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On the Intrinsic Complexity of Elimination Theory

Joos HEINTZ* and JACQUES MORGENSTERN **

Dedicated to John Traub for his 60th birthday and to Claude Labro

Abstract

We consider the intrinsic complexity of selected algorithmic problems of
classical elimination theory in algebraic geometry. The inputs and outputs
of these problems are given by finite sets of polynomials which we represent
alternatively in dense forme or by straight line programs

We begin with an overview on the known upper bounds for the sequential
and parallel time complexity of these problems and show then that in the most
important cases these bounds are tight. Our lower bound results include both
the relative and the absolute viewpoint of complexity theory. On one side
we give reductions of fundamental questions of elimination theory to NP-
and P¥# - complete problems and on the other side we show that some of
these questions may have exponential size outputs. In this way we confirm
the intrinsically exponential character of algorithmic problems in elimination
theory whatever the type of data structure may be.

Résumé

Nous considérons la complexité intrinséque d’un certains nombre de
problémes algorithmiques de I’élimination classique provenant de la géométrie
algébrique. Les entrées et les sorties sont données ici par des ensembles finis
de polynomes en plusieurs variables qui seront représentés soit sous forme
dense soit par des programmes directs d'évaluation.
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Nous commengons par un exposé sur les majorations connues des com-
plexités séquentielle et paralléles de ces problémes et nous montrons que dans
les cas essentiels ces majorations sont optimales. Nos résultats sur les mi-
norations sont relatives ou absolues. D’une part nous montrons la réduction
de questions fondamentales de la théorie de I'élimination a des probléemes
NP- et P#. completset, d’autre part nous montrons que certaines de ces
questions ont des sorties exponentielles. Nous confirmons ainsi le caractére
intrinséquement exponentiel de la complexité de problemes algorithmiques
dans la théorie de I’élimination indépendemment de la structure de données
choisie.

Key words. elimination theory, algebraic variety, complexity. arithmetical
network, straight line program, uniform algorithmn, random algorithm.
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0. Introduction

Let us start this paper with a short account of some selected problems and
recent results concerning the complexity of algorithms in classical algebraic ge-
ometry and commutative algebra. These results will be presented in expository
manner in the form of a short survey, since proofs may be found elsewhere. The
aim of this paper is to show that these results - as much progress as they may
represent — are not solutions of the basic problems we are considering and which
are all closely related to classical elimination theory in algebraic geometry.

We shall give evidence that this lack of genuine solutions has objective rea-
sons which resist the power of positive thinking in modern science. Thus instead
of fortifying Thebes playing lyre like Zethos, we follow rather the example of
the trumpets of Jericho with respect to the so called Calcul Formel/Computer

Algebra.

Throughout this paper we shall maintain the notations which follow now.
Let k be an infinite and perfect field, % an algebraic closure of ¥ and let
X1,...,X, be indeterminates over k. By A" := A"(k) we denote the n-
dimensional affine space over k endowed with its Zariski topology. We suppose
that polynomials F, Fy,...,F, and a nonzero linear form 1~ of k[.Xy,..., X,]
are given. Let d be an upper bound for the degrees of Fi,..., F,. In the sequel
we shall suppose that the parameters d,s,n are fixed subject to the condition

d > 2 and n > 2. Similarly, we think the polynomials F, Fy,...,F, with

d > max{deg Fy,...,deg F,} and the linear form Y of &{X;,..., X,] as given
inputs of the algorithmic problems we are going to consider (here deg G denotes
the total degree of the polynomial G € k[X,,..... X.]).

Let V := {F; = 0,...,F, =0} := {x € A":Fj(x) = ... = Fy(a) =

0} the algebraic subvariety of A™ defined by the polynomials Fj....,Fj.
Let V = C,U...UC, its decomposition in irreducible components. For
1 £ j £t we define dimension and degree of C; as usually and denote
these quantities by dimC; and degC;. Then the dimension of V is defined
as dimV := max{dimCj;1 < j < t} and its degree -less customarily- as
degV := Z deg C; (see [He 83] for details).
1<5<t
We denote the cardinality of a set A by #AM and we write log for the
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logarithm to the the base 2.

