%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AU'I/'({MATIQUE
Vi

s
o
L

-An Introduction to
Symbolic Data Analysis

Edwin DIDAY

L ‘ ¢

7 Ke 1936
. " /Aoiit 1993

, > v
C \ 4+ PROGRAMME 5

Traitement du signal,
automatique et
productique

apport

de recherch

g e e
: . A e e T 3
BT PN} S o et S h

| DR




1

AN INTRODUCTION TO SYMBOLIC DATA ANALYSIS* '

UNE INTRODUCTION A L'ANALYSE DES DONNEES SYMBOLIQUES*
INRIA-Rocquencourt
Domaine de Voluceau
78153 Le Chesnay Cedex
Abstract .

The main aim of the symbolic approach in Data Analysis is to extend problems, methods and
algorithms used on standard data to more complex data called "symbolic objects”, in order to
distinguish them from objects (described by numerical or categorical variables) treated by
standard Data Analysis methods."Symbolic objects” extend classical objects of data analysis in
two ways : first, in the case of individuals, by giving the possibility of introducing structured
information in their definition; second, in the case of sets or classes, by being intendonally
defined.In both cases,in order to represent uncertain knowledge, it may be useful to use
probabilities , possibilities (in case of vagueness and imprecision for instance), belief (in case
of probabilities only known on parts and to express ignorance); that is why,we introduce
several kinds of symbolic objects : boolean, possibilist, probabilist and belief. We briefly
present some of their qualities and properties; ; three theorems, show how Probability,
Possibility and Evidence theories may be extended on these objects. Some mixture
decomposition problems on these objects are settled.We show that in some cases,fractals are
well adapted to representing duality between symbolic objects. Sets of symbolic objects are
represented by categories of different kinds (hierarchies,pyramids and lattices). Four kinds of
data analysis problems including the symbolic extension are illustrated by several algorithms
which induce knowledge from classical data or from a set of symbolic objects. Finally,
important steps of a symbolic data analysis are described and illustrated by an example
concerning road accidents.

Key-words : Knowledge Analysis, Symbolic Data Analysis, Metadata, Metaknowledge,
Probability, Possibility, Evidence theory, Cognition.

Résumeé

L'objectif principal de V'approche symbolique en Analyse des Données est d'étendre les
probleémes, méthodes et algorithmes de I'Analyse des Données classique a des objets plus aptes
a representer des connaissances. On présente d'abord les "objets symboliques” (sortes
"d'atomes de connaissances”) et ce qui les distingue des objets classiques de I'analyse des
données usuelles. Ces objets, qui constituent les individus de I'analyse des données
symboliques, permettent de représenter (en extension), des individus complexes ou (en
intension), des classes d'individus, par des conjonctions de propriétés ou des descripteurs
peuvent prendre des valeurs multiples et pondérées (selon différentes sémantiques) et sont
parfois reli€s entre eux par des relations d'ordre logique. Dans ces deux cas, on s'intéresse a
des objets de types probabilistes, possibilstes ou crédibilistes afin d'exprimer des
connaissances incertaines. On introduit des outils pour manipuler ces objets : union,
intersection, généralisation, extension etc.; on construit ainsi, un espace d'objets symboliques
dual ou les individus sont des objets définis en intension ; dans cet espace, on €nonce trois
théorémes €tendant les probabiltés, possibilités et credibilités a ce type d'objet et I'on pose des
problémes de décomposition de mélanges en lois de lois. On s'intéresse ensuite, 3 la
représentation graphique de ces objets par différentes catégories (hiérarchies, pyramides, treillis
etc., d'objets symboliques). En utilisant la dualité, on peut construire des suites d'objets
symboliques (devenant individus dans I'espace dual suivant) ; ces suites définissent des fractals
dans certains cas que nous préciserons. On décrit différents types d'analyse des données
symboliques ainsi que les principales étapes d'une telle analyse. On illustre enfin par une
application concernant la construction et I'étude de scénarios d'accidents de la route.

*Tutorial at IFC§’93..
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1. Introduction

1.1. Metadata and symbolic objects

‘Metadata are data on the data, they are obtained at least from the two following ways : i) by
aggregation of observed data, in order to get, for instance, data on a district from data on
villages ; by this way, we obtain means, intervals of variation, means squares, correlations
etc., which are metadata caracterising each district ; 1i) frdm the knowledge of experts, for
instance if an expert wishes to describe the fruits produced by a village, by the fact that "The
weight is between 300 and 400 grammes and the color is whits or red and if the color is white
then the weight is lower than 350 grammes". It is not possible to put this kind of metadata
information in a classical data table where rows represent villages and columns descriptors of
the fruits, This is because there will not be a single value in each cell of the table (for instance,
for the weight) and also because it will not be easy to represent rules (if..., then...) in this table.
It is much easier to represent this kind of information by a logical expression such as :

a; = [weight = [300,400]] A [color = {red, white}] A [if [color = white] then [weight £ 350]],

where a;, associated to represents the ith village, is a mapping defined on the set of fruits 2
such that for a given fruit w & €, a; (w) = true if the weight of w belongs to the interval
[300,400], its color is red or white and if it is white then its weight is less than 350 gr.
Following the terminology of this paper, a; is a kind of symbolic object ; "symbolic” because aj
is described by an expression which contains operators different from those used with classical
numbers, "object" because it is considered to be an individual object for a statistics of a higher
level unit ; if we have a set of 1000 villages represented by a set of 1000 symbolic objects
a1,..., 819QQ- &N important problem is to know hoyv to apply data analysis or statistical
methods 10 it. For instance, what is a histogram or a clagsification or a probability law for such
a set of objects ? The aim of symbolic data analysis (Diday 1990,1991) is to provide tools for

answering this problem:

In some fields, a boolean representation of the knowledge (a; (w) = true or false) is sufficient to
get the main information, but in many cases we need to include uncertainty to represent the real
world with more efficiency. For instance, if we say that in the ith village "the color of the fruits
is often red and seldom white", we may represent this information by a; = [color = often red,
seldom white]. More generally, in the case of boolean objects or objects where frequency
appears, we may write a; = [color = gj] where -qi is a characteristic function in the boolean
case, and a probability measure in the second case. More precisely, in the boolean case, if
a; = [color = {red, white}] we have g; (red) = q; (white) = 1 and q; = 0, for the other colors; in
the probabilist case, if 2; = [color = 0.9 red, 0.1 white] we have gj(red) = 0.9, gj(white) = 0.1.

If an expert says that the fruits are red we may represent this information by a symbolic object
a; = [color = g;] where g; is a "possibilist” function in the sense of Dubois and Prade (1986) ;
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we will have for instance q; (white) = 0, g; (pink) =0.5 and g; (red) = 1. If an expert who has

to study a representative sample of fruits from the ith village, says that 60% are red, 30% are
white and the color is unknown for 10% which were too rotten, we may represent this
information by a; = [color = q;] where q; is a belief function in the sense of Schafer (1990)
computed by using a "probability assignment" function denoted mj such that mj(red) = 0.6,
mj(white) = 0.3 and m; (O) = 0.1, which expresses ignorance as O is the set of possible
colors. Depending on the kind of the mapping q; used, a; is called a boolean, probabilist,
possibilist or belief object. In all these cases a; is 2 mapping from £ (the set of fruits) to [0,1].
Now, the problem is to know how to compute a; (w) ; if there is doubt about the color of a
given fruit w, for instance, if the expert says that "the color of w, is red or pink” then, w may
be described by a charateristic function r and represented by a symbolic-object wS = [color = 1]
such that r (red) = r (pink) = 1 and r = 0 for the other colors. Depending on the kind of

knowledge that the user wishes to represent, r may. be a probability, possibility or belief
function. Having a; =[color = q;] and wS = [color = 1] to compute a; (W) we introduce a
comparison function g such that a; (w)= g (qi.r) measures the fit between gj and r. What is the

meaning of aj (w) 7 May we say that a; (w) measures a kind of probability, possibility or belief
that w belongs to the class of fruits described by a; when g; and r, depending on the
background knowledge, are charateristic, probability, possibility or belief functions
respectively ? To answer this question we needed to extend ax (where x represents a kind of
background knowledge) to a: defined on dx a set of symbolic objects and to define set

operators OPyx = {5y, My, cx} in dx adapted to x. If we say that classical sets represent a
knowledge level of order O; probability, possibility and belief, a knowledge level of order 1, the

. o ¥ o
questdon was now to know if a_ Tepresents a knowledge level of order 2. In other words, if it

is a probability of probability, a possibility of possibility a belief of belief respectively
associated with the corresponding operators OP;; the theorems 1,2,3 show that this is the case,
if OPx and some functions gx and fy. are well chosen.

In probability theory , events are generally identified as parts of the sample space 2. In
computer science, object oriented languages consider more complex events called “objects" or
"frames"” defined by intension. In data analysis (multidimensional scaling, clustering,
exploratory data analysis etc.) more importance is given to the elementary objects which belong
to the sample €2 than in classical statistics where attention is focused on the probability laws ;
however, objects of data analysis are generally identified with points of IRP and hence are-
inadequate to treat complex objects coming for instance from large data bases, and knowledge
bases. Our first aim is to define complex objects called "boolean objects”, inspired by those of
oriented object languages in such a way that data analysis becomes generalized into symbolic
data analysis. Such objects may be defined intensionally by the properties of a generic element
of the class that they represent ; we distinguish these kinds of objects rather than "elementary
observed objects” which characterize "individual things" : for instance "the customers of my
shop" instead of "a customer of iy shop", "a species of mushroom" instead of "the mushroom



that I have in my hand". Symboli‘c\lobjects‘cxthd classical objects of data analysis in two
ways : first, in case of "elementary objects” which represents individual things, by giving the
possibility of introducing in their definition, instanciated structured information (see the case of
"horde" in § 2 for the description of an image), probabilities (subjective or objective),
possibilities (in case of vagueness and imprecision, for instance), belief (in case of probabilities
only known on parts and to express ignorance) ; second, in case of objects which are described
intensionally, by the same possibilities than in the case of elementary objects, plus the
possibility of expressing variation for the values taken by each variable among the member of
their extension ([color = {red, white}]) and also by expressing constraints between these values

with rules (if [color = white] then [wheight < 350]).

By extending data analysis methods to symbolic objects this paper makes a bridge between
several domains : "data analysis and statistics” (where limited interest has, as yet, been shown
in treating this kind of objects), "statistical data bases" (where symbolic objects may be
considered as "metadata” which means data on the data) and "management of uncertainty in
knowledge-based systems" (Where the emphasis is now more on knowledge representation and
reasoning then on data analysis), "learning machine" (where this kind of objects as input and
classical methods of data analysis have been neglected) and more generally in Al (where the
results here obtained , in theorem 1,2,3, concerning metaknowledge or knowledge on

knowledge).

We have not used the notion of "predicates” from classical logic, firstly, because by using only
mappings or functions, things seem more understandable, especially to statisticians ; secondly,
because they cannot be used easily in the case of probabilist, possibilist and belief objects

where uncertainty is present.

1.2. "Science of objects" attempting a historical review

In computer science we know the growing popularity of object oriented languages based on
intensionally defined sets or classes called "objects” or "frames" (Minsky (1975)) and using
“messages”, "methods" and inheritance properties ; this new kinds of computer language
started at Palo Alto (1971) with SMALLTALK, inspired by SIMULA (1967) and now many
widely used languages based on objects exist as for instance SMALLTALK,
CLOS,TELLOS,C+* etc. |

In fact man has always been concerned by the problem of representation, description and
identification of objects in the world. In prehistorical times, we may imagine the picture of a
mammoth for example shows that man was already able to distinguish between a given
mammoth (that has just been eaten for instance), from the class of mammoth represented by this
picture. In Genesis God asks Adam to give a name to “the animals of the fields and the birds

of the sky”. In the fifth century B.C., Plato (428-348 BC) considers the existence of
"univérsals" in an ideal world representing concrete individuals to which they apply ; his pupil
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Aristotle introduced the notion of "Science of objects" in "De Partibus Animalium" (Louis

(1956)) and described objects intensionally by their properties pointing out clearly the duality
between objccts and their description. About 600 years after Aristotle, Porphyre (Bochenski
(1970)) introduced successive division of classes of objects by using "genus" and "species"”
which have technical meanings in logic and have been used in taxonomy (Sneath and Sokhal

(1973)).

In the 17 th century the Port Royal logicians, Arnaud and Nicole, had this to say :

"Now in these universal ideas there are two things which it is important to keep quite distinct :
comprehension and extension. [ call the comprehension of an idea the attributes which it
contains and which cannot be taken away from it without destroying it ; thus the comprehension
of the idea of a triangle includes, 10 a superficial extent, figure, three lines, three angles, the
equality of these three angles to two right angles, etc. I call the extension of an idea the subjects
to which it applies, which are also called the inferiors of a universal term, that being called
superior to them. Thus the idea of triangle in general extends to all different kinds of triangles.

Chomski (1965) pointing out the importance of the notion of "idea" in the sense of Arnault and
Nicole said "the comprehension (i.e. intension or meaning) of an idea is the fundamental notion
in semantic interpretation and in so far as the deep structure of language is régarded as the direct
reflection of mental process, it is the fundamental notion in the analysis of thought”.

As recalled by Sutcliffe (1992), Frege (1848-1925) in his Grundgesetze der Arithmetik (see
Geach and Black, 1952) considered that a concept is a mapping which .identifies the
membership relation between an individual and a class and he said that :

“A definition of a concept (of a possible predicate) must be complete ; it must unambiguously
determine, with regards to any object, whether or not is falls under the concept (whether or not
the predicate is truly assertible of it). Thus there must not be any object as regards which the
definition leaves in doubt whether it falls under the concept or not ; though for us, men with our

defective knowledge, the question may not always be decidable”.

Heidegger (1936) trying to answer the question "what is a thing ?" defined two kinds of

things :

i) things in the sense of being "within reach” : a stone, a piece of wood, etc.
i) things which "unify” things of the first kind. '

Things which unify have an intension (intent, comprehension) and an extension formed by
things of the first kind. Wille (1981) says as "in traditional philosophy (see H. Wagner (1973))
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that things for which their "intent” describes all the properties valid for the individual objects of

their extension are called "concept”.

All those notions called "universals” (Plato), objects (Aristotle), "genus” or "species”
(Porphyry), "ideas" (Arnaud and Nicole), "things which unify” (Heidegger), "concepts”
(Frege, Wagner) "frames" or "objects" (object oriented computer languages) represent classes
of individuals (instances, subjects).

This representation may be done in numerous ways ; in the aristotelian tradition it is defined by
a logical conjunction of properties. The aristotelian logic representation has inspired many
naturalists in building natural systems such as Cesalpino (1519-1603), Linnaus (1707, 1778) ;
A.- L. De Jussieu (1774) closer from the aristotelian tradition announce his famous "Principle
of Subordination of the characters" (Leguyader 1988) which means, roughly, that a class is
characterized by a conjunction of properties inherited by subclasses.

On the other hand another tendency is well represented by Adanson (1727-1806), a French
naturalist who was very much ahead of his time, working on a natural classification of
organisms. He considered that classes are defined by a high ressemblance degree, by the
individuals belonging to it ; these ressemblances are estimated by examining the characteristics
of the individuals ; by doing so he defined the bases (200 years ago) of modern Numerical
Taxonomy (Sneath and Sokhal (1973) Benzecri (1974), Gower (1974), Ward (1963), Dale and
Anderson (1973)). These two tendencies (Aristotle versus Adanson) may be characterized by
the fact that in the aristotelean tradition classes are "monothetic”, whereas from the Adanson
point of view classes are "polythetic” (Jevons 1877), Kaplan and Schlott (1951), Beckner
(1959), Sneath (1962)) ; a class is monothetic, if there is a set of sufficient and necessary
properties for membership in the class thus defined ; in contrast, it is polythetic if no property is
nessary or sufficient to make an individual member of the class.

A third tendancy, coming from psychology and cognitive science, is to consider that classes
must be represented by prototypes ; in contrast, with the Aristotle tradition, where all the
members of a class are identical, Rosh (1978) says that classes "tend to become defined in
terms of prototypes or prototypical instances that contain the attributes most representative of
items inside the class" ; Smith an Medin (1981) said "that the view of concepts we had
inherited from Aristotle was severely lacking and needed to be replaced by a theory based on
protaotypes”. D. Dubois (1992) add that recent research on the semantic of memory have led to
the introduction of three key concepts :
a)  basic level : "fruits" have a higher level than "apples”,
b) typicality : some examples (instances) of a concept are more typical than others, unlike the
‘classical conception where all instances are equivalent,

c) prototypes : which are the most representative examples. As a consequence of this point
of view, Descles (1986, 1991) says that a concept has to be defined not only by its
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intension and extension but also by a prototype (whose extension is the set of individuals

which incarnate the concept). How to obtain the classes and their representation ?

Briefly, we may' say that there are three tendencies :

The first proposed by A.- L. de Jussieu (1774) and Lamark (1778) is in the aristotelean
radition and consists in defining top down the classes by a good choice of properties which
characterize them from the most general to the most specific, in this way we obtain a decision
tree where each node is characterized by a conjunction of properties.

In this tradition and by starting from examples, among many others the following authors have
continued this kind of approach : Belson (1959), Morgan and Sonquist (AID programs
(1963)), Lance and Williams (1966), Benzecri (1973), Sneath and Sokhal (1673), Breiman and
al (1984), Qinlan (1986) ; by starting from the description of classes we have to mention :
Pankurst (1970); Payne (1975) Gower (1975), Virion (1988), Lebbe and Vignes (1991),
H. Ralambondrainy (1991), Ganascia (1991), Sebag et al (1991).

The second, put forward by Adanson (1757) who gave the first sequential agglomerative
hierarchical clustering (SAHN) algorithm ; this well known bottom up algorithm starting by
classes reduced to individuals, merges at each time the most similar classes. This tendance is
now well represented by Numerical Taxonomy (Ward (1963), Lerman (1970), Sneath and
Sokhal (1973) Benzecri (1974), Jambu (1978) Diday et al (1979), Diday et al (1984), M. Roux
(1985), Celeux et al (1989)). The classes obtained in this way contain "Similar" objects. It is
then possible to generalize them in term of conjunction of properties as suggested by Sokhal

and Sneath (1973).

Whereas, the first tendance gives monothetic classes by a top down process, the second gives
polythetic classes by a bottom up process ; other kinds of processes are possible, for instance,
in Brito and Diday (1990), Brito (1992) an ascending process building a Pyramid (which is a
generalisation of hierarchical trees allowing overlapping clusters) of monothetic classes is
described.

The third tendance consists in looking directly for classes and their representation ; for instance,
the "Dynamic Clustering Method" (Diday (1971), Diday et al (1979), Diday and Simon (1976))
define a general framework and algorithms which consists of discovering simultaneously
classes and their representation in such a way that they "fit" togethér as well as possible ; this
approach (see Diday et al (1979)), has been used with several kinds of inter-class structure
(partitions, hierarchies, ...) and representation modes (seeds, probability laws, factorial axis,
regressions etc...) in Diday (1976) a logical representation of clusters (as in conceptual -
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clustering) is proposed. As regards to "Conceptual Clustering” algorithm based in the

Dynamical Clustering Method or inspired by it, mention should be made of Diday, Govaert,
Lechevallier and Sidi (1980), Miéhalski, Diday, Stepp (1982), Michalski, .Stepp (1983) ;
conceptual clustering has inspired other authors such as Langley and Sage (1984), Lebowitz
(1983), Fisher D.H. (1987), Fisher and Langley (1986) for review.

1.3. An intuitive introduction to symbolic objects

If we are able to recognize usual individual objects of the real world, for .instancc chairs, we
may imagine that it is because there is something in our mind which may be represented by a
mapping denoted "a" defined on a set of individual objects denoted "Q", which satisfies at least
the following properties : for an individual object w & Q considered to be a chair, a (w) = true

and if a(w) = false then w is not considered to be a chair.

In a latent situation if someone asks : "what is a chair ?" we are able to give a description by a
set of properties necessarly satisfied by something that is a chair, which represents our
knowledge on the notion of chair ; if the mathematical representation of this description is
denoted "d" we may suppose that there is in our mind a "way" to build the mapping a, knowing
d ; this way is represented by a mapping "hp" such that hy(d) = a. More precisely, if D
represents the set of "admissible” descriptions of any individual object of €2 and A the set
of "admissible” mappings a, this way may be represented by a mapping denoted :
h': DxD —{True, false} which associates to my description of the notion of chair (that I have
in my mind) denoted dpm € D and to this chair w € Q (on which I am sitting) whose
description is denoted dw € D the value h' (dm, dw) = a(w) = true where a = A ; hence, fixing
a description dy, h' defines the mapping a when w varies, in other words h' (dy, .) = a () ;
therefore, hg, is the mapping D—A such that hq (d) = aiff h' (d,.) = a (.). Roughly speaking,
a mapping denoted "a" obtained from a pair (hq,d) by hqy (d) = a is a symbolic object. Notice
that we may have a = h (d) = h (dy) with d # dj which expresses the fact that two different
descriptions may be sufficient to recognize the same object. In terms of concept we may say,
following Frege that a is the mapping £ — [true, false] associated to the concept "the chairs”,
associated to the class of all known individual chairs, d is an intension of this concept and
Q' = a1 (true) is its extension. Often, in the following, the name of the class, the name of the
corresponding concept and the name of the mapping a, will be the same. Instead of considering
a concept as "the chairs” whose extension is a set of individual things, we may be interested by
a concept whose extension is a set of concepts ; for instance, the extension of the concept "the
furniture” is "the chairs", "the tables" etc. We will associate (see section 9) to this kind of more
general concepts a mapping denoted a* : P (Q2) — [wue, false] where P () is the power set of
Q2 and a description d* of a* is an intension of intensions. This kind of mapping will be used to
analyse a set of symbolic objects which is one of the aims of Symbolic Data Analysis and the
main aim of Knowledge Analysis. As mentioned by Duquenne (1986), Camnap (1947) says :
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"The purpose of this paper is to defend the thesis that the analysis of intension, for a natural

language, is a scientific procedure, methodologically just a sound as the analysis of extension".
In this paper, we follow the same idea, in order 1o analyze, organize and extract metaknowledge
(rules, for instance) from a knowledge base considered as a set of symbolic objects. Hence, our
aim 1is not as usual in Al to model reasonings but to discover regularities ; as noticed by Kant
(1785) "Any ra tional knowledge is either material and concerns some objects, or formal and
concern understanding and reasoning in themselves and universal rules of general thinking,
regardless of objects”. This work concern the first kind of rationnal knowledge.

2. Intensionally defined classes

This section, which main aim is to position precisely : descriptions, symbolic objects and
complexes (defined for instance, in Michalski et al (1982)), may be dropped in a first lecture.

2.1 Description and symbolic objects in the boolean case

We denote {2 a set of elementary things called “individual objects”, A a set of possible
descriptions of Q, y a mapping Q — A (see figure 1) which associates to any w £ € its
description & = y(w); D is a set of descriptions of subsets of Q, Y is a mapping P(Q2) - D,

where P(Q) is the power set of €2, which associates to any Q' ¢ € its descriptiond € D ; Y is
a mapping P(Q) — P(A) such that Y(Q2) = A"iff A" = {y(w)/ w = Q'}; Y, is a mapping
P(A) = D and associates to any A' < A a description d € D which satisfies at least the
following property : YA(A") < D; A is a set of mappings Q — L where L = {true, false}, in
this section (more generally L = [0,1] in section 3) ; hgq is 2 mapping D — A such that
hp(d) = a where a is the mapping Q — {true, false} such that a(w) = wrue iff y(w) = 8 € d;
B is the set of mappings D — L = {true, false} such that h,(d) = b where b is the mapping
A — {true, false) such that b(8) = true iff § € d; we denote @ = h(D) and B =hp(D); Zis a

mapping B — @ such that Z(b) = a iff a = boy.

