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Multifractal Description of Road Traffic Structure
Description Multifractale de la Structure du Trafic Routier

Jacques LEVY-VEHEL, Robert VOJAK
INRIA

Domaine de Voluceau - Rocquencourt
B.P. 105 - 78153 Le Chesnay CEDEX.

Mehdi DANECH-PAJOUH
INRETS
2, avenue du Général Malleret-Joinville
94114 Arceuil Cedex

Abstract

In this work, we study the structure of road traffic with the help of fractal and multifractal tools.
Using classical models of traffic that lead to a Burgers’ equation, and recent results on the solutions
of this equation when the initial conditions are scaling, we predict that, under some circumstances,
the traffic can possess a multifractal structure similar to those of multiplicative processes. We then
verify this behavior on siz minute data of traffic flows. The high sampling rate allows to evidence
the highly irregular nature of the flows, and to quantify this irregularity using the classical tools of
the multifractal theory, namely the (q,7(q)) and the (a, f(a)) curves. These characterizations in
turn permit to classify the compler traffic data, with some application to short-term prediction.

Keywords : traffic, Burgers’ equation, multifractal, classification.

Résumé

Dans cet article, nous étudions la structure du trafic routier a l’aide d’outils fractals et multifrac-
tals. En utilisant des modéles classiques de trafic qui meénent & une équation de Burgers, et d’aprés
de récents travauz portant sur les solutions de cette équation lorsque les conditions initiales sont
self-similaires, nous prédisons que, sous certaines circonstances, le trafic posséde une structure mul-
tifractale identique a celle de processus multiplicatifs. Nous vérifions alors ce comportement sur des
données siz minutes de débit de trafic routier. Le taux d’échantillonnage élevé met en évidence la
nature trés irréguliére des fluz, et permet de quantifier cette irrégularité en utilisant les outils clas-
siques de la théorie multifractale, i.e. les courbes des (q,7(q)) et des (o, f(a)). Ces caractérisations
permettent d leur tour de classifier les données complezes de trafic, ouvrant des perspectives pour
la prédiction & court terme.

Mots-clés : trafic, équation de Burgers, multifractal, classification.



1 Introduction

In the last decades, the growth of road traffic has become more and more important, yielding
enormous energy and time wasting, noise, pollution and accidents, and giving rise to health
and financial problems.

The necessity of a good understanding of the traffic is thus essential, at all scales. It concerns
people stuck in a heavy traffic as well as the society in general.

The issue of this understanding is to create tools necessary to traffic regulation and to
the elaboration of transport infrastructures.
As pointed out in Haberman[6], “the ultimate aim is to understand traffic phenomena in
order to eventually make decisions which may alleviate congestion, maximize flow of traffic,
eliminate accidents, minimize pollution, and other desirable ends.”
In this work, we propose to study traffic flows along unidirectional roads. In the following
section, we recall a classical approach of dynamic modeling that derives a partial differential
equation for traffic flow. This equation is a Burger’s equation, and we use recent results on
its solutions when the initial conditions are scaling to show that the traffic flows can possess
a multifractal structure under some circumstances. Basic recalls on multifractal analysis are
given in section 3.
Section 4 is devoted to an empirical study whose goal is to verify the multifractal properties
of the traffic data when measured at a sufficiently high sampling rate.
These properties allow to classify the highly complex signal of traffic flows, and give some
perspectives for solving the difficult problem of nonlinear traffic prediction.

2 Modeling of Highway Traffic

Throughout this section, we assume that cars move down a long single-lane highway from
left to right, between position z = a and £ = b, at a variable speed, and that they are neither
created nor destroyed on our road except through entrances and exits.

Let u be the velocity of any car, p the density of the traffic, i.e. the number of cars per
unit distance, and ¢ the flow of the traffic, i.e. the number of cars crossing a road section
per unit time.

On the basis of actual traffic observations, u can be assumed to depend only on p (see
[1] and [5]).

