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A Time Domain Derivation of the Kirchhoff
Migration as the Gradient of a Data Misfit Function

Les Images Migrées par Kirchhoff sont le Gradient
d’une Fonction d’Erreur sur les Données

Guy Chavent *!
May 17, 1993

Résumé

Nous explicitons une approximation WK BJ de ’équation des ondes dans le domaine
temps, telle que le gradient du critére d’erreur des moindres carrés redonne les formules clas-
siques de migration de Kirchhoff, & un coefficient multiplicatif positif prés. Comme retombées
de cette présentation élémentaire de Kirchhoff, nous obtenons le filtrage optimal i effectuer
sur les données, et les coefficients a utiliser pour qu’une section migrée par Kirchhoff soit le
plus proche possible d’une section inversée. Nous proposons un algorithme itératif de migra-
tion de Kirchhoff coopératives, qui illustre les possibilités ouvertes par cette approche de la
migration de Kirchhoff comme gradient d’un critére d’erreur.

Abstract

We explicit a forward time domain W K BJ approximation of the wave equation such that
the gradient of the associated data misfit function yields the classical Kirchhoff migration
formula, up to a positive migration weight. As a by product of this elementary derivation, we
find the optimal prefiltering of the data, and a set of optimal migration weights such that the
corresponding Kirchhoff migrated sections are as close as possible to inverted sections. We
propose a cooperative iterated Kirchhoff migration algorithm which illustrate the possibilities
opened by this gradient approach to Kirchhoff migration.
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Introduction

Relatively soon after the development of numerical simulation of the wave equation, it
was recognized by Lailly (1983) that the corresponding wave equation migrations beared a
strong ressemblance with the gradient of the data misfit functional he was used to compute :
the adjoint equation of the control theory was nothing but the back propagation of the
residual, and both the gradient and the migrated section were obtained by (slightly different)
correllation of the forward and backward propagated fields. This recognition was the basis of
the saying “migration is the first step of inversion”, which is now widely accepted, and opened
the way to new usages of the wave equation migration, in particular in iterative migration
algorithm, which could then be understood as minimization algorithms.

Surprisingly, nothing similar happened with the - much more widely used - Kirchhoff
migration. The reason may be that the Kirchhoff migration has been developped, since the
dawn of Geophysics, as an attempt to solve an integral equation relating the diffracted field
at a point interior to the earth to the diffracted field at the surface of the earth, and hence
to the data. We mention in the references a few papers in this line we have been looking
at, but they represent only an infinitesimal part of the geophysical literature on this subject.
Approximately at the same time where Lailly linked the wave equation migration to the
gradient of the data misfit function, Beylkin (1984, 1985) recognized the strong ties that the
Kirchhoff migration had with the inversion of a generalized Radon transform. This allowed a
precise mathematical analysis of the resolution capacity of the Kirchhoff migration, but did
not give any hint on wether or not Kirchhoff migration was related to the gradient of some
data misfit function.

It is this gap which we try to fill in this paper. In order to do this, we have discussed
with specialists of the Kirchhoff migration in order to establish the discrete formula which
where actually coded in their Kirchhoff migration codes. Then using these formula as a
starting point, we have solved an “inverse inverse” problem, i.e. we have searched for the
discrete forward model such that the gradient of the associated data misfit functional coincides
with the Kirchhoff formula. The resulting forward model is described in paragraph 3 : not
surprisingly it includes the W ' BJ approximation to the solution of linearized wave equations
with point sources located at the seismic source (incident wave field) and at the scattering
points (scattered wave field).

Once this forward model and the corresponding data misfit function J are established, we
define in paragraph 4 a migrated image as being any descent direction for J at reflectivity
r = 0. Hence a migrated image can be obtained by multiplying ~VJ(0) by a positive definite
weight matrix (specific of the skills and tastes of the designer of the migration algorithm).
Then investigating the relation with the jinversion approach, which consists in minimizing J,
leads to the conclusion that the best (but unaffordable...) weight matrix for the migration
would be the pseudo-inverse of the Hessian of J (in which case the migrated and inverted
reflectivities would coincide).

In paragraphs 5 and 6, we calculate the gradient of the data misfit function J with
respect to the reflectivity vector r, and show that, for a proper choice of the (diagonal)
weight matrix, the migration formula introduced in paragraph 4 coincide with well-known
Kirchhoff migration formula, like the ones of Docherty (1991), Keho and Beydoun (1988) and
Bleistein (1987), provided a proper filtering of the data is chosen.