An intension of a set of individual objects Q' ¢ Q may be defined by d = YQ(Q'),
a=ho(Y(Q2)), or b = ha(Y(£2)), in 2.4 we compare these different kinds of intension ;
the extension of a in € is a subset of 2 denoted Ext(a/2) and defined by
Ext(a/Q) = {we Q/a(w)=tue}; the extension of b is a subset of A defined by Ext(b/A) =
{3= A/ b(8)=true}; the extension of d = D in X is denoted Ext(d/X) ; by definition,we set
Ext(d/2) = Ext(a/Q2) and Ext(d/A) = Ext(b/A).

E, is the mapping B — P(A) such that E4 (b) = Ext(b/Q), Eq, is the mapping & — P(€2) such
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‘that Eqy (a) = Ext(a/Q2). All these mappings are summarized in Figure 1.

P(A)

Y YA

Yo V by
P(Q) ——2ppy —=— 8
h
Q
a

Figure 1 : Any element of D, B or 4 may be considered as a symbolic object.

N

In statistics or in classical data analysis we study a knowledge base defined by the pair (2, A)
such that the units are pairs (®,8) where ® € ( is an individual object described by 8 D.

In symbolic data analysis we study a knowledge base (W,X) where W is a subset of P(2) and
X is an intension space included in D, B or 4. Notice that in probability theory, probabilities
are usually defined on the set (A, P(A)).

A symbolic object is a mapping defined by a set of properties concerning a subset of Q. Hence,
any element of B or & may be considered as a symbolic object ; in the next section we give an

example which illustrates the mappings and sets which have been defined in this section.

2.2 The case where descripfions are cartesian products

In this special case, we assume that { is described by A = Oy x....x Op where Ojis a2 domain
containing a set of possible values (the color of fruits, for instance) and
D = P(O1) x...x P(Op) ; it results in the finite case, that card P(A) = card 2™ “@ Oigpg
card (D) = 2% ¥ ©i. hence D, which is included in P(A), and contains only the monothetic

classes is generally much smaller than P(A).

In this case, if d = (V},....Vp) where V; < G; and hp(d) = b, then we denote b = A [Xi=Vilp
which means that when w = (xl,....,xp), b(w) = true iff the statements X; € Vi are true ; if
moreover hg(d) = a we have a(w) = A [y(w) € Vilg which may be written
a(.) = A [y(.) £ Vil which is simplified in a =n [y = Vil and sometimes when there is
no ambiguity ina = A [y = Vil ; on the next section we compare this kind of symbolic objects to

l-complexes introduced by Michalski (for instance in Michalsldi and al (1981)).
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Example :

Q is a set of fruits, A is the set of all possible descriptions of the fruits by their color and their
weight ; hence, if O; is the set of possible weights and O is the set of possible colors we have
A = 01 x Oz ; W is the set whose elements are the fruits produced by a village ; Y, associates
to the set of fruits Q' < Q of a village, the description d defined by the smallest interval V of
weights in which they take their values and the union of their color V2 ; hence, we have Yq
(QY=VyxVy=d,a=hq{d)=[y1=Vilg aly2a=V2lgand b=hs (d) = [x1=Vila A
[x2 = V2] A where for instance, as in the example of the introduction : V1 = {300, 400] and
V2 = {red, white}; Y(Q') is the set of descriptions A' of the fruits of the village and Y p(A) =d
=Vix Vs, :

Ea(b) = Ext(b/A) is the set A" & P (A) of the descriptions & such that b(0) = true and so, such
that e d = V1 x Va2, hence, Y(Q) = A' ¢ A" ; Eg(a) = Ext(a/Q) is the set Q"e P (Q) of
individual objects w £ Q such that a(w) = true and so, such that yj(w) Vl and y2(w) € V,,

hence Q' ¢ Q" .

2.3 The case where descriptions are cartesian products with constraints

Constraints may appear in order to describe more precisely a set Q' Q2 of individual objects ;
for instance, in the example of the introduction we have add to the description
a={[y=1[300,4001] A [color = {red, white}] the constraint [if [color = white] then
[weight < 350]]. Other kinds of constraints may appear to avoid incoherences in the
description of a set Q' < Q ; for instance if £2' is a set of mushrooms with or without hat and
one of the descriptions concerns the color of the hat, we must add the condition that there is no

color of hat when there is no hat.
2.4 Comparisons between the sets of intensions D, 2,8, C

These comparisons depend on the choice of y and A.In order to simplify, we assume that
D ¢ P(A), it is then easy to show that h is a bijection (which is not the case of hgy if y is not
bijective). If y is surjective it is easy to prove that Z is injective and if y is injective that Z is
surjective ; therefore, if y is bijective Z becomes a bijection between B and 4.

Two natural choices for A are the following : the first denoted A is the set of realisable
dcscriptions ; the second, denoted Aj is the set of all possible (realisable or unrealisable)

~ descriptions. When y is bijective and A = Aj, Q = Q is the set of all coherent or “observable"
individual objects ; when y is bijective and A = Ag, then £ = Q7 is the set of all "possible”
(observable or not observable ) individual objects ; £22 is called the set of "possibilities”. In
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practice we have Q = Qg the set of "observed" individual objects which is not in bijection with

the sets Aj or Az as several individual objects may have the same description and also, as some
description of Ay or A3 may correspond to no individual object of Qg ; hence, we have to
consider also, the case where y is not bijective. We denote C the set of | -complexes
(Michalski et al. (1981)) which elements are logical expressions of the kind ¢ = A Xi = Vil
where V; < O; and the statement [X; = Vi] means "value of X| is one of the elements of V;";
from the definition of B it results that it is not in bijecdon with Cif Aj = A and in bijection if
A = Ap. The comparison between the different sets of intensions, is given in figure 2 where
the sign <> means the existence of a bijection.

A y is a bijection y is not a bijection
Ay a<=>8 <&C a <#>B<#£>C
Ar A<=>B <=>C ad <#>B <=C

Figure 2 : Comparison between the sets of intensions ;
in any case B <=>D; C is the Michalski set of l-complexes

Example :
: Case a) A = Aj and y is bijective.

Let be Q2 = Q4 = {w), wa, w3} the set of observed individuals, charactcrized‘by a mapping
¥y =152 : Q = (03, O2) where O3 = Oz = {1, 2} such that y(w1) = (y1(w), y2(w)) =d; =
(1,1), y(w2) =dz = (2,2) and y(w3) = d3 = (1,2) ; as y is bijective, it results that A = A} =
(d1, d2, d3} ; D1 =Y (P(Q1) = YA (P(A1)) where Yo(Q') = U{y(w)/w € Q') and Y4 (A)
=yu{d/d € A'} ; hence D = {di, d2, d3, d1 U dp, d; U d3, dp U d3, d; U dy U d3, D} where,
for instance dy U da = {d;, d2} = {({1,2}, {1,2})\(1,2), (2,1)} and d; w dru d3 = {({1,2),
{1L,2PN2,1)} = (d1, d2, d3}.

By definition B = B = ha (D1) = {bj}i=1,7 where V§; € Dy, b;j = hp (§;) ; for instance,
haldp)=bi ={yi=1laanlyz=1laand ba(dy vdaud3) ={y1 = {1.2}]Jaa [y2 = {1.2}]a A
[if y; = 2 then y2 # 1]A.

" By definition & = a; = hg (D1) = {aj}i=1,7 where for instance hg (d1) = [y1 =1lg A
[y2=1llgandhg(di v daudz) =[y1 = {1.2}lg A [y2={1,2)Q A [if y1 =2 then y2 # 1]q.
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Let be D = P(Oy) x P(Qn), by definition of the set C of £-complexes, it results that C is in
bijection with D ; notice that Dy is included in Ay, which is not the case of D. Finally there is a
bijection between B and Dy, ; and D3, D and C but not between D and Djy. This, may be

summarized by d <=>B <#> C.

In the following cases, O = O1 x O,y = (y1, y2), the wi, dij, Y and Y4 are defined by the

same way.

Case b) A = Aj and y 1s bijective.

In this case Q = [w), w3, w3, w4 ), the set of possible individuals ; A = Az = y(QQ) = (dy, da,
dz, d4} where d4 = (2,1) ; hence y is bijective and D = Yo (P(€2)) = Y4 (P(A2)) = P(Og) X
P(02);B =B2 =hp (D) = {bj}i=1,16and & = dp = hg (D) = {ay, ..., ai6). Finally in this
case we have B <=> Q& <=> D <=> C.

Case c) A = Ay and y is not bijective.

In this case, we choose Q = Q; = {wj}the only observed individual, A=4A; = {dl’ ds, d3},
hence y(€2) = d is strictly included in A and so y is not bijective ; hence, Yo (P(€2)) # Yu
(P(A1)), we choose D = Dy = Yo (P(A1)) = Dy which has been already defined in the case a) ;
B =B = ha (D1) = (bi)i=17 as in case a) ; & = hg (D1) = {a1, a2}, where hg (d1) = hq (d
v d2) = hq (d1 U d3) = ha(djudawds) = ay and hg (d2) = hq (d3) = hg (d2 d3) = a3 as
aj(w1) = true and ap(w1) = false. Therefore, we have in theircase : D=Dj <#> C, B <#> Dy
and B <#> & ; which may be summarized by d <#>3B <#> C.

Cased)A=Azandy i§ not bijective.
We choose Q=01 ={wj},A=Azasincase b); D= YA (P(A2)) = Yq (P(Q)); B = hy (D)
= {bili=1,16 4 = ho (D) = {aj, a3} as in case c) ; finally it results that & <=>B <=> D <=> C.

2.5 Complete symbolic objects and lattices on 2,3 and C

When we associate to an element Q' = P(Q) a description Y((Q2') = d € D the extension of d
in Q which is Eq(hg(d)) contains ' as it is the set of w = Q such that y(w) € d ; in other
words we have Q' < Eq(a) with a = hq (Yq (£2) ; in the particular case where Q' = Eq(a),
we say that a is a complete symbolic object ; similarly, we say that b is a complete symbolic
object iff Q' = Ea(b) with b = ha(Y0(€2"). We denote Ac (resp. B ¢) the set of complete
symbolic objects included in & (resp. B ). We define a partal order on a set of symbolic objects
by stating that a symbolic object s1 is lower than a symbolic object s3 iff the extension of sy is
contained in the extension of s3. If we define the supremum (resp. irifimum) of two symbolic
objects s1, s2 which description is respectively dj = O'y x...x O'pand d2 = 0"; x...x O"2 by
d; Udy=0100"x.xOpuO" (resp. dj Nd2 =01 N O'2x..x O'p M O"p).
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The smallest description of Q' ¢ Q is the intersection of all the descriptions d € D, such that
Eq(hgd)) = Q'. It may be shown that &, & (see Diday 88), and B (see Brito 93) constitute a

lattice.

Example :

vLet be Q = {wy,wa} described by y : 2 — O = {1,2}) such that y(wy) =1,y (w2) =2
therefore y (Q) = A= {81,062} where 8; = 1 and 82 = 2 ; it results also that
D = Yo (P(Q)) = Ya (P(4)) = P(A) = P(O) = {{1},(2},{1,2},2].

We define the following symbolic objects of & : aj = [y=1]q, a2={y=2]q. a3=[y={1,2}] and
as=[y=@]0 ; we choose Q = {w] ], therefore aj=a3 and az=a4.

We define also the set B = hp (D) = {bj}j=1.4 where by =[y=1]a, by = [y=2]a,
b3 = [y={1,.2}]a, bg = [y=2 ]a.

We are in the case of figure 2 where y is not a bijection and A = A3 ; hence in this case d<=>B
B<=>C ; the set of complexes C is defined by C = (¢j }i=1 4 withc) = [X=11, co=[X=2],
c3=[X=(1,2}] and c4=[X=0].

In this case, it is easy to see that the set of complete objects is & = {aclz,ag} with a‘i = [y=1}
and ag = [y=2]. In figure 3 (a), (b), (c) we represent three lattices respectively associated to

a = {ay=a3,az=a4}, &¢ = (aﬁ,a‘;} and C = {c1,c2,¢3.c4)}. »

. (o4
a1= 83 a‘; 3
¢t )
[+
—_ a
A, 8y 2 c,
(a) (b) (c)

Figure 3 : (a), (b), (c) represent respectively the lattice of @, &¢ and C.
In (a) we represent the order aj=a4 < a3=23 ; in (b) the order ag < a‘l: and

~in(c) c4<cy,c4<C2C1 <C3,C3<C3.
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2.6. Choice of the knowledge base for a symbolic data analysis

We have seen in 2.1 that a knowledge base is a pair (W,X) where W is a set of subsets of Q
and X =3 orB or C (which is in bijection with D =P (Oj) x...x P(Op)); so, a natural
question is to ask in which case we have to use &, B or C, in practice.

If we wish to take account only of the set of descriptions D=A then, the best choice to make is
X=B ; this happens for instance, whien the descriptions of subsets ' of £ (i.e. Q' W) have
constraints and don't depend on any given sample of Q ; this kind of knowledge base is used
when we wish to study species in biology, scenary of accidents in transportation, teams-in a
company (each species, scenary or team, is then an clement of W), independently from any

sample set.

If we wish to study a set W described by D = Ay without constraints and independently from Q
the best choice is X=C. If we wish to take into account the statistical informations contained in
Q the best choice to make is & ; moreover 4 allows the possibility to compute more simple -
lattices (see the previous example in section 2.5) and distances between symbolic objects when
the descriptions-vary ; this case may happen for instance when several sensors give different
measures on the same set 2, or when Q is described by variables, the value of which vary

with time.

More precisely, if Q is described by two mappings y and y2 such that y{(€2) = Aj=0;, then the
mappings aj € 4 defined by hq : D = P(Oj) — &; when i varies are comparable by using a
dissimilarity (for instancé s(a1,a) = El{ lay(w)-ax(w2)l/we Q) whereas the mappings cie C;
defined by hAi : Aj — C; are not comparable when 1 varies.

Example :

Let be Q = {w},wa,w3,w4)} a set described by two ordinal mappings y; : Q3 — O1 = {1,2}
and y2 : Q — Op = {1,2,3} as given in figure 4. Let be a1 = [y1=1]g and a3 = [ya=1]n :

Yy RS Al 19 AT ]G
w 1 W 1
1 ! 81 | 1 8% | 1
w 2 w 2 1 1
2 2 1 5
5 2 ) 2
LD B4
i 2
w4 1 w4 3 82 3

Figure 4
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Considering that O and O are ordered sets, we may compute s(aj,az2)= 2 laj(w)-az2(w)l =
we Q

2, whereas ¢y = [X1=1] and c3 = [X2=1] are not comparable as they are not defined on the
same set of objects, since ¢, is defined on Al whereas c3 is defined on A2,

In this paper we focus on the knowledge base (P(£2),8) because Q is the only set which may
take into account of the statistical informations contained in £2 when y is not injective, and also
it may take into account only the descriptions when y is bijective.

On this issue, P. Brito focuses on the knowledge base (W,B) when y is not bijective and
A=Az ; F. De Carvalho (1992) focuses on the knowledge base (W,a) when y is bijective and
A=A1. In their dissertation J. Lebbe (1991) and R. Vignes (1991) focus on (W,D) with A=A

and y not bijective.

3. Boolean symbolic objects

In this section, descriptions are cartesian products ; so, we have A = O1 x..x Op= O and
D =P (0O) x...x P(Op) ; let be y; a mapping Q — O; which associate to w € Q its value y;j (w)
in the domain Oj ; y = (y1,...,yp) is a mapping Q — A such thaty (w) = (y1 (W),....yp (W)).
Boolean symbolic objects are symbolic objects considered in the case where L is boolean
(i.e. L = {true, false}). Several kinds of boolean symbolic objects may be defined in 4 :

events, assertions, hordes, synthesis ; we define them in the following section.
3.1. Events

LetDij=P(Oj)and h ]Q the mapping Dj — a such that h]Q (Vi) = ej where ¢; is the mapping
Q — {true, false} such that ej (w) = true iff y; (W) & Vj. By analogy with the denominations
used in probability theory (where an "event” is a subset V; C ), the basic symbolic object e; is
called an "event". In logical term we may write g; (w) = [y; (w) € Viln where [y; (W) € Vilq
is the logical proposition which is true iff y; (w) € V ; to express the symbolic abject e;j, in
order to simplify notations, instead of writing{Vw, e;(w) = [yj(w) € V]g}ore;(.) =
[yi(.) € V]q we write e; = [y; = Vilq or more simply ¢; = [y; = Vi] by dropping £ when
there is no ambiguity on its choice. For instance if e; = [color={red,white}], then ej(w) = true
iff the color of w is red or white. When y; (w) is meaningless (e.g. the kind of computer used
by a company without computers) Vi = ¢ and when it has 2 meaning but it is not known Vj =
O;. The extension of ¢; in Q denoted by ext (e;/QQ) is the set of elements w = £ such that
ei(w) = ue.
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3.2. Assertions

An assertion is a conjunction of events ; more precisely, it is defined by the mapping hq :
D =Djx..x Dp—a such that if V = (V1,...,Vp) where V; ¢ Oj then h (V) = a such that

a(w)=true iff y (w) € V.
In logical term we may writ¢ a(w) = A [vi (W) & Vi] = A € (w) ; in conformity with the

notation for an event, an assertion a is denoted a = A [vi= Vi]. For instance, if
a = [color={red, white}] A [height=[0, 15]], a(w) = true iff w is red or white and its height is
between O and 15. The extension of an assertion denoted ext(a/{2) is the set of elements of 2
such that Vi, y; (w) € Vi.

3.3. Hordes and synthesis objects

A "horde" is a symbolic object which is used when we need to describe a structure composed
by several elements of  related together, for instance, when we need to express relations

between elements of a picture that we wish to describe.

It is defined by the mapping hg = D — H where H is the set of mappings QP — {true, false},

such that hg (V) = H where V = (V;  Vp) and H (u) = tue where u = (u;,...,up),
iff yj (ui) € Vi ; such a horde is denoted H = A [yi (uj) = Vj]. Notice that if we add the

constraint uj =up = ... = up a horde becomes an assertion. The extension of H in QP is
Ext H/QP) = (w = QP/H (w) = true}.

For instance, if Q is a set of people in a town, H = [yij(uj) = 11 A [yzll(uz) = 2]
A [y3(uy) = [30,35]] A [neighbour (u1, uz) = yes] means that uy is a man, uz is a woman and

both are neighbour.

A "synthesis object” is a conjunction or a semantic link between hordes denoted in the case of
conjunction by s = A H; where each horde may be defined on a different set ; by different

descriptors. For instance £21 may be individuals, £33 location, 23 kind of job etc. All these

objects are detailed in Diday (1991).

Example :

Q is a set of mushrooms, described by their color and their lenght ; they are represented by two
variables coly : Q — O¢ and 2, : © — Op which depend upon the time t. In order to simplify we -
suppose that at any time, they may take only two colors and only two classes of lenght, such
that Oco) ={1, 2} and Op = {1, 2}. At dme t; anf tp we obtain the tables (a) and (b) given
below for a set of two mushrooms €23 = {w), wa} ; the table (c) represents the values taken by
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the elements of the set of decrivable object 2 at a given time.

Q fcoy | & Q |coly| & 0 O Oy
w1 1 1 w1 2 1 xy | 1. | 1
w2 2 1 w2 1 2 X2 2 1
X3 1 2
X4 2 2

Table (a) Table (b) Table (c)

Let ay, a2, ¢ be three assertions where c is a £- complex and ¢ a complex such that
ay =[coly =11~ [&; =1,2]; 8, =[col,, =11 A [, =1,2];

c=[{X1=1]A[X2=1,2].

By definition, ay, and a,, are mappings Q — {true, false} such that
ay; (w1) = [col 4 (wp) e {1}1A [Qll (w1) € {1, 2}] = true ; similarly way we obtain
ag, (w») = false, ay, (wy)=false, Ay, (w2) = true, c(x1) = c(x2) = true

c(x2) = c(xy) = false.

It results that ext(a,, /) = {w1] ; ext(a,/Q) = {w2} and ext(c/O) = {x1, x3}.
We may also define three hordes as follows :

h1=[col ,, (@) =11A (2, (W) =1,2],

hy = [col , (1) = 1] A [&,, (u2) = 1,2] where uj e Q;

he = [X; (u1) = 1] A [X5 (u2) = 1, 2] where u; € Ol

Therefore it is easy to see that Ext(hi/Q) = {(wj, w1),* (W1, w2)}, Ext(ho/QQ) = {(w2, wy),
(w2, w2)} ; Ext(c, O) = [{x1, x1); (X1, x2), (X1, X3), (X1, X4), (X3, X1), (x3, X2), (X3, X3), (x4,
x4)}.

4. Modal objects
4.1. Internal and external modal objects and their extension

Suppose that we wish to use a symbolic object to represent individuals of a set satisfying the
following sentence : "It is possible that their weight be between 300 and 500 grammes and their
color is often red, seldom white" ; this sentence contains two events e1 = [weight = [300,500]],
ez=[color = {red, white }] which lack the modes possible , often and seldom ; a new kind of
events, denoted f) and f, is needed if we wish to introduce them f; = possible [weight =
[300,5001] and f2 = [color = {often red , seldom white}] ; we can see that f] contains an
external mode possible affecting €1 whereas f2 contains internal modes affecting the values
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contained in e. Hence, it is possible to describe informally the sentence by a modal assertion
object denoted a = f1 Ax fa where Ax represents a kind of conjunction related to the background
knowledge of the domain. The case of modal assertions of the kind a = A fi where all the fj are

events with external modes has been studied, for instancc, in Diday (1990). This paper is
concerned with the case where all the fj contain only internal modes.

o At o

4.2. A formal definition of internal modal objects
Let x be the background knowledge and

. MX a set of modes, for instance MX = {often, sometimes, seldom, never} or MX = [0,1].

Q= { q%] j aset of mappings qJ1 from O; (or sometimes, more generally from (O;,P(0;))
where P(O;) is thq pbwcr set of OQ in MX, for instance Oj = (red, yellow, green},
Mx =[0,1] and q'l (red) = 0.1 ; q'i (yellow) = 0.3 ; qu (green) = 1, where the meaning of the

values 0.1, 0.3, 1 depends on the background knowledge (for instance qjl may express a

possibility, see §5.1).

. Vi is a descriptor (the color for instance) ; it is a mapping from  in Qj. Notice that in the

case of boolean objects y; was a mapping from Q in Qj, and not Q;.

Example : if O; and M* are chosen as in the previous example and the color of w:is red then
yi(w) = r means that r € Q; be defined by a characteristic mapping r : r (red) = 1,

r(yellow) = 0, r (green) = 0.

« OPyx = {U 4, N, ey ) where U 4, M 4 express a kind of union and intersection between

subsets of Qj ,and ¢4 (q;) (sometimes denoted qj), is the complementary of gj € Qj. To gain

insight into the notion of union U x ,we may say that q; U x q2 is a "generalisation” of the

observation g, q2 given, for instance, by two experts or two sensors.

© We denote by Q? the smallest stable set for OPx (e.g. Q;( is the set of any *x or cx combination

of elements ql = Qi}.
fQx o Q?( , we denote Q the mapping Q = U x {g/q € Qx}. The complementary of Qx in Q;\

isc (Qy) =1-Q.

Example : if q‘i e Q and Ql < Qi
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1 2 1 2 12
q; Yxqj =4; +9; -9 G

af NxaZ=q] o where q @7 (V)= g (v) g7 (V); &x (@) = 1-g;
Intuitively, if qu is the probability distribution of the words contained in a text 'I‘z , tl';cn
qil qi2 (v) is the probability of getting v among two words drawn independently one in Til and
the other in ’1‘12 s if P > Py, it is less "general” to draw ons word among Py words drawn

among P;j texts independently, than to draw one word among P, words drawn independently
in Py texts.

This choice of OPy is "archimedian” because it satisfies a family of properties studied by
Shweizer and Sklar (1960) and recalled by Dubois and Prade (1988). In 6.2 we use these
operators in order to define probabilist objects.

. g;( is a "comparison” mapping from-Qf X Q;( in an ordered space LX. In this paper g; will

not depend on i and will be denoted simply gx.

