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Abstract

In this paper, we concentrate on non rigid motion analysis and synthesis in 3D
images using modal dynamics.

Using the solid state physics formulation, we develop the aha]ytic expression of
eigenmodes of the multidimensional elastically-deformable model exposed in our pre-
vious publications. These analytic expressions are calculated for various topologies
(plane, cylinder, torus).

Thanks to these expressions, non rigid motion of a 3D deformable object can be
approximated in modal space in real time, by superimposing a few number of low-
frequency modes that can be computed in a straightforward manner, whatever the size
of the structure. ’

The power of the approach for analyzing 3D non rigid motion is demonstrated by a
set of experimental results on a 3D time sequence of the human heart. Then the heart
is animated between the diastole and the systole.

Real-time animation capturing a high level of details is shown on a 3D magnetic
resonance head data.

Finally, the contribution of this paper is making modal analysis an efficient and
easy-to-use tool for non rigid motion analysis and animation.

Calcul analytique des modes propres de vibration : application a
I’analyse de mouvement et a ’animation dans les images
tridimensionnelles

Résumé :

Nous présentons la dynamique modale pour l’analyse de mouvement ou l’animation
d’objets d’objets déformables dans les images 3D. En utilisant le formalisme de la
physique du solide, nous développons l’ezpression analytique des modes propres de vi-
bration du modéle élastique ezposé dans nos publications antérieures. Ces expressions
sont calculées pour différentes topologies (plane, cylindrique, torique). Grice d ces
expressions, le mouvement non rigide d’un objet déformable tridimensionnel peut étre
approzimé en temps réel dans ’espace modale, en superposant gquelques modes de basse
fréquence qui sont calculés directement, indépendammant de la taille de la structure.
La puissance de notre approche pour analyser le mouvement non rigide 3D est démon-
tré par des résultats expérimentaur sur une séquence d’images 3D du coeur humain.
Ce coeur est ensuite animé entre la diastole et la systole. Nous présentons également
un ezemple temps réel d’animation sur un bloc de données 3D de téte. Enfin, la con-
tribution de cet article est de faire de ’analyse modale un outil puissant et efficace pour
l’analyse du mouvement non rigide et pour l’animation.



1 Modal AnalysisA: a summary

In the deformable model described in our previous publications [5, 6, 7, 8], we have exposed
the modal analysis of a macroscopic clastic model, governed by a second-order ordinary

differential matrix equation of order N ! :
MU +CU + KU = F, (1)
We have shown that if we solve the generalized eigenproblem :
K¢ =uw?M¢ (2)

then we can choose a transformation matrix ® whose entries are the eigenvectors, and perform
a change of basis U = ®U. The new modal basis simultaneously diagonalizes M and K,
and, provided that C is also diagonal in this basis, the problem is simplified, and we solve

the decoupled equations :
;(t) + Etig(t) + wig(t) = E(t) i=1,...,N. (3)
The decomposition of nodal displacements U in the modal space is then :
N
Ut) =00 = 3" a(t)ss (4)
i=1

But most of the time only a small number p of low-frequency modes are superimposed, as

they can quite accurately recover the motion :

U~ a0 e N (5)

in this paper K and M refer to stiffness and mass constants (scalars) or matrices, k being the wave
vector



2 Motivations for deriving the analytic expression of
eigenmodes

Even as a precalculation, solving the generalized cigenproblem is costly as soon as we consider
surfaces. For instance, if we consider a 100 x 100 patch, the value of N is 10000, that is to
say, a generalized eigenproblem, where the size of the matrices is 10000 x 10000, has to be
solved. 1t is then clear that the analytic expression of the modes would noticeably reduce
the precalculations. Moreover, we want a better physical understanding of the modes. Are
they related to Fourier analysis and wave propagation? This leads us to consider the solid
states physics theory, where similar type of problems are encountered at a microscopic level
(ionic vibrations of a crystal lattice [1, 3, 4]). This is the reason why in the next sections we

will often refer to the nodes as ions or atoms.
3 The harmonic approximation

The classical theory of vibration of a crystal lattice is based on two assumptions :

1. The mean equilibrium position of each ion is a “Bravais” lattice. This allows the

definition of R as the mean position of the ion about which the ion oscillates.