Then we take advantage, in paragraph 7, of the degree of freedom we have in the choice
of the weight matrix, and determine the best diagonal matrix which approximate the pseudo-




inverse of the Hessian of J : using these weights in the migration formula will restore “at
best” the amplitude of the migrated reflectors, and bring migration as close as possible to
inversion.

We conclude in paragraph 8 by giving an example of application of the fact that the
Kirchhoff migration is related to the gradient of the misfit function : we construct a cooper-
ative Kirchhoff migration algorithm, aimed at enhancing the coherency panels by removing
the incoherence caused by lack of illumination and/or edge effects, as suggested by Ehinger
(1992) for the case of full wave-equation migration.

Setting of the problem

The reflectivity of the earth is represented by a family of scattering points M located at
the nodes of a rectangular grid (see figure 1). We denote by M the collection of the nodes M
of the grid. Given a background velocity, we want to migrate the common shot gather data
d recorded at a collection G of geophones G for a shot at point source S (see figure 1).

Let us denote by :

n=1/v (1)

the slowness associated to the given smooth background velocity v. The incident field
ur(z,t) generated by the source in the smooth medium satisfies :

%u
nz-a—t.;{ - Aur = f(t)é(z ~ z5), (2)
where :
f(t)  is the band-limited source function (3)

The scattered field ug(z,t) corresponding to a slowness perturbation én satisfies :

8%ug 26n 0%ug
2 _ - 2 LONO0 UL
EYP Aug e 5a (4)
When 67 corresponds to a family of point scatterers as in our case, it is of the form :
26n
n = Z rMbé(z — zp) (5)
MeM

so that our scattered field ug is given by :

2 0%ug %y

= —n? L
' - Aug = -n Z ™™ 55 0(z - zpm), (6)
MeM
where :
rym = reflectivity of point scatterer M. (7



Equations (2) and (6) (plus adequate initial and boundary conditions) determine the
scattered field ug which is recorded at the geophones G.

G={®} M= {0}
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Figure 1. The geometry of the problem.

The forward W' BJ map

We describe in this paragraph the approximation of (2) and (6) which have to be used
if one wants that the gradient of the corresponding data misfit function corresponds (up to
positive weights) to a Kirchhoff migration. )

Given the background slowness n, one first calculate (by ray tracing or finite difference
solution of the eikonal equation for example) :

For every grid point M and every geophone G :

7';?4 = travel time from source § to M
r{ = travel time from M to H( not G!) (8)
3G —

= emergence angle at H( not G!) of the ray coming from M
npr = slowness at point M.

For every geophone G
ATC = travel time from geophone G (9)
to the point H of the free surface located just above G.

These quantities will be considered as fixed in all the sequel. Then the forward map ¢t¢

associates, to any reflectivity section r = (ra, M € M) a “true amplitude” synthetic section
ct® = (c2(t),Ge G,0<t<T) :

¢ta o cta - ¢tar (10)




which is defined as follows :
o the incident field uy, solution of (2), is approximated, at any point M € M, using the
W K BJ approximation :

ur(M,t) = A3 S(t - T3y) (11)

where :
Sty = f(1) in3-D
{ S(t)(‘/2) =f(t) m2-D (12)

the describes the shape of the wavelet signal radiated by the source which propagates
in the smooth medium, and :

A3y is the WK BJ attenuation factor for the propagation from § to M. (13)

Notice that when the slowness n is constant, then (11) yields the exact solution to (2)
in 3-D, and a solution which is asymptotically exact for large ¢ in 2-D.

We shall suppose in the sequel that :

(14)

S is three times continuously derivable on R, with S(¢)=0fort <0
and for t > Tg, where Ts > 0 is duration of the source.

o the scattered field ug, solution of (6), is approximated, at the point H of the free surface
just above the geophone G, by the same WK BJ approximation :

9%
us(H,t) = — Z A,G,n%,,rM—at—zt(M,t - rﬁ) (15)_
MeM

e the pressure field c{2() at geophone G is then given, using the fact that, when the
scattering points M are far enough from the geophone, the scattered field ug given by
(15) is a superposition of (almost) plane waves, and that ug is zero on the free surface
just above G, by (see the Appendix) :

Gaus

at
(the upperscript ta stands for “true amplitude”, emphasizing the fact that this synthetic
try to imitate the true amplitude data).