Let umez = u(0) be the maximum speed, or mazimum free speed, and pyq, the maximum
possible density at which there is a bumper-to-bumper traffic (u(pmqsz) = 0).
A reasonable model for u(p) used in [6] and [7] is

u(p)=um(1— P ) (1)

Pmaz

It is shown in [6] that, if v and p depend only on position z and time ¢, the flow g is

q(z,t) = u(z, t)o(z, ) (2)



Furthermore, we have (see [6] and [7})

dit/:, p(z, t)dz = q(a,t) — q(b,t) " (3)

which expresses the fact that changes in the number of cars are due only to the flow across
the boundary. Equation (3) is an integral conservation law, which can also be rewritten

dp O _
ot + a—x(pu) =0 4)

using (2). Equation (4) is called conservation of cars.

Unfortunately, this approach is not satisfactory, as the following example will show : suppose
that there is an observer at some location zo = z(0) on the highway, and that he moves at
some constant velocity.

If we note z(t) his position at time ¢, then

p(z(t),t) = p(zo,0) = po (5)

Therefore the density p remains constant along some curves (depending upon ) in the z, ¢
plane, whose components are (z(t),t). Those curves are the characteristics of the partial
differential equation.

It was shown (see [6] and [7]) via a straightforward calculus that

2(t) = dj%(ﬁt + 2o (6)

along the characteristic on which p = py.

Since o can vary, there is a family of straight line characteristics in the z,¢ plane on each
of which p remains constant.

For instance, if we are given

7z <0
= p(z,0) =
e =pta0) = { B 250 )
one has u
dg(po) _ { tgpz  p = brpe ®)
dp —Umaz P = Pmaz
The corresponding characteristics are given by

~Umazt +ZTo Zo >0

x(t)={ Ynazt 4 zo 29 <0 : (9)

and sketched in figure 1.
One can notice that those lines intersect, which means that at some points, the density p
has two values, and is thereby an unacceptable solution.
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Figure 1: Characteristic curves

An alternate approach (see [6] and {7]) is to replace g with

) op
§=q-vg

(10)

(v is a positive real number), taking in consideration that a driver can adjust his velocity
not only according to the density (space between cars), but also to the rate at which this

density is changing. Thus u becomes

pmaz

or equivalently ,
o _ 0
ot oz o0z

92 1 s (1 —2—f—> gg =

(11)

%p
”5? (12)
(13)

with ¥ = Umaz(1 — 20/ Pmaz)- Equation (13) is a Burger’s equation.

Recently, some authors have shown that, under certain conditions, the solutions of Burger’s

equation possess a fractal structure (see [8] and [11)).

In general, when the initial density po(z) is smooth, we know that, using a Hopf-Cole trans-
form to solve Burger’s equation, after some time and in the inviscid limit (v — 0), the
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solution p(z,t) is smooth except for isolated discontinuities, called shocks. For long times,
the smooth zones become ramps of slope 1/t.

When po(z) is a fractional Brownian motion of scaling exponent k, h €]0, 1], the behavior of
the solutions is very different. The self-similarity of the initial conditions has some drastic
consequences on the solution. Intuitively, for smooth initial conditions, it takes some times
for shocks to be created; as for scaling initial conditions, shocks may appear after arbitrarily
short times.

If we denote by z(a, t) the Lagrangian function, i.e. the location at time ¢ of a vehicle initially
at position a, the function a(z,t) is called the inverse Lagrangian function.

Then, for initial conditions that are fractional Brownian motions of exponent A, it can be
shown that (see [8] and [11]):

e the inverse Lagrangian function a(z) for the solution of Burger’s equation is a Devil’s
staircase.

o the total number of shocks per unit length is infinite.

o the probability P(Aa) to find a shock interval Aa in an interval [ak,ak+1[, where
ar = 27% is given by P(Aa) ~ (Aa)® when Ag — 0 with s = —h.

o the set of Lagrangian regular points (i.e. points a that have not participated in any
shock during the interval [0, ¢[) has Hausdorff dimension h, for initial condition with
h = 1/2. 1t is conjectured that this result holds for any h €]0, 1[.

Now the question for our study of highway traffic is : what is the structure of the initial
density po(z) ? Is it a smooth function, or does it look like a (fractional) Brownian motion ?