Example : LX =M* = [0,1] and gx (qil , qg' )= <qi1 , qi2> a scalar product, for instance
1 2 1 2
<Qi ’ ql > = Z (q‘ (V), qi (V)/V € 01}

. fx is an "aggregation" mapping from P(LX), the power set, of LXin LX |

The aim of fx is to allow the computation of "x-conjunctions" denoted by A¢; hence we have

Y

classical logique are for instance fy ({L1,L2}) = Min (L3,L2) or fx ((L1.L2])=L1 L2, as
in these cases when Ly, Ly € {0,1} we get fx({1,1}) =1 and £,({1,0}) = £x({0,0}) =0 ; it is
also possible to define a "x-disjunction" denoted vy, in this case we have fx({Lj,L2}) = Ljvx
L2 where coherent choices with the classical disjunction + are for instance fx({LiL2}) =
Max(Ly, Lo) or fx ({L3,L2}))=Li+1p- L;.Ls.

By chosinng By Lo= % (L1 Ax Lz +Lj vx La) we define a mean operator (between fx and

f'x) denoted @y, which takes the values 1 ®x 1 =1, 1©4,0=0 &41= % 0®x0=0; this

operator will be chosen in the case of probabilist objects and denoted A4 in order to avoid new

denotations and so we will have fx (Lj,L2) = Mean (Lj,L2). The mean choice may also be

considered as a numerical operator which fits as well as possible Ly and L2, in other words it is
obtained by optimizing a criterion as we have fx (Lj,L3) =arg min ((L1 - x)2 + ((L2 - x)2);
X

other fitting criterion may be chosen as the median for instance, which is given by fx (L3, L2) =
argmin (1Lj-x! +iLy-x1).
X
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Let {y;} be a set of descriptors and [q{} i< Q;( . Now we are able to give the formal definition

of an internal modal object (called "im" object). It is a symbolic object with
D= P(Ql)x X P(Q Yand h (d) = a where d = ({qjl )J ’ {qu)j) and a is an im assertion

defined as follows :

Definition of an im assertion

Given OPyx, gx and fy, an im assertion is a mapping from (2 in an ordered space L*, denoted
a= Az Di= {q’t} ], such that if we £2 is described for any i by yi(w) = rjthen a is given

by: [vw e 2 atw) = fllax (s 4l ).

We denote by dx the set of im objects associated to background knowledge x, and by o the
mapping from Q in &y such that @ (w) =wS = Ax [vi=yi W)} .

By convention, in all this paper an event [y; = { q‘%} j] may also be denoted [yi = q;, qi2...] ;

Notice also that it results from the definition that [y; = {qu} j1is equivalent to the event
fyi = }Jx q';] ; in other words, by using the preceding denotation, the event [y; = Qx] will be

considered to be equivalent to {y; = Q].

The x-union of two assertions aj,a2 denoted aj = Ax lyi= ql] is defined by a; Uy an = Ax
l .

{yi= q; U5 qi] ; more generally we have }Jx 8= Ax lyi = kJ)x qu] ; hence, it results with

our convention that 5), aj= ax [yi= {q']i} jl - The intersection of assertions is defined

1

similarly : rjﬁ x 8= Ax. fy;i = rJ'\ x q{] . The operators OPy extended on dx will be studied

in greater depth in § 9.

We may also combine im assertions a; by standard logic operators by setting ay = A 8 where
x : Q@ — (true, false} is such ‘that ag (W) = ‘/.\ [aj (w) 2 @] be true iff the proposition

[aj (W) 2 a] is true for any i ; by the same way standard disjunctions and negation may be

defined : ag = + a; means that ag(w) = true iff 3i: ay(w) 2 o and ag = W aj means that
|

ag(w) = true iff aj(w) < . By this way, ag is a boolean assertion as it is a mapping

Q — [true,false] ; another way consists of setting : a(w) = Max{a /a(w) 2 o} ; by this way it

1esults that  aj(w) = Mm aj(w) and v aj(w) = Max a,(w)
i
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Definition of the extension of an im object

There are at least three ways to define the extension of an im object a. The first consists in
considering that each element we € is more or less in the extension of a according to its weight

given by a(w); in this case the extension of a denoted Ext (a/Q) will be the set of pairs
{(w,a(w)) / w € Q}. The second requires a given threshold a and then, the extension of a will

be Ext (a/Q, @) = {(w, a(w)) /w e Q, a(w) 2 a}.

There are many ways of choosing of the threshold o ; for instance 0.y, = Min Min g; (v) or
1 v

Qa

max = Max Max g; (v) ; in the second case, the elements of the extension may be called
1 v

“prototypes” (see the Example : given in 15). Notice that it is possible to compute the extension
of a standard logic combination of modal assertions ; for instance, let be e; = [y; = q; ] where

qi € Q;( and ag = (e Ax, e2) v ( —(e3 Ax, €4)) A €5 ; by setting ay = ¢ Ax, €2 and a3 =e3 Ax,

€4 We getag = a1 v — ap A esthen, we may say that the extension of a at level a in Q is
Ext(a/Q,0) = {we Q/by (W) 2 o orby (o) <o and e5 (o) 2 &t}

Many other kinds of operators may be based on given tables coming from the background
knowledge; an example of such operators is given in 4.4,

4.3. Semantics of im objects
In addition 1o the modes, several other notions may be expressed by an im object a :

a) Certainty: a(w) is not true or false as for boolean objects but expresses a degree of
certainty.

b) Variation : this appears at two levels in an im object denoted a = Ax lyj = {qu} j] ; first
within each q) , for instance if yj is the color, qil (red) = 0.5, qil (green) = 0.3 means that

a variation exists between the individual objects which belong to the extension of a (for
instance a species of mushrooms) where some are red and others are green ; ; second, for

a given description y; and v € O;, between the qJ(v) when j varies (each qJ (v) expresses

for instance the variation of the color v between different kinds of species).

c) Doubt : if we say that the color of a species of mushroom 1is red "or" green, it is an "or"
of variation, but if we say that the color of the mushroom which is in my hand is red
"or" green, it is an "or” of doubt.
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Hence, if we describe we Q by ¢(w) =wS = A {yi =yi (w)] where yj (w) = {'r’i}j we
express a vagueness or an imprecision in each r]l and a doubt among the ’Jl provided, for

instance, by several experts.

4.4. An example of background knowledge expressing "intensity"

Here the background knowledge x is denoted i, for intensity. Each individual object we Qisa
manufactered object described by two features yj, which expresses the degree of "roundness”
and "flatness", and y7, the "heaviness" : O; = {flat, round}, Op = {heavy}; Mi = {very, quite,
a lirtle, very little, nil}

Let a be obtained from the description of a typical rugby ball of "Star's team" given by several
experts and wS is obtained from the description given by the same experts on my own ball be
defined by : '

a = [yy =a lintle flat, quite rounded] A i [yo = a little heavy]

wS = [y = quite rounded] A i [y2 = very heavy, quite heavy].

(The user has a doubt for w between very and quite heavy).
The problem is to know if it is acceptable 1o say that w belongs to the class of manufactured
objects described by a.

Hence q% (flat) = a lirtle ; q} (rounded) = quite ; q; (heavy) = a lintle , r} (flat) = nil ;
r} (rounded) = quite ; r% (heavy) = very ,r% (heavy) = quite .

A given taxonomy Tax which expresses the background knowledge on the values of Mi makes

it possible to say that Tax (very, quite) = somewhat ; hence if we set

2
ré i r'z" (v) = Tax (r; v), r% (v)), we have r; Ui r% (heavy) = Tax (very, quite ) = somewhat.

We define LJ by Ly = not acceptable, Ly = acceptable, L3 = completely acceptable and we
suppose that the comparison mapping gj is given by a table Tg; such that

gi (qi, r% )= Tgi ((a lintle flat, quite rounded), (nil flat, quite rounded)) = acceptable

gi (qé, r; Ui r% ) =Tg; (alitle heavy, somewhat heavy) = not acceptable.

Finally if we set f({L;}) = MinL;j and L1 <12 < L3, we obtain

a(w) =f; (g; (q} s rll ), & (q%, r; Ui r% ) =1j( acceptable, not acceptable) = not acceptable.

In this case, a determination in a sense close to that given by Descles (1991) is to write the
sentence :
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Name (wS) is Name (a(w)) Name (a) = "my own ball" is "a not acceptable” rugby ball of the

star team’”.
More precisely, if we focus on a given feature y; we have the following kind of sentence :

The name (y;) of Name (wS) is Name (a(w)) Name (y;) for a Name (a) ; for instance if we settle
Name (y1) = "pattern” we get : '
The "pattern” of "my own ball” is "an acceptable” "pattern” for a "rugby ball of the Star team”.
By setting Name (y2) = "wheight" we obtain a similar sentence :

The "weight” of "my own ball" is "a not acceptable” "weight" for a "rugby ball of the star

team".

4.5. The case of conjonction of events concerning the same description

Notice that more complex objects may occur when instead of only one, as in the preceding
definitdon, several events concern the same variable ; for instance, if we have a= A a; with

ﬁi = /e\x [vi= qig] ; in this case, it is necessary to introduce a third mapping h from P(LX) in L*

such that a; (w) =h ({g(qf, 17)} 2) ; hence, more generally, if a = Ax Bi=Ax /ﬁx lyi = qie] then

a(w) = fx ({a; W)}D = fx ({hx ({gx (qie, ) B)I)i) ; for instance, in § 10.5 the choice hpr = min

has been made. The following example may be omitted in a first lecture, its aim is to built an

. . . . . 1 .
assertion aj formed by the conjonction of the events for which extension at level 5 contains a

given w € €.

Example : Let M’f = {0,1], O;j={v1,v2}, and Q; be the set of probability measures
P(O;) — [0,1] ; y is a mapping from a set Q2 in Q; and w € Q is described by W'S =[yi=r1]is
such thatr(vy) =1(v3) =%; leta= Ax & the set of im events €; = {y = gi] such that a (w) 2 %
is defined by the set of probability measures q; which satisfy the inequality e; (w) = fx (gx (i,

1) 2—17: ; if fx is the mean and gy is the scalar product we get e; (w) = Mean ({<q;,r>}) =

<gqi,r> as there is only one variable. Hence q; has to satisfy the following inequality :

1 4 . 1 1
ei(W) = <qj, r> = gj (v1) r(v)+qi(v2) r(v2) 2 5 which is equivalent o5 gi(vi)+5 qi(v2) 2 %
which is satisfied by any event ¢j, as q(vi)+q(v2) = 1 for any measure of probability q defined

on O;. If a= /e\x {ei2 /ef(w) -] % }} then a(w) = hy ({cg(w)] p); if hx =Min then

a(w) = Min ({e£ ()] 0) =%‘

i



5. Possibilist objects

5.1. The possibilist approach

Here we follow Dubois and Prade (1988) in gjving the main idea of this approach.
Definition of a measure of possibility and of nece.sjsity

This is a mapping T from P(S2) the power set of 2 in [0, 1] such that
(1) THY=1 TT(¢)=0

2) VA B cQ JTI{AuUB)=Max(T1(A), Tl(B))

A measure of necessity is a mapping from P(£2) in [0, 1] such that :

(3) VAc @ N(A) =1-TT(A).

The following properties may then be shown :

N($) = 0; N(A N B) = Min (N(A), N(B)); TT (Ui Aj) = Miu(ﬂ(Ai));

N(m Aj) = Min (N(A() ; TT(A) S TI(B) if A < B; Max (TT(A), TI(A) = 1;
1 1

Min (N(A), N(A)) = 0; TT(A) 2 N(A); N(A) > 0 implies TT(A) = I;
TT1(A) < 1 implies N(A) =0; TT(A) + TT(A) = 1 and N(A) + N(A) < 1.

Example :

We defirie TTE(A) (resp. Ng(A)) as the possibility (resp. the necessity) that we A when
we E. We say that TTg (A) = 1 if this possibility is oue and T1g (A) = 0 if not. Hence T g and
Ng are mappings from P(Q) in {0, 1}. It is then easy to show that T1g and Ng satisfy the three

conditions of their definition.

The theory of possibility models several kinds of semantics ; generally possibilities valuated

vague observations of inaccessible characteristics for instance :

i) The physical possibility : this expresses the material difficulty for an action to occur .For
instance if several experts have described that an athlete has the possibility
TT1({200})=0.8 of carrying 200kg and the possibility J1({250})=0.5 of carrying 250kg ;
then, for these experts, the possibility of carrying 200 or 250kg for this athlete will be

TT1({200}p{250})=Max({200}, {250})=0.8.

it)  The possibility as a concordance with actual knowledge "it is possible that it will rain or

snow today".
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iii) The non-astonishment : for instance, "the “typicality” for the color of a flower to be

yellow or brown".

5.2. A formal definition of possibiiist objecté
Here the background knowledge x is denoted p for possibility.

Definition
A possibilist assertion denoted a), = A Di={ q’J j] is an im assertion which takes its values in

LP = [0, 1] such that

. Vi Qj is a set of measures of possibility.

1 2 1 2 1 2.1 2 .. 1 2
“OP,: ¥, q;,4; € Qi q; Uy q; =Max(q;,q;):q; N, q; =Min(g;,q;)

cp(q) = I - q denoted also &
2522, (a}, 42) = sup{Min (4] (v), 4 (v)) /v < OF
f;, VL;‘[O,I].f‘;,(L)=Max(€/fEL)

Notice that OPp is defined as in fuzzy sets and £p has also been proposed by Zadeh (1971).
Notice also that qil Op q? is not necessarily a measure of possibility.

It is also possible to define a "necessitist” assertion ap (thanks to M.O. Menessier , D. Dubois
and H. Prade, for their useful remarks which have allowed mie to improve this point) by setting:
an =1-3p where ap= A, [yi= Gi]and gi=cp(qi) =1-g;.

This results in ap (w) =1 - fp ({gp T, ri)}i) and then
an(w) = 1- Miax gp (@i 1)

1 - Max {sup {Min @i (v),ri V))/ve Oi}}i
Min (1 - {sup Min (@i (v),ri (v)) /ve Oj) )i
Min {inf { 1 - Min (@i (W), ri V))/ ve G4} )i
Min inf {Max (qj (v), 1 - ri(v)) /v e Oj)

and then finally ap (w) = Min gp (g;, T}).

]

]

It results that a necessitist object is defined by OP, = {\n, M, cp} where Uy is Np, Mn is Up
and ¢y, is Cp» gn (qi, 5) = inf{Max (g (_V), 1?i(V)) /ve 01] and fp = Min.
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Example :

An expert describes a class of objects by the following possibilist assertion (restricted, to
simplify, to a single event) :
ep = [height = [around [12, 15], about {18}]]. An elementary object w is defined by

wS = [height = close to 16].

The question is to find the possibility and necessity of w knowing €pr in the case where € and
wS may be written : € = [height = qy, q,] and w3 = [height = r;] where qq, g5, 1| are
possibilist mappings from O = [0, 20] in [0, 1] defined by the background knowledge in figure
5. This means that an object of height 14 (resp. 10) has a possibility 1 (resp. 0.3). It is then
possible to compute the possibility of w by

A \
gl r ql .;
/ .
0.8
q2 q2
003 0-4 - / \
10 4, 15 16 18 12 15 16 18
@ (b)
Figure 5
(a) g1 U g2 = Max (q1, q2) !
®)F =1-1

e (w) = & (qi Up 92, r;) = sup{Min (q; Up W), ;W) /ve 0} =08.

The necessity of w is given by :
en (W) = gn (q; Yp Qp, (1)) = inf(Max (q; L qp (V). 17 (V) /v e O} =04

This kind of information may be described by a kind of "determination” (Desclés (1991)) of e,

or en given by the following sentence :
Name (wS) is a Name (ex (w)) Name (ex).

More prcéiscly, let p and en be descriptions of typical houses of my village and w*$ the house
that Mr Dupont wishes to build ; so, we may write Name (cp) = Name (en) = "house of my
village" and Name (wS) = "The house of Mr Dupont” ; if we also say that Name (ep(w)) =
"possible” when 12 (w)z 0.8 and Name (ep (W)) = "pot necessary” when ep (w) 0.5, we
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get : "The house of Mr Dupont" is a "possible” "house of my village" ; in case of necessity, we

obtain : "The house of Mr Dupont" is a "not necessary” "house of my village".

This example shows that possibilist objects are able to represent not only certainty, variation
and doubt but also inaccuracy (around, about,close to ) ; it is also possible to use vagueness, in
representing for instance “high" or "heavy" by a measure of possibility.

5.3. The particular case of boolean objects

A boolean object a =4 [y; = Vi] is an im object ap = % [y; = qi] where ql is the characteristic
mapping of Vj ¢ Oj, OPp = { U b, Mb, cp)is such that g3 U p q2 = Max(q1, q2),q1 Nb q2 =
Min(q1, q2) and cp (@) = 1 - q. There are two choices for gp and fp, : (gb, fb) = (gp.fp) or
(gb,fb) = (gn, fn). If w8 =4 [yi = r;] where 7j is the characteristic mapping of yi(w) < Oj,
(there is doubt if yj(w) is not reduced to a single slement), it is then easy to show that in the
possibilist choice yi(w) N Vi= ¢ « ap (w) =1 and in the necessitist choice y; (W) C Vj < ap
w)=1.

If we denote lalg the set of elements of Q such that a(w) = true, we have lalg =Ext (ap/ Q, o)
¥ a € ]0,1], for both choices.

6. Probabilist objects

6.1. The probabilist approach

First we recall the well known axioms of Kolmogorov:
If C(Oy) is a c-algebra on O (i.e. a set of subsets ;table for countable intersection or union and

for complementation). We séy that p is 2 measure of probability on (O;, C(Gy)) if

i pO)=1

There are several semantics which follow these axioms : for instance luck in games,
frequencies, some kind of uncertainty by subjective probability. Let Q; be a set of probability
distributions defined on (O;, C (0j)). We suppose that the wS = 4 [y;=yi(w)] are such that

yi(w) € Q. We recall that Q has been defined in 4.1.

6.2. A formal definition of probabilist objects

There are many ways of defining probabilist objects (see Diday [1993]) where two alternatives
are given) ; in the one defined here, any element of 2 represents an entity which is of higher
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level unit (for instance : a dice, a species of animals, a scenario of accidents etc.) then the

classical samples used statistics ; from these entities it is possible to induce probability measures
on (Oj, C(Oy)) associated to each variable y;. Informally, if w € £, its associated "probabilist
object” (below, the exact definition is given) will be denoted wS = 4, [y; = 1;}] where rj is the
probability density of a for y; ; this probability is obtained objectively from a classical sample or
subjectively from the knowledge of an expert. A probabilist assertion represents a subset
Q'cQ ; informally, it is denoted a = 4y [y; = q;] where q; is a mapping : Oj — [0,1] such that
qi (v) is the probability density that v occurs when simultaneously, an element associated to
each entity of Q' is trialed independently. Notice that only when Q' is reduced to a single
element, q;j is a probability density as the following example shows.

Exampile :

Q is a set of dices and w;j is a dice represented by the probabilist assertion wS = [yj=r;] where
rij: O={1,2,...,6} — [0,1] is a probability density such that r} (v) is the probability that
v & O occurs when the dice w is trialed. If a = [y] = q1] represents a class of five dice, q; :
0-—[0,1] is such that qi(v) is the probability that v occurs when the five dices are trialed

simultaneously and independently. As q3(v) € [0,1], it results that ¥,  qi(v) € ]1,6] and
veO

therefore q; is not a probability.
Let us give now the formal definition of a probabilist assertion concerning this paper.

Dejinition
A probabilist assertion is an im assertion which takes its values in LPT = [0,1]

1 2 1 2 1 2 1 2 1 2 1 2 .
OPpr:Vq;.q; € Qi q; Upr ¢/ =4; +4; -4; 4;74; Nopr d; =q; q; which is the

mapping which associate to v € O, ql-I (v) q‘l? V), cpriq)=g=1-q.

2
gpr:V (Qurl e @ X Qi gor(gpr) = <qur>=2 (V1) M) g; (V) /ve O}
for : for ({Li}) = mean of the L;.

Coming back to the preceding example of dices, where a = [y} = q1] and w is represented by

wS =[y; =r3] we get from this definition a (w) = gpr (@1, T1) = X {q1 (V) 11 (V)/v € Oj} which

is the sum of the probabilities that v occurs simultaneously in a trial of the five dices

represented by a.

As gj(v) £ 1 and r1(v) is a density of probaBility we always have a (w) < 1, because gpr(qj, 1i)

< ¥ 1 (v) = 1; however, a (w) is generally not a probability but just a sum of probabilities
v

computed on events which are compatible, (the only case where it is a probability, happens
when V v € Oy, qi(v) € {0,1}) ; nevertheless, as the probabilities used to obtain a (w) are
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always computed on the same events (the elements of the O;), it results that when w varies in

Q the a(w) may be compared. We may say that a (w) measures how much w is in the
extension of a. How can a (w) be called? as the word "prototype" is now widely used in
cognitive science (see Rosh (1978) Descles (1986), Dubois (1992)),we may say that a (w)
measures the degree to which w is a prototype for the class of entities that a represents ; hence,
if a (w) is high we may say that w is a "probabilist prototype” and the contrary if a(w) is low ;
we may also say that a(w) measures a "probabilist typicality" of w to the class of entities Q'
represented by a (see J. Lebbe and R. Vignes (1991) for the use of typicalities) ; more simply,
we may also say that a(w) is a measure of ressemblance of w to Q2.

Notice that if there are some characteristic dependencies between variables, then, an event of
the form [y;j = gi] may represent them;for instance, if the expert wishes to describe the
‘dependencies between y1,y3,y7, then, this information may be represented by the event
denoted [y137 = pr(y1 ,y3.y7)] where pr(y1 ,y3 ,y7) represents the joint probability of
y1,¥3,y7; this event is of the form [y; = qi] where y; =yi137and qj = pr (y1,y3 ,y7).In the case
where "causalities” or "influences" among set of variables are given by the expert to describe a
symbolic object, propagation technics (see Pearl (1988)), Lauritzen & Spiegelhalter (1988)
may be used which induce other mappings gpr and fpr. Notice also that we could use 2 mixture
decomposition law, in order to compute the union by setting : qil Upr q? =p1q; +P2 qi2 -M
P2 qi] qiz with p1, p2 € [0,1] : p1 + p2 = 1, but in this case qil Cpr q? is not a generalisation as

"
we lose the following property : qil Uprg; 2 q': .

In order to give an intuitive idea of the notion of uniqn and intersection of measures of
P e 1 2 ’ - .
probabilities it is easy to see that if q; and q; are the measures of probabilities associated to

two dices, qil Cpr qiz (v), with v € Q;, is the probability that the event v occurs, for one dice
or (not exclusive) for the other, qil M pr q? (v) is the probability that the event v occurs for

both dices when the two dices are trialed independently. This comes from the fact that if X1,
X») is a pair of random variable 2 — Oj x Oj where O = {1,2,...,6} with probability ( qil ,

q{z ), then the probability that the number j occurs in both dices trialed independently is qil Nopr
@@= Pr(X1 X2 =G 00 N (Ou) = Pr(X1, X2) = G) = Pr(Xy = ) Pr(Xa=j) =
qil @ qiz(i) ; the probability that the number j occurs in one or the other dics is : qil Upr qi2 G =
Pr ((X1,X2) = (,Oy) v (Oi.))) = Pr((X1,X2) = (,0)) + Pr((X1.X2) = (04,))) - Pr((X1,X?2) =
©i) NGO =41 G G0N + 4 OV G B -G D) o> @) = (g + a7 -a) TIE).

Notice also that if qil and qi" g Q?r then Fﬁ' qil Upr qiz W, Z‘v qg M pr qiz (v) and
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ZWC (qJ) (v) belong in [O,card O;] as qJ (v) € [0,card O] even if q} Upr ql ), q1 M pr q? (v)

and ¢ (qJ ) (v) are probabxhtlcs

Hence, it results that q‘] Upr q2 is not a measure of probability because even if q; Uy
q; (v)c_—' {0,1], the sum of the Ly qj (v) on Qj is largcr than 1. Also, q i Ypr ql is not a measure
of probabxhty because the sum of the q1 Mopr g (v) on Oj may be lower than 1. We have

defined g on Q. x Qi and not on Q- X Q- as for-a general im object, because for instance,
1 2y
g (g Ypraqj, ; qJ) may bccome largcr than 1 ; but notice that m this case, it iS easy to

transform qll Upr qf’ in a probability measure by dividing it by the sum of the ql1 up, q1 W)

on Oj (this will be done in section 9.1). .

