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abstract

This work is intended to provide a multifractal approach to the problem of edge detection in images.

We show that an alternative description of images, based on the multifractal characterization of the signal,
can be used instead of the classical approach that involves smoothing of the discrete data in order to 'compute
derivatives. We focus on the study of edge detection using measures defined as functions of the grey level values
in the neighborhood of a given pizel. Each measure is studied through the way it reacts to different types of edges
and noise added to the image. Finally, we mention how the use of the multifractal spectrum (o, f(a)) may lead
to a global approach to the problems of edge detection and region ezxtraction.

Keywords: image analysis, multifractal, edge detection.
Résumé

Le but de ce travail est de fournir une approche multifractale au probléme de la détection de contours dans
une image.

Nous montrons qu’une decription d’images fondée sur la caractérisation multifractale du signal peut étre
utilisée plutét que ’approche classique qui suppose le lissage des données discrétes pour calculer des dérivées.
Nous nous intéressons 4 [’étude de la détection de contours en utilisant des mesures définies comme des fonctions
des valeurs des niveauz de gris du voisinage du pizel. Chaque mesure est éludiée par sa réaction ¢ différents
types de contours et de bruitage de !'image. Enfin, nous montrons comment l'utilisation du spectre multifractal
(a, f(e)) peut aboutir d une approche globale des problémes de détection de contours et d’extraction de régions.

Mots-clés : analyse d’images, multifractales, détection de contours.



1 Introduction

The aim of this work is to investigate the potentialities of a multifractal approach for image analysis.
In the fractal community, “image analysis” usually means that we are given an image representing
a certain state of a particular process, and that we want to compute some sort of fractal dimension,
which is of interest for characterizing the process, using this image: it can be an aerial photograph of a
region showing some faults, in which case we want to evaluate the fractal dimension of the faults net-
work. Another example is electronic micrography of a surface arising in a catalyzed chemical reaction,
whose fractal dimension may be related to some parameters of the reaction. Let us also mention the
computation of the fractal dimension of a diffusion front from a 2D computer simulation.

Our concern here its totally different: we do not want to use an image representation of a process
in order to compute a fractal dimension associated with it, but to characterize the image itself in terms
of fractal features.

In other words, the object of study is the image itself, and the fractal approach is used to describe
its structure. Thus our work is a fractal approach to the widely studied image analysis problem.

In section 2, we state the basic problems of image analysis and describe some of the “classical”
solutions that have been proposed. In section 3, we recall some definitions and results of the multifractal
theory. These results are used in section 4 for a multifractal description of images. We present some
results on synthetic and real images, before concluding and proposing some desirable extensions.

2 Classical Approach to Image Segmentation

Why do people do Image Analysis?

The answer is because image analysis is the first step for solving the problem of artificial vision,
which has many applications in robotics, medical imaging, satellite imaging, etc ...

We restrict ourselves here to the problem of image segmentation: segmentation means that we just
want to extract from the image a compact description in terms of edges and/or regions. Thus, we do
not tackle the problem of higher level interpretations such as recognition for instance. .

Essentially, image segmentation consists in finding all the characteristic entities of an image: these
entities are either described by their contours (edge detection) or by the region where they lie (region
extraction). These two approaches are dual, but their algorithms are very different, and, unfortunately,
most of the times lead to different segmentation results. We shall briefly present some classical methods
for these two approaches.

2.1 Edge Detection

It is by far the most widely used approach. The core of the classical methods is the assumption
that edges usually corresponds to local extrema of the gradient of the grey levels in the image. The
difficulties in edge detection are caused by the noise coming from the camera, the sampling, or the
objects themselves.

In this setting, one then has to tackle the problem of computing the derivative of a noisy discrete
signal.

Let I(z,y) be the image (noisy) signal. An edge is defined by its type: a step edge is a 0th.order
discontinuity of I (see figure 1).

A roof-edge is a 15t-order discontinuity of I (see figure 2).

Other types of contours are defined, but we shall not consider them here (lines, corners, etc ...).



Figure 1: Step edge.

Figure 2: Roof edge.

c=(2)

The idea of the approach is to reduce the problem of edge detection to the determination of a filter
allowing a good approximation of the gradient G.

Indeed, if we assume that the edge points are local extrema of G, the problem that remains is to
accurately compute G.

Under some assumptions on the nature of the noise, it may be shown that the problem is equivalent
to that of finding an optimal linear filter f such that:

G=(I*f)'=1*f'

Let G(I) be the gradient of I.