Putting together (11), (15) and (16), we see that :

c®(t) = —2cos 5 AT (H,1) (16)

at each geophone G € G, at each time t € [0,T] : 17
(1) = 2818 Tprem SOt ~ 7 — 75) A3 rar AS; cos 66, 17)

With the notations :



ol = iy + 75 = travel time from $ - M — H (18)
AilG = 2A716 cos Olct",/lf,, A%"?w

the WK BJ forward rﬁap can be rewritten

@ ir=(ra, M €M) — ¢ = (cB(t),GEG,0<t<T)

defined by (19)
a s S,G

(1) = Tpem SO - %) An

Error function, descent imaging principle, and inversion

Suppose now that we are given a true amplitude shot-gather section d'* = (d¥%(t),G €
G,0 <t <T) which we want to migrate. In order to compare this section with the synthetic
section ¢'® = ¢.r defined by (19), we perform on both sections a preliminary treatment. We
define at all geophones G :

dg(t) = We(t)h + d2(t), cc(t) = Wal(t)h + c£(t) (20)
where :
Wa(t) = amplitude correction factor (for the compensation of
the geometrical speading : Wg(t) = t1/2 for (21)
2 — Ddata, or Wg(t) = t! for 3 — D data)
h = misfit filter (for a partial deconvolution of the data for example).
We shall call :
d=(dg,GE€G), c¢=(cg,GE€QG) (22)

the data and the synthetics after this preliminary treatment, and :

$:r—c¢ (23)

the forward map obtained by composing the WK BJ map (19) with the preliminary
treatment (20).

A natural way to judge the ability of any reflectivity section r = (ras, M € M) to explain
the shot gather section d is to evaluate the least square error function :

1 1 T
)= ler—diP=35 5 [ lea®) - da(t) [ dt (24)
2 2 0
GeG
The smaller J, the better r !
The error function J allows two formulate two approaches (of increasing difficulty) to the
problem of the interpretation of the data d :
¢ The imaging approach. The objective here is to find images (m = mps, M € M) in the
offset-depth domain which satisfy the :




Definition 1 Descent imaging principle
m = (mp, M € M) is a migrated image of the section d = (dg(t),G € G,0 <t <T)
iff :

J(0 + Am) < J(0) for A small enough or equivalently iff (25)

<m,VJ(0)>m <0 (26)

The motivation for this definition is clear : if m satisfies (25), this means that Am
generate a synthetic ¢ which contain events which will substract partially, in (24), from
d in order to decrease J : this means that the reflectors in m are located at the right
place to generate some of the events of d ; but there is no guarantee concerning the
amplitudes (absolute and relative) of the events in m.

Of course, this imaging principle is quite weak, and there are an infinity of migrated
sections m of a given time section d which satisfy (25) or (26) !

Definition 2 Migration algorithm :

A migration algorithm defines a way of associating, to any time section d, a depth
section m (the migrated section) satisfying (25) or (26).

But all the m which satisfy (26) are clearly of the form :

m = —HMVJ(0) (27)

where :

HM = symetric positive definite matrix (28)

From (27) we see that a large class of migration algorithms is obtained, once a forward
map -and henceJ- has been chosen, by computing —VJ(0) and applying a given positive
definite matrix HM :

Definition 3 The migration operator M a ssociated to the forward map ¢ and the sy-
metric posttive definite migration-weight matric HM 1is :

M:d—-m=-HMVJ(0)
where (29)
J(r)y=3ll¢r-d|?

We shall see in paragraph 4 how to compute VJ(0) and discuss the possible choices for
the migration weight matrix H M.

The inversion approach. The objective here is of course to find a reflectivity section #
which minimizes J :




Definition 4 Inversion principle
7 = (fpm, M € M) is an inverted image of the section d = (dg(t),G € G,0 <t < T)

iff :

J(#) < J(r) foranyr (30)

An inverted image 7 is a solution of the normal equation :

oTof = ¢7d. (31)
i.e.
HJ# = -V J(0) (32)
where :
HJ=¢T¢ = Hessian of J a3
-VJ(0) = ¢Td = Gradient of J at r = 0. (33)

Usually, HJ is not invertible, as not all the points of the grid are illuminated, so
that the inversion problem has still many solutions - but which differ mainly outside
the illumination zone (usually, the # with minimum-norm is selected). The actual
minimization of J can be performed by a gradient algorithm :

Definition 5 A gradient inversion algorithm is of the form :

T k
F= len;o r (34)
where r* is defined by :
=0, =k gEOJ(r¥) (35)
where HO, H',..., H¥,... are symetric positive definite matrices specific of the algo-

rithm.