Example :

A stone w is described. by its color y; (w) which may be red or blue and its roundness y2(w)

which may be round or flat.
Leta=[y1= q%, q‘;'] Apr [y2 =q2] (which is a typical description of a stone from my garden) -
and wS = [y} = 1] Apr [y2 = 2] where q] (red) =

q% (blue) = 0.1, q% (red) = 0.5, qi’ (blue) = 0.5, g2 (round) = 0.2, q2 (flat) = 0.8. It results
that a is described by two kinds of objects : either often red and rarely blue, or red or blue with

equal probability.

3 2 1,212 .
By usingqy =q; Upr gy =q7 + g3-qj g1 we obtain

q? (red)=09+05-09x05=095.

q] (blue) = 0.1 +0.5 - 0.1 x 0.5 = 0.5

If r; and ry are deﬁncd as follows :

11 (red) = 1, rj (blue) = 0; ry (round) = 1, ry (flat) =0, it results that.
3 .

a(w) =gpr (ql, rl) Apr 8pr (42, T2)

- =(0.95x1+055x0) Apr (0.2x1+0.8x0)

= 0.95 Apr 0,20 = 5 (0:95 + 0.20) = 0.57.
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As in the case of intensities or possibilities, it is also possible in the case of probabilist objects

to describe the result by sentences which express "determinations” of the concept represented
by a symbolic object. These sentences take the general form : "Name (wS) is Name (a(ws$))
Name (a)". More precisely, by using the preceding example, if we set : Name (a) = "Stone
from my garden”, Names (wS) = "the stone found by my son" and a(wS) = [a not probabilist
- prototype ], if a (wS) <0.6} we get the sentence : "The stone found by my son" is "a not
probabilist prototype"” "stone from my garden”.

7. Belief objects

7.1. The belief functions formalism

At the origine of this theory we may mention at least the work of Choquet (1953) on
"Capacities of order 2" and Dempster (1967) on "upper and lower probabilities induced by a
multivalued mapping". The basic notions of this formalism are in Schafer's book (1976) : "A
mathematical theory of evidence" which is "still a standard reference for this theory" Schafer
(199Q). First a "probability assignment” function m from P (£2) (the power set of Q, supposed
finite) in [0,1] is defined by : 3 {m (V)/V € P(2)}) =1 and m (¢) =0 ; then a belief function
Bel : P(£2) — [0,1] is defined by :

Bel (A) = X {m(V)/Ve P(Q), VCA].

A "body of evidence" is viewed as a pair (,m) where m is a probability assignment function

and ¥ = (V € P(QQ)/m(V)=0} is the set of "focal" elements. Given a body of evidence it is

possif)le 1o define exactly a belief function; it is also possible to define a "plausibility” function
1 : P(2) — [0,1] such that:

Pl (A) =2 {(m(V)/Ve P(Q), VNA = ¢}
and then we have : Bel (A)=1- Pl (A).

It may be proved (Schafer (1976)) that we have the following properties : Bel is a belief
function iff : ~

1) Bel (Q) =1
i) Bel(9)=0
i) Bel(AjU.. UA )2 Z‘,Bcl(A)- ZBcl(AnA)+
X (—1)”“1 Bel (N A)), wherellldcnotcs the cardinality of I.
1 #[‘;,...n} IEI .

As a consequence of iii) we get :
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Pl (A] N..MA, )<Z Pl (A)) - Z Pl (A, UA)+

Given a belief funcnon Bel, the basxc probablhty assngnmcnt function m related to Bel is

obtained by :
V ACP(Q) m (A)= -y 1A-BA .
<P(€2) m (A) BZ -1 Bel (B)

Given two belief functions Bely and Bel,, their orthogonal sum Bel; @ Bel, ,also known as

Dempster’s rule of combination, is defined by their associated probability assignments :

D A)= v A
m;D m, (A) my (V) my (Vy) / Vlﬁ%Z;"‘b my (Vmy (Vy)

Vi h%2=A

As a special case, we get a generalization of Bayes rule of conditioning, which is knawn as

Dempster’s conditioning :

Bel (AU B) - Bel(B)
(1-Bel (B))

Bel (A/B) =

We have the following link with probability and possibility theories : it may be shown that if ¥
contains only singletons then Bel is a classical probability measure. Dempster (1967) said that
Pl and Bel may be viewed as upper and lower probabilities. Schafer (1976) has shown that if
F contains only a nested sequence of subsets Vo V2 G...< V, then we have :

Bel (AN B) = Min (Bel(A), Bél(B)) and Pl (A U B) = Max (PI (A), Pl (B)) and hence,

.in this case, Bel and P} satisfy respectively the properties of necessity and possibility
measures. Given a probability measure pr, it may be shown that there exists a poss.ibility,
necessity, belief and plausibility function respectively denoted pos, nec, bel, pl, such that

nec < bel < pr < pl < pos.
The theory of evidence models several kinds of knowledge :

1) Probability : as said by J. Pearl (1990) : "belief functions result from assigning
probabilities to sets rather than to individual points".

Example :

A machine is able to compute the average number of vehicles whose speeds vary within
a set of a priori given intervals for instance V; =10,110]. Sometimes this machine may

fail to give the speed but still be able to give the number of vehicles which pass on the
road. If the machine gives for instance the following percentage : 0.40 for speeds which
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belong in the interval V, 0.50 for speeds which belong in V, = {speed > 110} and

0.10 for unknown speeds, we may represent this information by a belief function q with

body of evidence ( F,m) such that
F= {Vl,V2,1R+}, m (Vy) =0.40, m (V) =0.50, m (IR*)=0.10.
Then we have, for instance, bel([0,130]) = 0.40 and Pp([0,130]) = 0.40 + 0.50 = 0.90.

Testimony : if two witnesses observe the same event A, then by using the Dempster rule

if)
it may be shown that the belief in A increases. If one observes A and the other B with
#B and A N B = ¢ then it may be shown that the belief in A and B dscreases. If
A N B = ¢ the belief in A and B decreases more than in the preceding case and the
higher the belief in B, the lower the belief in A.
Example :

After an accident observed by two witnesses, the first one is almost sure that the speed
of the vehicule was in the interval V= ]0,100 km] and the second witness who was

further away , thinks the same thing but is less sure. Hence, each witness may be
represented by a belief function, the first one by q;, with body of evidence (Fq.my}

such that :
Fl = [Vl JRY ] .My (Vl) = 0.90 and 4 defined by {?2 ,mZ} such that : Fz éFl

and
my (V) =0.70. Then, by using the Dempster rule we get :

q; ®ay (V)= q; (VP +a (V) -qq (V) g5 (V1) =0.90 +0.70 - 0.63 = 0.97.

7.2. A formal definition of "belief objects"

Following Dubois and Prade (1986), we define the union and intersection of two bodies of
evidence (F1,m1) and (¥ 5,m,) as follows :

ViUVa=A

m ma (A) = m m which 1s consistent with Dempster's rule if
1Mpe] M2 (A) vlmfvz__,A 1 (V1) mz (V) i P

the term mj M m, (¢) (Which reflects the amount of dissonance between the sources or their

independence) is eliminated. In the following definition we denote by q{ a belief function with

body of evidence (FJ; , m‘: ).
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Definition ,
A belief assertion dcnotcd Apa] = Thet i =1 qu) j]' is an im assertion which takes its values in

Lbe! = [0,1] such that

Vi, Q; is a set of belief functions defined on Oi

.1 2 1 2 1 2
OPp1:Vi,q4,9; € Q; g Ubelg (V)= AEV m; Nbel mj (A);
qil Nbal qiz W)= AZV mil U bel miz (A) ; the complement is defined by

e~ .

. _ —j _j ’ .
hel @ VI =di (V)= T i (A) where i (A)= m} &).

8bel” Ehel (‘71 Q,) = y‘{m Mbel m (Vo) IVy @V, (V. Vy) € FixFy)

fb el - - the mean.

Notice, that the union and intersection of belief functions remain belief functions (unlike in the

case of probabilities and poSsibiliu’es) .
As in the case of probabilist objects, the choice of the function fy; may be more general; we

have chosen the mean in order to simplify. It is also possible to define a plausibilist object by
1 2 1 2,1 2 _
OPpeiqi Upp & V)=, X ™Mbl Mi (Aidi Mppdi =, Mi Ypel

ml2 (A) and cpP (gi) = q; is defined as in the belief case.

1 2 r 2 -
~gPQ : gpQ (qi’ Qi) = Z,{mi (Vl) m;y (Vz)/ Vl N Vo 20, (Vi{,Vpy)e ¥ lez} and fbel
remains the mean.
The following properties may then be shown : ql1 ﬁbel ql2 = ql1 q; bccausc ql1 Mbel in (V)

1 2 2
= ¥ mi Upgm(A)= s m = 2 lov E mj (V)
1
We have also, €hel (qi » 44 ) = VIEFI mi (Vl) qi (Vl);

1 2 2 1 1 2
&pl @, q;) = szsFZmi (V) Pei (V2)=Vlzef'lmi (Vl)PBi (V5)

where pﬂl 8 J) Vr\%j#p q’l (V); hence gp p is symmetric whereas gbel 1s not; it is also easy
1

‘ ‘ 2 1 2
to show that V Ae P(Q) g xpq1q; (A)=1-qg; P G (A).
If two experts observe the same event A and are associated 1o the belief functions g5, q; with

1_ .2 1 2 1.2 1.2
F; =F; ={A,O}, thenitmay beshownthat:q; Upaq; =q; +q; -q; 9;-
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Let us give a simple example.

Example :

Several transportation experts define an accident scenario between a car and a bicycle by a
belief function q; concerning the speed of the car. Knowing qy we are able to define a belief
object a = [speed = q;] where the body of evidence of q is {F ;,my } such that
f’l = [Vl,O}, where O is the set of possible speeds and Vi< O is an interval of speed (for
instance ,V1 ={100,120] km/h).Now suppose that a witness observes an accident and says that

it is defined by a belief function g, with body of evidence (F 5,m5} such that ¥4 =1{Vs5, O).
If we wish to know how much a given accident defined by wS= [speed = q5], satisfies the

scenario defined by a, we have to compute a(w); as a is a belief object, by definition we have :

a(w)= v g.ﬂ my (V) @2 (V) =m) (V1) q2 (V1) +my (O) q2 (O), therefore

a(w)=mj (V1) q2 (V1) +m1(0). Hence if V2 CVy, thena (w) =m) (V1) m2 (V2) + mj (O)
and the higher the witness' belief in V, the more w satisfies the scenario defined by a ; if

V1 < V2 then a (w) =m1(0), as qp (V 1) = O and the greater the ignorance of the expert who

has defined the scenario, the more w satisfies the scenario.

8. Some qualities and properties of symbolic objects
8.1. Order, union and intersection between im objects

It is possible to define a partial preorder <y on the im objects by : a) <y ajy iff
Vw £ , o < aj (w) < az (w).

We deduce from this preorder an equivalence relation R by : a3 R ap iff Ext (a1 / Q, &) =
Ext (az/ 2, o) and a partial order denoted <y and called "symbolic order” on the equivalence

classes induced from R.

We say that aj inherits from az or that a3 is more general than ag, at the level @, iff
a) Sq a2 (which implies Exty (a1 / Q, o) < Extq (a2/ 2, o).

We call intension at the level o of a subset 2; C £ the symbolic object b defined by a given
conjunction y of events whose extension at the level o (see 4.2) contains 2.

The symbolic union aj LUy, o a2 (resp. intersection a1 My o a2) at the level ais the intension of
Ext (a1 /Q, &) U Ext (a2 / Q, o) (resp. Ext (a2 / Q, @) N Ext (b/ 2, a)).

8.2. Some qualities of union and infersection

When an operator Ux has to be defined in a domain related to a specific semantic which
induces the notion of similarity between symbolic objects, it seems natural to require that it
should satisfy the following intuitive properties :
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a) The union of two symbolic objects is more general then each one ; in other words, the
extension of the union of two symbolic objects contains the extension of each one.

b)  The union of an object with itself has an extension which contains the extension of this

object.
c) The more two objects are similar the less they are general.

d)  The most opposite ‘objccts (i.e. opposite in all the variables which define them) have an

union which extension contains every one.

e) The union of two similar objects must reject, from its extension, objects which are not

similar to them.

In case of intersection, analoguous "natural" conditions may be defined, they express the
inverse conditions, for instance : the intersection of two symbolic objects is less general then

each one.

In case of probabilist and possibilist objects, it is easy to see that condition a) is satisfied, since
when q1 and q2 are two probabilist measures, we have : Qi Uprd2z =q1 +4q2-q1 92 2 Gk
fork =1, 2. When q1 and q2 are possibilist measures we have Up q2 = Max (a1, q2) 2 gk

fork=1,2.
‘ i 1 2
' Ifaj"/i\[}’i =Q%] we get ay Ux32=/i\[}’j =q; Uxq;land Vw & Q?WS=/i,\.[}'i=fi] we have :
1 2 .
a1 Uxaz (W) =fx ({gx (g; Wxqj, 1i)};) ; hence,

AUpaz (W) =Mean { £ G UprGeMnW)2Mean{ T  qf (V) 5§ (W)); =k (w)]
ve G . ve O

with k = 1, 2.
Similarly in case of possibilities we have :
.1 2 .k
a3 Up a2 (W)= Max {Max Min (g; Uprg; (v), 1i (v))} 2 Max {Max Min (g; (v), 11 (V))] =
i veQy i veQ;
ag (w) with k =1, 2.

It is also easy to see that the probabilist and possibilist intersection satisfies the inverse

condition.
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The condition b) is proved in case of probabilist objects, by the following argument, in the case

of a probabilist assertion reduced to an event, and may be easily generalized (by taking the
mean) to the case of a conjonction of several events : let be a =[y = p] ; we have by definition a
Upra=[y=p Uprp] =[y =2p-p2]; hence VWS = [y =], we have a Upra(w) =

S Q@p-pH(Wr(v)2 3 p(Wr(v) and so a Upr a(w) 2 a(w) ; therefore a Upra 2 a.
ve O ve O

In case of possibilist objects it is easy to see that a Up a = a, since if q is a possibilist measure
and a=[y=q],thenaUpa=[y=q\pq]l=[y=Max(q, g}=a.

The conditions ¢) and e) depend on the chosen similarity ; with the similarity proposed in
§ 10.1 it may be shown that condition c) is not satisfied by probabilist objects. It is easy to
show that d) is satisfied by probabilist and possibilist objects ; let aj = [y = pi] with p; (vi) =1
and therefore pj (vj) = 0 if vj # vj. It results that in the probabilist case we obtain

vpi=1le Q%r where 1 is the mapping such that Vv, 1(v) = 1, from which it results that
flor any wS = [y =1} where r is a probability measure, Li)pr aj (w) = 1. In the case where the
pi are possibilities we get also U pj = 1 (which is a possibility), and so, it results also that for
any wS=[y=r] wherepisa m;asurc of possibility Li)p a; (w) =1 ; therefore in both cases the

union of the most opposite objects are equal to Q8, the full object whose extension contains all

the elements of £2.

8.3. Some properties of im objects : Iattice and completeness

* As in the boolean case, see Diday (1989), Brito, Diday (1990), it is possible to define different
ldnds of qualities of symbolic objects (refinement, simplicity, completeness etc.).

For instance, we say that a symbolic object s is "complete” iff the properties which characterize
its extension are exactly those whose conjunction defines the object; in other words s is a
complete symbolic object if it is the intension of its extension. More intuitively, if I can see
some white dogs and I state "I can see some dogs", my statement doesn't describe the dogs in
a complete way, since I am not saying that they are white. It results from this definition that the
symbolic union or intersection of symbolic objects is complete. '

On the other hand,the simplicity at level & of an im object is the smallest number of elementary
events whose extension at level & coincides with the extension of s at the same level.

It may be shown, see Diday (1992) for instance, that given a level o, thc' set of boolean objects
is a lattice for the symbolic order and that, in this case, the symbolic union and intersection
define the supremum and infimum of any couple. In order to show that the set of im objects is
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a lattice for te symbolic order fy, gx and hy (see § 3.1) have to be well chosen and we introduce

a "full” and an "empty" symbolic object (which could be also called "top” and "bottom")
because they are the most and the less general symbolic object denoted QS and s such that V
we Q, Q8(w) = 1 and s(w) = 0; it is then easy to see that the extension of QS contains all the
elements of  (e.g. it is "full") and the extension of s contains no one (e.g. it is "empty"), at

the level o : O<a<l1.

Let be S the set defined by S = {€5,45,{~y aj, vy aj/ aje dx} where Ay is a set of im objects
1 1

(see section 4.1) and .~y is a given kind of "conjunction”. From the definition of a lattice the
supremum and infimum of any pair (s1,82) € S xS associated to the symbolic order £ defined

on S is given by :

supr(sy,s2) = inf{se S / s>y s1 and s 24 $7}
inf1(s1,s2) = sup{se S /s £y 51 and s <y 7).

Hence, by setting that Maxg(s1,s2) is defined by the following equivalence class, associated to

the equivalence relation R (see 8.1) :
Maxg(s1,82) = {5 : Q — [0,1] / & < s(w) = Max(s1(w), s2(w))} ,
it results that supr(sy,s7) = Maxy(s1,52) and infi(sy,52) = Ming(s1,572). Therefore we have the

following result ;

Proposition
{

A necessary and sufficient conditions for S to be a lattice associated to the symbolic order <,
is that Maxg(s1,82) € S and Ming(s1,82) € S.

From this proposition, it results that the following choice of ~y and vy (denoted « p and v p)
insure that S is a lattice for the symbolic order : $1~ p $2 = Min(s1,52) and syv p 87 =

Max(sy,s2). Notice, that the symbolic union and intersection of any pair (s1,s2)< S associated
to the conjuction ay define also the supremum and infimum of this pair, as we have :

SIUxa 82 = ap [s€S/s2ns1, 8 2¢ 52} = Max(s1,82) = 51 vpS2.
$1Mx,0 82 = ~p {s€ S /s <y S1, § S 52} = Min(sy,82) = 51 ~pS2.

(it is easy to show, that we have also + p {seS /s <y 51, 8 <y 52} = Min(s1,82)).
In other words, the equivalence class of R which contains the symbolic object s1 v p s2€ S

contains also the symbolic object s; Uy o 52 = & ? {s€S /s 2481, s 2¢ $2) € S which is by
definition a2 complete object associated to the conjunction . p. If we denote S¢ teh subset of
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complete objects of S, we may say that S¢ associated to Sq is a lattice of complete symbolic

objects, where the supremum and infimum of any pair of elements of Sz is their symbolic
union and symbolic intersection.

Notice that if we choose @y = @pqs (the set of possibilist objects), ~yand vy such that
1 ~y 52 = Min(s1,82) and s vy 52 = 51 ~pos 52 = Max(s1,52), from the definition of
possibilist objects ; it results from the preceding proposition, that S = {Q5, @3, Qpog) is a
lattice for the symbolic order. T ‘

In the case of boolean objects (where O<o<1), it is easy to see that :the necessary and sufficient
conditions of the proposition, are satisfied by settiig ay=a,vy=v 851 a 52 = Min(sy,s2)
and sj v s2 = Max(s1,s2).

9. An extension of pessibilities, probabilities and belief
assertions on symbolic objects

9.1. Dual assertions

In this paper, our aim is to extend an im assertion a =44 [y; = qi] (where q; depends on the

choice of x and may be for instance a possibility, a probability or a belief function) to a dual im
assertion denoted a* defined on subsets of &x.(the set of im assertions associated to x), and

more generally, on "*x - combinations” of such subsets of the kind A «x B where
*x = {Ux,Mx] and to show that a* is itself a kind of possibility, probability or belief function
depending on x. In order to do so, we define the x-union or X-intersection of subsets of ady by

the following definition where *x & {Uy, Mk} :

1,2 1,2 1,2
VAX,AX :ax’ Ax“‘xAx':{al *xaﬂ(a]aZ)E AXXAX}
and we study the link between a* (A L U A2y, v A L~y A2 v (A ) andar (o 2)

(where, for instance a* (Ay) = Z { a* (3;) /aj € Ax]}).

More precisely :
Given Ax ¢ Ay, we have A; = {a/as A} and to define A = Uy {a/a e Ax) we use the set

QAX ‘;Q;{ such that Q?x = {a9//a=nx [yj=qjl € Ax}; we denote : q? = Uz {qi/gis Q‘:"‘ J.
We define the LU of im assertions by : Ly {afae Ax) = Ax [y; = q‘?] . hence, we have

A= alyi= il

We define a} a "dual" measure of ag = Ax [yi =q f] by a.e o) =1, ,({gx (q‘iQ’ qii)m o

2 Q‘?k)i) ;

given A X2 a,, we denote A= Uy (a/fae A K} and we get ap (Aw) = fx((gx (a7 ,
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E Al A2 _
more gcneral]y ae (Ar *x A2) =1fx ({gx (q i *xq )1i) » where *x € {Ux, Mx) and
qf‘k =*x {qij/q; € QAx }. In case of probabilist objects, gpr has been only defined on-
Qipr x Qj, we extend it on Q?r X er by setting :
1 2 1 2 . 1 2 1 2 .
gpr (@i, @j) = <4qj, qj > with <q;, qi'> =T pi (v) q;(v) qj (v) where X {p; (v)/ve O}=1.
SV ‘

Hence, gpr is a mapping Qiperfr — [0,1].

9.2. Three theorems of meta-knowledge

The three following results ( Diday 1992), prove the existence of probabilist, possibilist and
belief objects defined respectively on probabilist, possibilist and belief objects, themselves
defined on €. The proof of theorems 1 and 2 is in the appendix, the proof of theorem 3 is long

and will be published elsewhere.-
a) In the case of possibilist objects :

Theorem 1

ja* @p) =1 a*(¢)=0
ii) VAj, A2 cp  a* (A] UpA2) = Max (a* (A}), a* (A2)).

b)  Inthe case of probabilist objects :

Theorem 2

i) a* @pp) = 1 ax(¢)=0 .
i) VA7, A2 Cpe  a* (Al UprA2) = a* (A]) + a* (A2) - a* (A1 Mypr A2).

c)  Incase of belief objects :

We say that there is independence between the body of evidence of two belief objects aj and ap

1ff Vi the bOdlcS of evidence (’FJ , )) associated to qJ for j=1,2 are such that

m1 Mbel Ty (¢) 0, (or in cther words the focal elements V]L Fil, V?’ E‘Fiz'arc such that :

V N V2 # ¢). The body of evidence of two subsets Ay, A of dpej are said to be indcp"ndent
iff for Vi and j = 1,2 such that Ql, Upel {qJ /qJ € Q J} thc body of evidence of Q and Q

are independznt.
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Theorem 3

Da* (Qpe) = 1, a%(¢) =0
ii) If i, Aj & @pel the body of evidence of the A;s are independent, then :

a*( U peAi)z X (-1 0*(ﬂbelAz)

ie{l,..n Icil,... n (4)
ore : ak - A-B/ %
iii) If VA < Qpel m*(A) = "—h‘l——a*b A (1)/ a*pet (W(B))
where R(B) = mpe) {Ai IA; =A - {a; ]}, a, € A\B, B #A)
h(A) = Upel (AilAi=A -{a;i], a; € A}

then m* is a probability assignmenz function on Qpg| (in other words : m* : P (Qpel) — [0,1] is
such that m*(¢) = O,A X I m*(A) =1and VA S QApel a*(A) = BgA m*(B)).

cbe

By using m* it is then possible to extend Dempster's rule and Dempster's conditioning on the
set of belief assertions.