We consider the following fundamental algorithmic problems of algebraic
geometry and commutative algebra:

(i) the ideal triviality problem. Decide whether V' = § holds and if this is the
casefind Py,..., P, € k[X},...,X,] such that theidentity 1 = Py Fy+-- -+ P, F}
is satisfied.

(i1) the radical membership problem. Decide whether F vanishes on V and if
this is the case find N € IN and P,...,Ps € k[X,,...,X,] such that FN =
P F, +--- 4+ P,F, holds.

(1i1) the ideal membership problem for complete intersections. Suppose that
F, ..., F, form a regular sequence of k[X,....,X,]. Decide whether F' belongs
to the ideal generated by Fi,..., F, in k[Xy,...,X,] and if this is the case find
Py,...,P, € k[X,,...,X,] such that F = PyF} +--- + P,F, holds.

(iv) the (affine) zero dimensional elimination problem. Compute dimV and
if dimV = 0 find a nonzero one-variate polynomial Q € k[Y] and n-variate
polynomials Py,...,P, € k[X},...,X,] such that Q(Y) = P F} +--- + P,F;
holds.

(v) the general case of the elimination problem. Let 0 < m < n and 7 :
A" — A™ the projection map defined by w(xr,...,2,) = (¥1,...,Tm) for
(z1,...,7o) € A™. The main problem of algorithmic elimination theory can
be formulated as follows: find polynomials Q,...,Q¢ € k[X,,...,Xn] and a
quantifier free formula ® in the first order language of fields with constants

from k, involving only the polynomials Q,,...,Q, as basic terms, such that &

defines the set w(V).

We would like to solve the problem (i)-(v) algorithmically by using only
arithmetical operations (addition, substraction, multiplication, division), com-
parisons in k, selectors of elements of * (associated to comparisons) and
boolean operations. If the characteristic of k is positive, say p, we shall also
include the extraction of p-th roots in & in our list of basic arithmetical oper-
ations. Everyone of these algorithmic ground steps is counted at unit cost. We
shall also include straight line programs (arithmetical circuits) in k[X;,..., X,]
or in k(Xj,...,X,) into our considerations. A suitable algorithmic model for
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our purpose is given by the notion of an arithmetical network over k. ([vz
Ga 86]. See also [Stra 72], [Sto 89] or [He 89] for precisions on straight line
programs.)

We shall think our algorithms as families of arithmetic networks parametrized
by the quantities s,d, n and others which measure the size of the input given by
F,Fy,...,F, and Y. Thus we obtain immediately two complexity measures:
sequential time (network size) and parallel time (network depth). We consider
these complexity measures as real valued functions depending on the input pa-
rameters of the given problem and we try to analyse their asymptotic behavior.
All statements in our algorithmic model will be transferable mutatis mutandis
to boolean networks and circuits but for expository reasons we shall not insist
on this point.

For more details concerning our algorithmic model we refer to [{Gi-He 91]
and [Fi-Gi-Smi 92]. In this introductory section we suppose that all polynomials
occurring as inputs, outputs or intermediate results of our algorithms are given
in dense representation. That means that we associate upper bounds for the
number of variables and the degree with any polyvnomial. The data structure
which represents the polynomial is supplied with one unit of memory space

for each possible coefficient in it. In other words we represent a polynomial

. . [0 , )
F e k[X,,...,X,] of degree almost § by the vector of all is Tt possible
n

coefficients. Let us observe that there is a constant, namely the number e, such

5 :
that ( + n) < €6™ holds. Thus to F there corresponds in dense represen-
n

tation a data structure of size O(6™) (which is given by a vector with entries
from k of the same length). In particular. the input polynomials Fy,..., Fj
are represented by a vector of total length O{sd"), the polynomial F by one
of length O((deg F')*) and the linear form 1~ by one of length n.