In order words, we start by smoothing the discrete image data I by convolving it with f, and then
compute the gradient by differentiating the smoothed signal. Edge points are then defined to be the
local maxima of the gradient’s norm in the gradient’s direction.

It remain to define some criteria for the performance of the smoothing filter, in order to ﬁnd an
optimal one. Usually the following three criteria are considered:

e Detection: the operator must react to an edge.
e Localization: the edge must be precisely detected.
e One response to one edge: an edge must trigger the operator only once.

Under the assumption that the edge is a step edge and that the noise is additive, white, and gaussian,
it may be shown that the optimal filter is (in 1D):

-Qal —QT

f(z) = a1€** sin{wz) + a2e** cos(wz) + aze™ ** sin(wz) + age™*F cos(wz) + ¢

where o, w and ¢ are real positive constants, and:

W being the width of the filter (see [7]).
People usually use:

flz) = —ce Wl sin(wz) or f(z)= —cze W (Canny-Deriche filter)



which corresponds to infinite W (see [8]), or simply a gaussian filter:
f(z) = cemo
The parameter « allows to tune the smoothing of the signal, and thus to adjust the trade-off between

localization and robustness to noise.
For a more complete description of the classical approaches, see [24].

2.2 Region Extraction

We very briefly state the main points of this approach. The idea here is to separate the image into
regions that verify a given uniformity criterion.

If we are dealing with very simple images, the criterion might just be that all points belonging to a
certain region must have the same grey level. However, in general, images include textured zones, and
one has to solve the much harder problem of texture discrimination. For more complete discussion,
see [23], [6].

3 Basics of the Multifractal Theory

We briefly recall some basic facts about the multifractal theory. See also [9], [10], [11], [22], [21], [17].
Let 1 be a Borel probability measure on [0,1] x [0, 1]. Let v, be an increasing sequence of positive
integer, and define:

i 1+1 J Jj+1
1‘ j =Ty T Ty T T
b [Vn Un } 8 l:un Un }
We consider the following quantities:
1 * *
n(q) = —lo_é—:—/; logzi: EJ: w(lijn)?

where 3~ * means that the summation runs through those indices (%, j) such that u(I; ;) # 0.
We shall say that 4 has a multifractal behaviour if:

lim 7,(q) = 7{q)

n—oo

exists for ¢ in a non empty interval of R.
7(g) characterizes the global behaviour of the measure when the size of the intervals tends to zero.
7(q) is related to an notion of generalized dimensions. Indeed, if we define:

1

D, = 5—_—17(4) g#1
. 1

D, = ‘lll_q} L;';—IT(Q)}

then Dy is the fractal dimension of the support of g, D, is the information dimension, Dy the correlation
dimension, etc ...
Set:
In(z,y) = {Lijn/(z,y) € Lijn}
We define:

Eo = {(x,y) € 0,1[x[0, 1{/ lim log u(In(2, %)) _ _a}
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The exponents « characterize the local scaling behaviour of the measure: if a exists at point (z,y)
then we have:

w(In(z,y)) ~ (va) ¥ when n — oo

v, being the linear size of the “box” around (z,y) upon which we evaluate u. « is called the Hdlder
exponent at point (z,y).

E, can then be seen as the subset of points having the same scaling behaviour, described by a.

'To have a multifractal description of y, one first compute the set of possible a exponents, and then
evaluate the “size” of the subset E, of [0,1[x[0,1] associated with a, by computing the Haussdorff
dimension of E,, often denoted by f(a).

This (e, f(a)) description is thus both local (via o) and global (via f(a)). It is called the multifractal
spectrum of u. Several interpretation of these quantities can be made. One of the most important is
the link between f(a) and the rate function appearing in the theory of large deviations. Briefly, this
means that the exponential of (f(e) — D) measures the decay of the probability of finding the value o
when n tends to infinity, where D is the dimension of the embedding euclidean space.

A central concern in the multifractal theory is to link both descriptions, namely (e, f(a)) and
(g,7(g)). This has important applications. Indeed, 7(q) is usually much easier to compute on experi-
mental data than (a, f(a)): 7(q) is obtained by averaging over many “boxes” and then taking the limit.
« is more sensitive to noise, since it is computed independently at each point. As for f(a), it implies
the computation of a Haussdorff dimension, which is typically very involved.