It is difficult to obtain data that would allow to give a precise answer to this question :
indeed, what we need, is to have access, on a certain portion of the road, to the instanta-
neous density po(z) on a sufficiently large number of points. This implies to be able to put
a great number of captors on the road, which is not usually done. In general, there are too
few sampling points, and no quantitative statements can be made. However, the following
can be said :

e if, inside a given zone, the traflic has not reached at any point the critical density p.
(pc is the density such that, for p > p., ¢ becomes a decreasing function of p), then the
initial density po(z) will probably be a smooth function. However, this situation is not
of interest, since it does not raise any serious problems, neither for traffic regulation,
nor for prediction.

e if some congestion points exist in the considered portion, due to crashes; road narrowing
or any other reason, then po(z) will present irregularities at many more points than
only the congestion ones : indeed, if a car somewhere on the road suddenly slows down
or has another irregular behavior, it will have consequences on a large part of the road
behind and over a long period of time ; this suggests that irregularities have long range
correlation both in time and space. At a certain fixed time o, the values of py along
the z axis reflect all the interactions between irregularities that occurred before ¢.
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This picture is reminiscent of what happens in multiplicative processes or instable growth,
where, as soon as some small instabilities appear, they develop into larger irregularities.

Of course, in the case of road traffic, a regulation process stops this growth at some time
(except in a number of science fiction short stories).

These simple considerations are in no case sufficient to prove that the initial velocity, and by
consequence, the solution to Burger's equation for road traffic has a fractal structure. They
only indicate that it could be the case, through a mechanism of a multiplicative process or
a non-linear growth.

Another way to approach this issue is to use flow records. Indeed, if we do not have access
to the instantaneous values of po(z), it is much easier to record the fluctuations of q(t) at a
certain point with a good precision (6 minute data in our case). On the basis of this data, we
can compute some experimental quantities to verify the possibly (multi-)fractal structure of
road traffic. This we do in the section 4, showing experimental evidence of the multifractality
of flow records. Before that, we briefly recall basics of the multifractal theory.

3 Recalls on the Multifractal Theory

We briefly recall some basic facts about the multifractal theory. See also [13], [14], [15], [17],
[19], (12,
Let u be a Borel probability measure on [0, 1]. Let v, be an increasing sequence of positive
integer, and define:
B [ IR 1]

b
n Vn

in
We consider the following quantities:

1
log vy,

log > u(lin)?

0<i<vn

Tn(Q) ==

where 3°* means that the summation runs through those indices i such that pu(l;,) # 0.
We shall say that g has a multifractal behavior if :

lim 7,(q) = 7(q)

exists for ¢ in a non empty interval of IR.
7(g) characterizes the global behavior of the measure when the size of the intervals tends to
zero. 7(q) is related to a notion of generalized dimensions. Indeed, if we define:

Dy = qi (@) g#1
Lrta)

then Dy is the fractal dimension of the support of u, D, is the information dimension, D,
the correlation dimension, etc ...
Set:

D1 = hm[

In(z) = {Lin/z € L;n}

S



We define :
E, = {x € [0,1]/ lim log u(/n(2)) _ _a}

n—oo  logu,

The exponents o characterize the local scaling behavior of the measure: if o exists at point
z then we have:
1(In(z)) ~ (v,)™*® when n — oc

v, being the linear size of the interval around z upon which we evaluate . a is called the
Hélder exponent at point z.

E, can then be seen as the subset of points having the same scaling behavior, described
by a.

To have a multifractal description of u, one first compute the set of possible a exponents,
and then evaluate the “size” of the subset E, of {0, 1] associated with a, by computing the
Hausdorff dimension of £,, often denoted by f(a).

This (a, f(a)) description is thus both local (via o) and global (via f(a)). It is called the
multifractal spectrum of u. Several interpretation of these quantities can be made. One of
the most important is the link between f(a) and the rate function appearing in the theory
of large deviations. Briefly, this means that the exponential of f(a) — D measures the decay
of the probability of finding the value o when n tends to infinity, where D is the dimension
of the euclidean embedding space.

A central concern in the multifractal theory is to link both descriptions, namely («, f(a))
and (q,7(q)). This has important applications. Indeed, 7(g) is usually much easier to com-
pute on experimental data than (a, f(a)): 7(q) is obtained by averaging over many intervals
and then taking the limit. « is more sensitive to noise, since it is computed independently
at each point. As for f(a), it implies the computation of a Hausdorff dimension, which is
typically very involved.

