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Abstract

In a recent paper [12], E.G. Puckett proposed a stochastic particle method for the non
linear diffusion-reaction P.D.E. in [0, T] x R (the so—called “KPP” (Kolmogorov-Petrovskii-
Piskunov) equation):

Ou
o Au = Au+ f(u)
u(0,-) = wa(")

where 1 — ug is the cumulative function, supposed to be smooth enough, of a probability
distribution, and f is a function describing the reaction. His justification of the method and
his analysis of the error were based on a splitting of the operator A. He proved that, if h is
the time discretization step and N the number of particles used in the algorithm, one can
obtain an upper bound of the norm of the random error on u(T,z) in L'(Q x R) of order

1/N i, providled h =0 (1 /N *), but conjectured, from numerical experiments, that it should
be of order @(h) + O(1/V/N), without any relation between h and N.

We prove that conjecture. We also construct a similar stochastic particle method for
more general non linear diffusion-reaction—convection P.D.E.’s

Ou _
o Lu+ f(u)
(0, ) = uo(")

where L is a strongly elliptic second order operator with smooth coefficients, and prove that
the preceding rate of convergence still holds when the coeflicients of L are constant, and is
in the other case: O(vVh) + O(1/VN).

The construction of the method and the analysis of the error are based on a stochastic
representation formula of the exact solution u.

AMS(MOS) classification: 35-04, 35K57, 60J15, 60J65, 65-04, 65C05, 65C20, 65M15, 65N15.



Résumé

Dans un article récent [12], E.G. Puckett a proposé une méthode particulaire stochastique pour
I’équation de diffusion-réaction non linéaire dans [0,T] x R (dite équation “KPP”, ou de Kolmogorov-

Petrovskii-Piskunov):

%:Au:Au+f(u)

u(0,-) = uo(")
out 1 —ug est la fonction de répartition, supposée suffisamment réguliére, d’une loi de probabilité, et f est
une fonction décrivant la réaction. Sa justification de la méthode et son analyse de ’erreur sont fondées
sur une décomposition (“splitting”) de ’opérateur A. Il montre que, si h est le pas de discrétisation
en temps et N le nombre de particules utilisées dans I’algorithme, une borne supérieure de la norme de
Perreur aléatoire sur u(T,z) dans L'(Q x R) est: 1/N%, pourvu qu’on ait la relation h = O (I/N%),

mais il conjecture aussi, & partir de résultats numériques, qu’elle devrait étre d’ordre O(h) + O(1/VN),
sans relation entre h et N.

Nous démontrons cette conjecture. Nous construisons également une méthode particulaire similaire
pour des équations de diffusion-reaction-convection plus générales

= Lut ()

“(0’ ) = “0(')

ou L est un opérateur différentiel du second ordre fortement elliptique & coefficients réguliers, nous
montrons que la vitesse de convergence O(h) + O(1/V/N) est conservée quand les coefficients de L sont
constants, et nous obtenons pour le cas général: O(Vh) + O(1/V/N) (sans relation entre N et h).

La construction de la méthode et ’analyse de I’erreur reposent sur une représentation probabiliste de
la solution exacte u.

AMS(MOS) classification: 35-04, 35K57, 60J15, 60J65, 65-04, 65C05, 65C20, 65M 15, 65N15.
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1 Introduction

1.1 Setting of the problem

In a recent paper [12], E.G. Puckett proposed a stochastic particle method for the non linear
P.D.E.in [0,T]) x R:

Ou
5 = Au = Au + f(u)

’U(O, ) = uO(')
where 1 — ug is the cumulative function, supposed to be smooth enough, of a probability distri-

bution, and f is a function satisfying properties ensuring, in particular, that the solution u(t,z)
takes values in [0, 1].

His justification of the method and his analysis of the error were based on a splitting of the
operator A; a rough presentation of the algorithm is the following;:

(A) initialization: one locates N particles on the real axis at positions zf with weights
wh (i = 1,...,N) of order &, such that the function @(0,z) = YN, wiH(X§ - z)(?)
is a good approximation of ug in L'( R); '

(B) approximation of the reaction: one numerically solves the O.D.E.

ov
F T f(v)

’U(O, ) = ﬁ(O, )
on a time interval of length h (this operation changes the weights of the particles);

(C) approximation of the diffusion: one numerically solves

ow
5=
w(0,-) = v(h,-)

Aw

by randomly and independently moving the particles, considered as independent Brownian
particles, during a time interval equal to h, each particle keeping its own weight;

(D) computation of the approximate solution: the value at time h and point z of the
approximate solution, @(h, z), is obtained by adding the weights of all the particles which
are at the right hand-side of z;

(E) iteration: at each time step, one performs the operations (B) (using u(ph,-) instead of

#(0,+)), (C) and (D).

lin all the sequel, H will denote the Heaviside function: H(y) =0 for y < 0, H(y) =1 for y > 0.




The upper bound of the random error on u(T, z) in L}(2 x R) is shown to be of order 1/N%,
provided h = O (I/N%)

In the last Section of the paper, Puckett presents numerical results which obviously show
that this estimation is very pessimistic, and conjectured that the rate of convergence should be
of order O(h) + O(1/v/N), without any relation between h and N.

We tried to prove this conjecture by keeping the idea of the splitting but changing the
technique used by Pucketlt to obtain some of his estimations. We could obtain a better rate
of convergence than 1/N* (we got 1/N7 provided h is of order 1/N7), but we can neither
get the right one, nor avoid a relation between h and N, mainly because we had to sum up the
approximation errors made at each step on the solution of the following P.D.E., where the initial

condition @(ph,-) is the approximate solution computed at step p=1,..., %:
Jw
—=A
ot~ Y
w(0,-) = u(ph, )

and these local errors appear to be of order %

Besides, the notion of splitting does not represent the basic operation of the algorithm, which
is the approximation of the measure %u(t, z)dz by a linear combination of Dirac measures at
points defined by the current positions of the particles, and coefficients in the combination equal
to the respective weights.

Thus we were lead to change our point of view.

Our objective was also to extend the algorithm to more general non-linear reaction—diffusion—
convection P.D.E.’s, namely

Ou
m = Au=Lu+ f(u) wn
(0, ) = uo()

where L is a strongly elliptic second order operator with smooth coefficients. A natural question
is then: WHAT MUST BE THE LAW OF THE MOTION OF THE PARTICLES ? A natural
attempt is to move the particles according to the law of a diffusion process whose infinitesimal
generator is L, but then one can see the computed solution (considered as a wave) propagate in
the opposite direction to the propagation direction of the exact solution !

The answers to this question and to the determination of the rate of convergence of the
algorithm that we will construct (which reduces to the Puckett algorithm when L = A) are
based upon an interpretation of the method completely different from the splitting of A in (1.1),
and an analysis of the error completely different from Puckett’s one. The main tool will be
a probabilistic representation formula of the exact solution, which will be deeply used to get
estimations on the rate of convergence. Let us underline that, applied to the Puckett algorithm
for the KPP equation, our estimations below prove Puckett’s conjecture.

We also stress that the stochastic particle algorithm we analyse is not the only one that
can be developed for non linear reaction—-convection—diffusion equations. In particular, Sherman
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and Peskin have proposed a numerical method (without proving the convergence) in [14], based
upon the simulation of branching Brownian Motions ; the term f(u) is used to describe the
law of the branching. For the convergence and the analysis of this algorithm, see the papers
of Chauvin & Rouault ([5], [4], [3]). The main difference between the two algorithms is the
following : the Sherman-Peskin particles have constant weights, but are highly dependent (they
are the living particles of the branching process) ; the Puckett particles are independent, but the
weights are dependent. For a finite horizon problem, the Puckett method seems to be simpler
to implement, and easier to use on a parallel computer ; but if the problem is, for example,
to study the asymptotic propagation velocity of a wave, then the Puckett algorithm cannot be
efficient, because there is no reason at all for which it would be stable (see our results on the
rate of convergence) ; in that case, the Sherman-Peskin method must be prefered, since it is
naturally related to the evolution of the solution, the particles concentration being large where
the gradient of the solution is large.

Our paper is organized as follows: in the second Section, we state our hypotheses and we
present a collection of elementary results, which are frequently used in the sequel; then, in the
third Section, we establish an original stochastic representation of the solution of the above non
linear P.D.E. ; this formula permits to construct a stochastic particle method, which reduces to
the splitting method of Puckett when the coefficients of L are constant; in Section 4, we state
our result on the rate of convergence; before proving it (Sections 6 and 7), we need to study
in an accurate way how dependent are the weights of the particles: this is done in Section 5.
Finally (Section 8) we consider the special case of constant coefficients.

Our numerical experiments for non constant coefficients examples do not add information
to the excellent last Section of the paper of Puckett (devoted to the KPP equation), so that we
refer to it.

1.2 Notation, conventions

In all the sequel, C will denote any deterministic strictly positive constant independent from

the time discretization step h and the number of particles N (but, most often, it will depend on
T).

We always will suppose: h €]0, 1], of the form %, where M is an integer.

When a stochastic process (X;) is such that Xo = y a.s. for some real number y, we will
often write (X:(¥))-

When we write O (h) or O (%), etc, it must be understood that the concerned quantity

(which may be random) can be bounded, uniformly in w if it is random, by, respectively, Ch or
%, the constant C being deterministic and uniform with respect to h and N.

2 Hypotheses and elementary results

2.1 Hypotheses

Let us assume



(H1) f is a C? function on [0,1] such that f(0) = f(1) = 0, f(u) > 0 for u € [0,1], L(uﬁ is
bounded in ]0,1] and continuous in 0;

(H2) b, o are two bounded C* functions; any derivative of any order is supposed to be a
bounded function; o is bounded below by a strictly positive constant;

(H3) 1 — ug is the cumulative function of a probability distribution.