2. The typical excursion of each ion from its equilibrium position are small compared with
the interionic spacing. This leads to the harmonic approzimation, from which precise

quantitative results can be extracted.

More precisely, let 7(R) the present position of the ion whose mean position is R :

r(R) = R+ u(R)



The total potential encrgy of the crystal is the sum of the contributions of all distinct pairs :

DS~ o(R= R+ w(R) = w(R)) (6)

s
2 R

V = l Z v(r(R) —r(R)) =

2
If all the u(R) — u(R') are small, we expand the potential energy V about its equilibrium

value, using the three dimensional form of Taylor theorem :

V=" ZU(R + Z R)—u(R))Vv(R-R)+ Z( u(R)—u(R)).V)*v(R—R)+0(u*)
27 4 o
(7)
The coefficient of u(R) in the linear term is 3" 5 V(R — R'). This is minus the force exerted
on the atom R by all other atoms, when each is placed at its equilibrium position. It must
therefore vanish, since there is no net force on any atom in equilibrium.
Thus, the first nonvanishing correction to the equilibrium potential energy is given by

the quadratic term :

V = Veq + Vharm

where :

Vha.rm — lll Z(up(R) _ u“(Rl))v#V(R — R')(UV(R) — UV(Rl))

O%u(r
V(1) = Br((?r)
wOTy

PV =T,Y,2

The harmonic potential energy is usually written in the more general form :

yherm = Zuu Dyy(R — R)u, (R (8)

RR’
JTR %



4 Energy based formulation of the motion

In this section we derive the motion of a three dimensional lattice under external load F' by
an energy-based approach. This formulation is an alternative to the force-based formulation

as described in {6].
4.1 Governing equations

In the case of free vibrations, the motion of the point defined by R lattice in the u direction

(= z,y or z) is defined by :

avharm

Considering external load F' and damping force, this expression is modified to :

harm

where V"™ has the general expression defined by equation (8). This equation yields :

Mi,(R) + Cuu(R) + > Dy(R— R)uy(R') = Fu(R)

R
In a three-order matrix form :
Mu(R) + Cu(R) + Z D(R - R u(R') = F(R) (9)
RI

Note that, for the whole lattice, N matrix equations of the above type are to be solved.
Each one of these differential equations is linear, but nodal displacements are coupled in

space positions (the nodes) and directions (the axes).

4.2 Properties

The D matrices have the following properties :

6



e Symmetry 1: D, (R— R) =D, (R — R). This follows from the general definition
of D, (R — R') as a second derivative of the interaction potential, because of the

independence of order of differentiation.

e Symmetry 2: D, (R— R') = D, (R — R), since the harmonic potential is unchanged

by replacement u(R) — —u(—R).

e Symmetry 3: VYu,v 3 g D, (R) = 0. If every ion is given the same displacement, then

the entire crystal will simply be translated without internal distortion (Vh*™ = ).

4.3 Unification

Let us concentrate now on the connection between the above formulation and the force-based
formulation described in our previous publications. We can rewrite the N equations (9) as

one 3N order matrix equation :
MU+CU+DU=F (10)

where matrice D is constituted by submatrices whose properties are described in section.4.2.

A stiffness matrice K as defined in [6] is a particular matrix D, where the submatrices
D(R — R') are all 3 x 3 diagonal matrices. These submatrices obey the properties listed in
the last section. This is why the equations of motion that we have used in [6] can be seen
in the harmonic approximation framework, with the further-assumption : a nodal motion in
the u direction exerts a force on the node’s neighbors in the same p direction.