9.3. Semantic of a* in case of probabilist objects

When q; € Qi, qj is a measure of probability and g; (v) is the probability of occurence of the
value v & O; among the possible values that a given individual may take ; if this individual is a
dice, gj (v) may be obtained after enough trials of the dice ; q; (v) may also be obtained in a
more subjective way by asking several experts. What is the meaning of g; when it belongs to
qpr and not to Q; ? This means that g; has been obtained by a union, intersection or

complementary operator, and so, that it is not a probabili"ty ; however, each value qj (v)
remains a probability whose meaning depends on the way used to obtain q; (for instance, we
may have gj = (qi1 Cpr q?) Npr (q? Upr Cpr ( q? )). Hence, if qil, qi2 € Q;‘ and qil, qi2 e Qi, gpr
(qil , qiz) expresses the surﬁ of the probabilities for v € Oj that v occurs simultaneously in the
way that qil (v) and qiz (v) have been obtained ; for instance, if qil (v) = a1 Upr by and qiz v)=
a2 Mpr b2 where aj bje Q; represents the measure of probability associated to two dices called

1 2 1 2 1 2, .. -
A;Bj, g (qi » 9 )= ¥ pv) q; (V) g (v), where q; (v) q; (v) is the probability that v occurs
ve O

for dices Aj or for dice B] when they are trialed independantly and simultaneously in dices Az
and B when they are also trialed independantly. If p(v) = 1 Card0; * g(ql q; ) is the mean of the

q; ') q ).
Roughly speaking we may say that a‘lﬁ (a2) réprescnts intuitively the average probability that the

same instance occurs in both entities (e.g. part of {2) described by a1 and ap ; it will be high iff
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2
Vi g(qil, q;) =3 p(v) qil(v) q?’(v) is high ; more precisely, the more qil (v) and qiz(v) are high
v
together or low together and their high values are concentrated on few element v & Qj, the
2
more g(qil , qi2) will be high. If qi1 (v) is high when qiz(v) is low for any i then g‘(qi1 . q;) will

be low. Notice also, that if we consider that a* (A] Nx A») is a measure of probabilist
specialisation and a* (A1 Upr A2) a measure of probabilist generalisation between Ay and A,

then the theorem 2 shows that, when a* (A1) + a* (Aj3) is constant, the more Aj and Aj are
specialized (e.g. a*(A1 Mypr A2) high) the less they are general (e.g. a* (A1 Upr A2) low).

/

9.4. Semantic of a* in case of possibilist objects

If a; and ajp are possibilist objects, a; (ap) represents intuitively the "possibility” that some

individual object "possible" for ap be "possible” for aj : moreover, in the extrem case where a;
and a» are boolean assertions a’; (a2) measures the possibility that an individual object satisfies

simultaneously a; and a3. More precisely, if aj is a boolean possibilist object, it may be written
gj= A lvi = c{‘ }. Where q{ is a characteristic mapping such that q’l (v)=1iffv EVJi ; SO 8j

may also be written as a boolean symbolic object : a; = A [yi = Vij 1, it results (see § 5.3) that
2} (s2) = Max(sup (Min (gf (), q{(v))/v € Oi)= 1iff Vi Vj N V{ # ¢ which express the
fact that it is possible for a value taken in V‘;z to be taken in Vil. If a; is a boolean
necessistist object we have in the boolean case :

a; (ap) = Miin (inf {Max (q; (v), ;i(v) /ve Qi) =1iff Vi Vi?' < Vil which expresses the fact
that a value taken in sz 1s necessarily taken in Vil .

Notice also, that it is necessary and sufficient that. at least for one v € O;, qil (v) and qiz(v) be

: 2
high together to get a high value of gpos (qi1 , q%) = sup inf (qi1 (v), q;(v)).
) \'

Example :

We have several documents to classify, which are characterized by the frequency of some

given words.

Probabilist objects : by using the frequencies, we associate 1o each document d; a measure of
probability q; and a probabilist assertion a;. It is then easy to see that a* (aj) is the probability
1

that the same word occurs for both documents dj and g , it will be high if in documents di.and
dj the frequencies are concentrated on few words and high for the same words.
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Possibilist objects : some words may appear but out of context and some other, important for

some documents, may not appear ; so, taking into account the context, an expert associates at

each word a measure of possibility ; therefore each document d; may be represented by a
possibilist assertion a; and a* (a;) will be high iff at least for one word, the possibilities are
i

simultaneously high for both documents dj and d;.

9.5. Semantics of a* in the case of belief objects

The meaning of a’; (ap) may be interpreted as a "belief of belief” or the "conviction" of

someone, denoted Ej, whose belief is represented by aj, concerning the belief of someone

else, denoted E; ,whose belief is represented by ap.

Example :

Fori= 1,2, let be aj = [y = q;] where gj is a belief function O — [0,1] with body of evidence
(Fi,m;) and ¥ =F2 = {A,B,0]) with AnB=); then we have :

a’i“ (a2) =gbel (q1,q2)=v ZFlml(V) q2(V) =m1(A) m2(A) + m3(B) m2(B) + m1(0). (1)
=

Following a classical example given by Schafer (1990), suppose that : I am expert E1, Betty is
expert E2, A = "a tree limb fell on my car”, B = "No limb fell on my car” ;

Suppose that Betty tells me a tree limb fell on my car (therefore m2 (A) =1, m3 (B) =0);
knowing that my subjective probability that Betty is reliable is p = 0.9 (so, my subjective
probab‘%lity that she is not reliable is 1-p=0.1), I say that her testimony alone justify a 0.9

degree of belief that a tree limb fell on my car (therefore mj(A)=0.9, m;(B)=0, m;(0)=0.1) ;
then, it results from (1) that my belief on her belief is a’i‘ (az) = 1; this is justified since my

belief gives me no reason to reject the belief of Betty as m(B) = 0. If I have some reason to
belief in B, then m; (B) # 0 and my belief on her belief a’; (a2) = m1(A) + m3(0) becomes

smaller then 1 (as m1(A) + m;(B) + m;©) = 1).
Notice that "my subjective probability that Betty is reliable” is equal to my belief on her belief
G.e. a’; (az) = 0.9) in the two following cases : i) mj(A) = 0.9, mj(B) = 0.1 and my(A) = 1,

ii) mj(A) = 1 and mp(A) = 0.9, which corresponds to intuition.

More generally, we can sece that the conviction of Ej concerning the belief of Ez will be
maximum (i.e. a;‘ (az)=1) if Ej is totally ignorant of the evidences A and B (because in that

case m] (A) =m;(B) =0 and mp (©) = 1) and if E; and Ej totally believe the same evidence
(because mi(A) =mp(A) =1 ormj(B) = ma®B) = 1). If m;(B) = 0 and E; has some ignorance
of A (i.e. m(0)e] 0,1 ) then, his conviction of the belief of E; on A (i.e. g2(A)) will be
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greater than qp (A) (for instance if m1(A) = ma(A) =-14 then m; (0) = -12: and the conviction of

Ej will be a;‘ (az) = 0.75). If E; totally believes A (mj(A) =1, mj(B) =mj (0) =0) and Ej

totally believes B (ma(B) = 1, m; (A) = 0) then,the conviction of Ej of the belief of E4 will be
0.If E7 is totally ignorant (i.e. m](A)=m2(B)=0) then the conviction of E] in the belief of E3 .

will be low if his belief is strong (i.e. his ignorance measured by mj (0) is low).

Example :

Several sensors, in different situations, have a belief of an event A. This knowledge induce a
belief of each sensor in the belief of the other sensors when they are in the same situaton.

In figure 6 we give 4 situations which allow four sensors to get a belisf in the belief of sensor
number 3 ; in this figure, if we denote a;j = [y; = q;] the belief assertion associated to sensor i

X, 7 X7 X3 ? X7
Ej—E; By ——— E; E3————E; By ——E;
1\ /1 1\ /0 0.3/ \.7/1 0.3/ \)\.7/1
A | A A A o A
(a) (b) (c) ' (d)

%
Figure 6 : X = a; (as) is the belief of E; in the belief of Es, computed according to (1).

é.nd Fi the focal element of the belief functon g;, we have in situation Q) F1=F5= {A} hence
*
m) (A) =mj5 (A) = 1 therefore, it results from (1) X1 = 81(35) =1; in situation (b) ,572 = {A},
* v
Fs5 doesn't contain A and so, az(as) = 0 ; in situation (c), F3 = {A,‘IA} and Fs = (A},
X
m3 (A) =0.7, m3 QA) = 0.3, therefore & (as) = m3 (A) ms (A) + m3 (1A) m5 (1A) + m3 (A)
ms5 (A) + m3 (0) =0.7 ; in situation (d) F4 = {A, 0}, F5 = {A}, mg (A) =0.7, mg (O) = 0.3,
a*
ms (A) = 1, therefore ay (as) = my (A) ms (A) + mq (O) = 1. If a large majority of sensors
(for instance, at least 75%) have a belief on a given sensor lower than a given threshold ¢, this

sensor may be rejected for the recognition of A. In this example, if the thresholdis d = % the

sensor 5 is not rejected ; if o = 0.8 it is rejected ; notice that if a sensor i is completely ignorant
(mj (O) = 1 and therefore YA, m; (A) = 0) it will belief in any sensor whatever this sensor

belief ; hence, we may reject the judgement of sensors who are much too ignorant.

Instead of using a majority rule, it is also possible to use Dempster rule (at second level)
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applied to the belief of belief, concerning a set of sensors, of a given sensor ; by that way the

sensor represented by as is rejected if 9;4 a; (as) < a. The belief in A, if no sensor is rejected,
=1,

is measured by the classical Dempster rule (at level 1) : 6155 aj (A).
=

There is an analogous theorem if aj is a plausibilist assertion and a’i‘ (a2) may be interpreted as

the mutual "non-discordance” between what E1 and E3 believe . To illustrate that, going back to

the preceding example we can see that if a; is a plausibilist object then:

a’i‘ (a2) =gpl (QI,Q2)=V ZF 1ml(V ) pl2(V) =m1(A) (m2(A) + m2(0))+ m1(B) (m2(B) + m2(0)) +
€

mi(O)pl2(0)=mji(A) mza(A)+m1(B) ma(B)+mj(0 )+m2(0) - m;(0) m2(0). Hence, this
corresponds to intuition as we can see (contrary to the case of conviction) that the non-
discordance between what E1 and E3 believe remains high when E3 is totally ignorant (i.e.
ma(A) = ma (B) =0) even if the belief of E1 is strong (i.e. m1(0) = 0).

Another kind of interpretation of a’{ (a2) may be obtained in terms of "fit"; if we consider the

class Cj (of fruits produced by a village,for instance) described by the belief object a j, we may
say,when aj is a belief object ,that a’i‘ (a3) measures how much C2 "fits" C1; when ajisa

plausibilist object,we may say that a’; (a2) measures the "non-disagreement” between Cj and

C». For instance, if y expresses the color and if the fruits of both villages have the same color,
denoted A, (i.e. mj(A)=m3 (A)=1,miB) =my B) =0,m;(0) =my (0) = 0) then a’i‘ (a)=1

measures how much C2 "fits” C1 and also the "non-disagreement”, about color, between Cfg
and C2.If the color of the fruits of the second village is totally ignored (i.e. m2(A) =m> (B) =

0, myp QO) = 1) and the color of the fruits of the first village is A (i.e. mj(A)=1, m; (0 ) = 0)
then, when aj is a belief object, we have a’i‘ (a2)=0 which measures how much C2 fits Cq ;

when aj is a plausibilist object,we get a’; (az2)=1 which measures the non-disagreement

between Ci and C».

10. Data analysis of symbolic objects

10.1. The four approaches

Several studies have recently been carried out in this field : for histograms of symbolic objects,
see De Carvalho & al (1990) and (1991) ; for generating rules by decision graphs on im objects
in the case of possibilist objects with typicalities as modes see Lebbe and Vignes (1991); for
generating overlapping clusters by pyramids on symbolic objects see Brito, Diday (1990).
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More generally, four kinds of data analysis may roughly be defined depending on the input and

output : a) numerical analysis of classical data tables ; b) symbolic analysis of classical data
tables (for instance obtaining a factor analysis or a clustering automatically interpreted by
symbolic objects) ; c) numerical analysis of symbolic objects (for instance by defining
distances between objects) ; d) symbolic analysis of symbolic objects i.e. the input and output

of the methods are symbolic objects.

To illustrate these four approaches, on a simple example, a similarity between symbolic objects
defined as follows will be used :
*
Let ay= Myi= qf] £ &y be the set of im assertions. We denote a, a mapping dx — [0,1]
e
such that a, (ap =fx ({2« (qiz, q?)}i) ; then, we set :

% £ S
(1) s (ag.ag) =% (a2 (ag) + ay (ae))/\/a (ap) a"‘ (ay) ; in the case where gx is symmetric

(which happens when e have probabilist, poss:blhst and plaUSIbtht assertions), s may be
written : s (ap,a5) = a (ak)/\/a* (ap) a* (ap) = ak (agl[ 2} (22) a* (ak) .

Examples :
Let aj, a2 be two probabilist objects such that

=[y =07 v1,0.3v7],a2 =[y =03 vy, 0.7 va] ; we get :

E 3 v
sap, agy = —— 1% 07 % 03403 % 0.7 _0,
' =+ N(0.72+03%)(032+0.73)
S| (anay(a2)

From this example, it results that probabilist objects do not satisfy the condition c) given in
§.8.2, since if we define a=[y =1 vy, O v2] = [y = vi] we get aj Upr a2 (a) = 0.79 and
aj Upr aj (a) = 0.91 ; hence, aj Upr a2 may not be considered more general than aj Uy aj,

even if the pair (aj, a3) may be considered more similar than the pair (ai, a1), since s(ay, aj) =

1 and s (a1, ap) = 0.724.

Let aj, a3 be two possibilist objects such that a; = [y =1 vy, xv2] and ap = [y = xvy, 1 v2l.
Max (mlfi (1.x), m1{1 (x,1)) = x ; hence the lower x, the more aj and az
vMax (min (1,1), min (x,x))

. *
are dissimilar. Hence, aj Upaz = [y =1 vy, 1 v2] is the full object since Va, a1 Up az(a)=l and

Then, s(ay, a2) =

therefore, contrarily to the probabilist case, in this example the possibilist case satisfies the

condition ¢) § 8.2).
We illustrate these four approaches by applying three data analysis methods : principal

components, hierarchical and pyramidal clustering.
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Let T be the following data table where the set of individual objects is Q = {w1,...,ws}which

are five companies described by two variables, yj : the employment rate and y2 : the profit.
This table is represented in figure 7.

w1 w2 w3 w4 ws
V1 12 12 2 1 2
v2 -1 12 1 2 2
~ Table T
7\
2 W4 Vs
1 W o3
Ys
5
172 172 1 2
W1

Figure 7 : Graphical representation of table T

10.2..‘ Numerical amnalysis of classical data table

. Principal componént analysis of Table T : From the covariance matrix V = (8-? %g ) we

deduce the eigenvalues : A1 = 1.6 and A3 = 0.2 and the eigenvectors u'{ = 712— (1,1),

ug = :j% (1,-1). Finally we get the principal component representation given in figure 8,
where the projccn'bn of wj on the axis i is given by Fj (wj)= u;r .xj where x;-r= Gi1(wy) -Y),

y2 (w2)-Y2) and Y;=1, is the mean of y; ; for instance, Fi(wy) = ‘11—2 (11) (:gg .
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# axis 2
a’2 Wy
X " e ——
-3a/2 -a/2 a/2 a axis 1
-a/2
w3

Figure 8 : Principal component analysis of table T whith a= V2.

Hierarchical and Pyramidal clustering of table T :

We make the classical "complete link hierarchy" based on the city-block distance defined by
2

d(we, wy) = _leyj' (we)-yj (wil.
J:
The algorithm is the following : starting from 5 classes Cj = { w;} where w; € 2, we merge at

each step the two classes with smallest 8(C;, Cj) :
6 (G, Cj) = Max {d(wj, wj) / wj e Ci,wje Cj}. When two classes are merged their elements
are supressed from the set to be classified and the process continues until only one class

remains.

he
To obtain a pyramid, we may use a similar algorithm where classes may be merged twice
- (instead only once in the case of hierarchies) if they respect a common order (for more details

see for instance Brito, Diday (1990)).

By using these algorithms we get the hierarchy and the pyramid given in figures 9 and 9.

1

|

|  JAT VYV N
— 1, TV VN,
W, Wo o wh W ow, W, W Wy oWy Wy
(a) - The hierarchy of table T (b) - The pyramid of table T

Figure 9
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Remark : if we associate a dissimilarity ¢ induced by the hierarchy and the pyramid by setting :
o(wj, Wj) = {height of the lower level which contains w; and w;j}, then, it is easy to see that ¢
is closer to the initial distance d in the case of the pyramid than in the case of the hierarchy;

- more precisely, Id-ot = X ld(wj, wj) - 6 (wj, wj)l is equal to 3 for the pyramid and to 11 for the
hierarchy. ' |

10.3. Symbolic analysis of a classical data table

The cormrelations between (wi, ..., ws) and the first axis of the principal component analysis
are respectively (-1, -0.707, 0.707, 0.707, 1); if we associate to each side of the first axis the
objects whose correlation is higher than 0.707 or lower than -0.707, we obtain two classes of
~ objects; the first class, Cy = {w1, w2}, explains the left side of the axis and the second one
Cy = {w3, w4, w5} explains the right side. By using these classes, we get two kinds of
symbolic interpretation of the first axis ; by using assertions, we may say that the left side is
explained by : aj = [y1 = -1/2, 1/2] A [y2 = -1/2, 1/2]; the right side is explained by
a3 = [y1=1,2] A [y2=1,2]. If the input provides a taxonomy saying that the rate of
employment and the profit are low when they are lower than % and high when they are higher

than 1, we may use the assertions aj and a2 to get the following explanation of the first axis : it
is explained by two opposite assertions which characterize two classes of companies :

a1 = [Rate of employment = low] A {Profit = low]
as = [Rate of employment = high] A [Profit = high]

X
Of course, in real examples things become much more complicated; for instance, to get more
accuracy when the two classes contain numerous objects, each side of the axis may be
explained by a disjunction of assertions obtained by a symbolic interpretation of a clustering
done on each class. We may also enrich the interpretation by adding certain properties; for

instance, we may add to aj the following rules : [if y; =~ % then y2 = - %] Afif y1= %rhcn
y2 = 15] and to aj the rule {if y; = 1 then y2 = 2].

We may also give an interpretation of the first axis by a horde object h: h=aj (u1) A az (u2) =
[Rate of employment (u1) = low] A [Profit (u;) = low] A [Rate of employment (u2) = high] A
[Profit (u2) = high] whose extension is composed of couples of companies (wj, wj) the first
element of the couple, wj,being of low rate of employment and profit and the second one, Wi,
of high rate of employment and profit. If an external variable gives the age of the companies the
horde object h may become : h = aj(uj) A az(u2) A [age(uy) <age(ur)).



A symbolic analysis of a classical data table may 21‘;0 be obtained by an automatic intexrpretation
of a clustering by symbolic objects : for instance, it is possible to associate to each level of the’
hierarchy a complete symbolic object (see § 8:2); more precisely, if we denote hy = {ws3, ws)
then, we may ‘associate to hj, the assertion a; = [yy = 2] A [y2 = 1,2] ; a; is complete,
because : i) it is defined by the intension of hj, in other words, by the conjunction of all the
events e; = [yj = Vj] whose extension contains hy and ii) its extension is hy; in the same way
hy = {wy, w2}, h3 = {w3,w4,ws} and hg = Q2 may be respectively associated to the complete
assertions az = [y] =-1/2, 1/2] A [y2 =-1/2, 1/2}, a3 = [y1 = 1.2] A [y2 = 1,2}, a4 = [y} = 01]
A [y2 = 02] where 01 and 07 are the set of all the values taken by yy and y2 in the data table T.
Using the fact that each level is represented by a completc assertion we deduce from any level
he = h, U hy the rulé ap — a; v ax. Hence, from ‘the hlerarchy we obtain the two following
rules :

Ry:a4 = a3 v azand Rp:a3 — a; v w where w = [y1=1] A [y2 = 2] is the symbolic
object associated 10 w4. All the bottom-up rules, such as a1 — a3, are true because the aj and
bj are complete ObjCCtS Fmally we have induced from the hierarchy g1ven in a) a graph (see
figure 10(a)) whose nodes are assertions and rules are expressed between them by directions.
In figure 10(c), (c1) expresses the rule r; : x — y ~ z ; (c2) expresses the rule r2 (y—x) A

(z—x) and (c3) expresses the rule r; A

@) | (b) | ©

ngure 10 : Induced graph of rules between assertions (a) from the hierarchy,
(b) from the pyramid, where double headed arcs are explained by (c)

The same kind of symbolic interpretation may be obtained by starting from the pyramid given
in figure 10 ; hence, we obtain the graph given in figure 10(b); in this way, we obtain more

assertions and more rules between them.

If we denote hy = {w1,w2}, hy = {w2,w3}, h3 = {w3,ws}, hg = {w4,ws} hs = {w3 wq,ws),
hg = (w2 w3,ws], h7 = Qiwj, hg = {wy1,w2,w3}, hg = Q, the associated complete assertions

arc |
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by = [y1 =-1/2, 12 A [y2 =172, 12}, b = [y1 =5, 2 A [y2 = 3. 1.
b3=[y1=21Aly2=12Lbs=[y1 =12]Aly2 =2l bs=[y1 =121 aly2 =12},
be=[y1r =122l alyz =1/2,1,2), by =[y1 = /21.2) aly2 = 1/2,1.2},

bg = [y1 =-1/2, 1/2,2] A [y2 =-1/2, 1/2, 1], bg = [y1 = 01] A [y2 =02]).

Hence we can induce the following rules :

r;1 : bg — bg v by T :b7 >3 bg v bs r3:b8-—-)b1\'b2>
14 : bg = by v b3 15 : bs = b3 v bs.

We have by = ap, b3 = a1, bg = a3 and bg = ag; hence, it is possible to deduce from the rules rj
given by the pyramid, the rules given by the hierarchy; to do so, we need to use the following
property : if r : by~ bj ~ bk v bp and Ext (bj/ Q) = Ext (bp / Q), then r may be simplified
to bj — bj ¥ by . Hence, for instance, from 1y, r2 and r3 we get bg — by v (bz ¥ be) ~ bs and
then bg — by - bs which is R) : a4 — ap v a3 obtained from the hierarchy (see figure 10a).

10.4. Numerical analysis of symbolic objects

The given set of symbolic objects is supposed to be the set of the five first symbolic objects
defined by the pyramid : {by, bs, b3, bg, b5} = B.

A simple way to make a bridge with classical data analysis methods is to compute a measure of
similarity between the objects of B; having this measure it is then possible to use
multidimensional scaling, clusteriﬁg etc. To do so, we may compute the similarity s which has
been defined by (1); as B is a set of symbolic objects, we have to use the mappings fy and gy

defined in § 5.3. We have, for instance, sy (b1,b2) = b: (b2) /V b*l (by) b; (b2) with

by =[y1 = qi lrvly2 = q% ] where qi and q;_ are characteristic mappings such that : qi (-%)
= qi (%) =] and qé (-%) = qé (—;—):1 and qi )= qé (v) = 0 elsewhere.

We have by = [y; = q%] Ap [ya = q% ] and q% Wy=1lifve { %%} q% (v) = 0 elsewhere,

q% =1ifve {15, 1} and q% (v) = O elsewhere. As we have (see §7), b*; (b2) =
fol(2o(@i.a) 1) = Min (<q}.97> <4345>) = Min (E(q] M) a3 ™) /v e O1},
£{a3 (v) 43 ) /v & Oz)) = Min (4] () a3 ($.a5(Paz(3) = Min (1,1) = 1.