Relations between the imaging and inversion approaches :

i) from (34) we see that :

rl = ~HO9J(0) (36)

i.e. using (29) that :
r! = Md 37
where M is the migration operator with the weights H© (37)

which is the well-known fact that “migration is the first step of inversion”

8




ii) more interestingly, comparing the normal equation (32) for the inverted image # and
the formula (29) for the migrated image m, we see that if we choose as migration

weight matrix :

HM = HJ' = pseudo-inverse of HJ (38)

then the migrated section m satisfy :

m = minimum norm inverted image (39)

(this choice amounts to perform one Newton step for the minimization of J start-
ing from the initial guess » = 0). This remark gives us a guideline for the choice
of the migration weight matrix HM : the better the migration weight matrix HM
approaches the pseudo inverse HJ! of the Hessian of J, the closer the migrated
section m will be from the minimum norm solution #, i.e. the closer the migration
operator will approach the minimum norm inversion operator.

The gradient of the WI{BJ error function J

We suppose from now on that the observation time T, the diffracting array M, and the
geophone array G are chosen such that :

T > Mazyemceci{ta } + Ts (40)

where Ts is the duration of the propagating wavelet S(t) (14). This will ensure that we
have at each geophone G a complete information on the waves diffracted by each point M.
Differentiating J(r) defined by (24) with respect to r yields :

T
67 =Y [ (eolt) - do(t)bes() at (41)
GeG7°
If we define :
e = d -~ ¢ = residual section = part 49
of the data which is not explained by the reflectivity r (42)
and use the definition (19) (20) of ¢g, formula (41) rewrites as :
T
61=-3% % ASCoru / ec()Wa(t)h + SOt - 55) dt. (43)
GeG MeM 0
Picking up the coefficient of 6757 in this formula yields 8J/9rp(7) = (VJI(r))ps ¢
T
(-VIrIm = 3 Ayf / ec()Wa(t)h + SOt — %) dt (44)
GeG 0
When r = 0, then ¢ = 0 and the residual e coincides with the data d, so that :
T
VIO = S 4S8 /0 da(t)Wa(t)h + SOt - r5C) dt. (45)

GeG



But using (40) we can extend the integral to (—oc, +o0) and use convolution notations :

[-VIO)m = S Ay (Wadg) * h+ SO(r3%) (46)
GeG

which can be rewritten as :

VIO = S A3 Eg(ra°) (47)
GeG
where :
Eg = hx(Wgdg) * §©) = b« (Wih +d%) + SO, (48)

Using the relation (12) between the propagating wavelet S(t) and the source function f(t),
we can rewrite (48) as :

(s) 1 (3-D)
_ (2) 2 ta —
EG_(f *h*[WGh*dG) y 8 {1/2 (2—D) (49)
We shall call Eg the migration-filtered data, by opposition to dg = Wgh * di¢ which we
called the misfit-filtered data.
When the weights Wg(t) vary slowly with respect to the signal d'%, one can approximate

Eqg(t) by :

Eg = Wk xhx SO « di2 (50)

or equivalently :

1 (3-D)

— W2 (2) , gtal® . _
EG—-WGh*h*f *dG ,8—{1/2 (2—D)

(51)

Looking at the formula (47) for the gradient, we see that its right-hand side has the
same structure as the Kirchhoff migration algorithm : the gradient of J at M is obtained by
migrating at M, with a proper attenuation Ai}a , the migration filtered data Eg recorded at
each geophone G at a time equal from the travel time : source S — scatterer M — geophone
G, and by stacking all these quantities at each point M. However, in the current usage of

Kirchhoff migration, the true amplitude data are filtered according to :

_wk K, _]1 (3-D)
Eg=Wgg" *dg ,s—{1/2 (2- D) (52)
where :
g% = Kirchhoff filter used to partially deconvolve the data (“spiking”) 53
W& = Kirchhoff amplitude correction factor. (53)

One sees that the Eg given by (51) (gradient approach) and (52) (Kirchhoff migration)
will coincide as soon as :

wE (1) = Wo(1)? (54)

10



g = h+hsf@ (55)

Equation (54) suggests that the amplitude correction W§ () to be used when preparing
data for the Kirchhoff migration should be t? (for 3-D data) or t (for 2-D data).