In the Appendix, we will recall that, under (H1), (H2), (H3), for any T > 0, there exists
a unique classical solution in ]0,T] x R, taking values in [0, 1], to the problem:

du
— =Lu+ f(u
T f(u) 1)

lim;o u(t,) = uo(:) at every continuity point of wug

where

0 1, .82
L= b(z)—a—;+§0 (z)-ﬁ
In the sequel, we will often need an additional assumption on ug:

(H4) ug is of class C{°(R), and there exists strictly positive constants Cy, C; such that, for any
z in R: |uh(z)] < Cr1e=C27,

or
(HS5) ug is of the form
N
uo(z) = ) _wp H(zp - z)
=1

where the wi’s are positive and such that:

N -
Zw6=l

=1

2.2 Elementary results

In this short section, we will state easy consequences of quite classical results, needed in the
sequel.

We begin with the obvious (but useful) inequality:
+o0 2 2
Yz > 0, / e Vdy<Ce™ (2.2)

Then, let us see some consequences of (H2).



Let (¢;) a diffusion process whose infinitesimal generator has bounded and C°(IR) coefficients
by and oy, and is strictly elliptic.

We have the well known property (see for instance Friedman [6]): under (H2), there exists

A > 0 such that, for the density p;(y, z) of the law of (;(y), we have, for any y,z € R, for any
0<t<T: .

Y
pi(y,2) < %eXP (—(22/\3) ) , (2.3)

Therefore (for (ii¢) we apply (2.2)):

Corollary 2.1 Let((;) a diffusion process whose infinitesimal generator has bounded and C°(R)
coefficients, and is strictly elliptic.

Then there ezist C > 0 and A > 0 such that, VO < t < T, Vz,y € R, we have:

(i) P <2< S [ o (—("Q‘Af) ) &

(o) z— 2
(i) PG> 2 < & [ e (—( ~2) ) dz
(#17) P(C(y) < z)P(Gi(y) > ) < C exp (_(3/_2—/\%2)

Besides we observe that, under the above hypotheses, there exists a constant C > 0 such
that:

VO<t<T, VyeR, El&(y)-yl<CVI (24)

and (2)
Vt >0, 11141’100 C(y) =400 , a.s. (2.5)
y—

because the function y — &,(y) is a.s. increasing since its derivative is an exponential.

Lemma 2.2 Under the above hypotheses on (&), for some C > 0, for any T > t > 0, the
probability density p:(z,y) of the law of &(x) verifies:

l/ p(z,y)dz -1 < Ct
R

for any y € R.

2see Kunita [8], chapter 2, e.g. for the diffeomorphism property of stochastic flows associated to stochastic
differential equations.



Proof

Let L be the infinitesimal generator of (&;); then the function

Q(t’ y) = L pt(xs y) dz

verifies the equation (cfr. [6], chapter 6, Problem 10):

2
Fh(t9) = Iq(t.9) = 5 52(030)a(t, 1) - 3 (o(8)a(t,1)

lim g(¢,y) = 1

Denote by (o:(y)) the diffusion issued from y with infinitesimal generator (oo(z)og(z) —
bo(z))% + %03(2:)3%27. We have, denoting ag(z) = 02(z) (see again [6], chapter 6, e.g.):

att,9) = Bexp ([ (Jatasw)) - bi(an(u)) ds)

We recall that we denote by bg(-) and o¢(-) respectively the drift and the diffusion coefficients
of ({;). Let (B;) be a standard real Brownian motion.

The Euler scheme is defined by
Co+1 = G + b0((p) h + 00(&)(Bips1)n ~ Boh) (2.6)
and the Milshtein scheme is defined by

Co+r = Gp + bo(Cp) B + 00(Go)(B(p1)n — Bpr) + ’;‘UO(EP)U(I)(CP) ((B(p+l)h — Bpr)? - h) (2.7)

Now, let us recall a result of convergence rate (the part (i) is easy to show, the second is due
to Milshtein [9]):

Proposition 2.3 Let us suppose that the functions by and oo are of class C®, and that any
derivative is uniformly bounded. For the Milshtein scheme, we have:

(i) for any k € IN*, for any initial condition (o such that E|(o|** < oo, there ezists a strictly
positive constant C (depending only on T, and the bounds of by, 0o and their two first
derivatives) such that:

T N
VMEN, Vh=- Vp=1,...M, E|Gor|* + E|G|* < C(1 + E|Gl*) (2.8)

(i1) there ezists a positive constant C such that, for any initial condition y:
E|lGh-GIP<Ch® (2.9)
and, foranyp=1,....M = %:
E|¢pn — Gl* < C R (2.10)

10



Remark 2.4 When og is not a constant function, for the Euler scheme, one generically has

E|(n—Gl* < Ch
When by and o¢ are constant functions, there is no approzimation error.

Now, let us remark some consequences of the hypothesis (H4) or (H5).

Remark 2.5 Under (H3), (H4), one has:

/:oo uo(z)dz + /_000(1 —ugp(z))dz = - /:oo z dug(z) + /_ooo z dug(z)
/R l2] d(1 - up)(z) < +00

The hypothesis (H5) instead of (H4) implies:

400 0 . N .
| w4 [ (- e e sup [ubl 3 ledl
—00 1 =1

=1,...,

Lemma 2.6 Let us assume that ug verifies hypotheses (H3), (H4); then there ezists C > 0
such that:

+o0 0
/ u(t, z) dz+/ (1-u(t,z))dz < C
0 —00
for any t € [0,T).
If ug satisfies (HS5), then:

400 0 . N ..
/ u(t,z)dz + / (1-u(t,z))dz < C (1 + sup |wd] Z |z6|)
0 —oo ] N i=1

s=1,...

Proof

We will only treat the first case, the (H5) case asking just local and easy modifications.

Let us introduce the process (Z;(z)) solution of:
ng = b(Zg) dt + U(Zt) dBt , Zo(l‘) =2 (211)
The function % being bounded, the Feynman-Kac formula

u(t,z) = Fuo(Zi(z)) exp (/ot f: u(s, Zs(z)) ds)

11



yields (using (2.3)):
+00 400

/ u(t,z)dz < C / Euo(Zi(z)) do
0 0

C/ /uo(y) exp( 2/\:)2) dydz
c / /+°° - 22 dédy+ C /+ Uo(y) exp (—-(y;\f)2) dz dy

< c/ exp( w) dy+0/ uo(y) dy

and we apply the preceding Remark.
For the term [° (1 — u(t,z))dz, let us denote v(t,z) = 1 — u(t,z) and observe:

% = Lv—f(u):Lv+le—:£—(u)v

IN

IN

Vo = l—uo

and, by observing that the function 1—0—1)55(9 is bounded, we get:

0 0
/_ o(t,z)dz < C /_ (1 - Euo(Zi(z)) dz

from which we proceed as before.

The next lemma gives a control of the error due to the permutation of the expectation and
a non-linear function:

Lemma 2.7 Let g a function of C? class with bounded second derivative; then for any square
integrable random variable X we have

|Eg(X) - g(EX)| < C E(X — EX)? (2.12)
Proof
It follows easily from the Taylor formula

o(z) - 9(4) = 9 (0)(z ~ )+ 39"(y + 6(z — ¥))(z — )"

with 6 €]0,1[and y = EX.
|

Finally, we point out that the next equality will be used in several subsequent computations:
for any y,z € R:

[ -2)~ Bz - 2)lds = |y -4 (2.13)

12



3 Representation of the solution of (1.1) and construction of
the algorithm

3.1 A probabilistic representation of the solution
We introduce a probability space (2, F, P) equipped with a Brownian motion (B(t)) ; for

0 < s <t <T,F!will denote the least complete o—field for which all the B,— B, (s < u < v < t)
are measurable.

Theorem 3.1 Under {(Hi),i=1,...,3}, if ug is of class CZ°(R), we have the following rep-
resentation:

wte) = - [ B e ) e ([ £0uls 620 ds) | uh(2)dz

[TE (a0 -2 e ([ 0 uts o) ds) | da - uale)) 3)

where E: denotes the expectation computed with respect to a probability measure f’f equivalent
to P, and where (fo“tl(z)) denotes the solution to the following stochastic differential equation,
backward in time:

d€; 0 (2) = —0(&51(2)) dBs — {8(£51(2)) — (€54 (2)) 0'(&54(2))} df 62
chl(z) =2z .

(Bs) being a (}})gd-i’f Brownian motion (in backward time), and d denoting the backward
stochastic integral (3).

Proof
The function v(t,z) := %(t, z) satifies the following equation:
v 1, 0% 1\ OV
[ Z2) = Lo2@2202)+ (b2) + 0(2) () 221 )

\ +(0'(z) + f ou(t,z))v(t,z)

v(0,z)

up(z)
By applying the Feynman-Kac formula we obtain:

ot ) = B [us((2)) exp { [ BV + £ ot = s, V(@) ds ] (3.3)

3For a definition, cfr. Kunita [8], end of chapter .

13



where (Y;) is the solution to:

dY; = (5(Yy) + o(Y:) o'(Y1)) dt + o(Yy) dB; (3.4)

Consequently, recalling that 1 — ug is increasing and that u(t,z) — 1 as z — —oo (see
Lemma (2.6)):

wta)= - [ u(iv) exp { [ W) + 1ot - 5, Ya(w)lds} dy

As we will see below, the particles algorithm is based on approximating the measure uy(y) dy

N i 6 .. : —
by a measure of type 37~ wj 6,:; that suggests to perform the change of variable z = &o.e(y),
where £o¢(-) is the flow associated to the stochastic differential equation (3.4); hence we set

y = &5 (2).
Using results of the second chapter of Kunita [8] we have, for § < t:

G =2~ [ o(E}()dB, - [ b€zt ds

where JB@ denotes the “backward” stochastic integral.