We have b’:(bl) = Min (<qi,q}>, <q‘12,q;>) = Min (2,2) = 2 and also b: (b2) = 2 ;
hence, sp (b1,b2) =1/V2x2 = 1/2.
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By computing in the same way all the similarities sp (b®, b0)) we finally get the symmetric

table of similarities given in figure 11 (a)

The similarity sp is ransformed into a dissimilarity d = 1-sp givenin 11 (b) ; If we choose
¢ = Max d(b;,bj) - M where M is the sum of the two couples (bj,bj) of smallest dissimilarity
d(bj,bj), then ¢ > Max (d(b;,bj) - d(bj,bx) - d(bk,bj)) and D such that D (bi,bj) = d(b;,b;),

D (bj,by) = 0, is a distance, because V1i,j,k d(bi,bj) + c < d(b.,bk) + ¢ + d(bg,bj) + c. It is
easy to see that M=0+0.3 and ¢ = 1-0.3 ; it is then possxble to change d into a distance D such
that D(bj,b;) = d(bj,bj) + 0.7, which is given in 11 (c).It is then possible to apply many
existing methods of classical data analysis by using s, d or D as input.

b1 b2 b3 b4 bs

b] 1 12 40 0 0

b2 1 % 0 172

b3 1 1 _‘/é

2

b4 1 ﬁ

2

bs 1
(2)

by b2 b3 by bs

b1 10 05 11 ] 1 !

b2 o fo3 1 . Jos

b3 0 0 0.3

by 0 0.3

bs 0
(b)

by by b3 b4 bs

by 0 1.2 17§17 B17

2 0 1 1.7 1.2

b3 0 0.7 1

bg 0 1

bs 0
©

Figure 11



For instance, by using the following algorithm ita-i,s possible to obtain a mapping of B which
respect 2 card (B) - 3 exact distances D(bj, bj) let C1 and Cz be two criteria C; : B x B — R+
and C2 : B x B x B — R+ depending on some intensions, extensions and distances (in the
example given below, we give two examples of each criteria); let T and N be two empty sets, at

the begining; then, the algorithm is described at follows :

Step 1 Find a couple b;, b; which minimizes C; ;
put bj and b; in T and (b;, bj) in A.

Step 2 Find b:, b; in T and b* in B\ T such that:
Ca(b*, by, b) = Min (Cab,b;.bj) /b & BAT; by, by < T).
Put b* in T and (b*,b;), (b*, b;) in A.

Step 3 While card(T) < card(B), go back to step 2.

If the user wishes to privilege a couple (b;, b;), this couple is chosen at the first step; at the
%* *
second step, (b; , bj ) is fixed and identical to (b;, b;). By this way, we get 2 more precise view

from bj, bj on the other elements of B, "as if they was on a hill".

At the first step it is possible to map (bj, bj) in such a way that the distance D(bj, bj) be exact.
As D is a distance, at the next step, when a new element b enter in T, it is always possible to
map it in such a way that the two distances D(b, b;) and D(b, b;) be exact. Finally it is easy to
see that we get 2 card B-3 exact distances because we associate to the first couple only one

exact distance instead of four.
Example :

In using the denotation lalg = Ext(a/Q) we choose Ciy(bj,bj) = D(bj,b;). card(lbj U bjlQ) /
card(Q) and Ca(bj,bj,bx) = (D(bi,bj) + D(bj,by)) card(Ibj L b; L bylg) / card Q.

At the first step of the algorithm we obtain :

C1 (b3,bg) = 0.7 x 3/5 = 0.42 = Min Cx(bi,bj), then T = {b3,bs} and A = (b3,bs) because by
11 11
by =[y1 =- 5 % 2} A ly2 = L 1] and Ibyu balg = {W],W2,W3}-

At the second step we get :
Ca(bs,b3,bg) = 2.3/5 = 1.2 = Min{Cz(b,b3,bg) / b e B\ T}, then T = {b3,bg,bs) and

A = {(b3,bg), (bs,b3), (bs,bs)}
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At the third step :
Ca(ba,b3,b5) = 2.2 x 4/5 = 1.8 = Min {Ca(b,bj,bj) /be B\T, bi,bje T } then

T = {b3.b4,b5,b2} and A = {(b3,b4), (b5,b3), (b5,b4), (b2,b3), (b2,b5)}
C2(b1,b2,b3) = Ca(by,b2,bs) = 2.9 x 3/5 = 1.7 = Min{Ca(b,b;,bj) / b= B\T, bj,bj € T}.

1.2

b3 0.7 b4
(a)

Figure 12 : (a) mapping of B with 2 card (B)-3 exact distances
(b) mapping of B with rules a P4 b if p(a/b)=0.

*

We say that a implies b with a weight p(a/b) = card (lalg ~ Iblg) / card Iblg; this rule is denoted

aP (3/>b) b in figure 5b; when p(a/b) = 1 we get an exact implication denoted 2 — b.

If we add the element bg = b3 U bg we get the representation given on figure 5, by putting bg at
the center of gravity of the elements b3,b4,bs that it generalizes (as b3 U bg U bs = bg).

10.5. Symbolic analysis of symbolic objects
As input we have the following set of probabilist objects :

B = {by,...,bs) such that bj= [y = qjl] ~prly2 = qJZ] where q'l is a measure of probability
from P (Oj) — [0,1] where O; = { - %, 15 » 1,2} and P (O)) is the power set of Oj. If we set
bj=1lyi= (q{ v1) v1, (q'i (v2)) v2, ...}, then the bj are defined as follows, where the value

vp associated to qJ1 (vp) = 0 does not appear :
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L (3) 3]

o —

bi=bi=(3) -3.G)3 1 ~pr B2=(3) -

be=0y1=(3) 3.(3)2) ~pr 12=(3) 3, (3) 1]
b3 =[y1=(1)2] ~pr [y2=(3) L (3)2]

be=ly1=(3)1 (3)2] ~pr [yz=(1)2]
1 1 1 1
bs=[y1=(3) 1. (3)2] ~pr y2=(3) 1, (2)2).

To treat this set of probabilist objects, we may compute, at first, the similarity

spr (bi.bp) = b:‘ b/ ‘\[ b: (bi) b; (bj) and then, to use for instance, principal component

analysis or clustering methods interpreted by symbolic objects as has already been done in b).

For instance, for the couple (b1,b2), br (b2) = fpr ({gpr (qg,qiz )}) is computed as follows :

2

%*
b, (b2)=Mcan(<q%, q1>,<q%,q%>);thcrefom:

* 1 2 1 2
b, (2)=Mean (X {q 1(v). q [(V)/v€O0i}, T {q4(V). q5(V)/veO2]).
chceb’:(bz):Mean (%xO-{——%x %+0x0+0x%, 1§X0+ :lz-x 1§+Ox 1§+ 0x0) =

1 1 1 1
Mean (7, 7)= (3+ 7)

i

1l

—

)=

N} =
[ SIS

b*(b)=Me:an(l l)—--'b*(b)~Mear1 (l
1 1 2’ 2 "2, 2 2) = 2’

Finally, setting o = ‘\/ % we obtain the following similariges :

1 12 0 0 0 1 05 0 0 0
1 w2 w6 12 1 0.6 02 05
{spr(bi,bj) }= 1 23 23 = 1 0.7 0.8
1 203 1 0.8
1 1

To analyse B, another way is to obtain directly from B, clusters of symbolic objects
represented by an "inheritance" hierarchy, where each node is expressed by a complete
probabilist assertion ajk, or an approximation of it such that if aj = aj U x,q ak then
ajk 2o Max (aj,ay) where Upy,q and 2¢ have been defined in §8.1. To do so, we may use the
following algorithm of sequential agglomerative hierarchical clustering on a set of symbolic
objects A :
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First step : ajk = aj Ux o ak is computed V aj ax € A.
Second step : the ajx of smaller extension constitute the first levels of the hierarchy, their height

is the cardinality of their extension.

Third step : the retained ajk at step 2 are added to A and aj, ak are suppressed from A; then, we

go back to the first step until the cardinality of A becomes equal to 1.
In practice, how can we compute ajk = aj Upr,a ak ? By definition ajk is the conjunction of the

elementary events a = [yi=q;] such that Ext(a} k/Q a) contains Q1 = Ext(aj/Q,a) U

Ext(a/Q, o).
Hence, for any we Q; such that w$ = {[yi=ri] we have ajk(w) 2 o this condition is satisfied if
we have V i, g(qi,1i) 2 o because aj(w) = f({g(q;.ri) };) and, by definition of f, it is the mean

of numbers larger then o ; hence, if we denote x;= qi (vj), we have the inequality :

g(qiri) = Z{Xf.rj(Vj)/VjE 0jlza; hence, we have to solve a system of card(£2) inequalities
where the unknowns are the ij_ If this system has several solutions, for each i we denote them
[yi=qi2] ; hence, we obtain ajx = ’}pr (/L}Pf[yi:qiz]); by choosing hpr=Min (see §4.5) the

extension of ajk at level o is Qp={w/aj(w) = f ({Tvsin { g(qf,ri)} lizal.

To obtain the inheritance hierarchy on B given by the algorithm, the first step consists in
computing the ajx = bj Upr, o bx whose extension is of minimum cardinality ; we choose a =5

4

and to compute for instance a12 = by Upr,a b2 we do the following : first we set ajp = 3%2 ~

3%2 where afz = [yg=qp] is such that afz(bl) 2 % and afz(by_) 2 % Then, for x.e =qp (v;) where
{vi,..,v4} =01 =017 = (- ;_, 1.,, 1, 2}, we have to solve the following inequalities, where the
xje are the unknowns, with the constraint? qe(vj= }}‘, xJ. =1 and xJ.e e {0, %, 1} in order 10
simplify :

afz(bx) = gpr(quq% ) = Z {qodvy) q%(va) /vie 0 p}; hence, we obtain :

1 1 1,11 1 1 1.1
alz(b1)=§x1+§x22-2-, 2(b2)— x2 2x42-2—

from which we deduce that x; + x2 =1, and x; + le1 = 1 therefore (as Zl{xil /i=1, 4} =1) we
get xé: l,xil = 0 if i=2.
% from which it results that x2 =1 and x =

NIH

2 1 2 1 2.1 2 1 2
alz(bl) =5 X]+5 %5 2 3 aj,(b2) =§x2 +
0 if i#2.Finally we obtain :
a2 = aiz ~ pr 3%2 = [y1=(1)%] ~ pr [y2=(1)%] (which is equivalent to the boolean object

[y1 =3 ~bly2=5).
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.. 1 1 1 1 1.1 1 1.1 _ .
Similarly, we get : a13(b1) =5X;+3%, 25 and a]3(b3) =X4 25 This is a contradiction

because the first equation implies xi = 0. Hence, the only symbolic object whose extension

contains by and b3 is the full object QS whose extension is Q; QS = 4[y;=q;) is defined in the
case of probabilist objects by functions qj : P(0;) — {1} (which are not, of course,
probabilities !), then it is easy to scs that Q3(w) =1, V we Q. Similarly we get :
aj4=a15=a4=0"; all,3(b2) = % xé ,1, i 5 and a,,3(b3) X4 2 gwes two solutions
. 1 1 1 1 1
1) x2=x4=§,x3=x1=0
B xg=1,x =0ifi=4

1.1 1
therefore : a3 =[y1=(3) 5, 5)2] ~pr [Y1=(D)2] ~pr(y2=(1)1] ; 225=[y1=(1)2] ~ prly2=(1)1]

. 1 1
; a34=[y1=(1)2] ~ pr[y2=1(2)}; a3s is computed as follows : aés(b:;) = x}; 25 and a;s(bs) =3

x% % x}‘ 2 5 implies lei =1 and x; = 0 if i=4; 335(b3) X3 +3 2 X4 2 7 and a3s(b:) =2 ’%

+ 5 x4 :12 ; we have three solutions 1) x3 = xi =%; ii) x3 =1, xi =0 fori=3; iii) x4 =], xi2
= ( for i#4 ; therefore :

a3s = [y1=(1)2] ~pr[y2 = @1, §)2] ~pr [yz=(D1] ~prly2=(1)2] .

In a similar way we get:
ass = [y1 = B)1,32] ~pr [y1=(D1] ~pr [y1=(1)2] ~ pr [y2=(1)2] .

In the following table we give in the cell of the ith row and jth column the extension of

ajj = bj Upr,172 bj :

1 2 3 4 5
1 bibs Q Q Q
1 2 bab3b Q bab3ib
Ext(ai/B, ) = 2b3bs 2b3bs
3 b3bsbs babs
4 bsbs
5

Using this table it is easy to construct the inheritance hierarchy, by merging at each step the
couple of least extension. Hence, the first couples are (bj,b2),(b3,bs),(bg,bs); to get a
hierarchy it is not possible to retain simultaneously (b3,bs) and (bs,bs) therefore if there are no
external constraints on the clusters (for instance, constraints of geographical proximity) we
have to choose one of them randomly ; if we retain, for instance (b3,bs) the first couples to be
merged are finally (by,b2) and (b3,bs); therefore, we obtain the two first levels of the hierarchy
characterized by aj2 = by Uypr,1/2 b2 and a3s = b3 Upr,112 b2. Hence, it remains by to be merged
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with (b1,b2) or (b3,bs). It is then casy to see that a2y, (b1) = 5 x> + 5 x2 = = and 2%, ,(bs) = 3

) . .
xg 2 3 which give no solution such that
¥ x

i=1,4 '
Ext(a34/B,%) = {b3,b4,bs}, therefore a34s = a3q; hence, the next couple to be merged will be

2 1; therefore, aj24 = 25 whose extension is B. We have already seen that

(bs,(b3,bs)) which gives a third level represented by 2345 = a34; the last level merges (by,bp)
with (b3,b4,bs) and is represented by the full object Q8.

To summarize, we have finally obtained four levels whose representation and extension are

* given in table 2.

Level Representation Extension
[ | 212 = =13 ~ pely2=(1)3) (b1.b2)
2 azs=[y1=(1)2] ~ p;[yz=((%)1,(%) 2]~ pr ly2=(1)1] ~ pely2=(1)2] {b3,ba}
3 | 2345=[y1=(D2] ~ prly2=(1)2] {b3,b4,bs]
& |azms= Ty -3, Mg OL A20= 08 5
i=I,

Table 2

Using the fact that the height of each level is the cardinality of the extension of its associated
probabilistic assertion, it is then easy to build the inheritance hierarchy associated to the set B

of probabilist objects, represented in figure 12.

4 Q

%45

42

>
B B b3 By By

Figure 13 : Inheritance hierarchy on probabilist objects
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10.6. Induction by probabilist, possibilist and belief union

Notice that the same algorithm may be used with the probabilist, possibilist and belief union
defined respectively in §5 §6 §7 instead of the symbolic union defined in §9 which has been
used here. The advantage of the symbolic union (see §8.1) is that it defines the supremum of
the lattice associated to the symbolic order. The advantage of the probabilist, possibilist and
belief union is that they allow the use of theorems 1,2,3 ; in this case if the height of a level
defined by a3 =2} Ux @y is given by a; (a1 ux aj), we get in case of probabilist objects a‘ (a;
Upraz) = a3 (al)+a3 (ap) - a (a1 M praz) a (ay) + az(az) a3 (ap N p[ aj) ; it results that
the obtained hxerarchy will have no inversions (as it may be shown that a3 (a3z) 2 al (ay)) and

a3 (az) 2 a'2 (a2) and the more aj and a3 are "independent” (i.e. a; M pr a3 close to 0) the more
the height of a3 will tend to be high.

We say that we have a rule between two probabilistic- assertions aj and a3 at level (a},07)

denoted R : a3 (a}fz) ap when Ext(ay/B, o) < Ext(ay/B,o2) ; in other words, the rule R is

true if, when b is in the extension of aj at level ay, then, itis in the extension of a3 at level o ;

. . a . . e s .
when oij=0x=a this rule is denoted aj _, a2. By using this notation, it is easy to induce from

. . . . i I
the inheritance hierarchy of figure 6, by going bottom-up, the rule : a35 _{,2 ay4s ; it is also
possible to induce top-down the following rule : Q8 (1,_1)&) a12 v a345 which means that if b is
in the extension.of Q5 at level 1, it is also in the extension of ajp or as4s, at the level 1/2 ; in

1
the same way we get also az4s _/_)2 bs v a3s.

11. Generalization of symbeolic objects
11.1. Generalization of a éymbolic object

In AT and more specially in "Machine Learning” there are many classical ways to do
generalizations (see for instance Michalski, Carbonell and Mitchell 1983, 1986), we present
here only four of them :

a)  generalization by "dropping rule" : this consists of dropping an event in the description
of a symbolic object ; for instance a = [color = red, green] A [height = [0,15]] is
generalized by ag = [color = red, green, grey].

b) genéralization by dropping values in an event : for instance a = [color = red, green] is
generalized by ag = [color = red].



c¢)  Generalization by taxonomy :
If we consider that red, green and black are dark colors ag = [color = dark] generalizes a

= [color = blue, black].

d)  Generalization by changing contents in variables :
This may be applied to "structured objects" and more precisely to what we have called a
"horde" (see 3.3) ; for instance, if we have an instanciated horde defined on a couple of

human of the following kind : .

h(Tom, Jane) = [height (Tom) = high] A [height (Jane) = low] A [weight (Tom) = low]
whose extension is the couple (Tom, Jane) ; it may be generalized by :

h(v, Jane) = [height (v) = high] A [height (Jane) = low) A weight (v) = low] whose

extension is the set of couples (v, Jane) where v is a human.
11.2. Generalization in the case of several symbolic objects

We may consider at least the following two cases

i) Generalization by the symbolic union.
In 10.5 we have defined an algorithm which induces from several symbolic objects aj, ..., ap a

new one denoted b, such that b = U 4 ¢ a; which means that b is the conjunction of the events
‘ i

whose extension at level o contains the extension of the a; at the same level ; this definition
implies b 2 a; Vi, therefore b generalizes the a; at the o level.

ii) Generalization by probabilist, possibilist and belief union.
In this case A = {ay, ..., ag} is generalized by b = U y a; ; in the case of probabilist, possibilist
1

and belief objects the union insures that b 2 a; and therefore b is a generalization of the a;.

12. Fitting a set of symbolic objects

12.1. Fitting without decomposition

*
In this case we look for a fitting b* € ax of the aj £ A in order to get an extension of b* in dx

which contains the a; at the highest level ; in other words, we may look for b* = a: in such a
way that W(b) = Min p; b*(3;) be maximum, where p; = 1/card (Ext (b*/A, b*(a;))) which
1

means that the extension in A of b* at level b*(aj) must be as small as possible in order to avoid

the trivial solution b* = 154 which extension is .
X
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Many other kinds of criterion to optimize my be defined ; for instance :

Wi (b) = TI pib*(ai)
- W2 (b) =X pi b* (ai)
1
W3 (b) = T (b*(aj)?
1

The first two cases are equivalent. In the third one if b = [y = q] and a; = [y = qi), in the case
of probabilist objects we get W3 (b)= ¥ <q, g;>2 and so b* is the first factor of a kind of .
1

factorial analysis with the constraints for any i : Vve O;j, 0<qj (v) £ 1 and

S{(qi(v))2/v € Oi} =1 or Z{qj(v)/v & O}=1 if the q; are supposed to be probabilities. Hence,

in this case we avoid the trivial soluton without using the weights p;.

12.2. Fitting with a set of symbolic objects by a generalization of a fitting
decomposition

Given A = {ay, ..., ay} a set of symbolic objects, the "decomposition problem" consists of
looking for a "decomposition” B = {by, ..., by} of k symbolic objects (generally k is much
smaller than n) such that a generalization b of B "fit" as well as possible A. If the b; are modal
assertion of the following kind : bj = 4 [yj = tj] where t; is a mapping O; — [0,1], the
unknown are Vv € O; the t; (v) ; if Oj is large and in order to get an other kind of explanatory
power it may be useful to introduce modsls and to use symbolic objects of the following kind :
bi = 4x [yi =t (i, .)] where cj are the parameters which define the mapping t; and are the
unknown ; for instance in the case on probabilist assertions t; (cl ) ) may be a gaussian
probability density of parameters cj.

In this section we consider the three following gcnéralizau’ons of B:

* %
i) b* = Max b; (which means that b*(a) = Max b (a)
1 )]
sk
iii) b* = 2 pib (whcre pi 20, 2 pi = 1 and p;j is proportionnal to the size of the extension of
-3

Notice that in case i) and in case 11) for probabilist, possibilist and belief obJects b* is more
general then b (i.e. Va b¥(a) > b (a)) ; in case iii) b* is more general than p; b Let us study

in more detail these three cases.
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*
i) b* = m b P for instance, if each aj represents a species of mushrooms, each bp represents

a class Pp of species such that bp and Pp fit as well as possible ; this fit may be represented,
for instance, by a mapping Dj : &* x P(A) — R* such that, for instance :

Di1(b,Pg) = 2 {b*(a)/a € Py}
D2(b,Pp) = I1{b*(a)/a € Pp)
D3(b,Pg) = Z((b*(a))%/a € Py}
D4(b,P¢) = Min{b*(a)/a € Pp}

Notice that D and D7 are equivalent as b*(a) 2 0 Va but D7 is sometimes more practicable in
order to optimize it. The decomposition problem may be set in by the following way :
find B = (by....bx) and P = (Py, ..., Px) which maximizes the criterion W(B,P) = X D(b;, P
j=1k

* ¥
which is equivalent when D=D1, to W(B,P) = 2 {b*(a)las A} if Pj= {a/bj (a) 2 bi (a)} as in
this case D1(b;,P)) = Z{b*(a)/a = Pj}.
If D=D3, the optimization of W consists of finding k factorial axis which fit the best k classes
of a partition to be also found ; it i1s a kind of "typological factorial analysis" in the framework

of the Dynamical Clustering Method (see Diday, Simon (1977), Diday et al (1979)).
If D=D4 the optimization of W consists of finding B = (b, ..., by) such that in each class Pp
* E 3

the extension of b pat level @ =Min {b ? (a)/a € Pp) is as high as possible.

In order to avoid the trivial solution b* = 13 several kinds of constraints may be added, for
instance, by setting b*(a)=p; b’; (aj) where p; = 1/card Ext (b* / A, b*(aj)) as in 12.1 ; if b* 2
- Ax [vi = qi] several kinds of constraints on the g; may also avoid the trivial solution, for
instance 2{qj(v)/v e Oj} =1lor Z{qiz(v)/v £ O} =1, if moreover, we wish b* to be a

generalization of A we have to add the constraints b(w) = a(w) Vw & Q2.

In order to optimize such criteria, the following algorithm based on the "Dynamic Clustering

Method" may be used :
Starting step : a partition P(0) = (P(O), oo P(ko)) of A estimated by an expert or chosen at

random. ‘
Representation step : compute B(1) = {b(ll), cees b(kl )} such that D(bgl), Pj) = Max {D(b,

P}O) )/ b € 4 and b satisfies some given constraints.
L %
Assignement step : compute Pj(l) ={ae A/bj(l) (@2 bi(l) (a), j = 1).

By using alternatively these two process the criterion W defines a sequence uj = W(B®), p())

which increases at each step, until convergence.
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i) b* = . U ox b ; for instance, if b; = [y = t;] for i = 1,2 in the case of probabilist assertions

=1k
b=DbiUprbz=1[y=1t1 Upr t2] ; if aj= [y =r1i] we oet by deﬁnition b*(aj) = <t} Uprt2, 1i> =

<ty, Ti> + <t2, r1> <ty 1, Ti> = bl(al) + bz(al) b1 mp, b2(a.) this means that b*(a) will be
the highest if bl(ai) (tesp bz(ai)) is the highest and b2'(ai) (resp bl(ai)) is the lowest, as in this
case we get b*(aj) = l +0-0=1. Unhkc 1o the preceding case i), i m this case b*(aj) doesn't
take only account of b P (a) = Max b, (a) but also of the other values b (a) with j # 2 ; that is
why, the case i) may be conmdered as an "extreme" solution of this case ii).

In this case the decomposition problem may be set by the following way : find b € @ such that
the criterion W(b,A) = II{b¥*(a)/a € A}be maximized and E{H bij(a) / ac A} be minimized. In
1

order to optimize such a criteria, the following algorithm may be used :

Initialisation : start from b = U b( ) where the b( ) are estimated by an expert, or obtained
x—l,k

from the algorithm given in i) or chosen at random.