Concerning the preliminary filtering of the data, (55) suggests to use a filter ¢¥ related to
the source function f. In the current practice of Kirchhoff migration g’ is chosen such that it
performs a “spiking deconvolution” of the signal generated by reflectors. In order to explicit
how this can be achieved by a proper choice of h, we first compute the shape of the signal
generated in our model by a plane wave reflector : as we have seen in (11), §(t) gives the shape
of the incident signal arriving on the reflector ; by the method of images, the reflected signal
(i.e. the sum of all diffracted signals coming from all the slowness perturbations modelizing
the reflector) has the same shape S(t) ; hence the signal recorded at a given geophone G near
the free surface has a shape S(1)(2), i.e. , using (12) :

dg(t)y~ > a; f(t) with s = { 1/2 8 _ gg- (56)

reflectors j
Let us now choose h such that it performs a “spiking deconvolution” of d‘c‘;‘m : from (56)
this implies that :
hx fO+9) = g (57)

where :

0g = band-limited Dirac function. (58)

Then the corresponding migration filter g¥ is given by :

0K =hxhs fO =p0-2 4 6 (59)
so that :

gK *f(2a) = 68 * h(l—’) * f(z’) = 63 * 63 (60)

which shows that ¢* corresponds also to a (less demanding) spiking deconvolution for
(d)0.
In conclusion, we see that when the data d have been generated by reflectors, chosing

an h which performs a deconvolution of d'c‘;(l) is equivalent to closing g¥ which performs

a deconvolution of dg(s). This allows to replace for the determination of Eg, formula (51)
(which would require the knowledge of the source function f) by formula (52) (where g¥ can

be determined approximately from the data themselves).

A family of Kirchhoff migration operators

We can now apply the definition (29) of a migration to the case where the forward map ¢
is defined by (20) - (23). Using formula (47) (49) for ~VJ(0) and restricting us to the case of
diagonal migration weight matrices HM = diag(W My, M € M), we obtain a whole family
of Kirchhoff migration operators :

11



Definition 8 A Kirchhoff migration operators is the mapping

M :d=(do(t),G € G,0 <t <T) —m = (mpr, M € M) (61)
defined by :
my = WMy Y AR Ec(Tir) (62)
GeG
where :
W Mu = migration weights, specific of each migration operator (63)
A3S = 2A7C cos 65 AS A3y (64)
T,f,G = travel time from S to H (just above G, see figure 1) (65)
(s} . 1 (3-D)
_ (2) 2 ta —
EG_(f *h*[WGh*dG) wzths_{l/2 (2 - D) (66)
d% = true amplitude seismic trace at geophone G. (67)

The above migration operators contain many (probably all) existing Kirchhoff migration
formula, for an adequate choice of the misfit filter h, the amplitude factor Wg(t) and the
migration weights W Mps. For example if one chooses h as in (57), Wg(t) = 1 and WMy, =
1/(A3;nar)?, formula (62) rewrites, in 3-D :

mar = — 3 A1% cos 05 AG (o5 + d2) (r55) (68
M= 23 0SUpAMLY G \TMm )
M GeG .

(g% given by (55)), which is a discrete version of formula (16) of Docherty, 1991, which
itself is equivalent to equation (5) of Keho and Beydoun (1988), and to formula 3 of Bleistein
(1987).

However, our derivation of these Kirchhoff migration formula has, beside the fact that it
is simple and elementary, three advantages :

1. It indicates the precise relationship between the migration filter g¥ used in conventional
migration formula like (68), and the shape of the source function f(t) (cf. the discussion
at the end of paragraph 5).

2. Asnoted at the end of paragraph 4, it provides a guideline for the choice of the migration
coefficients WM : the corresponding diagonal matrix has to be chosen as close as
possible to the pseudoinverse HJ' of the Hessian of the data misfit function. This will
be investigated in paragraph ().