One can infer:
0 _ ¢, o ._ 5 t o _
e HOE SO A CHO N HO LR M CH O HO R
from which

i) = ([ {-bEien - 3oGien} a0 - [ o(Ei) do)

a=654(2) }

exp { /0 ' B GHOE %a”(ﬁ;}(z))] ds — /0 t a'(é;,,‘(z))JB,} dz]

Hence, taking in account (2.5), we have:

u(t,z) = —E [ ) +°(°) uj(z) exp { [ (#6out@) + 0 u(t = s,Eoa(@)) ds

One now uses the Lemma 6.2 of chapter II of Kunita [8]: for any continuous function g(s, z)
we have

[acbostan| = [gloeie ds
0 0

a=£54(2)

Thus

u(t,z) = —FE [/{::;) ug(2z) exp {/: frou(t—s,£5(2)) ds} M(2) dz]

14



where (M4(2))s<: is the exponential (backward) (F§)s<:-martingale defined by
t t .
Mi(2) = exp { - [ o0 as - [ e e0in.}
8
On (Q, F, P,(Fj)s<t), one performs the Girsanov transformation defined by
P{(4):=E[LaMz)] ., AeF
then
+oo ’ 3 t 1
wt,)= - [ ) E; [H(~boule)+ 2)exp{ [ 10 u(s, €, () ds}] az
The application z — £p¢(z) is a.s. increasing (its derivative is an exponential). Hence
+oo _, t
o)== [ E [HEHe) -2 e { [ 1 ouls L () ds}] ui(z) dz
—o0 0
where (fo_‘tl(z)) is, on (Q, F, P}, (F§)o<t), the solution to
dé; 1 (2) = ~0(&54(2))dBs — (b(&51(2)) — 0(&5,4(2)) 0'(&54 (2))) dB

fz_,tl(z) =2z
where (By), defined by
. t
By = By + /0 o'(6,4(2)) ds,

. =z . .
is a (F§)s<¢-IP,-Brownian motion.

One can deduce the same type of the preceding result for a piecewise constant initial data

Up-

Proposition 3.2 If ug is of the form Eﬁl wH(zh — z), then we have:

ut,2) = j;wa E? [(5iah) - ) exp { [ 1 0uts, € (ab)) ds}]

Proof

Set u((f) = u(e, z), where u is the solution to the nonlinear problem (2.1) with u¢ as initial datum;
from the Appendix we know that 1 — u((f) is a regular cumulative function (of a probability
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distribution) such that u((f) — ug for all continuity points of ug. Hence, for any ¢ > 0, using the
representation (3.1), we have:

uwt+e,z) = ul)(t,z)

= [ E[pGie - oo ([ 1w we ) de) | da-uden @)

vel2)

We can write:

wtte)= [ (5 - () d1 - @D+ [ () dl1 - w0 (2)

-

~ ~

A, B.

Because of the continuity of the flow, we remark: z — exp (f(f frou(s, &7, (2)) ds) M(z)
is PP-almost surely a continous function; besides, using (2.3), we observe:

E|H(z - fos(z)) — H(2' - &ox(2))? < C(t)|z - /|

Therefore tp(z) is continuous in z, and also, as u((,‘)(z) — ug(2) at the continuity points of
uo(2), Be — Ly wh %o(3b)-

Moreover A, — 0 for, for any 0 < é§ < 2:
—_ t t
E;|exp (/ f'o u(‘)(s,ff_la't(z)) ds) — exp (/ fou(s, &7, 4(2)) ds)
0 0
—z [t . _ _
CE, /O ul )(s,ft_la,,(z)) - u(s, fz-s,t(z))l ds
—_ 6
c {Ef L 1, 628 29) = o, 658,20 ds + 1) - uIILw(ts.:lxR)}

C {6+ 16 = ullpoqsgxr) }

$e(2) — o(2)|

IA

IN

IA

IA

from which

+o0
A, < /
—_00

We apply now the last remark of the Appendix to bound the right-hand side by Cé for any
¢ small enough.
|

$e(2) - Yo(2)|d(1 - u§)(2)) < € {6+ W@ = wlloosaum }

16



3.2 Principle of the algorithm
Let T > 0 be fixed, and h a time discretization step of type %, for some integer M. We want
to approximate u(T, z).

Approximating —uf(z)dz by N, wi 6,3, one gets the following approximating formula:

N o . | T .
w(T,z)~ 3w Ex |H(&1(z0) - 2) exp{ [ 7o uts ek, 2(ab) ds}]

=1
Now, on (Q, F, IP), we are given N independent Brownian motions {(B}),i = 1,..., N} with
respect to the filtration (F$)s>o, simply denoted by (Gs) in the sequel.
Let (X}) be the solutions (independent) to the following S.D.E.’s (in forward time):

dX} = —o(X;)dBj — {b(X}) - 0(X}) o'(X})} db

[ |
Xo—xo

We remark that the law of the process (6;101(2::)))05957" on (Q,f,i);a,(fg‘)osgsfr), is
identical to the law of the process (Xé)ogosT) on (Q, F, P,(Gs)o<e<T)-

The particle algorithm replaces the expectation by a point estimation:

N : T .
w(T,z) > Y wh H(Xy —z) exp {/0 f ou(s,X}) ds}

1=1

Then we approximate exp {foT f'ou(s, X?) ds} by exp {h TM-1 g, u(ph,X;;h)} and if we de-
fine by induction: _ _ . . _

Po=Wo s Plk+yn = Pin expl{h f o u(kh, Xi4)}
we get, forany p=0,1,...,.M =T/h:

N
u(ph,z) = 3 gy H(X} ~ 2)

1=1

In fact the (X";h)’s will be, to their turn, approximated by the Milshtein scheme (2.7) applied
to (3.2):

Xia = X5 — (b(X)) - o(X})o' (X)) h = o(X3)(Biy1yn — Bin)

A - | . (3.7)
+20(X0' (X)) (Blysays - Bin)? - 1)

17



Thus, if we define:

Po=wo » Plesr)n = Prn exp{h f' o u(kh, X})}
we have:

N
u(ph,z) ~ Zﬁ;,h H(X; ~z)

=1
Actually one considers the weights in a slightly different way in order that the sum of the
weights is equal to 1 (this fact will be used in the sequel):
Py exp{h flou(kh,Xi} =~ pi,+hf ou(kh,X})pi,
pin+h ( fou(kh,X}) - f o u(kh, X;*“)))

1R

where 7i(¢) denotes the label number of the particle just at the right of the particle of label i
at the time kh (if the considered particle is at the most right position at time kh, we just have:
iy exp{h flou(kh, X}} =~ pi,+hfou(kh,X})). That transformation of the weights corresponds
to the step “Rra:” of the splitting method of Puckett (cfr. [12]).

3.3 Algorithm

Finally, the algorithm will be the following: let us define the initial weights and the initial
approximation by:

N
wé:-j-vl—, fori=1,...,N , %(z):Zw{,H(zé—x)
=1
where
. T ; /1
Vi<N : z0=uol(l—w) ; z{,":uol(ﬁ-) (3.8)

Evidently #o(-) is a piecewise constant approximation to the inital datum ug(-).
We recall that we define the approximating process by (3.7).

Let us define now, in a recurrent way (and using the same convention for the particle at the
most right position as previously):

_ i _ ~ v Tp—1(1)
w;’ — w;‘,_l (1 + hfoup"l(x —1) ‘foup—l(xp—l )) (39)
wp_l
and
N . —_—
Uy(z) = Zw;, H(X, - z) (3.10)
=1

forp=1,2,...,.M =T/h.

18



Remark 3.3 We remark that all the weights,: for some constant C uniform on h, N, i and k,
are bounded by

. _C

<wl < —

0 Swe S N

and, for any k = 1,...,M = T/h, the weights w} (i=1,...,N) are G(k—1)n-measurable (this

will play an important role in the sequel). Moreover it is easy to check from the definition (3.9)
that, foranyp=1,....M =T/h,

(3.11)

N
dowi=1 (3.12)

i=1

By using the fact that f' and f" are bounded and that the wyy’s are bounded by C/N, we have
. : ~ _. 1
wi = whoy (14 h o Gpa(Xiy)) + O(R)O (F) (3.13)

Proposition 3.4 Under the hypotheses {(Hi),i = 1,...,4}, we have:

1 &

ylelf<C (3.14)

=1
Besides:
1M .
T2 EIXP<C (3.15)
1=1
Proof

Let ig such that uy(%g2) > 0 and u3'(5§) < 0. Then (the factor g}y instead of 4 is due to the

definition of z}): : '
1 ol o

o 2o [T lugto) ds

2N =1 o

and
LS b < [[ g as
Ni:io '#
We deduce, using (H4):
LN Y12 / 2
Tl < [P ds< -2 [ uw@itdy<c
=1 0 R

To get the other part of the statement, we just apply (2.8).
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4 Main result

The main result of the paper is the following Theorem.

Theorem 4.1 (i) Under the hypotheses {(Hi),i=1,...,4}, there ezist strictly positive con-
stants C and hg < 1 such that, for any h < hg and any N > 1:

(T, = &I eacmney < € (= + V)

(ii) When the functions b and o are constant, then the rate of convergence is given by:
_ 1
(T ) = (T, Mermnay < C (7 +4)

When f = 0, the estimate (i) can be improved. Indeed, if 19 denotes the probability measure
whose 1 — ug is the cumulative function, and (X}) is defined by:

ng = —U(Xg) ng - {b(Xt) - U(Xg) Ul(Xg)} dt

then, from (3.1): u(t,z) = E,, H(X, — z) and, to the error ||u(T,-) — T, -)liL1(rxq) contribute
a statistical error

1 i
lu(T,-) - 'N'H(XT = N (rxa)

which is of order 71'ﬁ’ and an approximation error

1, 1, o,
Iy H (X =) = g H( X1 = L (rxa)

which generically is of order h when the Milshtein scheme is used. The non linearity of the P.D.E.
induced by f changes the order of convergence, at least in our proofs. Our numerical experiments
have not permitted to check whether vk is the best estimate: typically, the algorithm was
extremely sensitive to h; when h was small, it was difficult to isolate the error due to the
discretization from the statistical error (we could not choose N so large as it would have been
necessary), and for different but not small k, some numerical instabilities produced statistical
and discretization errors of comparable magnitude. In any case, the important point seems to
us that the behavior of the error can be described without supposing a relation between h and

N.