Under very general assumptions, it has been proven that (see [6)):

f(e) < inf(ga —7(q))
For certain special classes of measures, including multinomial measures, we have an equality:
f(a) = inf(ga — 7(q))

That is, the Haussdorff dimension of F, is obtained through a Legendre transform of 7(q)..
In this case, an analogy with thermodynamics can be made, with the following equivalences:

T = temperature

~~

-~ F=U-TS

< [

In the case of multinomial measures, f(a) is a bell-shaped curve. This shape is also observed for a
number of natural phenomena. However, this is by no way a general property, as one can prove that
any ruled function can be the spectrum of a multifractal measure (see [12]).

Other “special” features of f may appear depending on the construction of the measure, as for
instance negative values (see [21)).



4 Application to Image Analysis

4.1 Definition of the measures

Though fractal geometry has been introduced a long time ago in image analysis, it is not yet used
extensively ([20], [5], [4], (2], [16], [3], [27]).

Some authors have used the fractal dimension to perform texture classification and image segmen-
tation ([26],{27]), other have used higher order dimensions or measures, as correlation or lacunarity
([14],[15]), to refine the results and have obtained some interesting results. Very few papers have been
devoted to the use of multifractals in image analysis ({1], [18]), although multifractals are intensively
studied in mathematics, physics, meteorology and other fields ({19}, [25], [13], {10], [11], (28], [18]).

The main point that justifies the introduction of multifractals in image analysis is the following one:

Fractal dimension is a nice topl for characterizing the irregularity of a curve or a surface. Though
its measurement is not very precise on images, it is fast to compute and can sometimes help to get
specific features from the data. However, it seems to us that applying it to characterize an image is
totally unfounded. This approach assumes that the 2D grey level image can be seen as a 3D surface,
or, cquivalently, that the grey levels can be assimilated to a spatial coordinate on the z-axis. This
assumption has no theoretical basis and we believe that it leads to a fundamentally false analysis of
the image, since the scaling properties of the grey levels are totally different from those of the space
coordinates. Instead, we should look at the grey levels as a measure, laid upon a generally compact
set, totally inhomogeneous to space coordinates. We shall define the measure of a region as a given
function of the grey levels of the points of the region.

In this framework, we may now appeal to fractal tools to solve some specific problems. The corre-
spondent of fractal dimension (which is a notion that refers to set) for measures are the multifractal
characterizations.

A natural choice is to define the measure y as the sum of intensities of pixels in the measured region.
This definition respects measqre’é theory axioms, we shall now call it “sum” measure.

We may also generalize the notion of Holder exponent by introducing definitions of p that does not
necessary respect measure’s theory axioms. We introduce “max”, “min” and “iso” measures of a region
Q. If O* is the subset of ? where intensity is non-zero, and p(7) is the intensity of the point ¢, we define:

pmax(Q) = maxieap(i) (1)
Emin () = minieq-p(i) (2)
The iso measure depends on an under discretization of gray levels such that:
2(i) = P (5) <= Ip(s) = p(j)| < 6
If G(Q) is the geometrical center of 2, we define:
piso() = Card{i € Q/p°(i) = P°(G(V)} (3)

We shall see that exponents computed with those measure gives different informations on the singular-
ities encountered: amax and apj, only depends on the height of the singularity, aj5, only depends on
the kind of singularity, and asum depends on both height and kind of the singularity.
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Figure 3: Step-edge, line , corner line and corner models. Notice that the line and the line corner model
give the same measure, they won’t be distinguished further.

4.2 Edge detection using multifractal characterizations
4.2.1 Introduction

Our approach is, in some sense, inverse to the classical one explained in section 2: instead of smoothing
the discrete data in order to be able to compute some derivatives, we stay with our initial discrete
values and quantify the singularity around each point; we then characterize an edge point as a point
having a given value of singularity.

This procedure is based on the idea that, in some cases, it might be impossible to recover an
underlying continuous process from the discrete data (if such a process exists ...). Thus it seems more
natural to directly model the sampled signal. The advantage is that we do not loose or introduce any
information by smoothing. The drawback is that we may well be much more sensitive to noise. This is
why we have to define several measures, and use all the tools of the multifractal theory.

Our segmentation process supposes that multifractal exponents respond to signals such as step-
edges, lines, or corner. They bring an information about the local behaviour of measure, more precisely
how measure does behave when increasing scale. It is obvious that this comportment is affected by the
presence of a singularity.