12



3. It shows that migrated sections are descent directions for the data misfit function :

for any r = (rp, M € M) one has
<M(d-1¢),VI(r)>m<0

where d = is the amplitude corrected and filtered data time section, (69)
and ¢ = ¢r the amplitude corrected and filtered synthetic time section
For example, performing iterative migration :
rktl =k 4 ok M(dF - cF), O =0
o (70)

p* > 0 is a descent step

is nothing but computing a minimizing sequence for the least square error function J.
Hence when the p* are well chosen, the iterative migration (70) will converge to the
solution # of the inverse problem :

¥ — koo # Which minimizes J. (71)

We will see in paragraph () an other way of taking advantage of this descent property.

Chosing optimal migration weights

The Hessian H J of the least square error function J(r) defined in (24) is, using the formula
(19) (20) for cg(t) :

for any grid points M and P, 79
Hiyp = Soea Jf Wo(tyhs SO - 1590+ 5Ot - 159458456 ¢ (P
As the weight Wg(t) varies slowly compared h * §)(t), this rewrites, using (14), as :
HImp ~ Z AifA%GWG(rff)WG(rg'G)w * w(rf,'c - Tg'G) (73)
GeG
where :
w=hxS5® (74)

In order to obtain a physical interpretation of this Hessian, we consider noiseless data d
generated by a true reflectivity section rypye :

d = PTtrue (75)

The application to this data of the Kirchhoff migration operator M defined in (29) can
be conceptually split into two steps :
Step 1 : Compute a gradient image.

13



~VJ(0) = HIrgrye (76)

Step 2 : Restore, as far as possible, the true amplitue of migrated reflectors by multiplying
the gradient image by a migration weight matrix :

m = HM(=-VJ(0)) (77)

In practice, this matrix HM is always chosen to be diagonal :

HM = diag(WMp, M € M). (78)

We obtain immediately from Step 1 a simple interpretation of the Hessian HJ (see figure
2) : if the true reflectivity r{;,e contrains only one diffracting point located at node M with
coefficient 7ps = 1, then the M Yine of HJ is nothing else than the gradient image —VJ(0)
reconstructed from the one-pixel reflectivity v ye ! It is also clear from formula (72) that,
when the frequency content of the signal increases (i.e. the support of S(t) becomes smaller
and smaller) and the width of the recording array increases, then the gradient image of figure
2(b) becomes more and more concentrated around M.

Because w*w has always maximum amplitude at 0, the gradient image is maximum at the
true pixel location, so that reflectors will always be imaged at zero crossings of the migrated
section when a gradient approach is used.

(a) (b)

Eigure 2, Interpretation of the M-th line of the Hessian HJ
of the least-square error function J :
(a) one-pixel reflectivity (rp. bup' Pe M)

(b) M-th line of HJ = gradient image obtained
from the one-pixel reflectivity (a)

We turn now to the choice of the migration weights HM = diag(W My, M € M)) in step
2 of the migration. In sight of (76) (77) we want that the migrated image :
m=HM.HJrirge (79)

is as close as possible to the true reflectivity section ry;,e. This can be done by chosing
HM such that :

{ | HM.HJ = I ||oo is minimum

over all diagonal matrices H M, (80)

14



where || || is the matrix norm associated to the || |l vector norm :
I 4 lleo= Supjizfje=1 Il AZ [loo (81)
|| 2 floo= Mazi=i—n | =i

This norm has been chosen in order to ensure an easy solution of the problem (80), which
rewrites, with generic matrix notations 4 = n X n matrix and A = diagonal matrix :

| AA—TI ||oo is minimum. (82)
But :
| AA =T |lo= Maziz1.n D | Miaij — 6ij |
j=l..n
i.e.
HAA—IHW=Ahw¢Lm{|M|§:|MjP+Ier-H} (83)
i

The minimum of || AA — I || will be obtained by chosing, for each i = 1...n, A; € R
which minimizes | A; | 354 | aij | + | Aigii — 1]. As it can be seen on figure 3, the solution
is given by :

Ai=1/ay i |ay|> E#,-|a,~j| (84)
A=0 i lai|< il ai |,

and the corresponding value of || AA — I || is given by :

” AA-T “00‘—' Min {1’1‘1‘13{ a.t.la.'.'|>21¢,-|a.',~l Z I ai; | / l Qg |} (85)
¥ ‘
which satisfies :

0<fAA = I [loS 1. (86)
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AIx,llgI la, [+ 12,1