The gain in accuracy when b and o are constant is not mysterious: to give the feeling of
what happens, let us suppose: b = 0 and ¢ = 1; in that case, the particles are Brownian, and

the law of the X ("p 1A~ X;;h’s can be simulated exactly (one just has to simulate independent

gaussian variables), whereas, when o is not constant, one has to approximate the processes (X});
the passage from h to v/ is due to this approximation (see the Proposition 2.3).

Let us remark also that, when the coefficients are not constant, we obtained the above
estimates after having used the Milshtein scheme, not the Euler scheme (compare Remark (2.4)
and (2.10)). Finally, we stress that the Euler and Milshtein schemes are the only schemes
reasonable from the point of view of numerical efficiency (see Talay [16]).

The three next Sections are devoted to the proof of the part () of this Theorem. In Section 8,
we will explain what must be changed in the proof in order to obtain the better estimate in part

(ii).
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5 The weights are not far from being independent

The w;;’s are not independent, but we can choose others weights that are independent and
approximate the wy’s in order to get, in the sequel, useful estimates.

Let us define p; by
ph=wh » ph=phy (T4 S ou((p- DhX{ 1)) (5.1)
The p:,’s (¢ = 1,...,N) are independent, and it is easy to show there exists a C > 0 such
that |p:,| < %
Set a;, = E|w;; - p:,|2, and ap := sup; a:,.

The objective of this Section is to prove (cf. Proposition (5.8)) :

Ch C
e E

Vh, Vp=1,...,M=% :oap <

Remark 5.1 We observe:

w;;+l - p::+1 = w:, - P:; +h w; {f'o '&p()_(;;)) —f'o u(ph,X}‘;)} +h (w;; - p;')) ' o u(ph, X';,)
] V¢ i h
g o uloh XE) - 10 aloh, X3} + O (1)

As f'ou is Lipschitz, and as X is defined by the Milshtein scheme (cfr. Proposition 2.3), we
get:

N K Ch : Y — i h? h
abp1 < o + i \/ab [ Ela(X)) — u(ph, XY+ Chaf+ C 15+ C 55 (52)

We need now to get a precise estimate of \/Em,()‘(;) ~ u(ph, X})|. Having defined:

N
uy(z) = Zp;H(X;h -z)
J=1
we have:

VEIun(X}) — u(ph, X}) < /Elip(X3) - us(X})I2 + \/Elug(X3) - u(ph, X)2  (5.3)

An upper bound for the first term of the right-hand side will be given in Section 5.1 below, an
upper bound for the second term in Section 5.2, and finally we will come back to the inequality
(5.2) in Section 5.3.

5.1 An upper bound for Eliy(X;) — u(

H(X)I?

Proposition 5.2 c ‘
Eliy(X;) - up(X;)|* < 2 N%ap + ~ TCh (5.4)
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Proof

2
N
Eluy(X;) - v Xp)IP < 2E [Z lwp — o3l H(X; - X;)}

1

2
+2E [fj |H(X: - ;;)-H(Xg,,-)‘(;n]

Jj=1

N .

< 2 ) \ogof
7.k=1
c X . ..
++3 2; E|H(X} - X;)- H(X], - X;)I

J=

e , C

A BIAC - %) - H(X;h Koty
T |H(Xy — Xp) — H(Xp, — X,)]
idikti

C . L
< 2 Z a"+ +— Z E |H(X] - ,,) H(X;, ~ X))

’k—' k 1 k — k t
’ JJ¢k 'H(X X ) H(Xph X )l
J#Lk#E

Therefore, to get the conclusion it just remains to prove :

Lemma 5.3 Fori# j#k:
E|H(X] - X}) - H(X}, - X))\ - |H(X) - X)) - H(X}, - X})| < Ch

Proof

For j # i, k # i, j # k, the pairs ((X?),(X7), ((X7), (X)) and ((X*),(X*)) are mutually
independent; hence

EIH(X] - X;) - H(X}, - X})| - |H(X} - X}) - H(X}, - Xx'é)'
= E(B(H(X]-y) - HOG — )| [H (X5 - 9) = HXpu = 9)D)| )
= E({E(H(X] - y) - H(X}, - »))- E(H(X} - y) - H(XE, - y)|)}|y=x;;)

Let A’ denote : . . .
A’ = E|H(X] - y) - H(X}, - v)|
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and let us suppose we have shown :
IC>0, Yh<l1, VYp, Vj, Vy :47 <CVh(1+|y]) (5.5)
Then we would have :

EH(X)- X)) - HOXG, - XIH(RE- X)) - HXG - XD < [ watapgy(w)

IA

Ch [ (1+1u) dPg(w)

Thus we could conclude by applying the inequality (2.8).
Let us now show (5.5).

Let 8 := —b+ o0’ (cf. (3.7)) and set :
¥(z,2) = z+B(z)h+o(z)2
1
#z,2) = P(z,2)+ 50(2)o'(2)(z* - 1)
We remark : X3 = ¢(X;_,, B} - B,’;_l) and :
4 < E\HX]-y)- H@(X ., B} - B}) - )| |
+ EIH(¢(X(p_1)v BJ BJ—I) - y) - H(“/)(X(p_l)}p BJ - B;—l) - y)l
+ EIH(¢(X(p_1)h9 1) 3/) H(¢(X(p l)h’ j B:)-—l) - y)l
+E|H(¢(X(,,_1);pBJ p-l)“ y) - H(X;h_y)l
= A A A A
Let us first show : A{ < Cvh.
We have (using the fact that the function H is increasing and takes value equal to 0 or 1) :

Al < CBY [ IH(R]1,VR2) = 9) ~ HOHXjoys Vh2) - y)le~F a2
< CEY ¥ [ {HWXKL_ VED) + Clnt 1) — ) ~ HOH(KL VE2) - 1)}
| [w(X,,_l,\/_Z)—y<0] dz

+CBY % [T B, VR~ 9) - By, VE2) - Clnt 1R - )

Ly (22_, VEz)-y>0) 92
S CEL e [ WXLy, Vhe) + O+ 1= y) = H(H(X) 1, VRe) = )] da

+CEZe‘T/|H(¢( _1yVh2) = C(n+1)?h — y) — H($(X3_;,Vhz) - y)| dz
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Then we divide the arguments of the function H by the positive (see (H2)) quantity
vha(X2_,), and we use (2.13) to conclude:

; _n2 C(n+ 1)2h
Al < E T < C\/l_z
iSEY e R S

Let us now show : A'; < CVAR(1 + |y)).

A < E [\H@(X 1, VR2) - 9) = BO(X], oy Vh2) - 9)| d

We remark that the function 1 is Lipschitz ; dividing the arguments of H by, respectively,
\/Eo()_(;_l) and vho(X?_,), and using again the equality (2.13), we get :

. C gy ;
Al < cvh + 7—-’;(1 +y)EIX]_, - X(Jp—l)hl

We use the Proposition (2.3) to conclude.

To show : A;’; < Cv'h, we repeat the inequalities for A{, substituting X (jp__l) 5 to X’;_l.
Finally, it remains to check : Ai < cvh.

For any h > 0 and any y :

{(z1,22) € R?: |H(z1 ~y) - H(z2a - y)| = 1} C
{(z1,22) € R? : |2y — 23| > R} U {(21,22) € R?: |z, — y| < h}

Besides, a Taylor expansion shows :
Xon = N X{p_pyn B}, - Bl,_yy) + 15
with E|r{;|2 < Ch3.
Therefore :

AL < P(X3, -yl SR+ P(Ird| > b)

: j : C c
We use the fact that the density of the law of X(p—l)h is bounded from above by ToTm <%

(see (2.3)) for the first term of the right-hand side, and the Bienaymé-Tschebychev inequality
for the second, to get the conclusion.
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5.2 An upper bound for E|u}(X}) — u(ph, X})|?

For brevity, we will denote: . . .
U, = Elup(X;) — w(ph, X;)|?

The objective of this Section is to prove (see (5.6) below):

Proposition 5.4

Let uN(t,z) := 2_11-\’:1 W E[H(X;i — z) exp (f(f f'ou(s, X3) ds) ] Then:

. ph )
N / —f'ou(s,X}) ds
0

Ui < C Elu(ph,X}) — ¥ (ph, X)2 + CE{ S H(X], - X)) |wi e -0

J=1
ph ,
/0 —o['ou(a,Xﬂ)ds

ph ‘ 2
/ —]'ou(a,Xf)dc
0

N . .
+C ES> W) |EH(X), - X;) e
i=1

- H(X;'h -Xie

Each of the three following Lemmae will concern a term of the right-hand side of the pre-
ceding inequality.