One of the other advantages of the energy-based formulation with the harmonic approxi-
mation is that it avoids the introduction of equilibrium forces in the force-based formulation
of [6]. Note that no “springs” are introduced in the modelling. Of course the forces can

7



sometimes be seen as spring-like forces, but it is-more desirable to see the elasticity of the

model in an energetic point of view.
5 Free vibrations of a one-dimensional lattice

Consider a set of ions distributed along a line at points seperated by a distance a, so that
the lattice vectors are R = na for n € {1,..., N}. If only neighboring ions interact, so we

may take the harmonic potential energy to have the form :

N

Vharm — ;K 1[u(na) — u((n + 1)&)]2

n=

where K = v”(a), v(x) being the interaction energy of two ions a distance = along the line.

The free vibrations of the lattice are governed by :

Mii(na) = —g:—j(’:z; = K(u((n + 1)a) + u((n — 1)a) — 2u(na)) (11)

These are precisely the equations that would be obeyed if each ion were connected to its
neighbors by perfect massless springs of stiffness K (and equilibrium length a, although the
equations are in fact independent of the equilibrium length of the spring). The lattice can

be either a closed or an open chain.

5.1 Closed chain

In this section we concentrate on a closed chain of N elements. The periodicity of the chain

is expressed by the Born-von Karman condition :
ul[(n + N)a] = u(na) (12)
We seek solutions to equation (11) of the form :

u(na,t) = Aeltkna-vt) . (13)

8



The Born-von Karman condition requires that :

echNa =]

that is :

2pm
kpa = N peEZ

Note that if £ is changed by 27/a, the displacement u(na) defined by (13) is unaffected,
Consequently, there are just NV values of & that yield distinct solutions. We take them to he

values between —/a and n/a, thus deﬁning the first Brillouin Zone.

peFBZ={-5+1,.... %} N even

(14)
peFBZ ={-N-' .. N1} N odd
Substituting (13) into (11) leads to the dispersion equation :
4K k
w? = 5 sinz(-;) (15)
K k
w = 2\/M-|sin( 2a)[ (16)

As the values of £ are discrete,_ the vibration states of the crystal are discretized. This is
the concept of phonons in solid state physics. The representation of w as a function of k is
known as the dispersion curve (see figure 1).

An arbitrary motion of the chain can be expressed by the linear combination of the former

solutions :

u(na, ) = 3 Apelbrnament (17)
pEFBZ

The motion is fully determined by specifying N initial positions and N initial velocities of

the ions.



Figure 1: Dispersion curve of a closed chain (N=6)

In mathematical terms, this equation can be seen as the Fourier expansion of the dis-

placement in the basis of the complex exponential functions of period N. In a physics point

of view, the solutions describes waves propagating along the chain with phase velocity w/k

and group velocity dw/0k.

5.2 Open chain

In the case of an open chain

conditions :

the calculations are slightly different because of the boundary

= K(u((n+ 1)a) + u((n — 1)a) — 2u(na)) (18)
= K(u(2a) - u(a)) ' (19)
= K(u((N - 1)a) — u(Na)) (20)

10



We search for time dependencies of the form e™**, which yiclds the same dispersion cquation

than in the case of a closed chain :

1K ka
2 (2
= si 21
w o S0 ( 5 ) (21)
For these more complex equations, we seek specific solutions of a more general form :
u(na,t) = e %t Ae*"e 4 Betna) (22)

Substituting this equation into boundary equations, and remembering the dispersion equa-

tion, we obtain :

(23)
B = Ae'*e (24)

For the exponentials to take all possible independent values, we must ensure 0 < kNa < ,
le. :

pe{0,...,N -1}
The specific solutions are now modified to :

ka

u(na,t) = Ae~wtei cos(kna — 2)

(25)

An arbitrary motion of the chain can be expressed by the linear combination of the former

solutions :
N-d . ‘kpa k a
una,t) = 3 Ao T cos(kyna - 2%) (20
p=0

11



Figure 2: Dispersion curve of an open chain (N=6)

6 Nonlinear waves in discrete media

When k is small compared with 7/a (i.e., when the wavelength is large compared with the

interparticle spacing), w is linear in & :

K
w = a\/M|k| (27)