Canny-Deriche filtering is praved to be optimal among linear filters to a step-edge model with
gaussian noise. Step-edge is not the only model available to characterize an edge. A problem often
encountered is the detection of edges containing corners or junctions: in this case, gradient isn't mean-
ingful for we cannot approximate the signal by a differentiable function. We also want our edge detector
to be idempotent: the result of an edge detection is made out of lines, which are not detected by the
Canny-Deriche filter. One has to use a specific filter. We believe that one can ask an edge detector to
detect its own result. )

[n this section, we study how do multifractal exponents behave when a singularity is encountered.
“sum”, “max”, “min” and “iso” measures are studied, we compare the values of the related exponents
on three models of singularities (step-edge, corner and line) with the value taken on a plane. Figure 3
describes those singularities. These are simplified models with only two values of gray levels, p;, level of
the point of interest, and pq, level of the background. We will denote V (%) the i x i squared neighborhood
centered on the pixel of interest, and V*(¢) as V(i) minus the pixel of interest.

a is computed as the estimation of the slope of log (V' (7)) versus log ¢, withi = 2n+1,n =0.... The
maximal size of neighborhoods is related to localization of computation. If we use little neighborhoods,
for instance i < 3, a will react to localized singularities, if we use larger neighborhoods, a will react
to more widespread singularities. Notice that o only depends on the variation of measure with scale,



Figure 4: Left: sum measure, from bottom to top, response to a step-edge, a corner and a line with A =
5, Middle: sum measure, from bottom to top, response to a step-edge, a corner and a line with A = 10;
Right: iso measure, from bottom to top, response to a line, a corner and a step-edge. « is estimated as
the slope of each of these curves,

regardless of the geometry of the singularity. Hence, we can compute « even in cases where gradient
approach fails. The following study is led in 2D.

“sum” measure: We have p(i) = 9p; for a plane, u(i) = (2n+ 1)(np2 + (n+ 1)p1) for a step-edge,
p(i) = n(3n + 2)ps + (n + 1)?p, for a corner and u(i) = (2n + 1)p; + (2n + 1)(2n)p, for a line. This
measure leads to an exponent dependent of the kind of singularity and its relative height P2 _ ). For

given values of p; and po, with for instance p, > p;, a = 2 for a plane, then is bigger for glstep-edge,
still bigger for a corner and at last is highest for a line.

“max” and “min” measure: We have u(i) = p; for a plane, u(i) = max(p;,p2) and p(i) =
min(py, p2) for these measures whatever is the singularity. These measures are only significant when
using little neighborhood: as for n > 0, u(7) is constant, large neighborhoods leads to o = 0. Using
these measures with little neighborhoods induces the same reaction to any kind of singularity.

“jso” measure: We have u(i) = (2n + 1)2 for a plane. If the singularity height is big enough
with respect to the new discretization of gray levels, reaction of a is independent to the height, it only
depends on the kind of singularity, We have indeed pu(i) = n(2n + 1) for a step-edge, (n + 1)? for a
corner and 2n+1 for a line. Using this measure enables us to distinguish between different singularities,
provided it is higher than a given threshold, regardless of the values of gray levels.

Figure 4 shows the different responses to a step-edge, a corner and a line, for the sum and iso
measure, as the plot of of log u(¢) vs log(i). Estimation of the slope of each of theses curves gives the
corresponding exponent «, and in general tends to the same limit as the resolution grows. One has
to perform a local study to detect singularities, that is no more than 9 pixels of maximal resolution.
[t is very important to notice that sum measure gives a response depending on the relative height A
of the step-edge, corner or line, and that iso measure gives a response only dependent on the type of
singularity.

o provides efficient tools to singularity detection. The choice of the measure depends of what the
user wants: “max” or “min” measure can be used with small neighborhoods to detect any singularity.
To have a reaction dependent of the height of the singularity (as gradient does), “sum” measure is
adapted. At last, “iso” measure enables us to classify the singularities among line, corner, step-edge or
no singularity (in this case, & = D, where D is the euclidean dimension of the space), provided they
are high enough. Notice that reaction to corner and lines, for which a gradient approach is inadapted,
leads to higher responses than to step-edges, when using “sum” and “iso” measure.

)



Figure 5: Different kind of blurring, from left to right: original image, gaussian noise, uniform noise,
Rayleigh noise.