Lemma 5.5 There ezists a C > 0 such that for any t € {0,T] we have:

» C
. — N . 0 —
llu(t, ) = w7 (8, iLe(r) < &

Proof

Let us consider v” the solution of (2.1) with an initial condition equal to @ (see the Appendix
for the existence), and let v := u — vV; v is a solution to:
v

_ g ooy S = f0N)
E—Lv-i- u—vN v

Vg = Ug — Ug

By the Feynman-Kac formula, (Z;) being defined as in (2.11) :

[v(t, 2)] < C E|(uo — #0)(Zu(2))| < C |juo — follLo(r) <

z|Q
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Therefore, as by Proposition 3.2, vV (t,2) = 2_17'\,:1 Wy E [H(X,j—:v) exp (fg fovl(s, Xi) ds) ] :

C
llu(ts ) = w2, Mreory < 5 + 107 (2 ) = ¥ (2, )llzeo(r)

c N . . ' t .
< ~ + Zw(J)E [H(Xi" — ) (exp (/ f'o vN(.s,X,J)ds) — exp (/ f’ ou(s,X;’)ds))]
— 0
1=1 o L>(R)
C C
< = Iy oo < =
SN + Cossligt”v(s’ )”L (R) = N

Lemma 5.6
2

TN = F < Ch?

N ) . . ph . )
; S H(XE, - i) {wd exp/o f ou(s, Xi)ds — pi}

j=1

Proof
From the definition (5.1), it comes:

N C N ph . p-1 . ?
T, < FE 2:1|exp/o f'ou(s,Xj)ds-—l;[I(l+hf'ou(kh,X;h))|
)= =0

Now, we write (for any h small enough):

p—-1 . -1 .
[T +Af ou(kh,X],)) = exp [Z log(1 + A f' o u(kh, X;h))] <cC
k=0 k=0

and, using the inequality |e* — e?] < emax{lallbl}|p _ g|, we get:
C N
N
v |
J=

We expand the right-hand side, and we remark that, for some uniformly bounded function

2
} +C h?

ph . p-1 .
/0 ' ou(s,Xi)ds — h kz f' o u(kh, X3,)
=1

P
2

(k+1)A , . ?
E / fou(s,Xi)ds — h f' o u(kh, X3)| < E + Ch?
k

(k+1)h .
/ ¥(s, X3) (W, — Wip) ds
h kh

so that, using Cauchy-Schwarz inequality in each term of the expansion:
TN <Ch?
[ |

Proposition 5.7

N . X . ph C
N . _ N Vi 4 ’ j
SV = Elu¥(ph, X}) - 3 wi H(X3, - X) exp/o £ ou(s, X3 dsl* < &

i=1
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Proof

We have:
rh ph 2
/ —o!'ou(a,Xf)da / -of'ou(a,Xg)da
vt 0 ] v
SY < 2E Zwo H(X:, - X;) e - EH(X), - X})e™°
J#i
C
+ m

and, by the independence property of the (X ] )’s:

S <+ EZH( ,.—X')exp</ fou(sX’)ds) Nﬁs%
J¢'

Finally, we obtain, collecting Lemmae 5.5, 5.7, 5.6:

1874 Y c
= Eluy(X}) — u(ph, X})|* < ¥+ C h? (5.6)

5.3 An upper bound for q,

From the two previous subsections, we obtain, considering (5.2), (5.3), (5.4) and (5.6):

vh Ch2 Ch
N T

Proposition 5.8

Vo, op L — + —; (5.7)

Prqof

We have: ch . cH Cn
Qp+i S(HC”)Q”’L—N—‘/E’_’(ﬁ’Lﬁ)’LF“LF

Let us define by induction 79 = ag and :

Ch® Ch
+F

o1 =(1+Ch) T + = \/—(\/_+\/')
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We observe that, for any p: ap < 7.

I, for any p, we have /7, < 3,@ + m, then we have obtained (5.7), otherwise there exists
a j such that:

h
A A

VAR

As (7p) is increasing, we would then have that, for any p > j, /75 > 3]4,5 + m; then, for any
p > 7, we would also have:

CK  Ch

Tp+1 S(1+Ch)Tp+Cth+W+ N3

from which we deduce that:

. Ch? ChR\(Q+CRM-i_1 Ch C
™ < (1+CRM ’Tj+(N2‘ F)( C)h vty

Hence (5.7) is true for any p.
]

6 Local expansion of the solution u(t, z)

For the sequel we need to compare the solution u(t,z) to problem (2.1) with the solution v(t,z)
to the problem

av

—=Lv

ot (6.1)
v(0,+) = uo(*)

for small values of t. We can represent
o(t,2) = E(uo(Z(z)))
where again (Z(z)) is the solution to the following equation:
dZ, = b(2,) dt + 0(Z,) dB; , Zo(z) = z. (6.2)

Let Py(z,dy) the transition probability associated to (Z;).

Theorem 8.1 Let us suppose the hypotheses (H1), (H2) and (H3) verified; then for any
0< h<1andanyz € R, we have:

u(h,2) = E uo( Zh(=)) + h(E uo( Za(=))) + Ra(z)

with the following estimate:
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e if ug verifies (H4) then:
|1 Ra(llL1(r) < C A2 (6.3)

o if up belongs to a family of functions verifying (HS) with weights bounded by %, the
constant C being uniform on the family, then:

IRA sy < C VR + e leol (6.4)

=1
The proof is obtained by collecting the Propositions of this section, and Remark

6.6: Proposition (6.3) expands u(h,z), the sequel gives estimates of the norm of the
remaining terms in L1(R).

Remark 6.2 The proof will make appear that the constant in (6.4) can be somewhat ezplicited
(see the footnotes in the sequel):

”Rh(‘)llLl(R) < C hvh (%-{-% Z exp< (o /\230) )) +C leol (6.5)

,51<]
This will be used to treat the special case of constant b and o (see Section 8).

Proposition 6.3 Let us suppose the hypotheses (H1), (H2) and (H3) verified; then for any
0< h<1andanyz € R we have:

u(h,z) = Euo(Za(2)) + hf (B uo(Zn(2))) + Ra(2)

with the following estimate:
hfouth=15,2z))  1° | [* [* fou(B, Zu-o(z))
Ru(2)] < CE{uom(x)){[O e ds] v [ gl dads}}

+0 [* [ Blu(2,) - Buo(Z(s)] Pucs(e,dv)is

2
+ChE [uo(Zh(x)) - Euo(Zh(x))]
For the proof of this proposition we need the following Lemma.

Lemma 6.4

[ S Z:())) Pa-s(zd0) = S(EolZ(2))) + R

with

RI<C [ Elu(Z.4)~ Buo(Z,0)] Pa-a(z,dy)+C Eluo(Z4(2) - EwolZa(z))]
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Proof of Lemma 6.4

Using Lemma 2.7 we have:
/R F(Euo(Z(y))) Paes(, dy) = /R Ef 0 uo(Zs(y)) Paes(z,dy) + Ry

with
R <C [ E[u(Zv) - Eu(Ziv)] Pr-s(z,dy)

Let us remark now:
J ES ow(Z.(9) Pi-s(@,dy) = Ef 0 uo(Zh())

from which, by applying once again Lemma 2.7, we get the conclusion.

Proof of Proposition 6.3
Hypothesis (H1) implies that | f(y)/y| < C for a suitable C' and 0 < y < 1; moreover f(y)/y is
continuous in 0.
By Feynman-Kac formula we have:
h fou(h—s,Z4z))
E [uo(Zh(a:))exp{ b Tuth—s.Z.(2) ds (6.6)

Euo(Zh(2)) + Euo(Zi(z)) {exp { 0" f :(1;1(’1 - sZ ’Z(;()ﬂ;)) ds} _ 1}

=: FEuo(Zx(z)) + An (6.7)

u(h, z)

By applying the Taylor formula, we can write:

h fou(h - s,Z(z))
u(h — 8, Z,(z))

2
+ LEu(zi) [ Oh f °“(h‘s’Z’(x))ds] exp (oh Oh f °“(h‘s’Z’(’))ds)(6.8)

ds

A = FEuo(Zn(z)) A

2 u(h — s, Z4(z)) u(h — s,2Z4(z))

from which we have A, = By + R% with

hfou _ g 2
815 Btz || Lo P
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and
oulh— 3,2 (:1:))
u(h — 8, Z,(z))

fou(s, Zh_,(:z:)) ds
u(s, Zr-s(2))

- / / Euo(Z,(y)) 245 Y) ;(';fs)y) o o(z, dy) ds

where, in the last passage, we used the transition property of Py(z,dy).

B, = Euo(Zh(:r))/:f

E /0 " wo(Za(2)

On the other hand, by the same argument used to obtain (6.6) we have:

Euo(Z,(y)) = u(s,y) + D(s,y)
with, for some C > 0 large enough:

9, Zo(y))
—0,Z4(y))

ID(s,9)| £ € Buo(Zy(w) [ Lot m 2ot ag

Hence we can write:
h .
By =/0 /Rfou(s,y) Pu_y(z,dy)ds+ Ej,

with (remembering that M is uniformly bounded on [0, 1]):

fou(s 6, Zo(y))
c / / Euo(Z.()) / i d0 P dy) ds

s fo u(s— 8, Zo+h—s(z))
¢ [ Buana) [ Lo 8 D@D gy,

Finally, by collecting together (6.7), (6.8), (6.10), we have:

| E

IA

h
u(h,2) = Ewo(Zo(@)+ [ [ fou(s,) Paos(z,dy) ds + R}
with
IRY < CEud(Z(x))

hfouth=s,24(2)) , 1", [* [* fou(s =6, Zorns(2))
{[o w(h 5, Zy(z)) ds] A A eers veny ‘”"“}

Therefore, it remains to treat foh Jr f o u(s,y)Pu_s(z,dy)ds. We remark:
h h
[ [ routsn) Piosednyas = [ [ 1(Buw(Z,9) - D(s,9) Paes(z, dy) ds
o JR o JR
h
| [ F Bl Z.0) Pu-slady) ds + C
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with (using (6.9)):

h
il < € [ [ 1D(s,9)] Pas(z,d)
A ® fou(s—
. C/o /RE“°(Z’(~'/)) o fu(s(— 0,02’2()!;)) d6 Py—y(z,dy) ds

B h s fou(s—0,Zsrns(z))
= C /0 Euo(Zh(:v))/0 w(s — 0, Zoyh—s(z)) 46 ds

We conclude by applying Lemma 6.4.
[

Proposition 6.5

(1) Let us suppose that (H1), (H2), (H3) are verified, and that ug belongs to a family of
functions verifying (H5) with weights bounded by &, the constant C being uniform on the
N
family; then, for any 0 < s < h, we have:

/R/RE[uo(Z,(y)) - Euo(Z,(y))]2 Py_s(z,dy)dz < C vh

where the constant C depends only on T and the coefficients of the differential operator L.