1/a,,

Case (a): lal>Z Ia..]l
j#i

fl) Illgl ,a”‘# i)\ lall-ﬂ

1/a“

Case (b): la;l< T la, }
j=l

Eigure 3. Graphical resolution of the minimization
of IAA-II_

Coming back to our migration problem, we see that the optimal (in the sense of (80))
migration weight matrix H M* = diag(W My;, M € M) is given by :
i) at points M where the Hessian HJ is “diagonal dominant”

(in the sense that | HJym |> Zpam | HIMpP ) :

WMy, = HI (87)

ii) at points M where the Hessian HJ_is “not diagonal dominant”
(in the sense that | HIpmm |< Tpam | HImp ) :

WMy =0 (88)

The corresponding migrated section m satisfies (see (79) and (86) :
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||m_f'||oos 1. (89)

Such section m would be called, in the usual terminology of migration, an “inverted
section” because some effort has been done to recover the true amplitude of the reflector.
However, from a mathematical point of view, m does not deserve that name, as it does by no
way minimize the data misfit function J.

Remark 1 When the approzimations (50) for Eg(t) and (73) for HJump are used, the Kirchhoff
migration (62) with optimal migration weights (87) (88) rewrites :

i) at nodes M where the Hessian HJ is diagonal dominant :

Yo ASEWa(rC)w * h + d3(r38
ZGGG(AKJGPWG(rfjc)zw * w(0)

muy (90)

il) at all other nodes :

mpy =0 (91)

Remark 2 The Hessian HJ may have no or too few diagonal dominant lines M. In that
case one has to replace the data misfit function J(r) by a regularized version :

1
Je(r) = J(r) + 3 > emris (92)
MeM
where :

£=(em, M € M) (93)

is the collection of regularisation parameters.
The associated regularized Kirchhoff migration formula with optimal weights is :

Z Afch(rf,’G)zw *h*d3(miF)
mfu = GeG
eM+ Y (A3 Wa(rii )*w * w(0) (94)
GeG
. tf epm > Maz {0, —HJym+ ZP;éM HJMP}

& -
my =0

.. if epm< Max {Ov—HJMM+ZP¢M HJMP} (95)

The size of the “blank regions” in the migrated section m® will diminish when the £’s are
increasing ; they will disappear if :

at each M, ep > Maz {0,—HJMM+ Z HJMP}. (96)
P#EM

For example, if one chooses :
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ateach M, ¢y = Z | HIpmp | (97)

P#M
then the optimal migration weight is :
ateach M, WMji;=1/ |HJup| (98)
PeM

Notice that this weight could have been obtained by first performing mass condensation
on the Hessian HJ, and then inverting it ! I

Cooperative Iterated Migrations

If we shot NSHOT sources Sy ...SnsHOT, it is well known that the corresponding migrated
sections will differ from one shot to the next (lack of illumination, edge effects ...) even if
the exact velocity model is used. This is a difficulty for the picking of events on the migrated
sections, which is currently achieved on the coherency panels : one would like that a default
in the migration velocity result only in more or less dip of these events in the coherency panel,
i.e. eliminate from the coherency panels the discoherence caused by lack of illumination and
edge effects. Following the idea of Ehinger (1992), we consider a cooperative error function.

NSHOT NSHOT

1
Jwe(ri...tnseor) = D JIN(TN)+ We > llrv—rna)? (99)
N=1 N=2
where :
Jn(rn) is the least square error function (24) for the N** shot (100)
WC is a coherency weight of the reflectivity sections ry...rnsyoT (101)

Then the cooperatively inverted sections 71...FfnsyoT are defined by :

#1...*NsHoT minimizes Jwc(ry...*NSHOT) (102)

But the gradient of Jwc is given by :

Vendwe(ri...TnsHOT) =

TN — TN-1 N =NSHOT (103
VIN(rN)+WC { —-tny1+2rNn~Tn-1 N=NSHOT-1...2 )
Ty — T2 N=1

Multiplying (103) by the migration weights W My associated to a given migration operator
My for the N** shot (cf.(29)) and changing the signs, we see that :

TN-1— TN N =NSHOT
My(dn —eN)+ WC WMy rNy1—2rv+ 1Ny N=NSHOT-1,...,2
re—~nn N=1 (104)

is a descent direction for Jwcwith respect to ry.
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Hence the cooperative iterated migration algorithm :