4.2.2 Study of robustness to noise and blurr

To show that multifractal exponents are useful for edge detection in real situations, we have to study the
effect of blurring: depending on the acquisition process, natural images are affected with different types
of noise. The most widely used model of noise is the gaussian white noise, that affects the regularity
of intensity, but not the shape of objects in the image. The white uniform noise gives the same effect.
Those models are not fitted to all modalities of acquisition. Radar or echographic images are affected
by correlated noise, that also induces deformation of shapes, leading to fuzzy images. Multiplicative
noises, and mostly the Rayleigh multiplicative noise, provide a good model to this. Figure 5 illustrates
this, showing the effect of gaussian noise of variance 0.1, uniform noise of amplitude 0.1 and Rayleigh
noise of variance 0.1 on a square image.

We have studied the influence of different kinds of noise on our model: gaussian and uniform white
noise, and Rayleigh multiplicative noise have been studied on step, line and corner models. Comparison
are done with the plane model, that has no singularity.

We have divided this work in two parts: a theoretical approach has been performed in simple cases.
When this was not possible, a numerical simulation was applied. In all cascs, our aim is 10 obtain the
density function of « considered as a random variable, depending on the kind of model used for the
image, the SNR ratio, and of course the exponent computed.

Theoretical approach In some simple cases, one can directly compute the law of a. If we consider
a computing neighborhood V/(3), the expression of & reduces into (4), where only 2 variables z and y
appear: z is the measure of the neighborhood, and y the measure of the pixel itself.

o = 108u(V(3) ~logu(V(1)) _ 108y
logd —log1l log 3

(4)

This study has been led in this case, with gaussian and uniform white noise, and the “sum” measure
and the “max” measure. All other cases (other measures, Rayleigh noise, larger neighborhood) have
been studied by numerical simulation.

The computation of the law divides itself into three steps: Computing the joint law of z and y,

given the law of all pixel in V(3); computing the law of g, z and y being non independent random
variables, and computing the law of a.

We shall denote f,q, the density function of the variable var, and F),, the repartition function. z
is the measure of V(3), y the measure of the pixel of interest, and ¢ is the measure of V*(3).

Computing the joint law of r and y In the case of additive white noise, each pixel value in
the neighborhood are independent random variables. £ and y aren’t independent, but this is true for ¢



and y. The computation of the law of the ratio ; requires the joint density function f;,. In the case of
gaussian noise, there exists a famous expression of it, but not in the case of uniform noise: it will be
easier to compute the law of ¢.

Gaussian noise of variance ¢*, “sum” measure
z is the sum of 9 independent gaussian variable, and so z is a gaussian variable of mean np; + (9 — n)p,
(n = 3 for a line, 6 for a step, and 4 for a corner) and variance 902, y is a gaussian variable of mean p,
and variance 02. We also have z =y +t,t =z — p; and o = 802, y and t are independent variables.

ggz:%;;,_)_ It is easy to see that 7 = L. The joint law is the

2

The correlation rate r between z and y is

law of two gaussian (np; + (9 — n)ps, 902) and (p1,0?) of correlation rate
Uniform noise of amplitude T, “sum measure”

The sum of uniform random independent variables converges very quickly to a gaussian variable, we

will then approximate the sum of n > 3 uniform variables with a gaussian of variance n{; t and y

being independent and £ = y + t leads to the joint law (5):

foy(z,9) = f(y) filz — ) (5)

o)—

where f; is the density of a gaussian variable of mean (n — 1)p; + (8 — n)p, and variance 87“;, fy being
the density of a uniform variable of mean p; and amplitude T

Uniform noise, “max” measure
We now have z = max(y,t), y and t are independent. We finally obtain the joint density (6):

Ty = f:y(xay)zo
2y — f:cu(xay) = fy(y)ft(z)
(6)

We suppose that |p; — p2] > T, which means that the singularity height is significant. The case p; > po
for the “max” measure is of poor interest, for the step is not detected. If po > p; we find:

T

Vt G [p2 e 5)8_"'

T T 1

5Pz ‘2"]aft(t) = 'Tg__",';(t —-p2+
T T

V¢ & [p2 — P2t —2']»/}(‘) =0

with n = 3 for a line, 6 for a step, and 4 for a corner.

Finding the law of z = i Let D, be the region of the (z,y) plane such that 3 < z. We find the
repartition function by computing the mass of D,, and by differentiation the density is given by (7).