(ii) If uo satisfies (H4) instead of the above condition, then we have:

2
[, [ E[5(Z.(v)) - Eo(Z,(w))] Pa-u(z,dy) dz < C h llowllzacry +C b [ Luollzacry

Proof

In the case of Hypothesis (H5) we have:

2 N . . ) .
Elu(Z:(y) - Buol(Zo(y)| = Y E{w)H(zh - Z(y)) - BlwsH (zh ~ Zo(y)Y

=1

+2 3" E [{w H(zh - Z,(v)) - ElwbH (z5 - Z,(v))})
1<)

{wd H(zh - 2.,(v)) ~ El{H(z} - Z,(s))}]

=: Sn(y)+2Tn(y)

Thus, using (3.11) and Corollary 2.1(iii) we have:

N 2
Sn(y) = Y(wh)? (P(zh > Z,(v)) - [P(h > Z,(n)]?)

=1
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I

N
2_(@8)? Pz > Zy(y)) P(zh < Zo(v))

i=1

e (-25) o

Therefore:

/RSN(?J) Ph_s(z,dy) < (v ;/\26) ) hl— _exp (_2(/\31(_’:1:)%) 4

..
Il
-

A
3la
M=
.
®
e~
—

C s (-

s N?ﬁgexP( 23k
c Y (z — z)?

s Nﬁge"p (" )

from which:

C
/R /R Sn(Y) Pr-s(z,dy) dz < TV
On the other hand:

Tn(y) < S VE{wi H(zh - Z,(y)) - ElwiH(zh - Z,(y))]}?
i<y

VE{W} H(z) - Z,(y)) - EWiH(zh - Z,(y)))?

By using again (3.11) and Lemma 2.1(iii) we have:

Tn(y) € — Zexp ( (v - %)2) exp (—(L;;—é)z) (6.12)

1<J

hence:

[ T8 (@) Paes(z,dy)
— 2i)2 — )2
BT o (4252) o (053) i

1<

[ — zi)? _ 22 7
< %E L/Rexp (—(y—m(i> Ph_,(:t:,dy)/l;exp (_(l#)—) Ph—s(z’dy)]

C N[5 o (= b\ [V o, (=]
S}W«j -ﬁexp(— 2)s )] ﬁexp(— 2)s )]




from which?:

LL/RTN(y) Py_,(z,dy)dz < 3 Z/ xp( (z ;,\ZO)z)exp (_(27 ;\26)2) i

1<J

< \/_Zexp( -—é_A:—O))

1<
< Ccvh
In the case of hypothesis (H4) we can apply It6 formula:
w(Z(®) - Ew(Z(v)) = [ [Luo(Za(v)) - ELuo(Zs(y))] do
+ [ o(Za(w)i Zo(w)) aWs (6.13)
0
hence
[ E[wo(Zu()) - Buo(Zu())] Pr-s(z,d)
R

<2 /RE[ [ [2uo(Za(a)) - BLua(Z(w))] do] Pacs(2,dy)

+2 [ B[ o(Zaw) u(Zs(0)) 48] Pi-s(a,dy)
=:2A+428B

We estimate A in the following way:
s 2 h 2
A< / s / E[Luo(Zo(v))] 8 Pao(z,dy) = 5 / E[Luo(Zs(2))]” db
R 0 h—s
Using again (2.3):

/RAszC/Rs/’:’/R[Luo(z)r%exp (_(22—,\;3)2) dded:c:Cs2/;2[Luo(z)]2dz

In the same way we have

B<Cs / o*(2) up’(z) dz
R

Remark 6.6 From (6.11) and (6.12) in the preceding proof, we have also shown that in the
case (HS5), we have:

[ Eluo(Zn(@)) - Buo(Zn(=))]" ¢z < € VA

*see Remark (6.2).
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or, more precisely’:

/RE [uo(Zh(x)) - Euo(Zh(:c))] dz < Cvh (N 3 Y exp ( €2 “/\}‘:0)2))

i<J

and from (6.13), in the case of hypothesis (H4), we have:
2
/RE[uo(Zh(a:)) - Eug(Zu(z))] dz < C h

Proposition 8.7 For 8 € [0, k], let us define:

fou(,Zy_¢(z))
u(8, Zp-4(z))

Yno(z) = E [uo(Zh(-"’))

Then under (H1), (H2), (H3):

(i) if uo satisfies (H4), there ezists a C > 0 such that Yh < 1, V8 €]0, h[ we have:

N¥ne(zymy £ C

(ii) if up belongs to a family offunctions verifying (H5) with weights bounded by ]%, the constant
C being uniform on the family, there ezists a C > 0 such that Yh < 1, V6 €]0, k[ we have:

Hne(llrry < C + 5 Zl-’ﬂol
N

i=1

Proof

The result will be an easy consequence of Lemma 2.6. Indeed: first we integrate between 0 and
+00, and we use the equality (6.6) which implies: Eug(Zx(z)) < Cu(h,z). We thus have:

+o0 +00
/ Yre(z)dz < C / u(h,z)dz
o 0

For the case of integration between —oo and 0, we remark:

f(y)
y(1-y) ~

*see Remark (6.2).
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hence

0 0
/_ _nel@)dz < C /_ _B(1- u(6,Z4-0(2))) dz

IA

o 1 (y — 2)°
C /-oo ./R(l - u(#, y))mexp (—m) dydz

C /(1 - u(#, y))/ exp( ) dady
T

IA

< ¢ [ a-woarc [T (thOJ y

from which by Lemma 2.6 we get the conclusion.

Now, let us remark:

hfouh—s,2,(z) |’ hfou(h— s Zy(2))
[0 a(h 3, 24(z)) d] SCh ) k=3 Zi0a)

As the preceding Proposition, one can show:

Proposition 6.8 Let us define:

2
Yn(z) = E {uo(Z;,(:r)) [ oh f:(';l(’i';zz(;()";))ds }

Then, under the hypotheses of Proposition 6.5:

(i) if ug satisfies (H4), there ezists a C > 0 such that Yh < 1:

NYn( L (ry < Ch

(ii) if uo belongs to a family of functions verifying (H5) with weights bounded by %, the constant
C being uniform on the family, there ezists a C > 0 such that Yh < 1:

l¥n(-)lLr(ry < Ch? (1 + = E |Zo|)

t—l
7 Estimate of the global error

We recall that we denote: M = T/h.
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We are now in position of proving the first part of our main Theorem 4.1.

First, we write:
lu(T, ) — em( ey rxay S WEEM(-) = Tm Gy (rxay + 1T, ) = Eam(HLi(r)

In Section 7.1, we will bound the first term of the right-hand side by \/Lﬁ + CV/h; in Section

7.3, the second term will be bounded by 1—?,— + Cv/h, so that the announced convergence rate (for
general functions b and o) will be established.

7.1 Estimate of || Eunm(-) — um(*)ll1(rxa)

Our objective is to show :

Proposition 7.1 There ezists a constant C > 0 such that, for any M € IN*, any p < M, any
N:

_ _ C
NEwp(-) — (- )lrrxa) £ ﬁ +Cvh

Let us define N
ip(T) = Zw{, H(X;;h — )
i=1
Using (2.13) and (2.10), we have:
155() = Epl(-) - a5() + Eiy(Ollga (rxy = O (B) (7.1)
Therefore it is sufficient to prove:

Lemma 7.2 There ezxists a C > 0 such that, forany N,h<landp< M =T/h:

N " c
”Up() —_ Eup(-)”Ll(RxQ) S ﬁ + C \/E

Proof

We have (using the fact that the sum of the weights is equal to 1):

N
/R S (EwiH (X}, - 2) - i H(X, - )| de
i=1
+oo | NV . . . .
- /0 > (BwiH(X, — 2) - wiH(X}y — 2))| dz
i=1
o | N . . . :
+ /_ oo ; (EwiH(z - Xjy) - i H(z - X})) | dz
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We will only consider the first term of the right hand side of the previous equality, the second
one being treated in the same way. We use the independent weights of Section 5.

