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On an Investment-Consumption model with
transaction costs

Gestion de portefeuille avec coiits de transaction

Marianne Akian? Jose Luis Menaldifand Agnes Sulem*

Abstract : This paper considers the optimal consumption and investment policy for an in-
vestor who has available one bank account paying a fixed interest rate r and n risky assets
whose prices are log-normal diffusions. We suppose that transactions between the assets incur
a cost proportional to the size of the transaction. The problem is to maximize the total utility
of consumption. Dynamic Programming leads to a Variational Inequality for the value function.
Existence and uniqueness of a viscosity solution is proved. The Variational Inequality is solved,
by using a numerical algorithm based on policies iterations and multigrid methods. Numerical
results are displayed for n = 1 and n = 2.

Résumé : On étudie la politique d’investissement et de consommation optimale d’un agent
possédant un compte en banque a intérét fixe et n comptes en actions dont les prix sont
modélisés par des processus de diffusion log-normaux. On suppose que chaque transaction entre
les comptes s’accompagne d’un cout proportionnel au montant de la transaction. Le probleme
est de maximiser une fonction d’utilité de la consommation. On démontre que la fonction valeur
est I'unique solution de viscosité d’une inéquation variationnelle. Cette inéquation variation-
nelle est ensuite résolue en utilisant une méthode numeérique basée sur I’algorithme de Howard
(itérations sur les politiques) et la méthode multigrille. Des résultats numériques sont présentés
pour n =1letn=2.
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1 Introduction

This paper concerns the theoretical and numerical study of a portfolio selection problem. Con-
sider an investor who has available one riskless bank account paying a fixed rate of interest r
and n risky assets modeled by log-normal diffusions with expected rates of return «; > r and
rates of return variation o?. The investor consumes at rate c¢(t) from the bank account. Any
movement of money between the assets incurs a transaction cost proportional to the size of the
transaction, paid from the bank account. The investor is allowed to have a short position in
one of the holdings, but his position vector must remain in the closed solvency region S defined
as the set of positions for which the net wealth is nonnegative. The investor’s objective is to
maximize over an infinite horizon the expected discounted utility of consumption with a HARA
(Hyperbolic Absolute Risk Aversion) type utility function.

This problem was formulated by Magill and Constantinides [20} for n = 1 who conjectured
that the no-transaction region is a cone in the two-dimensional space of position vectors. This
fact was proved in a discrete-time setting by Constantinides [7] who proposed an approximate
solution based on making some assumptions on the consumption process. Davis and Norman
proved, in continuous time, without this restriction, that the optimal strategy confines indeed
the investor’s portfolio to a wedge-shaped region in the portfolio plane [9]. An analysis of the
optimal strategy together with regularity results for the value function can be found in Fleming
and Soner [12, chapter 8.7] and Shreve and Soner [26]. Taksar, Klass and Assaf [29] consider a
model without consumption and study the problem of maximizing the long-run average growth
of wealth. A deterministic model is solved by Shreve, Soner and Xu [27] with a general utility
function which is not necessarily a HARA type function. A stochastic model driven by a finite
state Markov chain rather than a Brownian motion and with a general but bounded utility
function has been investigated in Zariphopolou [30]. She supposes that the amount of money
allocated in the assets must remain non-negative and shows that the value function is the unique
constrained viscosity solution of a system of variational inequalities with gradient constraints.
Fitzpatrick and Fleming [11] study numerical methods for the optimal investment-consumption
model with possible borrowing. They examine a Markov chain discretization of the original
continuous problem similar to Kushner’s numerical schemes [17]. The convergence arguments
rely on viscosity solution techniques.

We consider here an extension of Davis and Norman’s model to the case where more than
one risky asset is allowed. We restrict to power utility functions of the form % with0 < vy < 1.
The mathematical formulation of the problem is given in section 2. In section 3, we prove that
the value function is the unique viscosity solution of the associated variational inequality. Since
the utility and the drift functions are not bounded, the uniqueness does not derive from classical
results. We are then concerned with the numerical solution of the variational inequality. First
an adequate change of variables is performed (see section 4) which reduces the dimension of
the problem and simplifies the numerical study. Then, the variational inequality is discretized
by finite difference schemes and solved by using algorithms based on the “Howard algorithm”
(policy iteration) and the multigrid method (see section 5). Numerical results for the value
function and the optimal policy in the case of one bank account and one or two risky asset(s)
are given in section 6. Finally, in section 7, a theoretical study of the optimal strategy is done by



using properties of the variational inequality; this analysis corroborates the numerical results.

2 Formulation of the problem

Let (Q,F, P) be a fixed complete probability space and (F;);>0 a given filtration. We denote
by so(t) (resp. si(t) for ¢ = 1...n) the amount of money in the bank account (resp. in the
i-th risky asset) at time ¢ and refer as s(t) = (si(t))i=o,..,» the investor position at time t. We
suppose that the evolution equations of the investor holdings are

{ dsolt) = (rso(t) — c(t))dt + Z( (14 ML) + (1 = p)dM(2)), "
ds;(t) = a;s;( )dt + 0;8 ( )dW( ) + dC,(t) - dM,‘(t), 1= 1, I 8
with initial values

$i(07y==z; 1=0,...,n (2)
where W;(t), i = 1,...,n, are independent Wiener processes, £;(t) and M;(t) represent cumu-

lative purchase and sale of stock i on [0, ] respectively and s(t~) denotes the left hand limit of
the process s at time t. The coefficients ); and p; represent the proportional transaction costs.

A policy for investment and consumption is a set (c(t), (Li(t), M;(t))i=1,..n) of adapted
processes such that

t
c(t,w) >0, /0 c(s,w)ds < oo, for a.e. (t,w),

o L;(t) and M;,(t) are right-continuous, non-decreasing and £;(07) = M;(07) =

The process s(t) is thus right continuous with left-hand limit and equations (1) and (2) are
equivalent to :

solt) = x0+/ rsof o)-c(o))d0+z (14 A)Li(t) + (1 — ) Mi(2)),
si(t) = x,~+/0a,.s,~ d9+/a, 8) + Li(t) — Mi(t), i=1,...,n,
for t > 0.
We define the solvency region as :
S = {z = (z0,21,...,2,) €ER™,  W(z) > 0}

where n
W(z) = 2o+ »_ min((1 — pi)zi, (1 + N)xi) (3)
=1
represents the net wealth, that is the amount of money in the bank account resulting from
setting the risky assets to zero.



Suppose that the investor is given an initial endowment z in S. A policy is admissible if
the bankruptcy time 7 defined as

F=inf {t > 0,s(t) ¢ S} (4)

is infinite. We denote by U(z) the set of admissible policies. The investor’s objective is to
maximize over all policies P in U(z) the discounted utility of consumption

Jo(P) = E, /0 ” eStu(c(t))dt (5)

where E, denotes expectation given the initial endowment z, é is a positive discount factor and
u(c) is a utility function defined by

C'Y
u(c):;-, 0<y<l (6)
We define the value function V as
V(z) = sup J(P). (7)
Pel(z)

Remark 2.1 When the process s(t) reaches the boundary 9§ at time ¢, i.e. s(t7) € 95, the
only admissible policy is to jump immediately to the origin and remain there (see {27]) with a
null consumption. Consequently, if the initial endowment z is on the boundary, then V(z) = 0.
a

Remark 2.2 Let 7 denote the exit time of the interior of S, defined as

r = inf {t > 0,5(t) ¢§} . (8)
We have for all admissible policies P
J.(P) = E, /0 " emStu(c(t))dt. 9)

On the other hand, for any policy P, we can construct an admissible policy which coincides
with P until time 7 (it is such that the process s(t) jumps to the origin at time 7). The value
function can thus be rewritten as

V(z) =sup E;. | e ®u(c(t))dt (10)
PeuU 0
where U is the set of all policies. |
We make the assumptions
1 Toa;—r
6>~ (r + - 2) , Al

2(1 —9) ‘;( o ) (4.1)

and
0<uw<l, N>20, AN4+u;>0, Vi=1,...,n (A.2)

Remark 2.3 When the transaction costs are equal to zero (Merton’s problem), the value
function V is finite iff assumption (A.1) is satisfied (see [9] for n = 1 and section 7 below). =



3 The Variational Inequality

We state the main theorem.