0
yfzy(2y, ¥)dy
o0

f(2) = /Ooo yfoy(2y, y)dy —/

1.0 = [ tlfmev)dy M

4.2.3 Law of o

Asa = 11—2-,%-35, computation of the repartition function leads to (8):

fala) = 3%10g 3f,(3%) (8)

10



Figure 6: Density of o for gaussian noise; Left: s; = 10 and s = 50, right: 8; = 5 and s3 = 25; On
each figure, plots represent from left to right the density for a plane, a step, a corner and a line. Value
of a without noise: plane: 2, step: 2.77, corner: 3.07, line: 3.18.

|

Figure 7: Density of a for sum measure, uniform noise. Left plot shows on the left densities for a plane
with s = 5 (high peak) and s = 2.5 (wide peak), and on the right density for a step, s; = 5 and s; = 25
(wide peak), s; = 2.5 and sy = 12.5 (large peak). Right plot shows on the left, density for a step,
g7 = 23 and sp = 5 (wide peak), 8; = 12.5 and s; = 2.5 (high peak) and on the right, density for a
plane, s = 5 and s = 2.5.

Following this process gives the density f,. Expressions of f, are rather complex and are not useful for
comprehension. We prefer to show different plots of f,, depending on the variables s; and sp, which are
a kind of SNR ratio, with s; = 2 in the case of the gaussian noise, s; = % in the case of the uniform
noise.

Gaussian noise, sum measure

The law is plotted on figure 6. Observation of plots shows that there is nearly no chance of confusion
between a plane and a singularity, even though sum measure isn’t an efficient tool to distinguish the
different singularities.

Uniform noise, step-edge, sum measure

The law is plotted on figure 7, which also shows the density in the case of a plane. The theoretical
value of a on a plane while the sum measure is 2. Observation of the plot shows that the step is always
detected, even if the SNR ratio is weak. As an exponent computed using sum measure reacts more
strongly to corner and lines than to steps , those singularities cannot be confused with a plane.

We can conclude that the o exponent computed with sum measure is robust to uniform and gaussian
noise.

Uniform noise, step-edge, max measure

Computation has been led for p; > p; + T. The integration of joint density leads to the following
density plotted on figure 8. We didn’t study the distribution for lines or corner, for max measure reacts
the same way to them than to steps. We can see that steps (as well lines or corners), even with a weak
SNR, are never confused with a plane. “max” measure is also robust to uniform noise.

11
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Figure 8: Density of a for uniform noise, measure “max”. On the left on each plot: density for plane;
on the right: density for step; Left plot: s; = 5 and sy = 25 for the step, s = 5 for the plane; Right

plot: s; = 2.5 and sy = 12.5 for the step, 8 = 2.5 for the plane.

Iigure 9: Left: validation for summ measure, uniform noise; Right: validation for max measure, uniform
noise.

Simulation process If estimating the mean and variance of a random variable is in general rather
quick, estimation of the density is very sensitive to the number of experiments, the discretization of
the values taken by the variable, We have adopted a method based on the fundamental theorem of
statistics to estimate the density. For each estimation, we performed 40,000 realizations of ¢, values of
fo are computed on deciles of the repartition function. This is largely enough to estimate properly the
range of values taken by a, its mean and variance, but, as the convergence rate of the discrete measure
is slow, the density graph is affected by perturbations. In order to obtain a better approximation,
we use the repartition function. Figure 9 shows the validation of the method for “sum” and “max”
measure with uniform noise. Each of its plots contains on the right the simulated density for a step with
s1 = 2.5 and s = 12.5 superposed with the theoretical density, and on the left the simulated density
for a plane with s = 2.5. One can verify that confusion of a singularity with a plane is impossible, and
that the simulation process is accurate. Figure 10 shows an experiment on “iso” measure on 5 gray
levels. Each plots shows the repartition function for a plane and a step with 2 values of noise. Plan
function is the inside one. Left plot corresponds to gaussian noise, middle plot to uniform noise and
right plot to Rayleigh noise, Very high blurring has been performed: s; = 2 and s, = 5 for gaussian
and Rayleigh noise, s; = 1.66 and s; = 5 for uniform noise. Despite of this, confusion between plane
and step is nearly impossible.