L
0

N
> (BuiH(Xi, - 2) - whH (X} - )| dz

i=1

+oo | N . . . .
< [71% (Bl - 9] - Ay H (X - 2)) | da
oot N
+ [ 2 E((w} = p)H (X - 2)]| do
N

+o0 . . .
+ /0 > |k - o] H (X - 2) da
=1

Using the independence of the p*’s and of the (X')’s, and bounding the variance by the 2°d
moment, one gets:

/

N

Y (BopH(X}y - ) - wpH(X}, - 2))

=1

dz

N N
Y_E(p)?H(X}, - z) dz + 23 Elw, - gyl | X4l

=1 =1

4_

©C al H al i
5 ¥ gp(xph > z) dz + 2,/a, 2 \ /E|Xph|2

Now let us remark that the first term of the right hand side can be upper bounded by:

fﬁ/(,+w Z/_,. exp{ }dy dz

For z € [0, +00[ the function

ve 1 / +oo { 3/2} d
z—u_l(a) eXpy—%5 y
Var I 2
is decreasing from ]0, 1{ to ]0, 1[; therefore, the definition of the z} implies:
N 2
1 +oo y
: gy
2N /7_9. e"p{ 2 } Y

/ / _l(a) exP{ 2 } dy ds
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400 y2
= —/ /,_, exp{—?} dy ug(z)dz
Ve

T +00 y2 +00

< —/ up(2) /Fl expy —% dydz—-C / ug(z) dz
—00 7;:; T

<

- [::o ug(z) exp {— (z2;p;) } dz + C ug(z)

Using (H4) we deduce for suitable A > 0:

2

Ly [t vl <c LS B
}\7;/5_’@.“" —g (s Cep | —orypny )+ C (@)

Ap

so that, by Remark 2.5:

1 [t | X . C
— P(X, >z)dz < —
VL e s

Now, by (5.7):

N N
o ST < (G 4 55m) S man

1=1 i=1
But (see (2.8)):
1 N i 2 C ad 112y ¢ 1 al )2
W 2 Bl < 5 20410 < O+ 5 3ol
= =1 =1

Then we apply (3.14).
|

7.2 A Corollary

As a Corollary of the previous Section, we have the following result :

Lemma 7.3 Define
A= [ E [ J;, (@) - E®) paz.v) dy] ds

There exists a C > 0 such that
C
AMNY< = +CVR
NS5t
forany N, h<landp< M =T/h.
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Proof

First we remark:

AS(N) < /R/RE [ﬁp(y) - Eﬁp(y)]zph(x, y) dy dz

and by Lemma 2.2:
2
AN < (1+Ch) [ Bla) - Buw)] dy

from which, by the boundedness of the function %,:
AN < C [ Elay(y) - Bay(y)] dy.

We then apply Lemma 7.2.
[ |

7.3 Estimate of ||u(T,-) — Eupm(-)||L1(r)

For any p=1,..., M, let us define 7p(t,z) as the solution to:

%% _ 15, + for,

ot
‘71»(0’ z) = tp-1(z)

and let us consider:

Bp = 1ok, )~ Edp(Olliacry < 16(ph, ) = Ezp(h, Mzscry + 1Eop(h, ) = Eap(llzscry (7:2)

—,

TP 8p

We are going to show (cf. proposition (7.6) below):

Vp , /3,,50(\/1—:+7b—)

Let us first treat:

[e) 0
by = /0 ¥ |Evy(h,z) — Eiy(z)|dz + /_ _NEQ =k, 2)) = E(1 ~ y(2))ldz

Our objective is to show:

Proposition 7.4 N
3
Vp, 6,<C (hz + N)
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Proof
We will only consider the first term of the right hand side of (7.3).

to:
dng = —0(ng) d(Bphte — Bpn) — {b(ne) — a(ns) o' (16)} db

MTo=Y
We stress that, for each § > 0, 79(y) is independent of Gyy,.

Let (Bjp) a (Gp)-Brownian motion (see the beginning of Section (3.2)), and (74(y)) the solution

(7.5)

We will denote by 7,(y) the approximation of 7,(y) obtained by applying the Milshtein

scheme (2.7) to the stochastic differential equation (7.5).
We first remark, using (3.13) and the conventions described in (1.2):

N
Bupyi(z) = EY wpy H(X}y ~2z)
=1

=_Ez[ (1450 5(XD) + OWO(7)] H(E]) - 2)

= Ezwiﬂ(ﬁh()‘(;) ~z)+h Ezw;f'oap(x;;)g(x;_ )+
1=1 =1

+E O(h)O(57 )ZH(nh(X )-z)+

=1
A B3 wh oty E)H(MCES) - 2) — H(X) - 2)
=1
Therefore:

N

FEipp(z) = EZw H(nmn (X} )—x)+hEprf oup(Xp)H(X‘ -z)+ R(h,p,:c)
=1 =1

with (we apply (2.4) and (2.8)):

IN

_ [ A
| R(R, P, i Lr(Ry) Ch\/E+CFZE|77h(Xp)|
=1

IA

h o
Chvh+C—y Z E\X}|

IA

Chvh + c— 2(1 + |zb))

Applying (3.14), we deduce® :

2 h
1 BCR, P, MLr(ry) < Chvh + CN

Swhen f = 0, this term is absent; this permits to justify a remark we made in Section 4.
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Now, let us perform a similar expansion of Ev,+,(h, z).

Using the representation (3.5), we can also write:

N
Evpy(h,z) = EY  wip(X;,z) (7.10)
=1

where

h
¥(y,z) = EH(na(y) — =) exp (/0 flo Dp+1(s,ns(y))d3)

Using again (2.13) and the estimate (2.9), one can check:

h
¥Y(y,z) = EH(fn(y) — z) exp (/0 flo Pp+1(s,m(y))d8) + o(h, y,z)

with .
ic > Oa Vy € R’ ”"»bO(h’yv ')”L‘(R) S Ch2
Therefore:
N . -
Evp(h,z) = ED wyH(fin(X}) - z)
=1
N . th _. _ . -
+EY Wi /0 £ 0 Dpya (8, me(XE))ds H(XE - z) + R(h,p,z)  (7.11)
=1
with

Rk, p,)iLyRy) < CRVR (7.12)

Therefore, combining (7.11) and (7.8), in view of (7.12) and (7.9), we see that it remains to
treat :

N _. h _. _.
B(h,2) = BY b (bf 0 ap(X3) = [ 10 tpua(s,m(X)ds) H(X; - 2)
=1

and to show that its norm in L'(R4) can be bounded by Chvh + §E.

But:
N _. h _.
16k, Nircre) < E S Wl KBS 0 8(X3) = [ f 0 Byl mi(X3)as]
=1
Besides:
EGthI o 17P+1(3’ ns(x;)) = f, (EGP"D}H-I(S’ ns(X;)))) + rl(iv p, h, s) (7°13)
with

_ . _ . 2
|'I‘1(i,p, h, S)I < CE®# '7P+1(s’ US(X;)) - EGM‘_’}H-I(S’ na(X;?))l
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Let us perform an expansion of f’ (EGP"DP+1(3,17,(X;;))).

Let (i) N independent copies of the process (7,). The representation (3.5) permits to
justify:

7 (B (s, m(X2))) = £ (B9 é KR - (%) + 00 + 0 ()
Then, if we define: o |
ralis ) = (B9 SRR - ni(XD)) - (B S H(RE - X))
we get: - -

N
f/(EgpthH(s, n,()‘(;;))) f’( S wbH(X) - X;;)) + O(h) + r2(i,p, h,8)+ O (%)
k=1

= fo ﬁp(X';;) + O(h) + r2(é,p, hy8)+ O (%)

Thus, we have got:
S w2 [ L h
ok Mrcry) < E S wiIZ(CH + [ 1riGip, b8 d8+ [ Iraiph,8)l d8+C 1)
=1

As above (see (3.15)), we deduce:
lléCh, MLy ry) < C A%+

_ i _ Fivy|? h
Zp41(3,15(X;)) = B 7py1(s,1(X}))| ds + C )

N ok h
+CEL X [ raGiop b o)lds+ [ B 2
0 0

=1

N . h .
< Ch2+C Ezw;lx;,l/o |T2(',P,h,0)|d0+

=1

- e’

A

N N _ _ 2
s s k k ¢ k
+HCEY I / |kz=;wp {(EH(n.(Xp) ~9), iy ~ B (EHOW(X) - y))‘y%(x;)} |'ds

- 7

v

B
R .
+C 55 2. EIX;
=1
For A we have:

Nk N _ o N o
A < CEEw;,|x;,|/O | B9 " Wb H(nE(XE) - ni(R2) - E' S wh H(XE - Xj)| ds
=1 k=1 k=1

IA

N L h N
CEY vl Xl [ 3 whArds
i=1 0 k=1
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where

A = E% B (X} - X;) - H(nf(X)) - m(X;))

* for k =1 we have 4; <1

* for k # 1 let us suppose (without any loss of generality) that the particles have been labelled
in the increasing order of their positions (at time ph); we just look at k < 4, the other case
being treated by symmetry; therefore H (X,’,‘ — X;) =0, and we consider:

_ Xk 2 _ _X_'i 2
¢ (y p) + (2 ) ) dydz

g ko gky _ i s ¢ _ _
EPrH(ny(Xp) —ms(Xp)) <+ | H(y z)exr»< s

24,2
= C/ xi_gxk €XP (_y tz ) dydz
- T 2
(X} — Xy
< - F __F7
s € exp( 4)s

thanks to the following easy inequality:

2 2
/ exp (—m) dz;dzs < C e_é
T1-22>p 2

N N Y k Y ¢)2
o Xk-X c
A < ChEE:w;|X;|{§:w§exp(-(—%)+N}

Therefore:

=1 k=1
_(Xp - X3
< — P P/
t#k
From the following elementary inequality:
A I s |
e~ -8R <
- VR

and (2.10), (3.15), we get:

Ch ; (X} - Xi)? Ch
A<1—V7E‘§:1|X|exp( T +Ch\/_+ N
1#£k

Now, we use the independence of X* and X* for i # k, and (2.3), to get:

N z—zk
A -CJ;,—Z > /[ Jol -l O _fﬁ—dxdy+0hf+
1#k

/\ph

o h\/_ (z — zk)? (z — z})? C h
Z ./R ,\h\/m (’ 2aph ) exp (’ 2A(p T 2)h) de+C hvh+ 5
|¢k
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Using the definition of the z5’s and (H4), we observe (see the proof of (3.14) and of Lemma (7.2)
for analogous computations):

N k\2
11 _(z—-2)°
NQWQXP( 2aph )SC

so that, using again the same arguments, we obtain:

Ch\/_

2
(z — 25) )dx+Ch\/_+—Nﬁ<Ch\/—+Ch

Z/R \/T/\ p +_T2 (' 2X(p + 2)h) N

For the term B we observe, using the independence of the particles:

N
B | 5 {(BH ) = ) ymniay) = B EHOUED) = Dymniry} i

- E""”Z(w")2|(EH(m(X") Dyens(s) — B EHEE) = D)ymniio| +0( +)
k#x
C

<
- N
Hence, using (3.15):
N
BS%EZ '|X'|<Q
1=1

Let us now treat 7,.