Theorem 3.1 Under assumptions (A.1) and (A.2),

(i) the value function V defined in (7) or (10) is v-Hélder continuous and concave in S and

non decreasing with respect to z; for1=10,...n.

(11) V is the unique viscosity solution of the variational inequality (VI) :

max{AV+u'(?—‘i) max LV, ma.xMV} =0 in S

Oxo ' 1<i<n

V/aS =0
where . v v
Zo ———+Zam, +rx08$0 oV,
ov av
; Ai
LV=-(1+ ) 8z,
3V ov
MV =(1- "‘)a_xo e
and u* is the convex Legendre transform of u defined by
C’Y
u(v) = r?zaox(—cu—k 7)
W
v

The solvency region S is divided as follows :
B: = {z€8, LV( x)zO}
Si = {ze8, MV(z)=0},
NT; = S\ (B:US,),
NT = (\NT.

=1

(17)
(18)
(

—
©
~—

(20)

NT is the no transaction region. Outside NT, an instantaneous transaction brings the position
to the boundary of NT : buy stock i in B;, sell stock 7 in S;. After the initial transaction, the

agent position remains in

__ L(oV
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and further transactions occur only at the boundary (see [9]).

We shall first recall the definition of viscosity solutions, then prove points (z) and (2z) of
Theorem 3.1 in sections 3.2 and 3.3 respectively.

3.1 Viscosity solutions of non linear elliptic equations

Consider fully nonlinear elliptic equations of the form
F(D*v,Dv,v,z) =0 in O (21)

where F is a given continuous function in S x RN x R x O, SV is the space of symmetric
N x N matrices, O is an open domain of R", and the ellipticity of (21) is expressed by

F(A,p,v,z) > F(B,p,v,z) if A>B, A,BeS", per", veR,z€0. (22)
A special case of (21) is given by
N N
F(X,p,v,2) = max{ 3 a;;(z,0) Xy + 3 _bi(z,v)ps = oz, v)v + f(z,v)} (23)
YEY ig=1 i=1

where (22) is satisfied when the matrix (a;;(z,v));; 1s symmetric non negative in O x U.
The variational inequality (11) is of this form.

Definition 3.1 Let v € C(O). Then v is a viscosity solution of (21) if the following relations
hold :
F(X,p,v(z),z) >0, ¥Y(p,X) € J**v(z), Y2 € O (24)

F(X,p,v(z),2) <0, Y(p,X) € J* v(z), V2€O (25)
where J*+ and J*~ are the second order “superjets” defined by :
J**o(z) = {(p, X) € R x SV,

limsup{(o(y) — v(2) — (b, — 2) — 5(X(y — ), = Iy — 2|} < 0}

yeo

and
J2=o(z) = {(p, X) € RN x SV,
1

liminf{[v(y) — v(2) = (p,y — 2) = 5(X(y — 2),y — 2)]ly — 2|} > 0}.

ye€O =

A viscosity subsolution (resp. supersolution) of (21) is similarly defined as an upper semi-
continuous function satisfying (24) (resp. a lower semicontinuous function satisfying(25)) (see

(8])-



3.2 Properties of the value function
Lemma 3.1 There exists a positive constant, a, such that the function
n ’Y
p(z)=a (l‘o + > min((1 — pi)zy, (1 + /\i)ff))
=1

is a viscosily supersolution of equation (11) with ¢ = 0 on 3S.

Proof : Denote v = (v1,...,v,) where v; is either equal to p; or —A;. The function ¢ can be
rewritten as
Y= mujn P
where
v (z) = aW,(z)” (26)
and .
W, (z)=zo+ > (1 — vi)zi. (27)
i=1
We have
Lip,(z) = —(\i + vi)ayW,(z)"7! <0, (28)
Mip,(z) = (pi — vi)ayW,(z)"™" <0, (29)
and
A‘PV(‘T) = a7WU($)7_2G(1})
with

G(z) = —ZO” 1 —w)(y-1)
+ WU(I) (i(a,‘ - 7‘)1‘,‘(1 - l/,'))

t=1

+ W,(z)? (r - é) .

which leads to

and
Ap,(z) < —aypW,(2)" = — 1o, (2). (30)



Moreover,

a v -1 4 e
u'(a_:o(x)) = u(ayW,(z)7') = (% = 1)(@y)7 W, (2)” = (1 = 7)(a7) 7 pu(2)-

The constant a can now be chosen such that

Ac,ou+u*(‘;"’”)go in S. (31)

Zo

Since (28), (29), (31) hold, ¢, is a classical supersolution of (11) (continuous in & and twice

continuously differentiable in §) Hence, ¢ is a viscosity supersolution of (11) as the minimum
of continuous supersolutions, and clearly vanishes on 3S. n

Proposition 3.1 V is uniformly v-Holder continuous in S, that is
iC >0, |V(z)-V(z)| <Clz-2'||", Vz,z' € S. (32)

Proof : We consider two initial positions £ and z’, and denote by 7 (resp. 7’) the first exit

time of S of the process s(t) (resp. s’(t)) defined by (1) and s(0~) = z (resp. s'(07) = z’). We
have

Viz)-V(') = sptégE OT e~ %tu(c(t))dt — ;%EE /(;T e ®tu(c(t))dt

!

< 2{;};1‘? (/OT e %tu(c(t))dt — /: e'&u(c(t))dt)

< supkF e ttu(c(t))dt.
PeU TAT!

The function ¢, defined by (26) has C%-regularity and is a supersolution of (11). We apply
Ito’s formula for cadlag processes (see [24]) to e~®,(s(t)). For any stopping time 6, the process

6'6(8’")4,9,,(3(0 AT))

B /(;OAT e_& {Ac(t)g’ou(s(t))dt + zn:[Li(Pu(s(t))dcic(t) + Mi@u(s(t))dM,‘c(t)]}

- Y e~ p.(s(2)) — wu(s(t7))]

0<t<OnT

is a martingale. We denote by A° the operator A-—ca%0 and by £;°(t) and M;°(t) the continuous
parts of £,(t) and M,(t).

Since s(t) has a jump only when £;(t) or M,(t) is discontinuous, we have
W, (s(t)) = W, (s(t7)) —Xn:[(/\i + i) (Li(t) = Li(t7)) + (s — vi)(Mi(2) = Mu(t7))] < Wo(s(t7)).
=1
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Hence,
@.(s(t)) < pu(s(tT)).