4.2.4 Results

We first present the detection of a step singularity blurred with rayleigh noise. Result is shown on
figure 11. We can see that edge detected by a Canny-Deriche filtering is irregular, and edges detected
by multifractal exponent are far less sensitive to noise. On figure 12, we can see the detection of a line
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Figure 10: iso measure with gaussian noise (left), uniform noise (middle) and rayleigh noise (right). On
each figure, plots represent the repartition function for plane (center) and singularity of type step-edge.

blurred with uniform noise. The line is detected with a fair accuracy by multifractal exponent, and
not at all by Canny’s filter. We should here have used a specific filter for lines. However, the same
multifractal exponent is able to detect both step-edge and line.

Figure 11: from left to right: blurred step, Canny’s edge, edge detected with max measure on V' (3),
with sum measure on V(3).

Figure 12: from left to right: blurred line, Canny’s edge with large bandwidth, with small bandwidth
and edge detected with iso measure, 9 gray levels on V/(3).

We then present a compared result on a natural scene (figure 13). We can see on that figure that the
multifractal exponent is able to detect small details accurately. The most remarkable is the accuracy
of the detection of the corners of the door and of the limits of the bush, when Canny’s edges only gives
good results in presence of a step.

4.2.5 Use of f(a)

In the images presented so far, the use of a computed with well chosen measures has proven to be
sufficient. However, this will not always be the case. In this section, we do no more than indicate how
the use of f(a) could help us refine our edge detection. Let us consider figure 14.
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Figure 13: Left: original image, middle: Canny’s edges, right: exponent computed with min measure
on V(3).

Figure 14: Left: Some edges. Right: A texture.
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On the left, anyone would see three edges, that are easily detected by any edge detector. On the
right, we have done nothing else than triple the number of lines in the image. Of course, it is still
possible to interpret this image as being composed of nine edges, but most people would prefer to talk
of a binary texture. However our local computation of exponent a would be the same in both situations.

Here appears another characteristic feature of an edge: an edge does correspond to a certain type
of singularity in the images, or to an extremum of the gradient (local characterization), but also to a
“rare” event, in some sense that has to be defined. In other words, if too many “edges” are detected in
a portion of an image, then the human visual system will have a tendency to talk of a textured zone,
rather than of a concentration of edges. In the same way, corner points are even rarer events, and if
we group many corner points in a portion of an image (see figure 15), we shall again wish to talk of a
texture.

L
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Figure 15: Left: Four corners. Right: A corners’ texture.

This is where the f(a) characterization can help us. Remember that f(a) measures, loosely speak-
ing, how rare or frequent an event of singularity « is.

Now we need to say that an edge is characterized both by a given singularity value (local condition)
and by the fact that it is in some sense a rare event (global condition). The following procedure can
then be used:

e group all points whose o corresponds to the theoretical singularity of an edge: we thus construct
the set £, of section 2,

e compute f{a), the Haussdorff dimension of E,. If f(a) is equal to one, then we know that the set
of selected point “looks" like a set of lines, and does indeed correspond to (regular) contours. If
f(a) is slightly greater than one (say for instance 1.2 or 1.3), E, may correspond to very irregular
and jaggy edges. In the case where f(a) is close to 2 (say for instance greater than 1.8), the
set F, contains “too many” points to be considered as a set of edge points. More precisely, if
f(a) =2, E, will be dense in a region of the image, meaning that the singular points fill a part
of it, and that they should rather be considered as belonging to a texture. On the contrary, if
f(a) is significantly smaller than 1 (say 0.3), it means that we have detected very rare events (a
dust of points), that could correspond to corners, or other special points.

To illustrate this, we show in figure 16:

e the points of figure 13 (original image) where f(a) = 1; one can verify that we get most edge
points of the original image.

e the points belonging to the sets E, (there might be several such E, sets) such that f(a) = 2.
Here we keep all the points lying inside regions.
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Figure 16: Left: image of points (in white) whose f(a) = 1.93. Right: image of points (in white) whose

fla) =1.1.

Much more work is needed in this direction, but these preliminary results show that the (a, f(a))
approach might be able to build a bridge between the two so far unconnected methods of edge detection
and region extraction.

5 Conclusion

In this work, we have demonstrated that the use of a multifractal characterization of image points can
help to solve the problem of edge detection. Qur experiments show that, in several cases, this approach
gives at least as good results as the classical ones. However, much more work is needed, particularly
on the following points:

e precise computation of f(a) on images,

e use of the whole information included in the multifractal spectrum (e, f(«)) for a global approach
to the problems of edge detection and region extraction.
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