Proposition 7.5
Ch

VP, Yps1 < (14 Ch)B, + Ch3? 4 == i

(7.14)

Proof

We use the local expansion of u(ph,-) and 7,(-) deduced from Theorem 6.1. Here, Hypothesis
(H2) implies that Py(z,dy) = pi(z,y)dy. Besides, we apply twice Proposition 6.1:

e we substitute u(ph,-) to ug; then we are in the case where the initial condition satis-

fies (H4) (from (3.3), (2.3), and (H4), it is easy to obtain the condition on the spatial
derivative), and we have:

w((p+ 1)h,z) = Eu(ph, Za(2)) + hf(E u(ph, Zu(z))) + R, 4(2)
with [|R{L (i) < C A2

45



e we substitute %,(-) to up; then we are in the case where the initial condition satisfies (H5),
and we have:

Upi1(2) = /R ap(y) pa(, y) dy + hf ( /R tp(y) Ph('vi‘/)dy) + R a(2)
with

1 &
IR paOllacry < € AVR +CR2Z 3K
=1

so that, using (3.15): E”R?};i-l)h(.)”l/l(R) < C hvh.
Thus, using again (2.12):

Tp+1 =

/Ru(ph,y)ph(.,y)dy+hf(/Ru(ph,y)ph(.,y)dy)

_E/Rﬁp(y) pa(- y)dy — R E f (/R p(y) Ph(*> ) dy) + RGn() — ERGL0) lu(R)

IN

[ u(oh,9) = Eao(w)] [ pa(e,v)dz dy+ ChE +

+Ch [ Juph,v) - Ba(u)| [ pa(z,y)dz dy +

2
+Ch /R E ( /R ip(y) pa(z,y)dy - E /R ip(y) pr(z,¥) dy) dz

Applying the Lemmae 2.2 and 7.3, one gets:

Ch
Tp+1 < (1 +Ch)B, + CH*? + i

Finally, we can prove:

Proposition 7.6 .
Vp , B, <C (\/ﬁ + —)
P, Bp< T
Proof
We use the definition (7.2), and the estimates (7.14) and (7.4), to get:

Ch
Bp+1 < (1 + Ch)Bp + CH®? + i
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In the proof of Lemma 5.5, we remarked that:
1 = ||u(h,-) - vN(h,-)||L1(R) can be bounded by C||E|(uo — 0)(Zr(-)lllL1(r); as o > uo for
z < z7' < C(1 + VIog V), using u(z) = — [F°° u/(y)dy, (2.2) and (H4), we get, for some
C > 0 large enough:

" ~5 c /|x|<c+c\/m(ﬁo(z)—uo(z))d:c

c| L-uo(2))dz+C [ d
+ z<-C-C logN( uO(x)) Tt xZC+C\/logNu0(x) *

CJlogN C
S =N *w

Thus, 5, < C (ﬁ +hE 4 %) , and we can proceed by induction to end the proof.
x .

8 The case of constant coefficients

In this section, we explain what must be changed in the proof to get the better estimate 7% +Ch
for the error when the coefficients of L are constant.

Without losing in generality, we can suppose that b = 0 and ¢ = 1. In that case we have
that X;; = X;; =z + W;h.

First, one remarks that the expansion in Remark 5.1 can be then changed in:
i i i_ i i = (i vi i i i h
Wi =P = wh = ot b {0 0,(X3) = £'0u(ph, X)) +h (= p}) ['oulrh, X)+0 (7

so that the inequality (5.2) can be modified in:

. . Ch [~ —= — K . h
o, < (1+Ch)ap+T\/a_;,\/E|u,,(X;,) = u(ph, X})[2+C 55 Elap(X;) - u(ph, X))+ C 55

One can readily show that (5.4) can be reduced in:
Eli,(X}) - w)(X}) < Na,

Therefore, with the same arguments as in the proof of Proposition 5.8, one can show that the
inequality (5.7) can be modified in:

Cht C
Vp, Qp < + F (8.1)

This remark permits to change the last lines of the proof of Lemma 7.2, so that one gets:

R . C ’
”uP() - EuP(')”Ll(RxQ) S ﬁ + Ch
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Consequently, the conclusion of Lemma 7.3 becomes: there exists a constant C > 0 such that

C
AMN) < N/ +Ch

forany Nyh<land p< M =T/h.

Now, we recall the inequality (6.5). This permits to modify the beginning of the proof of
Proposition 7.5 in the following way:

To+1 =

/R u(ph,y) pr(- y)dy+ b f ( /R u(ph, y) pa(-, v) dy)

—E/R tp(y) Pu(-,y)dy— hE f (/R ap(y) Pr(-» ¥) dy) + Ry () + EREL ()

hvh
< [ 1utoh9) - Bo(o)l [ mute,v)dedy + Ch + B

'L‘(R)

+Ch /R |u(ph, y) — Eip(y)| /R pa(z, y) dz dy +

2
+Ch /RE( /R Up(y) pu(z,y)dy— E /R ip(y) pr(z, ) dy) dz

Thus, it remains to check that we can improve the estimate for §,. Namely, instead of (7.4),
we have: A

Vo, G<C(K+y)

Actually, one just has to consider (7.6) and (7.10): now r');,()?;;) and n,(X}) are equal, thus
the conclusion is straightforward.

9 Conclusion

We have constructed a stochastic particle algorithm for general one-dimensional reaction-
diffusion—convection P.D.E.’s, by establishing a convenient probabilistic representation of the
solution and discretising it in space and time.

We have given its rate of convergence, what also proves a conjecture of Puckett concerning
this method for the KPP equation.
A Appendix
In this Section, we suppose (H;,i = 1,...,3). Moreover let us consider the differential operator
L, defined in §2, as an abstract unbounded closed operator in a suitable Banach space (of

functions) X.
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A.1 A result for linear equations

Let g(-) be a function in L°°(0,T; L*°(R)), and let us consider the following abstract linear
equation in X = L®(R):

w/(1) = Lu(t) + g(t)
(A.1)
u(0) = ug :

It is well known that, when , L is the infinitesimal generator of an analytic semigroup

eltin L2(R), the space of (classes of equivalence of) functions that are square integrable with
respect to a weight 7(z)(") and also in Cp.,(R) (®) (cfr. e.g. Stewart [15]), Cannarsa-Vespri
[2]). Hence elt is well defined for any ug € L®(R), but is not strongly continuous, that is
lle£*uo — uol| oo () does not tend to 0 for any ug € L®(R). One only has: eX‘ug is a smooth
function of z and e**ug (z) — up(z) almost everywhere (see also Hida [7], Theorem 2.11).

In the non-homogeneous case the following function

¢ .
u(t) = eltug +/ el =2 g(s)ds (A.2)
0

is called the mild solution to (A.1). In fact we need some regularity on ¢ (for example g satisfies
a Holder condition, i.e g € C%([0,T], L°(R))) to ensure that (A.2) is the classical solution to
(A.1) (see, for example, Da Prato-Sinestrari [11], or Pazy [10], Theorem 3.5).

(Remark: in our case, we can also use the results of the variational theory, as illustrated in
Bensoussan -Lions [1}, chapter 6, in the weighted spaces L(R)).

A.2 Existence and uniqueness of the solution of the non linear equation

Consider now the non linear problem with initial datum in L*(R):

du
5 = Lu+ f(u) (A3)
’U.(O) = U

Theorem A.1 Suppose (Hy, Ha, H3). Then there ezists a unique solution u € C1%(]0,T] x R)
to (A.3). Moreover, for t — 0, u(t) tends to ug in the continuity points of ug.

We only outline the proof; we refer to Rothe {13]. Actually in [13] the results are stated for
problems in bounded domains I of R; but, as the proofs are based on semigroup results that
are still true in R — as claimed in the preceding section —, they can be extended to cover the
case of problems in the whole space.

for instance, x(z) = (1 4 z%)~¢, with s > 0.
8i.e. the space of bounded and uniformly continuous functions.
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Indeed, let us consider the following integral equation:
L ¢ L
u(t) = e uot [ O fuls)ds = G)e) ,  te[0,T] (A.4)

Then, under (Hy, Hz, H3), there ezists a unique solution u € L>®(0,T; L®(R)) to (A.4).
For this, we refer to Theorem 1 of [13] (page 111); the proof uses the classical Picard method:
the sequence u, = G(un-1) converges to the solution (obviously unique) u of (A.4) as f(-) is
Lipschitz.

Moreover, for any 6 > 0, u(t) is in C*+22+%([§, T] x R) and satisfies the first equation of
(A.3). We refer to Theorem 2 of [13] (page 120).

Remark A.2 Theorem 3 of [13] (pag. 123) gives a comparison result, based on the maximum
principle, for “smooth” initial data; but, even when wuq is only supposed to satisfy Hypothesis
(HS), it is easy to verify that, as 0 < up < 1, we also have 0 < u(t) < 1 by an approximation
argument, as in the proof of Theorem 2 of (13], and taking in account that « = 0 and u = 1 are
solutions to (A.3).

Moreover, when ¢ — 0, u(¢,z) — ug(z) in all continuity points of ug: we use eZtup — ug in

all continuity points of ug (see Hida [7], Theorem 2.11, e.g.) and one can easily show:
[lu(t) — e *uollLe(r) = O(2)
Finally, if the initial data uon, %o are in Cj (R) and ||ugn — uo||Les( R) — 0 then we also have:

sup |lun(t) — w(t)llzo(r) — 0
[0.7]

where, by u,(t) and u(t), we mean the solutions to (A.3) with initial data respectively up, and
Ug.
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