Under very general assumptions, it has been proven that (see [12]):

f(a) < inf(ga - 7(q))

For certain special classes of measures, including multinomial measures, we have an equality:
() = inf(ga - () |

That is, the Hausdorff dimension of F, is obtained through a Legendre transform of 7(q).

In this case, an analogy with thermodynamics can be made, with the following equiva-
lences :



q 71-. T = temperature

o U

f S

T —_ —

g F=U-TS

In the case of multinomial measures, f(a) is a bell-shaped curve. This shape is also
observed for a number of natural phenomena. However, this is by no way a general property,
as one can prove that any ruled function can be the spectrum of a multifractal measure
(see (3]).

Other “special” features of f may appear depending on the construction of the measure,
as for instance negative values (see [19]).

4 Experiments

4.1 Experimental evidence of the multifractal structure of High-
way Traffic

We have computed both the (g, 7(q))and (o, f(a)) curves on experimental traffic data.
These data give the flow of the traffic on a highway, measured every 6 minutes, during a
continuous period of one month (July 1992).

Figure 2 displays the raw data over one day. One can notice that the signal possesses
irregularities at all scales. Figure 3 displays the (g, 7(q)) curve, and figure 4 displays the
(c, f(e)) spectrum. '
Computations made on other days and other time duration (2 hours - 2 days) typically
exhibit the same multifractal behavior, namely :

1. the 7(q) curve clearly departs from a straight line.
2. the spectrum displays the commonly observed bell shape.
The regression lines for the computation of the different quantities fit the data points to

within an error always less that 3%.

4.2 Classification of highway traffic data

For various purposes, as for instance the description of the structure of the traffic over a
certain period, or the short term prediction, it is desirable to be able to classify the flow
curves, according to certain criteria.

For instance, a classical approach to short term prediction (see [2]) is the following one :

(f
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Figure 4: Multifractal Spectrum

e in the first step, observation and-processing of historical data is done : from the raw
data of traffic flow on a given period of time (for instance the 10 hours preceding the
studied time) we compute normalized values by dividing the local flow by the global
flow on the period. This allows to get rid-of seasonal variations. The obtained vectors
(which have, for instance, 20 components in the case of 30 minutes data on 10 hours
periods) are called profiles. All'the days are then classified, on the basis of the profile
data, using a classical data-analysis method, such as a cluster algorithm. Typically, 4
classes are defined, grouping homogeneous days with respect to the profiles.

e the second step consists in modeling each class with a simple autoregressive model.

e in the third step, one perform the.short term prediction itself ; one identifies the class
to which the data to be analysed-is 'supposed-to belong, and applies the corresponding
autoregressive model to it.

In this section, we propose a classification’ scheme that takes into account the fractal
structure of the data evidenced in the previous section. *

A classification based on the multifractal properties of the signal should hopefully lead,
in a certain fashion, to a more pertinent=analysis and thus to better short term predictions.
Indeed, if one wants to make robust forecastings, the first important thing to do is to identify
the structure of the process : if it-is approximately linear, then a linear method (for instance
an autoregressive one) can be helpful:- On the contrary, if it is (multi-)fractal, completely
different types of models should be used: Oné should further be able to distinguish between
several non linear behaviors, since it ‘is likely that, the more irregular the process is, the
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more “non-linear” the methods should be. In other words, one has to quantify by how much
the process departs from a linear one, in order to decide whether linear methods with small
corrections can be used, or what sort of more complex models are needed.

The computations of the multifractal spectrum or of the 7(g) curve can help this purpose.
We proceed as follows :

e We first have to decide what we are going to classify. We use as basic patterns “slices”
of the data that are the flows recorded between times ¢; and t5. The size of the interval
[t1,t2) depends partly on the prediction time, and partly on the structure of the data :
if we intend to characterize precisely what happens at one moment, we should use
small intervals, but then the classification might be too sensitive to noise or specially
rare events. Thus a trade-off has to be found. We tried periods of 2, 3, and 4 hours.

e Once we have sliced our data into m periods of n hours, we compute 7(g) for each slice.

e We finally classify all the 7(q) curves according to some criterion, in order to obtain
some types of average behaviors of the signals with respect to their singularities

On figure 5 are presented the classes obtained with a classical classification method applied
directly to the flows (two hour and three hour data). Four classes are detected, with well
balanced numbers of samples (in this case). On figure 6 are the classes found with a
computation on the 7(q). The situation here is very different. We have five very different
classes :