This is the type of behavior we are accustomed to in the case of light waves and ordinary
sound waves. If w is linear in k, then the group velocity is the same as the phase velocity
(equal to ¢ = a\/ﬁ), and both are independent of frequency. Note that if we approximate
finite differences by derivatives :

u((n + 1)a) — u(na) =~ ad¥(na)

u((n — 1)a) — u(na) ~ a¥((n — 1)a)

u((n + 1)a) - u(na) + u((n ~ 1)a) - u(na) ~ 025

12



in equation (11), we end up with a wave equation of velocity ¢ :

Ou 1 (921_1 b —a\/K
dr2 2 o2 Wi WM

One of the characteristic features of waves in discrete media, however, is that the nonlinearity
ceases to hold at wavelengths short enough to be comparable with the interparticle spacing.
In the present case w falls below ck as k increases, and the group velocity drops to zero when

|k| reaches 7/a.
7 Connection with the theory of modal analysis

We shall remember that equation (17) holds for the free vibrations of the chain. For a
governing equation of type (1), the time dependency of the solution is generally not harmonic,

and the solution must be modified into :

u(na,t) = Y dp(t)etrm (28)
pEFBZ
for a closed chain and :
N-1 k.a
u(na,t) = Y @,(t) cos(kpna — --; ) (29)
p=0

for an open chain (we have dropped the term ¢'3 which is constant for a given mode p).
The analogy between equation (28) and the modal superposition equation (4) is straight-

forward provided that we make the modes and the modal amplitudes real numbers.

7.1 Eigenvalues and eigenvectors of a closed chain

The eigenvalues wf, are defined by the dispersion equation :

4K . T
wl = Y3 sm2(l-1)v) (30)

13



Note that if N is odd, wi = 0 is the only simple eigenvalue, all others are double. If N is
even, w2 = 0 and w'fv/z = 4K /M are simple eigenvalues, all others being double.
For simple eigenvalues, the associated eigenvector is the real part of the complex mode

in equation (28) :

2pT 2pTn 2pwN ]T

@, = [cos N GOS cos

For double eigenvalues, a set of two orthogonal eigenvectors (that we will call cosine and sine

modes) can be chosen as :

2pm 2pmn 2pw N
@p = [cos N CO8 o8 Ty 17

2pm . 2pmn . 2pmN
¢p = [sin St sin 7

7.2 Eigenvalues and eigenvectors of an open chain

The eigenvalues wg are defined by the dispersion equation :

s 4K pT

w sin (2N)

PT M (31)

Note that all eigenvalues are simple. The eigenvectors have the following expression :

pr(2n —1) pr(2N — 1)

¢p = [cos(=-), ..., cos( SN )y ..., cos( oN )]

7.3 Stationary waves

Consider equation (28). The total displacement appears to be the superposition of terms
ﬁp(t)eik”na

In this expression, the time dependency and the space dependency are independent (this is
also the case for equation (29)). This characterizes a stationary wave. There is no propaga-

14



tion (sce figure 3). Modal analysis corresponds lo the decomposition of the displacement in

a basis of stalionary waves.

Figure 3: A stationary and a progressive sine wave

8 Dynamical matrix

In this section we expose another method for mode computation. This method has the
advantage of solving N eigenproblems of 3 x 3 matrices instead of one eigenproblem of

3.V x 3N matrix. Consider the NV matrix equations of free vibration of the 3D lattice :
Mi(R)+ Y D(R— R)u(R')=0 (32)
RI

As in the one-dimensional cases we seek solutions to the equations of motion in the form of
simple plane waves :

u(R,t) = ¢ gilk-R-wt) (33)

Here € is a vector, to be determined, that describes the direction in which the ions move. It
is known as the polarization vector of the normal mode.