In addition, £;° and M;° are non decreasing. Consequently
tAT
MY =, (s(t AT))e 50 4 / u(c(8))e™%do
0

is a supermartingale, as well as the process min M;. Therefore
v

E/ e~8tu(c(t))dt < E(e 80 M p(s(r A1) — e~ o(5(7)))
and as ¢ vanishes on 0S5, we have

V() = V(') < sup E(e™ (p(s(7)) = ¢(s'(7))Lrv<r)
where 1,4 denotes the characteristic function of the set A.
Let us fix for instance ||z|| = sup |z;|. The function ¢ is y-Holder continuous, that is

1=0,...,n
lp(z) — p(z)] < Clle — 2|7
for some positive constant C'. We thus get

V(z) = V(a') < Csup E(e™||(s(r') = s'(r")|"Lr<r)- (33)
Pell

The process X(t) = s(t) — s'(t) is a diffusion process with generator A + 671 and initial value
20)=z— 2.
If the function (z) = ||z||” would satisfy Ay < 0, then ¥ (X(7 A t))e *"") would be

a supermartingale which would readily lead to (32). As % is not smooth, we consider the

function yg(z) = Z(:L‘ + B)* with 3 > 0. We have :

=0
2 (2-1) 6 4, 0
AYp = (x5 + B)2 ((T—;)Io—;ﬁ)
n \ 1 5 1 2. 6
+ 22+ Bt col (v — )+ ai — =)+ 22B(z0f + ai — —) — = 7).
S olet 4 A)E D atgoty 1) b = )+ alBlgol + e~ ) = 287)

Assumption (A.1l) implies

6
r——<0 and .la?('y—l)+a,~—§<0.
gl 2 gl

Consequently, there exists a positive constant C' such that

Ay < CB72



Applying now Ito’s formula to 3, we obtain

E(e™ (S A7) < ol — =) + S 872 (34)
Taking the limit of (34) when 3 goes to zero, and using

P(z) < Yo(z) < (n+1)P(z)

we get
E(e™* " y(5(r' A 7)) < (n+ 1)y(e — 2')
which leads together with (33) to the desired estimate (32). [

Proposition 3.2 The value function V is concave in S.

Proof : The dynamic (1) is linear and the solvency region S is convex. Hence, for any 6 in [0, 1],
zand ' in S, P in U(zx) and P’ in U(z'), we have 0P + (1 — )P’ € U(y) for y = 6z + (1 — )z’
and

V(y) > J,(0P +(1 - 0)P') = E { / T e Stu(Be(t) + (1 — )¢ (1))t}

Moreover, since u is concave and positive we infer

V(y) 2 0J(P) + (1 = )J=(P").
Taking now the supremum over all P and P’, we obtain that V is concave. As a consequence,
V is Lipschitz continuous in §S. [ |

Proposition 3.3 V is non decreasing with respect to z;, for:=10,...,n.

Proof : Let us denote explicitly by s(¢,z) the process s(t) defined in (1) with initial value
and by 7, the exit time of § of s(t,x). As

V(e)=sup B [ e u(c(t))dt,
Peu 0

and u is positive, it is enough to prove the nondecreasing property of the stopping time 7, for
any control process P.

Define y(t,z) by
{ yo(t,z) = e "so(t, )

yi(t,z) = e~lo=god)t=oiWilg (¢ ) i=1,...,n.

The process y(t, ) evolves according to

dyo(t,z) = e (—c(t)dt + znj(—u + A)dLi(t) + (1 — p;)dM;(t)))

dyi(t,2) = e (3o W(dL () — dM(t))

(35)

10



and satisfies y(0,z) = z. Hence, we can write
y(t,z) =z + Y(t,P)
where Y (¢, P) depends only on P. Consequently,
s(t,x) = (&zq, (™72 W gy )+ S(t,P) (36)

where S(t,P) is a process which is independent of z.
Consider now & > z (i.e. &; > z;, Vi =0,...,n) and fix P in U. We have from (36),

s(t,z) < s(t, %)

and

W(s(¢,z)) < W(s(¢,2))
where W is defined in (3). '

We have
7 = inf{t > 0, W(s(t, %)) < 0}.

For any ¢ > 7z, there exists ¢’ such that 7z < t' < t and W(s(t', %)) < 0, which implies
W(s(t',z)) <0 and t > t' > 7,. Consequently, 7z > 7, which leads to V(%) > V(z). [ |

3.3 Existence and Uniqueness results

First, we show that the value function V is a viscosity solution of the variational inequality
(11). The problem is reduced to prove a weak dynamic programming principle (see [12]).

Lemma 3.2 (i) The value function V satisfies
0 <V(z) < p(z), Vz € S, (37)
where (z) is the super-solution defined in Lemma 3.1.
(ii) There exists C > 0 such that
[Jo(P) = Ju(P)| < Cllz = 2'||", Vz,2'€S, VPel, (38)
where J.(P) is given in (9).
Proof : Estimates (37) and (38) are readily obtained from the proof of Proposition 3.1. ®

Proposition 3.4 The weak dynamic programming principle is satisfied for the value function
V, that is

V(z)=sup E (/QM e Stu(c(t))dt + e AV (s((0 A r)—))) , Vz €S, (39)
Pel 0

for any stopping time 0.

11



Proof : By means of the Markov property we have for all P in Y
Fonr [T g nr 5 5(8
B [T (@)t = [ e tule(t))dt + e annyy (P,

with P’ equal to P “shifted” by § A7. Note that P’ may not be admissible. The correct method
would be to proceed with admissible systems composed with a filtration (2, F;, P), a Wiener

supremum of J.(P) over all admissible systems instead of the supremum over all admissible
policies. We give here a formal proof. Rigorous proofs are given in [12, 25, 10, 18]. Thus,

Jr('p) _ (/Oo/\r e"‘stu(c(t))dt + 6—6(0AT)J3((0A1)—)(P,))
< E (/:M e *tu(c(t))dt + e AV (s((8 A T)_))> .

By taking the supremum over all policies P, we deduce one inequality side of (39). For the
reverse inequality, we need to construct nearly optimal controls for each initial state z in a
measurable way. To that purpose, consider ¢ > 0 and {S*¥}{2, a sequence of disjoint subsets of

S such that -
Usk =8, diam(S*) <e.

k=1

For any k, take z* in S¥ and P* = (¥, (L¥, M¥)i-1,..n) in U such that
V(z*) — e < J(P*). (40)

Now, for a given stopping time # and an arbitrary policy P in U, we define
P8 = (e, (L], M), ...) with

At) = c(t)lics + c(t — 0)1,50,
LOt) = Li(t)lico + (Li(67) + LE(t — 6))1es0,
MI(t) = Mi(t)lico + (Mi(07) + ME(t - 8))1ex0,

13

for s(8) € S*. Using (38) and (40) we have

Jo@=)(P*) = (Juga-)(P*) = Jox(P¥)) + Jox(P¥)
—Ce” —e + V(z)

2
> =20 —e+ V{(s(67)).

Denoting by I the right-hand side of (39), there exists a policy P such that

[—e<E ( [ e utett)de + @IV (s((0 A r>->>)

12



and in virtue of the Markov property we get
I —e < J(P") 4+ (2Ce” +¢)

and
I —2Ce" —2¢ < J(P") < V(z),

which leads to (39). ]

Corollary 3.1 The value function V(z) defined by (10) is the viscosity solution of the varia-
tional inequality (11-12).

