Rate of convergence of a stochastic particle method for the Kolmogorov equation with variable coefficients

Pierre Bernard 1 Denis Talay 2 Luciano Tubaro 3
2 OMEGA - Probabilistic numerical methods
CRISAM - Inria Sophia Antipolis - Méditerranée , UHP - Université Henri Poincaré - Nancy 1, Université Nancy 2, CNRS - Centre National de la Recherche Scientifique : UMR7502
Abstract : In a recent paper, E.G. Puckett proposed a stochastic particle method for the non linear diffusion-reaction P.D.E in [0,T] x R (the so-called "KPP" (Kolmogorov-Petrovskii-Piskunov) equation) :where 1-uo is the cumulative function, supposed to be smooth enough, of a probability distribution, and f is a function describing the reaction. His justification of the method and his analysis of the error were based on a splitting of the operator A. He proved that, if h is the time discretization step and N the number of particles used in the algorithm, one can obtain an upper bound of the norm of the random error on u(T,x) in L1(= x R) of order 1/NF(1;4), provided h = 0(1/NF(1;4) but conjectured, from numerical experiments, that it should be of order 0(h) + 0(1/A) without any relation between h and N. We prove that conjecture. We also construct a similar stochastic particle method for more general non linear diffusion-reaction-convection P.D.E.'s where L is a strongly elliptic second order operator with smooth coefficients and prove that the preceding rate of convergence still holds when the coefficients of L are constant and is in the other case : 0(A) + 0(1/A). The construction of the method and the analysis of the error are based on a stochastic representation formula of the exact solution u.
Type de document :
Rapport
[Research Report] RR-1924, INRIA. 1993
Liste complète des métadonnées

https://hal.inria.fr/inria-00074750
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 16:13:50
Dernière modification le : samedi 27 janvier 2018 - 01:30:43
Document(s) archivé(s) le : mardi 12 avril 2011 - 18:58:20

Fichiers

Identifiants

  • HAL Id : inria-00074750, version 1

Citation

Pierre Bernard, Denis Talay, Luciano Tubaro. Rate of convergence of a stochastic particle method for the Kolmogorov equation with variable coefficients. [Research Report] RR-1924, INRIA. 1993. 〈inria-00074750〉

Partager

Métriques

Consultations de la notice

294

Téléchargements de fichiers

77