1. class 1 contains a large number of samples (294 for two hour data, 179 for three hour
data). The corresponding 7(g) curve is almost a straight line, indicating a monofractal
behavior (the slope does not equal one). The interpretation is that most two-hours
slices have a behavior characterized by a single exponent, and can be studied as such.
Thus, most of the time, the traffic flow (under the conditions of the classification) can
be seen as a homogeneous irregular signal. '

2. class 2 and 3 contain respectively 35 and 32 samples for two hour data, and 19 .and
28 for three hour data. The two corresponding 7(g) curves clearly show a multifractal
behavior.

3. class 4 and 5 contain very few samples (2 and 5 for two hour data, 13 and 8 for three
hour data), and also exhibit multifractal behavior, with a more non linear shape for

7(q).

One can then use these results in the following fashion : when a new two-hour sample is
presented, we find to which class it belongs, by computing its 7(q). If class 1 is found (we
know that it will be the case most of the time), a model based on a monofractal behavior
may be applied. Sometimes, the situation will be worse, as the sample will belong to class
2 or 3, and a more sophisticated model will have to be used. At last, very rarely, an even
more irregular behavior will occur, characterized by class 4 and 5.

It is interesting to go back to the samples, and see what the multifractal classification
looks like in the flows space instead of the (g,7(q)) one. We have drawn on figure 7 the
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mean flow curves corresponding to the 7(g) classes of figure 6. We verify that class 1 (flat
curve) corresponds to a much more regular behavior than the other classes. Besides, the fact
that the five classes have clearly different shapes is a sign of good separation of the different
possible structures, and thus of the ability of the method to be used as a first step in a
prediction scheme.

The difference with the classical classification is obvious on this figures : instead of
classifying the shapes of the profiles, the multifractal approach highlights the different types
of singular behavior, each class being characterized by the amount of irregularities it contains.

4.3 Short time prediction

In this section, we do no more than indicate some ideas for prediction in the case of a
multifractal signal.

The prediction of chaotic signals have been considered by a number of authors (see [10]).
Specially interesting is the use of chaos theory to find an appropriate space (more precisely an
appropriate space dimension) in which one can do the prediction, using local approximation
methods.

Here we outline the possible use of the multifractal spectrum for performing such a task.
The {(a, f(a)) spectrum gives us informations about both the local (via a) and global (via
f(a)) behavior of the signal (see figure 4).

Suppose that we want to predict what is going to happen in the very near future of time ¢.
Using the spectrum, we know what range of exponents a can occur at ¢, and the probability
that a particular exponent will appear, which is related to f(a) : the mean behavior is
characterized by ag which corresponds to the maximum value of f(a), and the probability of
occurrence of other a values is proportional to the exponential of f(a) — 1 (see for instance
[12] or [9)).

Now, by definition of the local exponent a, the jump of the flow during a given small
period of time 6t is of order of (§¢)* (in fact, we may be a little more precise, see [4]). Thus
we can predict that the flow at time ¢ + 6t will be in a cone, of vertex the flow at time ¢t and
whose angle is related to «, with a probability related to f(a). Depending on the multifractal
spectrum (and specially on its width and bandpass), more or less precise predictions can be
made using this geometrical approach.

Obviously these are only a few preliminary first steps towards prediction for multifractal
signals. Much more work remains to be done in order to obtain a coherent method for solving
this difficult problem.

5 Conclusion

We have studied from a multifractal point of view the structure of road traffic. Theoretical
models, leading to a Burger’s equation, allow to understand how a fractal behavior can
appear.

Besides, calculations conducted on experimental data evidence a multifractal structure for
the traffic flows. The quantification of these irregularities is a first step towards classification
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Figure 5: Results of the classification of the profiles using the raw 2 hour (left) and 3 hour
(right) data

Figure 6: Results of the classification of the 7(q) curves for the 2 hour (left) and 3 hour
(right) data

Figure 7: Results of the classification of the profiles using the multifractal characterization
of the 2 hour (left) and 3 hour (right) data -
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and prediction of complex road traffic signal. However, much more work is needed to fully
understand the various phenomena, and thus be able to give more robust predictions.
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