In the case of pure diffusion processes, this is a standard result in the theory of viscosity
solutions (see [19]). For singular stochastic control problems, we refer to Fleming and Soner
[12, chapter 8, theorem 5.1].

Proposition 3.5 Under assumptions (A.1) and (A.2), the value function V is the unique
viscosity solution of the variational inequality (11-12) in the class of continuous functions in S
which satisfy '

V(z)| <C1+|z|") VreS. (41)

More precisely, if v is a viscosity subsolution and v’ is a viscosity supersolution of (11) which
satisfy (41) and v < v' on 0S5, then v <v' in S.

Proof : By Corollary 3.1 and equation (37), the value function V is a viscosity solution of
(11-12) and satisfies (41). To prove the uniqueness, we use the Ishii technique, in particular we
adapt the proofs of Theorems 3.3 and 5.1 of [8]. They are themselves based on the following
corollary of Theorem 3.2 of 8] :

Theorem 3.2 Let V be an upper semicontinuous function and V' a lower semicontinuous
function in an open domain O of RN. Set W(z,y) = V(z) — V'(z) — £|z — y|* with k > 0.
Suppose that (z,7) is a local mazimum of W. Then, there exist two matrices X and Y in SV
such that

(k(3 — §), X) € J**V(5), (k(& —),Y) € J2V/(§)

X 0 I —I |
(X 0 Yen( 7). "

In this statement, |.| denotes the cuclidian norm and J?* is defined as follows :

and

J¥*u(z) = {(p, X) € RV x SN, I(zn,pn, Xn) € O xRV x SV,
(Pnan) € J2'+U(il?n) a'nd (In,v(fn),Pn,Xn)njoo(x,v(x),P,X)}-

J*~ is similarly defined. If F is a continuous function in SV x RN x R x O satisfying (22), and
v is a viscosity subsolution of (21), we have

F(X,p,v(z),z) >0 Y(p,X) € J>*v(z), Vz € O. (43)

13



We consider now v and v’ as in Proposition 3.5 and we argue by contradiction. Suppose
that there exists z in S such that v(z) — v’(2) > 0. Define the function wx in & x S as :

wi(z,9) = v(z) = v(y) ~ 2o — 3 — eWa(a) 4 Wa(y)")

with N
W,(z) = zo + Z(l ~ vz
=1
and denote
my = sup ‘wk(l', y)
(z,y)ESXS

In the following, C, C,, C, denote generic constants.
Lemma 3.3 For v = (v;)iz1,.n with —A; < v; < u,, there exist Cy and Cz > 0 such that

Cilz] < W,(z) < Cylz| Vz € S. (44)

Proof : The second inequality of (44) is straightforward. To obtain the first inequality, we use
the non negativity of W (defined in (3)) in S :

W, (z) = W(z) me — i)z, (v + Adzi) 2 CZ [z:| > 0.

i=1 =1
Moreover,

|zo| = [W.(z) — Z(l — )z <KW, () + C’Z |z:| < CW,(z).

=1 i=1

Consequently, ‘ )
z| < CW,(z).
|

We shall fix 4" > v such that the assumption (A.1) is still valid with 4’ instead of 7, and v
as in Lemma 3.3. This will ensure m; < oo (see Lemma 3.4). On the other hand, we have :

my > m = ilelp{‘v(:t) —v'(z) = 26W,(2)"'} 2 v(2) — v'(2) — 2eW, (2)".

Hence, there exists € > 0 such that m; > m > 0 for any k; in the following, we consider such ¢.

Lemma 3.4 There exist zi,yx in S such that

mg = wi(Tk, Yx) < +00,

klze — wl® = 0, (45)
and
m M= sup{v(z) — v'(z) — 2eW, ()"} (46)
—o0 €S
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Proof : Since v and v’ satisfy (41), we have
my < C + sup(Cylz|" = Calz|”) < 400
€S
Let (z*,y") be a maximizing sequence :

wi(z™,y") > mp — = >m —

S|~
3|

which implies that
Colz™|” = Cy|z™|" < C.

Hence, z" is bounded and similarly y™ is bounded. Consequently, there exists a converging
subsequence of (z”,y") and the limit (zx,yx) € S x S realizes the maximum of wi. As

’ ! [ k
v(zk) — V' (ye) —eWo(zk)” + Wolye)" ) = ms + §|-’Dk -yl >0

for any k,we conclude that zi, yr and k|zx — yi|? are bounded. Moreover, for any subsequence
of (zk,yx) converging to (Z,y) when k goes to infinity, we have & = § and using m; > m, we
get

lim sup E|:vk —yl? <v(2) —v'(3) = 2eW,(2) —m <0

k—o0

Consequently (45) and (46) are satisfied. ]

Now, since m > 0 and v < v’ on 8§, the limit Z is in §; then for any converging subsequence of
(zx,yx), we have (zx, yx) €§ X § for k large. We apply now Theorem 3.2 with V = v — eW,
and V' = v+ eW," at the point (zk,y%) In § X § . We obtain that there exist X,Y in §™*!
satisfying (42) such that

(P, Xi) = (k(a:k —yr) + 57'Wu(xk)71—113, X +ev'(7 - l)W‘,(mk)’l’zA) € j2'+v(zk) (47)

(25 Ye) = (K(zk — yi) — eYWalun)" "B, Y — 7' (v = DWW, (k)" ?A) € J>"v/(yx)  (48)
with p= (1,1 — 1y,...,1 —v,) and A = p'p
Denote

F(X,p,r,) = max (FO(X p,7,z) + u"(po), max G:(p), max H, (p))

1 n
Fo(X,p,r,z) = 5 20231:2/\’,, E a;zpi + raopo — O,

i=1
Gi(p) = —(1 + X)po + pi,
Hi(p) = (1 — pi)po — pis
where X = (X;)ij=0,..n, P = (Pi)i=0,....n-

15



Note that although F' is continuous, F takes its values in RU {+o0}, since F' = +0o when
po < 0. This leads to a difficulty to obtain a similar property as (3.14) in [8] and consequently
straightforward application of the results of [8] can not be used. Moreover, as the discount
factor é appears only in the Fy component of F and not in G; and F;, property (3.13) of [8],
that is

F(X,p,r,z)— F(X,p,s,z) < =A(r —s) for r > s, with A >0,

is not satisfied.
Using that v is a viscosity subsolution and v’ is a viscosity supersolution of (11) (that is of

F(D?v, Dv,v,z) =0 in §), and using (47) and (48), we get :
F( Xk, p,v(zs), k) 2 0,
F(Ye, ph v'(3x), 9x) < 0.
This last inequality implies G;(p;) < 0 and H;(p,) < 0 and by linearity of G; and H;, we get
Gi(pe) = Gi(ph) — €Y Wolan)" ™ + Wa(n)" ™)X + 13) < 0
and
Hi(p) = Hi(pl) + e¥ Wolzi)” 7" + Wi (yi)” ') (i — ) < 0.
This leads to
Fo( Xk, pr, v(zx), zx) + u*((pr)o) = 0 > Fo(Yk, by, v'(yx), yi) + v ((Pk)o)-

Using now that u* is non increasing and (p})o < (px)o, we obtain

Fo(Xk,Pk, 'U(.’I,’k), .’L'k) - FO(}/kap;c’ v,(yk)v yk) 2 0.

