point
each time a modified cache line has to be replaced, and when data sharing oc-
curs (for Sequoia, data sharing is enforced explicitly by means of the locking
protocol). The difference in performance of these two architectures primarily
results from the differing costs of recovery point operations. A realistic im-
plementation of CARER should consider errors within caches and so would
obtain roughly the same performance as Sequoia because of the necessary
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cache flushes. The rate at which recovery points are established and commit-
ted is controlled by cache parameters (size, associativity, replacement policy)
and by the data sharing pattern of the application programs. This results in
a high, uncontrollable and unpredictable frequency of recovery points esta-
blishing (between 25 and 100 times more than for the RSM approach). Some
memory access patterns in the applications can even force the establishment
of a recovery point at each data reference.

The RSM approach to implementing fault tolerance in a shared memory
multiprocessor eliminates most of these disadvantages. The need for com-
mitment/establishment of a recovery point is controlled primarily by the
interactions of the architecture with its external environment (e.g. for 1/0)
independently of any architectural parameter. These interactions are much
less frequent than cache line replacement. Recovery points are also indepen-
dent of the communication patterns of the application programs, owing to
the dependency tracking mechanism.

The fault tolerance overhead is concentrated in the commitment phase of
the recovery protocol. Three factors can influence this overhead:

e the amount of data modified,
e the number of dependent processors,

e the bus load of the machine.
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The amount of data modified is the major factor that influences perfor-
mance degradation. The duration of the commit is directly proportional to
the amount of data that has been modified. In turn, the amount of data is
governed by the number of processors that are dependent upon the processor
that issued the commit. Thus, the dependency management mechanisms in
the RSM minimises the number of processors that are affected by the commit
(except of course if they are all dependent). The dependent processors impose
another overhead on commitment, since some modified data may be resident
in the processor-private caches. Thus commitment requires the modified lines
in the caches to be flushed back to the RSM. Thus, the importance of the
dependency tracking mechanism in the RSM increases with the number of
processors in a system, in that minimising the number of dependent proces-
sors will minimise the amount of cache flushing and data committing. Note,
of course, that the cache flushing is required in an ordinary shared memory
multiprocessor, and the overhead of cache flushing is not just RSM-specific.

The bus load also influences the performance degradation. Performance
degradation grows with the number of processors as does the bus load. If
the bus is lightly loaded, cache flushes can proceed without interfering with
the activity of the processors that do not participate in the commit protocol,
and in this case the performance degradation remains constant whatever the
number of processors.

As stated in [12], the key issue to obtain good performance is to keep the
frequency of recovery point operations independent from any architectural
parameter. This is what the RSM approach attempts to do.

6 Conclusion

The architecture presented in this paper allows processor failures to be to-
lerated transparently, that is, without affecting the software being executed
on the architecture. The only specific hardware component required is the
RSM, and it is believed that the RSM can be implemented at a reasonable
cost. The RSM copes with standard caches and cache coherency protocols,
and this provides an advantage over the other approaches studied, such as
CARER and Sequoia. The dependency tracking mechanism provided by the
RSM allows shared memory to be provided to and used by the software. In
contrast, the Sequoia system only permits memory sharing within the opera-
ting system, and requires complex software structures to ensure the correct
semantics.

From a performance point of view, simulation results show that an ar-
chitecture incorporating the RSM offers the best performance if compared
with the Sequoia and CARER approaches. This is mainly due to the fact
that recovery points are committed less frequently in our architecture than
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in others. Moreover, the number of blocks to be copied in a commit operation
is kept as low as possible by the fine-grained recovery protocol presented in
section 4 together with the RSM-supported dependency tracking mechanism.

A prototype fault tolerant shared memory multiprocessor system is cur-
rently being constructed in an ESPRIT project called FASST (Fault-tolerant
Architecture with Stable Storage Technology) [8] which involves the authors
and several European partners both from industry and universities. The
hardware configuration in FASST is similar to the architecture presented
in section 4. For brevity, this paper has implicitly assumed that the RSM
is composed of a single centralised board. In the FASST architecture, the
shared memory will be composed of multiple RSM boards, to overcome the
memory capacity limit and bandwidth of a single RSM board. While the phy-
sical design of a reliable and efficient RSM board is one of the challenging
issues of this project, past experience in the actual building of stable storage
boards [2, 4] provides confidence that this can be achieved at a reasonable
cost.

This paper has just considered the case of parallel applications which
consist purely of computation, with no input/output operations. Providing
backward error recovery in the face of unrecoverable operations such as 1/O
is a further challenge which has not been addressed here. Continuing research
is addressing this problem and the extensions to the recovery protocol ne-
cessary to provide the required abstraction of backward error recovery with
both shared memory and other unrecoverable operations being executed by
applications programs.
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