Decomposition at step n : find sequentially b(") .. b(“) which maximizes T1{b™*(a)/a e A}

and minimizes X {I'I b(n) (a)/acA}; setb®+l) = kl{k b(") and compute by the same way
(n+1) (n+1)

™D, .., b,

This process induces a sequence u, = W(b(M), A) which increases at each step until
convergence. Notice, that in order to avoid the trivial solution several kinds of constraints may
be added to the b;.

3

iii) b* = Z Di b where pj is proportional to the extension of b in A of b*, we may say that

b*(a) is high if bi (a) is high and the extension of bi in A is large.

. *
The decomposition problem may be set in the following way where D(b;,Py)=I1{ bi (a)/ae P;}
find b = (by, ..., by) and P = (Py, ..., Py) which maximizes the criterion :

W(B,P) = i D(bi, Pp).
(B,P) i=§f:, K Pi i Ei
In order to optimize W many algorithm inspired from the Dynamical Clustering Method may be
applied ; for instance, the following :

a) Start from (b(lo), b(}?)} < A and PO) = (P(lo), . P(S)) given by an expert or chosen at

©) card P(QO )
random and settle py” = card A
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b) Assignement step, by two possible ways :

) Py =(ac ADY @20 £=j)
ii)  P() is build by assigning at random to one of the cluster P(ll), oo P(kl) with probability
E 3
0
by(@ =pP by’ @)/ WBO, PO),
This second choice (see Celeux, Diebolt (1985) or Celeux et al (1989)) reduces the initial

position dependance.
c) Representation step, by the following way :
(1)
b’ =Atg Max S Py s b@/WBKD) where py ) =~ a
X

Those two steps are repeated iteratively while Up = W(B(),P(") increases until convergence.
Notice that in the special case where the assertions a € A may be assimilated to point of RP and
the b; to probability distribution defined on RP, this problem and algorithm enters in the
framework of the mixture decomposition of probability distribution problem by the maximum
likelihood approach in classical statistics and the EM family of algorithms (see Dempster et al
(1977),Everitt and Hand (1981), Celeux and Govaert (1992)) gives solution to it.

12.3. Induction by mixture decomposition in the case of probabilist objects

Let A = {aj,....an)} and Aj,...,Ak a partition of A.

In the case of probabilist objects theorem 2 shows that b*(A1 Upr A2) = b*(A1) + b*(A2) -
b*(A1 Upr A2). More generally by using the Poincarré formula we get :
b*(A1 Upr-. Upr A = S b*(AD - 5, b*(Aj Mpr A + ... + <D b* (A Apr ... Al) -

i=1,n i<j

From this there results the following proposition, where by definition b*(a/A) = b*(a Npr
A)/b¥(A), f(a) = b*(a/A1 Upr ... Upr Ap), fi(a) = b™(a/A;), fj_p(a) = b*(a/Aj Npr ... Ap),
pi = b"(A;)/b™ (A Upr --- An)s Pi.l = b*(A; Npr .. Ap)/ b*(A; CUpr --- An, '?pr a=afpr..a

? times.

Proposition :

f@) = Zpifi@ - 3 pij fij (Qpr &) - + (DK prk 1 x (Dpr2)
i<j
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Proof :

We have:
b*(a/A1 Upr --Ak) = b (@ Mpr (A1 Upr ... ADI/B® (A1 Upr .. Ak)

where, b*(a Mpr (A1 Upr ... AR)) =b"(a Mpr A1 Upr ... a My Ag) from the Poincarré formula it

results :

b*(a Mypr (Aq Cpr - Ap)) = Z b*(a Npr Aj) - Z_‘b*(?pr aNpr Aj Mpr Aj)
i i<j

+ (-1)k+1 b*(rjkxp, a Apr Al ... Opr AL

“Hence :

b™(a Mpr (A1 Upr . Aw) = 3 b°TAD b@/AD - T b"(Ai Mpr AD b*(0opr 2/Ai Mpr A

i<j

+ o+ (DR DAL Apr . Ap) b"(rl-{\.pr a/A1 Mpr ... Ak) .

From which we get:

b*(a/A] Upr .. A =3, b (Ai) b* (@A)

i b*(Al Upr ces Ak)

b (Ai Opr A . *
- b*(Cpr &/Ai Mpr Aj) b*(Opr a/A; Mpr A
Z b (As Upr ... Ak) (Qor 8/Ai Opr A B (Cpr 2/ »

Al

b"‘(rk\pr a/A1 Mpr ... AR

a3 DO(AOpr o A
i<j b*(Al Upr .es Ak)

Therefore

f(a) = T pi fita) - T pij fij (Dpr @) + .. + (DKl py £ _x (Mpra).
i i<j 2 k
In order to find the fj, p; and Aj, many algorithms inspired from the Dynamical Clustering

Method, may be built and have to be compared, for instance, the following :

Starting step : a partition Aj,...,Ax of A chosen at random or given by an expert.
Representation step : compute p; and fj such that

(pi.f) =A:rg Mak{ IT pifi(a)/pie [0,1),cje C}
ac A

where cj are the parameters which caracterizes f; among a set C. In the same way the p;__¢,

fi..0, ci..? are computed :
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(pi..2, fi...0) = Arg MaX{ IT pi.¢ fi..eCa)/pi.ee [0,1),ci.e € C}
ae AN Ap

Assignement step : A; = {affj(a) > fj(a)} i=1,...,.k or a is assigned at random to one of the
class Ay,...,Ax with probability pifi(a)/f(a) for i=1,....k.

Notice that in the representation, we may compute successively for each i..@ : fi_jp

which has to fit as well as possible _r)epr Aj... ,then b* by solving the equations
j=1,

fi...¢(a) = b*(a/Aj Mpr ... Ap) and finally p;_ ¢ knowing b* .

12.4. Decomposition of a generalisation by local fitting generalisation

In this section the problem is to decompose a generalisation b* of A = {ay, ..., a3} into k local
generalizations of A, denoted B = {by, ..., by} such that each b; "fits" as well as possible a
subset of A that it generalizes. Such generalization of A may be obtained for instance in the two

following ways where P = (Py, ..., Px) is a partition of A :

*
i) b*=Mla§ b; with bj = Max {a/a € P;}

fi)b*= U xb; withbj=Ux (a/a € Pj)

=

It results that in both cases, b* is a generalization of A as Vi= 1,k and a = P, b 2 bj 2 a. How
can we get the P; in order that each b; generalizes and fit as well as possible Pj ? We may use

the following criterion :

W(B,P) = ¥ D(bj, Pj) with B = (by, ..., by) € ak
1

| . Ext (b;/Pi, b; (2))
and D(b;,Pj) = X {pi(a) b;(a)/a € Pj, a £ bj, pi(a) = . .
Ext (bi/A, b, (a))

In order to get a local maxima of W we may use the Dynamic Clustering Method in the

following way :

Initialisation : start from P©) = {P(lo), P(I? )) a partition of A, estimated by an expert or

chosen at random.
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Representation step : compute B(1) = {b(ll), ees bg)} such that
Ext (6{"/P{,b{"@))
Ext (b$17A b))
Assignement step : compute PX1) = {P(ll), - P(kl)} such that PEI) = {a/pgl)(a) bgl)(a) P pg.l)(a)
b}‘)(a) i ).

D, PO) = Max (D(b, P{V)/b = @) and p{"(a) =

By using a]ternratively the assignement and representation step we define a sequence
Un = W(B®™,PM) which increases at each iteration until convergence. The partition P(N)
obtained at the convergence is an answer to the preceding question ; notice, that this algorithm
also gives at convergence BN) = {bEN), ey b(kN)] where the bEN) may be considered as "local

prototypes” of A.

12.5. A geometrical example

In this case, A = {ay, ..., ax} is a set of k probabilist assertions defined on 2 = R2 ; each a; is
associated to a point of the plane w; € Q1 = {wy, ..., wx} < R2 such that a; = [y = e-d(Wi.)]
where d is a dissimilarity measure and y is a mapping R2 — QPr where QPF is a set of
mappings q : O — [0,1] such that 0 < q(v) < 1 where O is a finite set of R2 chosen such that

card O be generally larger than card 21 =card A = k.

We associate to any point w € R2 a symbolic representation denoted w$ = [y = 8y] where 3,
is the Dirac mass (i.e. 8y(w) = 1 and 8y (v) = 0 if v # w). If w € O it results by definition that

aj(w) = <e-dWiv), §o,> = T (e-d(WiV), §,(v)/v € O] =e-d(Wi.W) ; hence, a; (w;) = 1.

More precisely, it is possible to define probabilist assertions associated to geometrical curves

(circles, straight lines etc...) by defining a more general dissimilarity also denoted d, such that

d(c,w) is the dissimilarity between a curve denoted ¢ and a point w € O ; if we settle b

= [y =e-d(c.)] we get b(w) = <e-d(C..), §,,> = ¢’ HEW) . hence, b measures the closeness

between a point and the curve ¢ associated to b ; we also have :

-d(c,), e-d(Wi,)> = 3, e-dvH+d(wiv)) ; hence b*(a;) will be high if
1

yo_1 1
b*(@) =350 <® card O

there are many points of O simultaneously close to the curve ¢ and to w; (see figure 14)
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(a) | (b)

Figure 14 : In (a) b*(a;) is lower than in (b) ; in other words wj is considered to be closer to ¢
in (b) than in (a).

If we denote b; = [y = q;] with g; = e-4(Ci.-) we have :
b1 Uprb2 =[y =q1 Uprqa] = [y = a1 +q2-q1 q2] = [y = e (1) + ed(2.) - e-(dle1.)+d(e2,))
therefore by Upr ba(w) = e-d(C1.W) 4+ g-d(c2:W) - ¢-(d(c1.w)+d(c2.W)) ; this means that by Upe ba(w) is

high if w is close to ¢y or (not exclusive) from c5.
b1 Mpr bz (w) = e-(d(c1.w)}+d(e2,%)) which means that by Mpr b (W) is high if w is similaneously

close to ¢y and ca.
*
We also have by definition by (b2) = <qy, q2> = c—a——rld——o— 5 e-(d{c1,v)+d(c2.v)) which means that
v

E S
by(b2) will be high if there are many v € O simultaneously close to ¢} and c2.

In this case a problem of fitting a set of symbolic objects A by maximizing a criterion without

decomposition may be set in the following way :
Find b = [y = ¢-d(¢..)] which maximizes : *

Wh)= T M@= —up5 T T cldevrdwiv)
ac A wieQy veO
carzi o) 3 edev) ¥ e-d(wj,v)
ve O wie

This means that b and is associated curve C, is a good solutdon when the more av & O is

"close” to the w; the more it is close to the curve c.
A problem of fitting A by a generalization of a decomposition may be set in the following way :

Find b = [y = e-9(¢..)] which maximizes :

W(B,P) = ka D(bj, Pj) where B = (b3, ..., by), P = (Py, ..., Px) is a partition and
J=1,
* .
D, Pp= X bi (a) ; therefore :
as Pj
¥
WB.P)= 3 2 b@
=Lk a¢ P;
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W(B,P)= %: ( Er%?)' )X T e(d(cjvHd(wi,v))
J= ’k Wie Q") ve O
where Q’l {we Qi/ay £ Pp} ; we have .
W(B,P) = ?1_1%6 ._%, . 3y edcv) T e-d(wi.v)
J=4, veO WiE S}!l
This means that B is a good solution if in each class Pg the more a v € O is close to the wj, the

more it is close to the curve cp associated to bp.

13. Symbolic objects representation by categories and fractals
13.1. Categorical representations

The category theory was introduced by Filenberg and Maclane (1945) in algebraic topology in
order to study geometric and algebraic interrelationships. The definition of a category (see for
instance, Hydeheard and Burstall (1988)) is the following :

Definition

A category is a graph (4, E, s, t) whose nodes & we call objects and whose edges E we call
arrows. Associated with each object a in 4, there is an arrow iz : a — a, the identity arrow on
a, and two pairs of arrows f: a — band g : b — ¢, there is an associated arrow g f : a — b, the
composition of f with g. The following equations must hold for all objects a, b, ¢ and arrows
f:a—bg:b—ocandh:c—d:

(hg)f=h(gf)

fig=f=ipf.
Examples of categories

a) Partial orders

It is then easy to show that a partial order is a category. For instance, if we consider the four
symbolic objects {a, b, c}, and the partial order a < b < ¢, a £ d, we have a category defined
by & ={a,b,c},E={fflasb=>f:a—>b);itis possible to represent this category by the

graph given in figure 15.

S I
J &

J

Figure 15
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b) Pyramids

A pyramid see Diday (1986), Bertrand Diday (1991) is a category where @ is the set of
individuals or classes of individuals associated to each mode of the pyramid and E =
{ffagcbe f:a— b).

¢) Lattice of complete symbolic objects

In the same way such a lattice (see § -) may be considered to be a category where & is the set
of complete objects associated to each node of the lattice and E= {f/a<b < f:a— b}.Itis
also possible to show that a pyramidtof symboiic objects see Brito Diday (1989) is in the same

way, also a category.
Definition of a functor
A functor F : A — B from category Bis a péir of functions :

a) F: Obj (A) (i.e. the set of objects of the category A) — Obj (B) F: a — F(a)
b) F: Arrow (A) — Arrow (B), F: (f : a = b) — F(f) : F(a) — F(b). Satisfying F(ia) = ir(a)

and F(g f) = F(g) F(f) whenever gf is defined.

Examples of functions :

Both a pyramid of complete symbolic objects (Brito, Diday (1989)) and its geometrical
representation in the plané, are categories. The mapping which associates to the algebraic
definition a pyramid of complete symbolic objects its geometrical representation is a function.
There is also a functor for relating the algebraic properties of a lattice of complete symbolic
objects and its geometrical representation (see Wille (1980), Duquesne (1986)).

13.2. Fractal representation

By using duality (see section 9.2) the objects defined on individuals at one level become the
individuals at the next level ; if this transformation has some regularity the sequence of dualities
defines a fractal. For instance, we may imagine that several distributions (birth weight, size etc.
of babies, for example) vary in the same way from local district to county and from county to
regions eic. ; in this case the first set of"symbolic assertion denoted & describes local district,

for instance, by : ldj = /i\pr [yi= q}] ; if we consider only the birth weight, in order to simplify,

we get Idj = [y = qj] where g;j is the disaribution of the birth weight-of the babies born in the j th
local district; hence, Idj is defined on €2, the set of babies born for instance, in 1992. If weight
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(w) is the weight of the baby w € Q, we have 1d; (w) = q; (weight (w)) ; (this comes from the

fact that if we set wS = [y =r1y] where ry, (weight (w)) = 1 and 1y, (t) = 0 if t # weight (w) we
get by definition of probabilistic objects :

1dj (W) = <q, ry> = 2 {q(v) rw (v) / v € O} = q(weight (w)) were O is the set of possible birth
weigths). Let Q be the set of probability distributions q : O — [0,1] ; and = {1d; /1dj = [y = qj],
gj € Q} the set of probabilist objects associated to a local district ; at a higher level, let be a*
the set of probabilist objects associated to departments, such that

*
a*={a*/a*:a2 20,1, y*:d 2 Qa*=[y*=q;1};
* *
for instance a; = [y*=q j] describes the j th department by the birth weight distribution

*
g; O — [0,1] of the local district contained in it. Hence, we get :

*® % %k
3 (par) = <q;, gi> =X { ¢; (V) gi(v)/ v € O}.
We may continue the process by defining regions of departments by a set of probabilistic

objects
a** - {a**7a** . a - [0’1]’ y** : a* — Q’ a** - [y** = q**]}

and so on. We get a prefractal of order 2 if there exists a mapping k : dpr — dpr such that
h(a) = a* and h(a*) = a** (which means that there is a mapping h; : Q — Q such that
hi1(q) = q* and hj(q*) = q**). If instead of representing only the babies birth weights, O
represents also this size (i.e. O = O1 x Oy where O1 and O are respectively the sets of possible
weights and size) figure 16 represents a prefractal of order 2.

Local district j departement k region

)

* *
Figure 16 : a prefactal of order 2 of probabilist objects aj = [y = qjl, a=[y*=qglanda p =

¥ N * ¥* ¥

[y**=q p ], where gj, g, q p Tepresents the probabilist distribution of birth weight and size
*
of babies, in a local district, department and region such that there exists hy : hij(q) = Q.

* %

&
and hl(qk) =q I

More generally, by setting ns = ==, .x, n times, we obtain a "symbolic fractal” when we have
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asequence up = a™ = {y [y?* =q?‘j where an* : a’:‘ — [0,1] and Q? = {q}, where

. . -1
g isamapping O — [0,1] associated to x ; );n* : af:’ » - Q;( , such that there exists a
mapping .
-1)» *
h: a(;‘ ) -~ a’; which satisfies : h(a(®-1)*) = aP* ; sometimes h may be decomposed in
" *
h = (i) such that Vn, Vi, by (" > ) ="

Let Fp, be the set of prefractals of order p, in other words Fp = (B = (w, b, ..., b 1*)/B & (Q,

Ay, ..o a(:”')/a h: ag‘“)‘ — @7, such that h(b(®1)*) = bo*].

It is then possible to define the extension of a prefractal of order p, denoted
Ap =(a, a*, ..., aP*) by

Ext (Ap/Fp-1) = {(B, Ap(B))/ B € Fp.1, Ap(B) = (a(w), a*(b), ..., aP*(b(®-1*))}
An extension of Ap at a level o is defined by
Ext(Ap / Fp, @) = C with C = {B e Fp.1/ Min {a(w), a*(b), ..., aP* (b@-1)*)} > ).

It is also possible to define probabilist, possibilist and belief union, intersection etc. between
%* %*

prefractals by setting : Aj *x A = (2] *x a2, ay *x 2, ..., aIf* *y ag" ).

There is a wide class of applications of symbolic fractals in all domains where there is a known
organisation of the individuals, classes of individuals, classes of classes and so on, when all
units are defined by symbolic objects related together by a mapping f ; for instance, when we
have an official organisation of geographical regions in official statistics, in order to study
pollution in the air, in forests, in the water or to detect variations of species of insects and
frequence of illnesses or when we have an official division of departments in a company, by
using the frequency of the words used at each level, in order to study the quality of the
division. In all these cases symbolic fractals constitutes the representation of an ideal situation

and so they give the possibility of detecting anomalies.

Example :

A region is divided into n departments which are divided themselves into m districts which may
be also divided and so on ; our aim is to give a geometrical fractal representation of statistical
informations by associating to each unit (for instance a district or a department) or a set of
squares which contains the distributions associated to this unit. In order to do so (see figure 16)
we have to combine two fractals : a geometrical one (the squares) and a statistical one : (the
probability distributions of birth weights, for instance). More formally, this combination may
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be rcprescntcd in the following way : at the first step : the ith district is represented in 3 = [y; =

qi] ~x [y2 = ti] which is a mapping Q = Q1 x Q3 — [0,1] where Q; is the set of babies born in
1992 and Q7 = R2, Oq is the set of possible weights, O2=R2 y1: Q1 > Q1 ={q/q : 01 —
[0,1] is a probability distribution of the birth weights} ; y2: Q2 — Q2= {g/q: O2 —» (0,1},
. q(v) = 1if v is on the geometrical figure (a square, for instance) represented in q} ; here, fy
Li, L) = Li.Lz.‘chce aj (wy, wa) = g; (weight (wy)).tj(w2) ; we may associated to aj, a
method denoted [method i] which says that the distribution g; must be represented in the
geometrical figure defined by t;.

At step n, we have ; ay = [yD* = q?*] A [yg‘ = t?*] A [method;] ; the sequence Uy = a* is

J
1
defined by the mappings h; and hp such that q(}1+ » _ hj (qnj;, ql;;, vees qr;;) and

ns nx . e . .
fln+1)* = ho (t;)» - t;c) Where hy associates to five distributions representing 5 districts, a

mean distribution which represents a department ; if a distribution is too far from this mean, we
say that there is an anomaly ; hy associates at the beginning to five squares, representing 5
districts, a-department represented by 5 squares of equal sizes and centered at points : (0,0),
(1,0), (0,1), (-1,0), (0,-1) ; at step 2, hp associates to 5 departments a region represented by 52
squares in such a way that each department is centered in (0,0), (2,0), (0,2), (-2,0), (O, -2), at
step p, hp associates to t(p' ) t(p"l) a figure of 5P squares composed by 5 times, 5P-1

squares each one centered in (0,0), (nP,0),(0,nP), (-nP,0),(0,-nP). At step p the method j
consists of representmg in the central square (i.e. of center (0,0)) of the 5P squares the

ditribution q ) which is the closest to the mean of the qg yie {1,...,5},1i#jand to order the

A
b

4 other distributions according to their similarity, in the other central squares (i.e. of center
(np,O), (O,HP), (-np,O), (Os'np))' -

In figure 17 we represent a region of 5 departments on the left in the ideal situation of a regular
fractal ; on the right, when some anomalies appear ; in this case the corresponding squares or 5P
squares are distributed from their center on their axis.

Notice that the method may be extended easily to the case where the number of districts,
departments, regions etc. are not equal ; it suffices to replace the number 5 by the number £ =
Max (card (districts), card (departments), card (regions), ...) and to omit at each level the

useless squares in a regular way.
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L] 000 e
Ol

Figure (a) Figure (b)

Figure 17 : 25 districts, 5 departments and 1 region represented in a) by an ideal fractal ; in by
with an anomaly of a district (top-left) and of department at the bottom.

13.3. Fractals and categories

There are several ways of making a link between fractals and categories ; a first way may
happen when at a given step, categories of units remain at the next step of duality the same
category . For instance, at the first level, a pyramid of villages of a omit is transformed in the
useless pyramid but of districts at the level of a department.

classe of village class of districts

Village a district

a) a district b)a department

Figure 18 : A first possible link between categories and fractals.

A second way may be described by a square of symbolic objects up = aP* =} [y?‘ = q‘i)*]

where qip* is a probability distribution of categories q’.p* = h; (qu'l)* ).
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Example : fractal decomposition of a sequence of letters.

We consider a large sequence of units where each unit is a letter taken from a finite set of letters
‘ - .
L, each q{’ is associated to intervals of the sequence (called windows) of size L and represents

the probability distribution of a type of category computed on a sequence of pj of such
windows. For instance, if

i) q2 is associated to windows of size L two,

ii) L= {A, C, G, T} (as in a sequence of DNA in the genoma)

iii) the sequence is AT CG CC AG GT CC CA CG TT and we consider only hierarchical
categories with p; = 3, we obtain the hierarchies Ha, Hp, He of figure 19, respectively
associated to the sequences of windows a) AT CG CC, b)AGGTCC, c)CACGTT;

for

EEREEE

AT CG CC Hp H,
Ha

Figure 19 : Hierarchies associated to three sequences of three windows of size 2.

i
N

instance, the first hierarchy Hy merges first CG and CC which have 1 difference (the letters G
and C) at level 1, then at level 2, AT is merged with CG U CC because there are two

differences between those two classes. Finally, q; represents the ditribution of categories

defined by Prob- (Ha) = and Prob (Hp) = Prob (He) = -2— Therefore in this way we get the

following probabilist event : a = y=ql=[y= Ha, % Hy, 3- Hc].

In order to obtain a fractal on a given sequence, it is possible for instance to start from a large
Bk

region represented by ap ; then dividing it into two or more parts in order 10 get departments
- * % * * % ’

represented by a, = a,, such that h : h(a;) = a, exists and repeat the process with

departments, districts and so on unnl anomalies appear (i.e. h doesn't exist) in some part ;

these parts new fractals may be bu:lt with other h,, and (or) by ommng some of the

=1, ec.
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14. Stages of a Symbolic Data Analysis

Roughly speaking, we may characterize a Symbolic Data Analysis by the following steps :

1) Start from a set of more or less complex individual objects .

2) Build classes from a clustering, a factorial analysis, a category (lattice, hierarchy, pyramid,

etc.).

3) Describe these classes in order to obtain metadata associated to each class ; these metadata
may be given directly by experts, thereby dropping steps 1 and 2.