Hence,
0 < 33 (@ K= (IFYa) + (3 el () = (00 + (2o — (o))

—6(v(ax) — o/(31) — EWlan)™ + Walu)"))

re(F(@e) + f(w)) (49)
with

f2) = Ll - W A
ia' iy WV(x)’Yl—lf’i+7'$o’71Wu( )‘7 5o
—§W, ()"

Since v’ is such that (A.1) is satisfied, f(z) < 0 Vz € R™. Using (42), we see that the first
term of the r.h.s. of (49) is bounded by Ck|z; — yi|?>. Hence,

0< Ck‘:l?k - yk|2 —bémy k——> —ém < 0.

We thus get a contradiction and Proposition 3.5 is proven. u
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4 Change of variables
4.1 Reduction of the state dimension
The value function V defined by (7) has the homothetic property [9]
Vp >0, V(pz) =p"V(z). (50)

Consequently, the (n + 1)-dimensional VI (11) satisfied by V can be reduced to a n-
dimensional VI by using the following homogeneous model, that is by considering the new
state variables :

p=1xo+ Z(l — )T (net wealth)
(1 =)z (51)
Yi = —p'——i, 1=1,...,n (fraction of net wealth invested in stock 1)
p

and the new control variable

c==° (fraction of net wealth dedicated to consumption). (52)
p

The function V(z) can be written as

PYn
V(J; = 1 — yt ey
) Z #1) (1- #n)) (53)
= p"W(y)
where the function .
Y Yn
W) =V(1-Y v, . 54
(y) = V( ;y TS R a (54)
is defined in \
~ n " 1 + Hi -
:{y:(ylv"'ayn)ERal'— 1 — {l} 20}
=1 t
with {y}~ = max(0, —y).
Using inequality (37) we deduce that the function W is bounded :
Yn
0 < W(y) <ep(l - i <a 55
W) ;y (1—u1) (1—un)) (%)
The function W satisfies
max(AW + u"(BW), ma<x LW, max MW) =0 (56)
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in § with the boundary condition W = 0 on 63, where

AW = a b W, 57
szl Jka ayk JX:I Ja ( )
BW = AW —) y; 58
JZI JayJ (58)
7 ow Ai + pi
LW = — g
ay,- ( 1 - i ) BW. (59)
~ ow
MW = _ay.' (60)
and
ajk = %203(51&—%)(51:'—%) (61)
1=1
bJ = Y; Z[ U Yi + o; — r]((le i), (62)
7 -1 5,
B = 6— 7(r+2[ a; — )y + aly?]). (63)

2

The symbol §;; denotes the Kronecker index which is equal to 0 when : # 5 and equal to 1
when ¢ = j.

A +
+ #‘ , and so does

Remark 4.1 Equation (56) only depends on v = (¥;)i=1.., With v; =

the function W. Let us denote by V) , the value function (7) in order to express explicitly the
dependency of V on the transaction costs and by W, , the solution of (56). We have :

Wiuly) = Woo(y)

64
= UOl—Zynyls"',yn ( )

Using (50),we get
Vau(z) = Vio(zo, (1 — )y, .o, (1 — pn)zy). (65)
Consequently, it is sufficient to compute the value function V when the transaction costs on
sale are equal to zero. [ |

Using the properties of V and (56), we deduce that W is concave, non negative and non
decreasing with respect to each coordinate y;.

18



4.2 Additional treatment for numerical purpose

Our purpose is now to solve equation (56).
In order to simplify the numerical computation, we restrict the admissible region S to

+ — {(L‘EIRn-}-l’ 131,...,.’1?"20, I0+Z(1 _ﬂi)xi ZO}

i=1

that is, we suppose that the amounts of money allocated in the risky assets are non negative,
while the amount of money in the bank account can be negative as long as the net wealth
remains non negative. This is not restrictive since, when a; > 7, the no-transaction cone is
inside S* and a trajectory which starts in S* remains in S*(see [9] for n = 1).

This leads to the study of the VI (56) in the domain (R*)". No boundary condition has to
be specified since the VI degenerates on {y; = 0},7 = 1,...,n. Note that the function W has
bounded derivatives in (R*)".

We proceed with a technical change of variables which brings (R*)™ to [0, 1]*, namely :

] o) = T101 - =), )

1=1

__Y -
zi=———, 1=1,...,n.
1+
The function % is bounded and concave with respect to z;,7 = 1, ..., n, has bounded derivatives,
and satisfies :
- _ cv
max( Ay + sup(—C By + 6(z)—), max L.zl), max Mz/)) =0 in(0,1)"
c>0 “y 1<i<n

(67)
Yp=00n[0,1]"N{z=1} Vi=1,...,n

where

_ n 9%
Ay = Z JkazJ +Z

7,k=1
B _ n n 81[)
By = (y- ;zj) Z=: 1_21 32:]
L = (1= =)0+ (- =)28) -\ By,
_ oy

M = —(1=2)(+(1=2)50),
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with

= 77 1
B o= B-Yah- X at
1=1 2.k=1
7%
= zi 2;
= D 0%k — )& =)

and B defined in (63).

The numerical study is organized as follows : equation (67) is solved by using the numerical
methods explained in section 5 below. Then a reverse change of variable is performed in order
to display the numerical results for problem (56) (see section 6).

5 Numerical methods

We consider equations of the form :

{ s (AW +u(P)) =0 in 0= (0,1)"

(68)
W =0 on I

where A is a second order degenerated elliptic operator

APW(x) = z”:: a;;(z, P)%(z) + i_n: bi(z, P)%V‘—(x) — B(z, P)W(x)

with m
> aij(z,P)pin; >0,  B(z,P)>0 VzeQ ne€R™, P € P
ij=1

P,q is a closed subset of R* and T is a part of the boundary 8Q, which consists of faces of
the m-cube . In 90\ T, the operator A” is degenerated for any P and no boundary condition
is needed.

Bellman equations are clearly equations of this type, whereas variational inequalities like
(67) can also be formulated in this form by using an additive discrete control which selects the
equation which satisfies the maximum.

The numerical study of equation (68) consists in two steps : first, discretize (68) by using
the finite difference method, and then solve the discrete equation by means of an iterative
method. This procedure and the computer implementation are treated by using the expert
system Pandore [5, 2] that has been developed to automate studies in stochastic control.
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5.1 Discretization

Let h = 1/N (N € N*) denote the finite difference step in each coordinate direction, e; the
unit vector in the i** coordinate direction, and = = (2;,...,2m) a point of the uniform grid
Q= QN (hz)" \T. Equation (68) is discretized by replacing the first and second order
derivatives of W by the following approximation :

OW  W(z + he;) — W(z — he;)

or )
Wiz +he) = Wiz)  hen bz, P) >0
oW h
T~ (70)
' Wie) - ”h/(z —hed  hen bz, P) < 0.
32W( ) W(z + he;) — 2W(z) + W(z — he;) (71)
ax? T ~ h,2 I
o0*wW (I) W(.’L‘ + he; + hej) — I’V(.’L‘ + he; — hej)
0z;0z; 4h?
+ W(z — he; — he;) — W(z — he; + he;) for i # ;. (72)

4h?

Approximation (69) may be used when A is uniformly elliptic, whereas (70) has to be used
when A is degenerated (see [17]). These differences are computed in the entire grid Q,, by
prolonging W on the “boundary” of Q4 in (hZ)™ :

W(z) = 0 Vz e T N(hZ)"
W(z —he;) = W(z) Vze{z;,=0}nQ,
Wz + he;) = W(z) Vze {zi=1}NQ.