07‘?\,=0, N=1...NSHOT

or’;vﬂ _ r'f\, + peMn(dN — c'fv) +WC WMy r’,‘VH —k 21‘5{, + r’f\,_l (105)
& =o¢nrk, N=1...NSHOT

where pyi is a descent step

yields a minimizing sequence for the cooperative error function Jwc, i.e. :

rk - #ny N=1,2...NSHOT (106)

In practice, this algorithm should not be much more difficult to implement than a classical
Kirchhoff migration (computing r* amounts to perform on each shot a separate migration).
The additional burden comes from the necessity to forward simulate the model, in order to
compute ck, and to choose a descent step p* before performing the next set of migrations.
Remark 3 IVhen the migration weights WM are chosen to be optimal as indicated in para-
graph (). it becomes possible to use a fized p* = 1 for all shots and all iterations.

Remark 4 The same approach can be extended to common offset migrations or plane wave
migrations in a straightforward way.

Conclusion

We have derived the Kirchhoff migration formula using the gradient of the data misfit
function associated to a forward model of the WK BJ type. Beside the fact that it is simple
and elementary, this approach has the following advantages :

o it makes explicit the forward time domain WK BJ model (11) (15) (16) (20) which is

underlying the Kirchhoff migration ;

e it leads to a precise definition of the preliminary treatment which has to be performed
on the true amplitude data df$ before the migration itself is performed :
Eg = (f®«h+[Whsd )(’) (107)
where :

s =1(3~ D data)or1/2(2- D data)

We=1t*

f = source function (Ricker)

h = data misfit filter (for deconvolution purpose)

When the data have been generated by reflectors, EG can be approximated by :

EE = WZg™ « (d2) (108)

where g/ is chosen to perform a “spiking deconvolution” of (d%)(), which is the current
practice for Kirchhoff migration.
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o it allows the determination of optimal migration weights, which ensure that the migrated
section will be as close as possible to the inverted section (which minimizes the data
misfit function). These optimal weights, combined with an ounce of regularization, will
ensure the best possible restitution of the true amplitude of the migrated events, for
data with a given frequency content.

o it shows that Kirchhoff migrated sections are descent directions for the data misfit
function :

< M(d-1¢),VJ(r)>Mm< 0 Vr =(rpy, M € M)
where d = Wgh * d'® is the amplitude corrected and filtered data time section
and ¢ = ¢z the synthetic time section.

Hence it becomes possible to build up iterative processes which include the Kirchhoff
migration as a brick and correspond to the minimization of some objective function, as
for example the cooperative iterated migration.
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Appendix

Calculation of the signal recorded at a geophone located close to a plane free
surface for a given incident plane wave.

X

M= (X,y,Z)

The wave field in the vicinity of the geophone G is splitted into the sum of an incident wave
us (which is plane, as the geophone is far enough from the diffracting point) and reflected
wave up :

us(M,t) = § (t - 2Mas) | ns =1
up(M,t) = —§ (t — QHnstHMnn | 7R ll=1

w(M,t)=us+up=35 (t - %_cns) s (t _ OH.nsicHM.nR)
If the incident and reflected wave satisfy :
ng = nr + NN, NR =0T — NN,

then for all M of the surface, i.e. such that HM.nx = 0, one has :
OH.ng + HM.nT) _g (t OH.ng + HM.nT> -0

[

u(M,t)=S§ (t

Hence u( M, t) is the solution near the free-surface boundary. At a geophone G = (zg, yg, zG),
the signal is :

CG(t) = u(th)

If the geophone depth zg is a fraction of the spatial wavelength of the signal, one can
write :

u(G,t) - u(H,1)
26 — 2ZH

Ju
o (H.1) =
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so that, as u(H,t)=0:

cg(t) ~ (26 - zy)%(]{,t)

But :
M. . .
B4 M1y = -2ozg (t—o n’)+%5' (t—OH "5+HM"R)
0z c c c c
Hence, as ng, = cos@ = —~np, and nsz = nRz = n; ; N5y = NRy = Ny

?E(H,t) _ _2cos05, (t— OH.n;) _ _2cos03us
0z c

p 5 (1)

c

An approximate expression for the signal at geophone G is hence

cg(t) ~ —2cos OATG%—?(HJ)
where :
ArC = @—;—zﬁ = travel time from geophone G to free surface

Remark :
Notice that, in the above formula, the emergence angle § and the time delay O—”c"li are

evaluated at the point H of the free surface located above the geophone G, and not at G
itself.
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