4) Build for each class a symbolic object associated to these metadata (i.e. define fx, gx, Ux,
Mx, Cx) in order to be able for instance, to compute their extension.

5) Analyse, synthetise, classify, discriminate, organize by different methods of symbolic data
analysis the set of symbolic objects obtained at step 4).

6) Extract from step 5 metaknowledge (knowledge on knowledge) for instance rules relating
symbolic objects extrected from a category built in step 5.

15. An example of application in road transportation

In the French National Institute of Transportation (INRETS), D. Fleury, C. Fline and
J.F. Peytavin have designed "Scenarios of accidents" in order to improve the French road

network.
The scenarios are expressed by sentences which describe some characteristics of the user, the

kind of displacement of the vehicle, the scene, the moment, the place etc.

Example :

"Man between 30-50 years old, loosing the control of his vehicle (local user, experimented,
often drunk), accident happening during the day".

The scenarios are based on the experience of the experts, by working on the field and also by
using large data bases of accidents. Under the direction of D. Fleury (INRETS) and M. Gettler-
Summa (Paris 9 - Dauphine University), A. Regnier has applied several steps of a Symbolic
Data Analysis approach in order to improve, complete and organize the knowledge base of
scenarios given by the experts. In this work, each scenario is designed as a symbolic object

represented by a probabilist assertion.
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The following steps have been used :

a) Expressing the expert’s scenarios by probabilist assertions.

Example :

Scenario = [day={70% monday,30% sunday}] Ap [road condition={snow-covered,icy } ] Apr
[road signs = {60% step, 40% give way}]

b) Compuze the extensions of the probabilist assertions associated to each scenario.

Example :

A scenario is described by :

scen = [day = {70% monday, 30% sunday}] Apr [time = 7-3am]
An accident in the data base is defined by :

acc = [day = {monday}] A [hour = 8]
By applying the definition of probabilist objects we get

scen (acc)=(70x 1 +30x0+100x1)2=85%

If the experts decide that we have a prototype for a probabilist assertion a = i=/i n lyi = qil

when a(w) = % - X Max {(gj (v)/v e Oj}, we may say that acc is a prototype of scen ; as

i=1,n
L3 Max (g v e 0)="251% - 0.85 = a(w.

i=1,n

c) Improving the scenarios given by the experts.

The extension in the data base of some scenarios appears to be too large, other are too small ; in
the first case the experts have to add some events ; in the second case they have to drope some

of them.

d) Building new scenarios.

The study has concerned 579 accidents in a French department (Eure et Loir) ; from this
information 12 scenarios were created by the experts ; the union of the extension of the
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associated probabilist assertions covered 286 accidents ; hence we had to induce new

probabilist assertions from the 293 remaining accidents, in order to get a knowledge base of
scenarios whose extension covers as well as possible the 579 accidents of the data base. A K-
means clustering algorithm applied to the 293 accidents made it possible to builts 14 clusters
whose intension provided 14 probabilist assertions. Notice that also a pyramidal clustering
building at each step a probabilist assertion could also be done (see Diday et al (1992)).

e) Organisarion of the scenarios.

Steps a) b) c) d) has finally provided a knowledge base of 26 scenarios, each one represented
by a probabilist assertion whose extension covers 93.4% of the data base of accidents. In order
to get a synthetic organisation of this base a pyramid of symbolic objects have been summerized
by the experts. A piece of this pyramid is provided in figure x which corresponds to accidents

due to collision.

collision
no intersection intersection
speed local user 2 whesls Sic.’e.
/ \ /\ collision
overtaking slowing down ?t()z?acle

scenario 3 scenario8 scenario 7 scenario 1

Figure 20 : Organisation of scenarios by a pyramid of symbolic objects concerning accidents
due to collision.

f) Metaknowledge.

The organisation of the scenarios obtained at step e) has already provided knowledge on the
knowledge base of scenarios. Other kinds of metaknowledges may also be provided ; for
instance, the scenarios have been partitioned in two classes : the "strong" (or "prototypes") and
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the weak ; a scenario is considered to be "strong" when it has a large extension even if it is

defined by a large number of events; if not, it is called "weak". It turns out that the inital 12
scenarios provided by the experts were strong, which has validated their study.

Finally this study has confirmed, completed, organised the scenarios and provided a better
knowledge of the structure of the accidents in Eure et Loire. We are now studying the
robusmess of the results for the other French departments. The next step would be to study the -
existence of fractals associated to each scenario on geographical zones of growing size
(villages, districts, departments, region etc.), in order to detect anomalies.

16. Symbolic objects with a mixture of semantics
16.1. Definition of mixed symbolic objects

This kind of object may be written a = 4 a;j where aj may be a boolean, possibilist, probabilist

or belief object. There are several ways to define it ; in the first way, a = 4 a; is a mapping Q
— [0,1] such that a(w) = [] aj (w) where each a; (w) is computed according to the semantic
1

associated to xj ; to do so it must be supposed that wS is a boolean symbolic object taking a

single value with weight 1 for each variable yij.

The second way, closer to natural language considers sent(a) = /i\xi aj as a mapping from Q in
L = [T L; name (a) where each L is a set of words associated to the semantic xj and name (a)
1

is the name givén to a ; such that sent(a(w)) = I1 2; name (a) where aj(w) = £;. This kind of
1

object is illustrated by an example given in 16.3.

16.2. Monothetic, polythetic and prototypic aspects of a mixed symbolic object

By representing a class by a mixed symbolic object defined by a = 4 aj: Q — [0,1], where 3;
may be a boolean, possibilist, probabilist or belief object, we obtain at the same time a

description which is

i) monothetic at a given level @, in terms of conjunction of properties such that a(w) = true iff

Viaj(w)za;

if) polythetic, as the properties defined by a modal symbolic object expresses tendances or ideal
situations to be attained more or less by the individuals of the class ; hence, it has no sense to
say that they are sufficient or necessary conditions to be satisfied ;

iii) prototypic, by giving the possibility to compute individuals or symbolic objects which best
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satisfy the mixed symbolic object (see 15 and the following example).

Example :
We define a set of scenarios of accidents by the following kind of mixed symbolic objects :
- o ) _ 1.
scenj = Apr [yi= q'}] A Ppos [ye =qpl A fer [yx= qjk] ;

. o . _ _ j 3 L -
if we denote a1 = apr [yi = qj), 22 = 4 [y2 = Gp] and 23 = Acr [yi = q] We get
scenj (W) = aj (W) A a2 (W) A a3 (w) if aj (W) € [0,1] ; we may also define a sentence by the

following way :
sent(scen;(w)) = £1 23 £3 name (a) if £; is a word related to probability, £2 to possibility and

21 to belief. More precisely, if

~a=[place = 0.9 town, 0.1 suburbes] A [time = 1 pm, 0.3 am]pos

where the place is described by probabilist mappings and the time by possibilist mappings ;
then for w = [place =suburbes] A [time = pm] we get scen (w) = 0.1 x 1 =0.1 ; if we associate
the word £1 = "rare" to values of a probabilistic object apr such that apr (W) < 0.2, the word
25 = "possible" to the values taken by a possibilist object apos such that apes (W) > 0.9 and to
the object a, the phrase "citizen scenario”, we get sent(a(w)) = £1 name (y1) £2 name (y2) name

(a) = rare place possible time citizen scenario.
Finally, in this case a prototype may be defined by

Wpro = Apr [yi = arg max g MIA Ppos [yi = arg max qp W1 A per [yk = arg max q (v)]

Therefore in our example we get :

Wpro = [place = town] A [time =1 pm].



. 85
CONCLUSION

Considering a data base (Q,A") where any individual object we Q is described by d= A'CA,
we have built a knowledge base (W,A) where any symbolic object ae ACdy describes a subset
W'e W of Q ; these symbolic objects may be obtained from the meta-data given by a data
analysis of (Q,A") (for instance, from a symbolic interpretation of the axis of a factorial
analysis or from a symbolic description of clusters obtained by a classical clustering technic) ;
the set A of symbolic objects, may also be obtain directly from the knowledge of an expert (for
instance, from his description of a scenario of accident or of a species of mushrooms).

Having (W,A) we have given tools in order to be able to extract meta-knowledge from A, by
extending data analysis methods on symbolic objects. These tools depend on the backgrownd
knowledge of the domain of application ; we have defined several local theories by giving
axioms and operators coherent with boolean, probabilities, possibilities and belief
informations. Many kinds of developments are needed in the future, by improving the basic
choices given in this paper ; more precisely, operators of union Uy and intersection M x may
be redefined, the mappings fx and gx may be changed depending on the kind of the semantic
inherent to any curent application ; for instance, in the case of probabilist objects instead of
using the mean to compute ~pr by fpr we may use the product and instead of using the scalar
product to compute the fit between two probability distributions we may use many other
classical similarities such, for instance, Kullback, Kolmogorov etc. The advantage of the
choices that we have made is that they are coherent on symbolic objects with the axioms
defined by each theory on individuals objects ; for instance, theorem 2 shows that in case of
probabilites a* defined on Apr (the set of probabilist objects) satisfies properties which are
analogous to the classical axioms of Kolmogorov. In order to obtain the same coherence with
other choices of OPpr, fpr and gpr we have 1o solve functional equations (given by the
Kolmogorov axioms) and so, many research questions remain open, in this direction.

In practice it may happen that several semantics are used simultaneously (intensity together
with probability, and possibility, for instance), an important challenge is then, to find the best
way to define symbolic objects concerned by different semantics ; more precisely, how to
define ~xy (eg. fxy) in ex ~xy ey where ex and ey are two events representing two different
kinds of semantic (for instance when ey is a probabilist and ey is a possibilist event).

If Ax =Ux {g/qe AC Ay} is called x- set, then in the case of possibilities (x=pos) Apos is a
fuzzy set in the original sense given by Zadeh (1985) ; in this case Upos 1 stable but not M pog
; in case of probabilist objects Lpr and M pr are not stable. The advantage of belief objects is
that Upel and M pet are both stable. In defining new kind of operators we will have to try to
satisfy stability. Several computer programs of symbolic data analysis have been already
implemented independently, see for instance in this issue : histograms of symbolic objects (De
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Carvalho 1991), symbolic pyramidal clustering (P. Brito). Decision tree on symbolic objects

(C. Jacq), extracting rules from a special kind of symbolic objects (M. Sebag). More generally
in the framework of the Esprit II program MLT ("Machine learning toolbox™) an interface
between Makey (Lebbe, Vignes (1990)) aﬁd SICLA (Celeux et al 1989) an interactive system
of classification has been implemented and work on X-Windows under Hypernews.

The theory of Symbolic Data Analysis (SDA) that we have developped in this paper may be
useful in the framework of vast domains of application as Data Base Systems, Pattern

recognition, Image processing, Learmning Machine etc...

In Data Base Systems, SDA gives tools to define new kind of units (probabilist, belief and

possibilist objects, for instance) and new kinds of queries, expressed by a modal assertion ay,
*

when the extension is composed by individual objects or by dual modal assertion a, when the

extension is computed on a set of assertions Ax C8x.

In Pattern recognition, SDA allows the representation and the analysis of complex patterns ; in
"Image Processing" SDA may be used for instance, in order to compare several sensors, for
data fusion, or for image understanding by classification of high level objects (house, trees,

roads, ...) represented by symbolic objects.

In Machine Leamning, SDA makes it possible to extend learning algorithms (where input are
usually individual objects) to symbolic objects ; moreover, SDA may also intreduce powerful
methods (as factorial analysis), among many others, widely used in data analysis but neglected
in Machine i.caming.

Unlike most work carried out in Artificial Intelligence, symbolic data analysis constitutes a
"critique of pure reasoning” by giving less importance to the reasoning and more importance to
the statistical study of knowledge bases, considered as a set of "symbolic objects”. A wide
field of research is opened by extending classical statistics to statistics of intensions and more
specially by extending problems, methods and algorithms of data analysis to symbolic objects.
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APPENDIX

Proof of the theorems 1 and 2.

Before giving the proof of both theorems let us remark that
a*(ax) =fx ({gx (qi, (Y« qu / qu € Q?x])]i) ; where, by definition d is the set of im
J

assertions associated to x and Qiax = {q?/ae =a lyi= qf] € Ay )= Q;( the setof any \UJ,
. 1
,M x, cx combination of elements ql € Qj associated to x. Hence, we have a* (dy) =fx ({gx

(@i U x(@ / a & QI We set 1a = Alyi = 10]] where 1o, (v) = 1 Vv & Oj. We denote
j

qf‘ ={Uxqg/lqe Q?x}, where Ay C dy ande‘x is defined as in §9 by QiAx = (gi/a = A

1

[yi=qi] € Ax} which means that Qle is the set of the mappings g; which define the ith event
[yi=qi] of any a e Ajx.
We extend the operator U y on R by setting VujeR, Uy nj=uyU, vy ... U < Up, Where

j=1.n
in the case of possibilities we have u3 U p uz = Max(uj,u2) and in the case of probabilities

uy U pruz2 —uj+uz- ugu.

We denoﬁe IiA(v) the set of values taken by q; (v) when g; varies in Qf\x so IA(v) = {qi(v) /gi e

QiAx}. See figure 13.Notice that as Oj, Ia (v) is not necessarily countable.

Figure 21 : When q; varies in Q;“, qi(v) = ug is repeated each time that it exists a different g

€ QiAx such that gj(v) =qi(v)=up.

Lemma 1

If for any sequence{up} of rational numbers dense in I?(v), the sequence
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Un= U up converges towards the same limit U, then qf‘ (v) =1L
f=1n

Proof

As the mappings q;j take their values in [0,1], If‘ (v) is bounded ; it is possible to decompose

‘2]; » we retain from these intervals only the

one which contains at least one element of If‘(v) ; we associate to each of these intervals a

its boundaries by a partition of intervals of lenght

rational number r and we denote Ill.( (v) the interval of length ‘2% which contains it ; given k and

v we denote Ii(v) the set of these numbers r. At this step Oj is supposed to be a bounded

subset of R, it is possible to decompose the intervals defined by its boundaries, also by a

partition of lenght j)];; we associate to each of these intervals which contains at least one

element of Oj, a rationnal number from this interval. The set of these numbers is denoted Oi
k . k .

and the elements of O; are denoted vy, V2,ees Vi with ny = card q (€ 2K as some intervals

may contains no elements of O;).
Toeachrp e Ii(vg) we associate a set of mappings q € Q? denoted Ci( Q(VE) and constructed

as follows : we consider the set Ii = Ii (vi) x..x Ii (vnk) and we suppose that vp €

{v1,...,vnk} ; we associate to any r = (rl,...,rnk) 1= Ii where rp is fixed a unique qr € QiA if it

exists, such that for any j € {1,..., nx} , gr (vj) belongs to the interval Ii;(Vj) ; the set of these
. k .

gr is denoted C]r(E(vg) ; so we have : Cre(vg) = {qr € Qf‘ fr=(r1,....,rny) € Ii, rp fixed, qr

k . . .
(vi) e 1rj (vj), Gr unique, for each r, when it exists}.

We set qi( (v)y= Uy Uy,u
k
e IK(V) ge CH(v)

which means that q%c (v) is the x-union of all the values u belonging to Ii(v) repeated for each

u by the number of time that there exists q € Clli ).

. . k k e . . .
Since, given k, the sets IA (v) and Cu (v) are finite, it is possible to enumerate in a finite

sequence, denoted ulg(, theue Ii (v), including their Clé (v) repetition ; thus, we may define a
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set SK of these up such that Sk= {ulf2 = Il.f\(") /2=1. T card (CE (v)}.
u e Ik(v)
Hence, we get qf vy= Uy ﬁk = Uy ulz, where ng= X card Cﬁ (v).
upe Sy £=1,ny '
ue I}f(v)

When k— +oo, Sk becomes dense in I;A‘ (v) since for anyu & I? (v), 3 ulz, 1= Ii (v) € Sksuch

that

Iug -ul, s L Therefore, when k—ee the sequence {ug} becomes a sequence of rational

2k’

numbers dense in If‘ (v) and if the assumption of the lemma is satisfied, qli( (v) converges
towards U. Notice that if If\ (v) and Oj are not finite, when k—oo, card I‘; (v) = + e0 and card
CE(V) —3 4oo; if ]‘? (v) is finite and it exists j such that Oj is infinite, then Ii remains finite for
any k and card Cﬁ (v) = +o0 when k — +o0 ; hence, in all these cases ny — +eo when k —
+oo, The only case where nk remains finite when k— +eo appears when If‘ (v) is finite and Oy

is also finite for any j : in this case it is easy to see that qf (v) will converge always towards the

same finite union :

U= Uy U xu where Ciu (v) is the finite set of q € Qf\ such that q(v) = u.

A .
ve i) ge Ciw
As k — +oo, we have Iﬁ(v) — If‘ (v), since by construction Yu & I‘;‘ (v) there exists ui € I‘;

(v) such that luy-u | £ J;and therefore for any u e I? (v) there exists a sequence {uk} with ug

2
€ Ii (v) such that uy — 1 when k — oo .

When k — 400, we may see in a similar way that Of——) O;j since by the construction of Oli(,

Vve 05,3 vy e Olf,suchthatlvk-vls :21; .

By the construction of Ii (vj), foranyqe C;] (v)suchthatv € Qj,us I;A‘ (vYand g (v) =,
there exists for any vj € Og(, an element rj Ii (vi) such that q (vj) € If_ ; also by the
° 3
construction of Cl;(v) there exists gk € CE (v) suchthatgi (vp € I: ; hence we get for any v;
) 1

€ Ogc Igk (vi) - q(vpl < '1; as by construction the length of the interval Irk_ is '211'" ; hence when
1

2
k — 400 O}‘——) Oj and g — q, therefore Ct ) — C}l V).

Finally, as k —+es, we have qf (v) 5 U, I5 () > 12 v), O ) - €} (v), it follows that
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at the limit of the equality q,‘}( )= U Ux u, weget:
k
ue IX(V) qe Cy(v)

U= U, Ur u= Uy (dWige Qt)=q] (v). =

A u
ue I'(v) qeC;(v)

We recall that 1p; and If\ are the mapping O; — [0,1] such that Vv e Oj, 10; (v) = 1 and
IAv) = {qi(v)/gi € Qf*); we have also q* = {Ux a/q € Q).

Lemma 2.

If Vuy,upe [0,1], u; YU xup2Max (ug, up),then V Ax € a5 and Vv € Oj, we have qf‘

() =Max (wue I} ()} and ¢?x = 1o;.

Proof
First we show that any sequence Up= U  up where {uy} is a sequence of rational numbers
=1,n
dense in I‘i‘\, converges ; this follows from the fact that Vn Up= Uj.1 U x up 2 Up-1, since
u Uy v2>Max (u,v), and so the sequence {Uy} is increasing, as it is majored by U =
Max{u/u e I?(v)}. Second, the sequence Uy converges towards U, for, if u < U was its limit
we would gbtain a contradiction because, since the sequence {uy]} is dense in If‘ (v), it would
exist a k such that u<ug < 1 and Uy = Ug.1 U x ug 2 ukx > u, hence the sequence {Up}
would never converge towards u, as it is increasing. Therefore, by applying Lemma 1, we get
qf‘ (v) = U ; hence, in the case where If‘ (v) = [0,1] we have U=1 and so Vv € O, q? (v) =
. A
1, therefore q = 10i'
Hence, we have proved the theorem in the case where Oj is a bounded set of IR. Let Oj =

Jan.bnl, where {ag) and {by]} are two sequences of R such that, when n — +oe, ag — —o and

bp — +eo. We may say that the theorem remains true with Oj =] - e, + oo [ since when n —
+00 V a,be R there exists Nj, N2 enough large such that the theorem remains true on Jang,

bny, [with agy < a and by, > b for (n1,n2) such that ny > Ny and n2 > Nj.

Proof of theorem 1 (possibilist objects)

iya*@py =1, a*(p) =0.



91

It is easy to see that the assumptions of the lemma 2 are satisfied as

a) V u,ve[0,1],u Upyv =Max (u,v) by definition

B Vue [0,1],1 Upu=1=Max(l,u)=1;0 U0=Max (0,0)=0; therefore V;, ?1 =

10; - Therefore a*(ap) = fp({2p(gi.10p}i) = Max({ sup (Min(gi(v), 10;(v}))})) = Max ((sup
ve O ve Q4

(gi(v))}) = Max({1};) as qi(O;) = 1. This implies the existence of ve Oj such that gj(v) = 1.

Therefore we get finally a*(ap) = 1. By definition we have a*(¢) = fp({gp(qi.¢i) } i) with

gp(qi,01) —sug (Min(gj(v),9i(v))) = sug (¢,(v))—0 as ¢j(v) =0V ve O;. Therefore a*(¢) =
ve ve '

Max({0}j) = 0.

ii) a"(A1Y p Az) = Max(a"(A1),2“(A2)) - By definition we have : A)U p Az = alyi=q{*1 U
c 1

A . A i A
o wit g el deg)s
Since the assumptions of the lemma 2 are satisfies, qf‘ exists. Hence, we may write :

a (A1U A2) = fp({gp(qi.q; AU, q; A2)};) where gp(qi,q] AU, qu) = Sug (Min {gi(v),

P

Max(q] Aley), 'qu(v))]) Since Min{a,Max(b,c)} = Max{Min(a,b), Min(a,c)}, we have :
gp(ang U p q; A2) = sup (Max {Min{qi(v),q; Aevy), Min{gi(v),q; A2(yv)}). But since Sup

ve Oj veQ;
(Max{a(v),b(v)}) = Max ( Sug (a(v)), Sug (b(v))}, we get: gp(qx,q ‘quAz) Max {Sug
(Min{qi(v),q; A, Sug Min{qi(v).q; A2(v)})). Hence, as Max ({Max({a;j,bj) } —MaX(Max
ve O

({ai}), Max ({b;))) and a"(A7 U A2)=Max ((gp(aing! uq.A?})', by definition, we get :
a (A1UpA2) = Max {Max Sup (Mm{qx(v),q A1(v)}), Max Sup (Min(qi(v),q, A2(v))) and

i ve O; i vegQ;

finally : a*(A; U p A2) = Max(a *(A1).a"(AR)) .
Proof of Theorem 2 (probabilist objects).
It is easy to see that the assumptions of lemma 2 are satisfied in case of probabilist union as :

a)V ujuze 10,1[, we have : uy Uprup=ur+uz2-ujuz2uy +uz(l-uj)=uj, andu +

u; (1-u2) 2 uy, so that u; Uy up 2 Max (ug, u2).
b)Vue[0,1],1Uxu=1+u-u=1;

c)0Ux0=0.
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Hence it follows from this lemma that qapf =1p,and VAx C ay, q?" exists.
1

Now we may prove theorem 2 :

i) a*(a,;,) =1;2%¢)=0.

From q2P7 = 1o, we get : a*(&p0) = for({Epe(Gin10p)0)

were gpr(qi, 10y = Z {qi(v) 1g; (v) / ve O} = Z {qi(v) / ve O} = L.
Therefore : a*(@pr) = fpr({1)) =1.

By definition we have a*(9) = fpr({gpr(qi,$0) }i), where V ve Oj, $i(v) =0;
hence, gpr(qi,9i) = Z{qi(v)$i(v) / ve Oj} = 0 ; therefore a*(p) = Mean ({0};) = 0.

i) V A1, Az C 8x a%(A1U pr Ag) = a*(Ay)+a"(A2) - 2*(A1 Mpr Ag) .

As g; ?‘2 exists, we may write, by definition :
a*(A1U pr A2) = fprl{£pr @i, U pr 6 D)i) with
gpr(@i YU pr g = < i, g1 + g2 - g N e g2 >
=< q;,qf‘1 >+< qi,qf‘2 >-< q;,q?l M pr q‘A2 >
As fpris the mean, it results that :
a*(A1Y pr Ag) =Mean({< qi,ql.Al >+< qi,q;Ai2 >-< qi,qf’1 Nopr inz} )

= Mean ({< gi,q/"! >} + Mean ({q;,q/*2)) - Mean({< qiq™ M pr g*2})
=a"(A]) +a"(Ap) - a"(A1 Npr Ag).
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