We obtain a system of N, non linear equations of N, unknowns {W,(z), z € Q,} :

Prga%ad(AfWh +u(P))(z)=0, Ve, (73)

where Ny = 2, ~ 1/h™. Let P, denote the set of control functions P : Q) — P,y and V, the
set of functions from €, into R. Equation (73) can be rewritten :

max (APW, +u(P)) =0, W, € V,.
PG'Ph( w Wh + u(P)) h €W

Then, the operator Af, depending on P in P}, maps Vj into itself (or is a Ny x Nj, matrix).
Because of the degeneracy of the operator AF at some points of the closed m-cube 2 and the

presence of mixed derivatives, AY does not satisfy the usual Discrete Maximum Principle (i.e.

(APWi(z) <0, Vz e Q) = (Wi(z) >0, Vz € Q4)). Consequently, equation (73) may
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not be stable, even for small step h. However AY can be written as the sum of a symmetric
negative definite operator and an operator which satisfies the Discrete Maximum Principle; we
thus infer the stability of AL which is confirmed by numerical experiments.

Two algorithms are available to solve equation (73), (i) the classical value iteration (suc-
cessive approximation) algorithm and (%) the (Full) Multigrid-Howard algorithm based on the
“Howard algorithm” (policy iteration) and the multigrid method [1, 2]. The former is simpler
but has a larger complexity.

Both algorithms are described below but the numerical tests given in the following sections
are performed by using the second one only.

5.2 The Value Iteration method
Suppose that the N, x N, matrix A,’: satisfies
Ny
(AD); 20, Vi#j, S(AF)y=-A<0, Vi (74)

=1

which implies that Af satisfies the Discrete Maximum Principle. Equation (73) can be rewritten
as

1 P

where k > 0 and MP = I 4 k(AF + M) is a Markov matrix (I is the Ny x N, identity
matrix). Equation (73) can then be interpreted as the Dynamic Programming equation of a
control problem of Markov chain with discount factor 1/(1+ Ak), instantaneous cost ku(P) and
transition matrix M

Wi,

- k
WX D, T Ry

n=0

u(Xn, Pr).

The value iteration method [4] consists in the contraction iteration

1
14+ Ak

Wt = max(MPW™ + ku(P)). (76)

€Py
The contracting factor is 1/(1 + Ak) = 1 — O(h?) and the complexity® of the method is

—logh

2 ) = O(=h"*™ log h) = O(N, ™™ log V).

Ch = O

When the operator AY does not satisfy the Discrete Maximum Principle, equation (73) cannot
be interpreted as a discrete Bellman equation. Nevertheless, the iterative method (76) can still
be used if we find A and k such that the L? norm of MF (which is no more a Markov matrix) is
lower than 1 for all P. This condition may be obtained for instance when the discount factor
B(z, P) is large enough.

1The number of elementary operations for computing an approximation of the solution of (73) with an error
in the order of the discretization error.
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5.3 The Multigrid-Howard algorithm

Another classical algorithm is the Howard algorithm [16, 3, 4] also named policy iteration. It
consists in an iteration algorithm on the control and value functions (starting from P° or W°) :

for n>1 P" € Argmax(A; W™ ! + u(P)) (77)
PeP,,
for n >0 W™ issolution of AF W + u(P") = 0. (78)

When AF satisfies the Discrete Maximum Principle, the sequence W™ decreases and converges
to the solution of (73) and the convergence is in general superlinear (see {3, 4, 1, 2)).

The exact computation of step (78) is expensive in dimension m > 2 (the complexity of
a direct method is (’)(N,?-wm)). We thus use the multigrid-Howard algorithm introduced in
[1, 2] : in (78), W™ is computed by a multigrid method with initial value W™~1. The advantage
is that each multigrid iteration takes a computing time of O(N,) and contracts the error by
a factor independent of the discretization step h. For a detailed description of the multigrid
algorithm, see for example [21, 15, 14].

Let MF denote the operator of an iteration of the multigrid method associated to the
equation AW + u(P) = 0. Starting from W9, we proceed the following iteration :

(77)
n0 _ n~1
v L v ; P (pni-1 (79)
for n>1 ¢ fori=1tom,, W =M"(W1)
W" = Wnmn

This algorithm is converging to the solution W} of (73) if W© is sufficiently close to W} and
my, is large enough (independently of the step k) [1, 2].

Let us now introduce the FMGH algorithm which solves equation (73) from any initial value
Wo.

5.4 The Full-Multigrid-Howard algorithm

This algorithm fully uses the idea of the Full-Multigrid method (FMG) (see [1, 2]).

Let us consider the sequence of grids (€)1 of steps hy = 27% and denote by I the
operator of the m-linear interpolation from V,, into Vs,,,.

If Wy € Vi, Wip1 = IF YW, is defined by :

Wk.H(.’l:) = Wk(:lt) V€ C Qk+1
W, W,
Wk+1(x _2*- y) = k“(x); k1 (y) Va,y € Qryr such that %1 € Qi

and z and y are in the same cell of €,

where a cell of Q4 is a m-cube of width & included in Q and with vertices in (hz)™.
The Full-Multigrid-Howard (FMGH) algorithm is defined as :

For 1 < k <k,
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W} is the fi-th iteration of the sequence defined by (79) in the grid Q of
initial value WY.

For1 <k <k,
Wi, = T

Under appropriate assumptions (see [1, 2]), the error between W and the solution W} of
(73) with h = hy is in the order of the discretization error, for any k. This property is realized
for any initial value W}, if the numbers m, and @ are large enough (but independent of the
level k). Consequently, this algorithm solves equation (73) (with an error in the order of the
discretization error) with a computing time of O(Ny).

6 Numerical results

Equation (56) is solved in (R*)" for n = 1 and n = 2 and various numerical values of the
parameters. Numerical results are gathered at the end of the paper. We recall that, because
of (65), we can consider, without restriction, the case p = 0.

We are mainly interested in the determination of the regions where the different transactions

take place.
Remark 6.1 The regions B; and S; defined in (17) and (18) are characterized by

B; = {z€8, LiW(y) =0, y given by (51)},
S; = {z€8, M\W(y) =0, y given by (51)}.

where the operators L; and M; are defined in (59) and (60).
By extension we use the notation :
Bi = {y € (R*)", LiW(y) = 0},

Si = {y € RY)", M;W(y) =0},

NT: = (R*)"\(B, U S) (80)
NT=ﬁNn
||
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o

6.1 One risky asset

s
Numerical tests are performed with v = 0.3, § = 10%, r = %, a; = 1%, on = 30% and
A=\ =24,68o0r 10%. e

The value function W, solution of (56), and the optimal consump#ion C are displayed in
Figures 3 and 4. /

S

The regions B, and S; are of the form (see section 7) : By= [0,7~] and S, = [r*, +00)
with 0 < 7= < 7+, The function 1, — lg, is displayed in Figure 5. It is equal to 1 in B, 0 in
NT] and —1 in S].

The functions #* and 7~ are displayed in Figure 6 as functions of A. The initial point
71(0) = 7~(0) has been set to 7}, where 7} is the optimal proportion of risky asset in the
Merton problem (defined below).

These results are similar to those obtained by Davis and Norman [9].