We need a boundary condition, and we simply use the Born-von Karman condition,
requiring that u(R + N;a;) = u(R) for each of the three primitive vectors a;, where the N,

15



are integers satisfying N = N;N,Nj3. This restricts the allowed wave vectors £ to those of

the form :

where the b; are reciprocal lattice vectors satisfying b;a; = 2w6;;. Again, there are only N
values of k that yield nonequivalent modes. If we substitute equation (33) into (32), we get

the 3 order eigenproblem :

D(k)e = Mwe (34)

Here D(k), known as the dynamical matrix, is given by :

— z D(R)e—ik.R
R

Using the properties described in section 4.2 :

ZD )R + e*R _ 9] = 3" D(R)[cos(k.R) — 2]

R
In other terms :
D(k) = -2 D(R)sin?(" - 35
(k) = 23 D(R)sin*(") (33)
D(k) is an even function of &, and a real symmetric matrix. Its eigenvectors can be normal-

ized to :

€s€r = Oy 5,8 =1,2,3. (36)

Evidently the three normal modes eith wave vector k will have polarization vectors ¢,(k)
and frequencies w(k) given by :

() = 0

16



where A((k),s = 1,2,3 are the cigenvalues of D(k). There are three dispersion curves,
and wg(k) vanish linearly in & for small &, i.e. low-frequency waves are elastic, as in the
one-dimensional case.

Let us consider the particular case of stiffness matrices defined in [7]. As outlined before,

submatrices D(I2) are disgonal in this model. In a 2D case, we have :
D(R) = (37)

for a closed structure. Substituting D(R) in equation (35) yields :

4K sin*(*}) 0
D(k) = (38)
0 4K sin®(% )
In other terms, in the model described in our previous publications, D(k) is already a diagonal

matriz. [ts eigenvalues are its diagonal terms, and the basis vectors are its eigenvectors. The

modes are axis-dependent, and described by equation (33).

9 3D Analysis

In this section we consider surface meshes as described in our previous publications (an
“inside” node of these meshes has exactly four neighboring nodes).

The 3D generalization of the analytic expressions of the modes is straightforward, pro-
vided that some topological properties are outlined. In the following subsections, we denote
kpy = (kp, ky) the wave vector and R = (nq,n’a’) the position vector. The patch of nodes

has a size N x N'.

17



9.1 Torus topology

The torus has the simplest topological propertics. There is no boundary, and all the points

are topologically equivalent. The Fourier expansion of the displacement is :

u(ﬁ, t) = Z Ap,p,ei(lz,,‘,,,.ﬁ_wp‘p,,) (39)
p,pE€EFBZ
with :
2pm , 2p'w
and :
!
Wpp = Lljél'((f"in2 1;\7; + sin? I])\/T:)

This last equation expresses the eigenvalues. The eigenvectors are :

2pmn 2p'nn/ T
¢p’p,=[...,COS("N‘ + N,—),]

As shown by the dispersion equation, the dimension of the eigenspaces can be equal to
four (changing p to —p and/or p' to —p' leaves the eigenvalue wy, unchanged). A set of

orthogonal eigenvectors can be chosen as :

2pTtn 2p'wn' T
¢p,p/=[...,cos(---N + i )se-d
. 2pmn 2p'wn’
Gpp =1[...,sin (N + ----N-,-—), )T

with p and p' € FBZ.
9.2 Plane topology

The parameters describing a plane topology are submitted to open boundary conditions.

The Fourier expansion of the displacement is therefore :

s s ; kya . kyd
uw(R,t)= Y Appe ™r+'tcos(kyna — ) cos(kyn'a’ — -7

=0 2 2

) (40)

18



with :

p p'm
kya = N kya = Y
and :
4K , ., pm o P
Wow = 1y (sin® on T sin? QN')

The eigenvalues are all simple. The eigenvectors have the following expression :

(Gn-1)  PTOR 1) g

pT
Gpp =[...,cO8 oN ont v

9.3 Cylinder topology

The Fourier expansion of the displacement is :

] N_l ] k a 1
uw(R,t)= Y Apye™rtcos(kyna — ;- )tk e
p’Gp;'(;iZ
with :
pT 2p'm
k‘pa = N kp/al 'N,/
and :
4K, . 5 pm . 2P'7T
Wy = 4 (sin o TSN N’)
For simple eigenvalues :
2n -1 2p'wn’
¢,,,p/=[...,cos-p7r-( --)cos P )T