6.2 Two risky assets

We set v = 0.3, § = 10%, » = 7% and fix the parameters of the first risky asset to a; = 11%,
o1 = 30% and A\ = 2%.
Four tests are performed with

test 1: o, =15% 0,=35% X, =5%,
test 2: a; =15% o, =35% X, =2%,
test 3: a; =15% o, =35% A, =10%,
test 4 : a;, =20% o0, =50% A =5%.

For test 1, the value function W, the optimal consumption C and their contour lines are
displayed in Figures 7, 8, 9 and 10. Then the partition of the domain is displayed for each test
in Figures 11, 12, 13 and 14.

Note that, at first sight, the boundaries of the regions B; and S; seem to be straight lines of
equation y; = constant. This would mean that the investment policies are decoupled, although
the dynamics are correlated. In fact, when the cost for purchase A, grows, the region NT;
grows as expected but the boundaries of S; and B, are also perturbed. Moreover, a variation
of ay and o, affect both NT; and NT;. A theoretical study of the boundaries is done below,
in order to confirm these remarks.

7 Theoretical analysis of the optimal strategy

7.1 No transaction costs : the Merton problem

When the transaction costs are equal to zero, the optimal investment strategy is to keep a
constant fraction of total wealth in each risky asset (see {23, 9, 12, 26]). Indeed, set A = p =0
in equation (56). We obtain :
| : ow oW
max(AW + «*(BW), max —

maxX{——
1<i<n Qy; * 1<i<n Oy,

))=0 (81)
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which is equivalent to

{ W = constant, (82)

—BY)W +u*("W) <0, Vye (RY)",

with B(y) defined in (63). Uniqueness of the solution of (82) is not insured since assumption
(A.2) is not satisfied, but the function W defined in (54) is the minimal solution of VI (81).
Hence, we have

yé?maggn{—ﬂ(y)w +u'(YW)} =0. (83)

Equation (83) coincides with the Bellman equation of the problem where the proportion

y: is considered as a control variable [9]. Under assumption (A.1), the optimal proportion,
denoted by 7} and called the “Merton proportion” is given by

o; —T
T = =
o1 -17)

The optimal fraction of wealth dedicated to consumption is

¢ = 1_}7 (5_7(T+2(11—7)i(m‘:)2)>’

and the value function W is equal to

C(r-1)
T
The regions “sell :” and “buy ¢” are characterized by
B; = {ye®")", yi<w},
Si = {ye ®Y)" w27}

Note that these regions are not obtained by merely setting A = ¢ = 0 in equation (80) but
by taking the limit of these expressions when A and p tend to 0.

7.2 A general shape of the transaction regions

In this section, we derive formally from VI (56), without numerical computation, the general
shape of the transaction regions, given in Figure 1. To that purpose, we assume the function W
to be C? in the interior of (R*)". Although this is not true in general, what is done below can
be adapted by using the theory of viscosity solutions. This approach is used for example in {12]
to obtain regularity results for the value function V and general properties of the transaction
regions for n = 1.

From (56), we have MW < 0; besides, the concavity of W implies that MW = _(;_V_V is
v:

non decreasing with respect to y;. Consequently, the region S;, defined in (80) can be written
as

S;={y e ®H", vi 27} (9)}
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Figure 1: General shape of the transaction regions

+

where 7 is some mapping of

g = (y13' . '3yi—l7yi+1" .. ,yn)'

To obtain a similar characterization for B;, we consider another change of variables (p’, y’)
obtained by substituting —A; for g, in (51) for some fixed z € {1,...,n}. Proceeding as above,
and using Remark 6.1, we obtain :

Bi={y e (®RY", yl <77 (7))} (84)
with (14 2) .
’r_ + Ai)yi At __ -
A and V=T (85)

Since y! is non decreasing with respect to y;, we get

1
Bi={y € ®"", yi <n] 1)}
i={ye®", < Aserswnil)
We suppose 7} < +o0o and #7 > 0 which imply that =} and 7] are continuous functions
and that the regions S; and B; are connected. '
We restrict now to the case n = 2, but what is done below can easily be generalized to

n > 2.
~ ow
In §;, MW = ~ B0 0. The function W is thus constant with respect to y; in S;.
Consequently the pieces of boundaries 3B, and 95, included in S, are straight lines of equation
y2 = constant. Similarly, using the change of variables (85) with ¢ = 1, we infer that the pieces
of boundaries 0B, and 85, included in B, are straight lines of equation

Yy = — %2 _ constant.

B 1+ My

By symmetry, we get similar properties for the boundaries dB; and 0S; as displayed in
Figure 1. No additive property has been obtained for the boundary of NT.
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A question which arises now is how is located the “Merton proportion” =*. In general, =*

is not necessarily in the region NT. Nevertheless, we have

Proposition 7.1 We use the notation of Figure I :

A= (al,az) = 851 N 852, B= (bl, bz) = 851 N 3B2,
C = (Cl,Cz) = BBl n 6Bg, D= (d],dz) = aBl N 352,
’ Cy f b1 ' C2 ' d2

1)

AT T e YT T1F b 1+ Mo’ 27 T+ 0d,

and set

=0 14X =\ A
+o00 otherwise.

, 1
. {———"—— if mr<l4—

Then, we have
/ i’
7('; Sahbla 7['; Sa%dz
and

7 ~ % ' ~
di,cp £ 71, by, ¢y < 7.

Proof : We prove ] < a;, i = 1,2. The other inequalities are obtained similarly by using the
change of variables (85). In S; N S;, the function W is equal to a constant Wy, and satisfies (56)
which reduces to :

—B(y)Wo + u™(vWo) <0
with B(y) given in (63).

Hence,
1 1
=B+ (A=) TWy <0 VyeSinS,.

On the other hand, the point A is in S; N S; N NT. Assuming that W is C? at point A, we
obtain

AW + u*(BW) =0 (86)

and .
~B(A) + (1 — /"Wy = 0.

Consequently
B(y) = B(A) Yy e 51N Sz = [a1,4) x [az, +00).

As the function B(y) is of the form By(y1) + B2(y2) with quadratic functions §;, we get

Bi(y:) > Bi(a;) Vyi > a,.

Consequently, a; > Argming3; = «}. u
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7.3 Special case of no transaction cost for one of the risky assets
We suppose here n =2, Ay = ;3 =0, A2 #0, g2 = 0. The VI (56) then reduces to

ow ow ow oW
, — A BW, — 0 87
6?!1 ayz ? ayl ayz) (87)
which implies that the function W is independent of y;. Consequently the boundaries of B,
and S, are horizontal straight lines of equation y, = 75, y2 = 77 respectively. Since equation
(87) holds for all ,, and W is the minimal solution, we have

max(AW + u*(BW)

max(max(AW + u*(BW)), Z—W — A BW, —Z—W) 0.

v120 Y2 Y2

The regions B, ~and S1 are delimited by the curve of equation y; = m(y;) where
m1(y2) = Argmax(AW + u"(BW)) is the solution of

v 20
o'W ow
yldfyga—{ - 2(v —1)oiyr + (a — T))yza— +7((a1 =) + (v = Doy )W = 0.
Y2 Y2
Consequently
i (y2) T BW
1\y2) = .
Bw 4 Y2 9BW
1 -5 Oy,

In particular 71(0) = 77 and m1(y2) = (1 + Ay2)7y in Bz. In S;, W is constant and
m1(y2) = 77 (see Figure 2). Moreover, by using the concavity of W, we obtain the estimate

-

O < 7r1(y2) S .__.11____

1—)\2.1/2'
Y2
|
SgnBl Szﬂsl
Ly
NTQﬂB] \NTQOSI
Ty
BgmBl /32051

Y1

Figure 2: Boundaries of the transaction regions in the case of no transaction cost for the first
risky asset.

29



References

[1) Akian M. (1990) Analyse de I’algorithme multigrille FMGH de résolution d’équations
d’Hamilton-Jacobi-Bellman. Analysis and Optimization of Systems. Lecture Notes in

Contr. and Inf. Sci., 144, Springer Verlag, 113-122.

(2] Akian M. (1990) Méthodes multigrilles en contréle stochastique. Thése de I’Université
Paris [X-Dauphine.

(3] Bellman R. (1957) Dynamic programming. Princeton University Press.

(4] Bellman R. (1971) Introduction to the mathematical theory of control processes. Academic
Press.

[5] Chancelier J.Ph., Gomez C., Quadrat J.P., Sulem A. (1987) Automatic study in stochastic
control. In Mathematics and its Applications. IMA, 10, Springer Verlag, 79-86.

[6] Chow P.L., Menaldi J.L. and Robin M. (1983) Additive Control of Stochastic Linear Sys-
tems with Finite Horizon. SIAM J. Control and Optim., 23, 858-899.

[7] Constantinides G.M. (1986) Capital market equilibrium with transaction costs. J. of Po-
litical Economy, 94, n°® 4, 842-862.

[8] Crandall M.G., Ishii H., Lions P.L. (1992) User’s guide to viscosity solutions of second
order partial differential equations. Bull. Amer. Math. Soc., 27, 1-67.

[9] Davis M., Norman A. (1990) Portfolio selection with transaction costs. Math. Oper. Res.,
15, 676-713.

[10] El Karoui N. (1981) Les aspects probabilistes du Controle stochastique. Lectures Notes in
Mathematics, 876, Springer Verlag, 513-537.

(11] Fitzpatrick B., Fleming W. (1991) Numerical Methods for an Optimal Investment-
Consumption Model. Math. Oper. Res., 16, 823-841.

(12] Fleming W.H., Soner H.M. (1993) Controlled Markov Processes and Viscosity Solutions,
Springer Verlag, New York.

[13] Fleming W.H., Zariphopolou T. (1991) An optimal investment-consumption model with
borrowing. Math. Oper. Res., 16, n° 4, 802-822.

[14] Hackbusch W., Trottenberg U., eds. (1981) Multigrid methods. Lecture notes in mathe-
matics, 960, Springer Verlag.

[15] Hackbusch W. (1985) Multigrid methods and applications. Springer Verlag, Berlin, Hei-
delberg.

[16] Howard R.A. (1960) Dynamic programming and Markov process. MIT.

30



[17] Kushner H.J. (1977) Probability methods in stochastic control and for elliptic equations.
Academic press, New York.

[18] Lions P.L. (1983) Optimal control of diffusion processes and Hamilton-Jacobi-Bellman
equations. Part 1 : The dynamic programming principle and applications. Comm. in Par-

tial Diff. Equ., 8 (10), 1101-1174.

[19] Lions P.L. (1983) Optimal control of diffusion processes and Hamilton-Jacobi-Bellman
equations. Part 2 : Viscosity solutions and uniqueness. Comm. in Partial Diff. Equ., 8

(11), 1229-1276.

[20] Magill M.J.P., Constantinides G.M. (1976) Portfolio selection with transaction costs. J.
Econ. Theory, 13, 245-263.

[21] McCormick S.F., ed. (1987) Multigrid methods. SIAM frontiers in applied mathematics,
5.

[22] Menaldi J.L., Robin M. (1983) On some Cheap Control Problems for Diffusion Processes.
Trans. Am. Math. Soc., 278, 771-802.

[23] Merton R.C. (1971) Optimum consumption and portfolio rules in a continuous time model.
J. Economic Theory, 3, 373-413.

[24] Meyer P.A. (1976) Un cours sur les intégrales stochastiques. Séminaire de Probabilités.
Lectures Notes in Mathematics 511, Springer-Verlag, Berlin, 245-400.

[25] Nisio M. (1976) On non linear semigroup attached to stochastic optimal control. Publ.
Res. Ins. Math. Sci., 12, 513-537.

26] Shreve S.E., Soner H.M. Optimal investment and consumption with transaction costs.
Preprint.

[27] Shreve S.E., Soner H.M., Xu V. (1991) Optimal investment and consumption with two
bonds and transaction costs. Mathematical Finance, 1, n°3, 53-84.

[28] Sulem A. (1989) Application of stochastic control to portfolio selection with transaction
costs. Rapport de recherche Inria, 1062.

[29] Taksar M., Klass M.J., Assaf D. (1988) A diffusion model for optimal portfolio selection
in the presence of Brokerage fees. Math. Oper. Res., 13, 277-294.

(30] Zariphopolou T. (1992) Investment-Consumption model with transaction fees and Markov
chain parameters. SIAM J. of Control and Optim, 30, 613-636.

31



15.89

15.84

15.79 ]

15.74 3

15.69

—00 On & W
CRRAR

e 2y
wunnn
R

Figure 3: Value function W forn = 1,7 =10.3, 6§ = 10%, r = ™%, a; = 11%, o, = 30% and
u=0.
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Figure 4: Optimal consumption C forn =1,y =0.3, § = 10%, r = 7%, a; = 11%, o, = 30%
and p = 0.
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Figure 5: Graph of 1p, — 15, forn=1,7v=103,6 =10%, r = 7%, oy = 11%, o1 = 30% and
p=0.

0.70 T
0.60
0.50

0.40

0.20

Figure 6: Graph of 7t and 7~ forn =1,7=0.3, 6§ = 10%, r = 7%, o, = 11%, o, = 30% and
u=0.
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Figure 7: Value function W for y = 0.3, 6 = 10%, r = 7%, a = (11%, 15%),
o = (30%,35%), A = (2%, 5%) and u = (0,0).
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Figure 8: Value function W for v = 0.3, 6 = 10%, r = 7%, a = (11%, 15%),
o= (30%,35%), A = (2%, 5%) and u = (0,0).
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Figure 9: Optimal consumption C for v = 0.3, § = 10%, r = 7%, a = (11%, 15%),
o = (30%,35%), A = (2%,5%) and g = (0,0).
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Figure 10: Optimal consumption C for v = 0.3, § = 10%, r = %, a = (11%, 15%),
o =(30%,35%), A = (2%,5%) and p = (0,0).
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Figure 11: Boundaries of the regions B;, S; and NT; for v = 0.3, § = 10%, r = 7%,
a = (11%,15%), o = (30%,35%), A = (2%, 5%) and u = (0,0).

Figure 12: Boundaries of the regions B;, S; and NT; for vy = 0.3, 6 = 10%, r = 7%,
a=(11%,15%), o = (30%,35%), A = (2%,2%) and y = (0,0).
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Figure 13: Boundaries of the regions B;, S; and NT; for v = 0.3, 6 = 10%, r = 7%,
a = (11%,15%), o = (30%,35%), A = (2%, 10%) and p = (0,0).
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Figure 14: Boundaries of the regions B;, S; and NT; for v = 0.3, 6 = 10%, r = 7%,
a = (11%,20%), ¢ = (30%,50%), A = (2%,5%) and p = (0,0).
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