2N N’

If the eigenvalue is double, a set of orthogonal eigenvectors is :

pm(2n — 1) 2p'mn’

Gpp = [-.-,cCO8 oN cos - N J*
pr(2n—1) . 2p'nn’

bpp =1 ..,co8" " By L atEE 1

19



10 Motion analysis

10.1 Modal approximation

Applications of modal analysis in computer vision have been described in various papers [11,
6]. Once the mode shapes are computed, the equations of motion can be expressed in modal
space where their expression is simple, and the nonrigid motion can be approximated by a
reduced number of parameters, the modal amplitudes. The accuracy of the approximation
is controlled thanks to the number of modal amplitudes.

Figure 4 demontrates the power of modal approximation. On the left, the left ventricle
is tracked from the diastole (shown as a mesh) to the systole, via our method. The number
of nodes is 100 x 40 = 4000. On the right, we have superimposed 20 x 3 low frequency
modes to recover the systole. The factor of compression is then (4000 x 3)/(20 x 3) = 200.
Globally, once the modes are precomputed using the analytic expressions derived in the
previous sections, only 20 x 3 = 60 scalars, the modal amplitudes, contain the information
of deformation from the diastole to the systole. Note that the result of the superposition. has
roughly the same shape that the original diastole, illustrating the smoothing of the motion.

The superposition can be even closer to the real result if we increase the number of modes.

10.2 A diagnosis tool?

Medical imaging appears to be an important field for the application of modes. For instance,
for purposes of heart diseases diagnosis, decomposing the heart’s motion in the modal basis
can reveal certain anomalies in terms of modes, since, during its motion, an anormal heart
is expected to have radically different vibration modes than a normal heart. An animation
of the ventricle from diastole to systole is shown in figure 5.

20



Figure 4: Left : segmented diastole (mesh), tracked to the systole. Right : modal approxi-

mation of the motion ; the factor of compression is 200

11 Modes for computer graphics

Mode shapes can be efficiently used in computer graphics as well. Pentland and his colleagues
have shown the ability of the modes to synthetize various types of deformations {10, 12].
Using modal dynamics, one can deform a 3D object M into M with the i-th mode ¢,

1

using the 3N order vector equation :
M =M+ a¢;

Moreover, if we make the amplitude a time-dependent, we can animate the object through
one or several modes. Making the time dependency periodic efficiently simulates the vibration

of the object around its initial shape.

M(t) = M + (asinvt)¢;

1

21



Figure 3: Animating the left ventricle between diastole (top) and systole (bottom, right) by

superimposing 60 vibration modes

22



Such an animation is synthetized in figures 8 and 9. In this figure, a 3D magnetic
resonance (MR) image of the human head is segmented thanks to our mesh-spring model

(see figures 6 and 7). The result is animated thanks to modal dynamics. Note that these

Figure 6: Segmenting the 3D MR head by our model

animations are real time whatever the size of the structure (here 159 x 70 = 11130 nodes)
since we make use of an analytic expression of mode shapés. Note that several modes can
be superimposed in order to synthetize the desirable shape. For a complex animation, one

can choose several suitable modes :

M) = M+ 3 (),

23



Figure 7: Result of the segmentation
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Figure 8 Animating the human head (top, front view) by adding an x-directional mode of

sine amplitude
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Figure 9: Animating the human head (top, side view) by adding an y-directional mode of

sine amplitude
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12 Conclusion

We have presented modal dynamics from a new point of view : lhe analytic expression of
etgenmodes. Borrowing the solid state physics formulation, we have seen that the harmonic
approximation is a sound framework for deriving the equations of motion of our elastically-
deformable model.

Then we have developed the analytic expressions of the vibration modes in 2D and 3D,
allowing real time computations, and we have shown the relationship between modal analysis,
Fourier analysis, and wave propagation.

In motion analysis, we have shown the power of modal approximation for a compact
description, smoothing and animation of a complex deformation. In computer graphics,
modes can be used in the same way, and a real human head (originally magnetic resonance

data) is animated.
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