JFrom classical elimination theory one infers immediately that the prob-
lems (1)—(v) are all algorithmically solvable in primitive recursive sequential
and parallel time (i.e. by means of uniform families of arithmetic networks over
k whose size and depth depends in a primitive recursive way on d,s,n and
possibly on the degree of F).

iFrom a fundamental paper of Grete Hermann (1926) ([Her 26}) one de-



duces even more: the problems (i)-(v) can be solved in sequential time which
depends polynomially on d,s,deg F and (or however) in doubly exponential
manner on n, the number of the variables of the problem. The parallel time
is polylogarithmic in d,s,deg F' and depends in singly exponential way on n.
Since in our model parallel time can easily be translated into working space (see
[Ba-Di-Ga 90], Theorem 4.2), this result means that the problems (i)-(v) can
be solved within in singly exponential space (see [He 83] and [Fi-Ga-Mo 90a]
for details concerning proof methods).

Let us also mention that the problems (i)-(v) can be solved in the same
order of sequential time by means of rewriting techniques (Grobner basis com-
putations). This is due to a fundamental result on the complexity of Grobner
basis calculations (see [Gi 84], [Du 90], [Kri-Lo 91]). A detailed account of
Grobner basis algorithms and their applications can be found in [Bu 85].

Although there was some evidence that the problems (1)—(v) admit a more
precise complexity analysis (see [Chi-Gri 83] and [Gri 87]) the mentioned time
bounds were the best ones known until 1987. '

Progress was only made when so called effective (affine) Nullstellensatze
appeared for the first time ([Bro 87], [Ca-Ga-He 88], [Ca-Ga-He 89], [Ko 88].
See also [Ber-Yg 91] and [Ber-Yg 90]).

We quote here two typical examples of such effective Nullstellensatze. We
put for the moment d := max{degF; : 1 < j < s} and suppose d > 2 and
n > 1. We denote the ideal generated by Fy....,Fy in k[X;....,X,] by
(Fy,...,Fy).

An effective Nullstellensatz for ideal triviality.

Theideal (Fy,...,F,) is trivial iff there exist polvnomials Py...., P, € k[X1,...,X,]

satisfying the conditions 1 = Z P;F; and max{degP;F;;1<j <s} <d".
1<5<s

An effective Nullstellensatz for complete intersections.

Suppose that Fy,...,F, form a regular sequence in k[{X,,...,X,]. Then F

belongs to (F,...,Fs) iff there exist polynomials Pi,.... P, € k[X1,...,X,]

such that F = Z P;F; and max{degP;F;:1 < j < s} < degF +d° <
1<j<s

deg F + d™ holds.



For elementary proofs of these Nullstellensatze see [Phi 88], [Fi-Ga 90],
[Di-Fi-Ga-Se 91], [Ca-Gu-Gu 91]. Somewhat different versions of the effective
Nullstellensatz for complete intersections and generalisations of it are contained
in [Ber-Yg 90], [Shi 89], [Ca-Gu-Gu 91], [Am 89)].

We remark also that the degree bounds of type d" which appear in the
quoted Nullstellensétze are almost optimal (sce [Bro 87]. where this fact is
illustrated by an example due to Mora, Lazard, Masser and Philippon). These
two Nullstellensatze are the basic tool to the following attempt to solve problems

(H)-(v).

THEOREM 1 ([Di-Fi-Gi-Se 91], [Fi-Ga-Mo 90a,b]). There exist uniform algo-
rithms (realized by uniform families of networks over k) which solve problems
(i), (iv) in sequential time sOMJO(n®) and parallel time O(n* log? sd), prob-
lems (ii), (iii) in sequential time s°‘V)(max{d,deg F})O("Q) and parallel time
O(n*log?(s max{d, deg F'})) and problem (v) in sequential time sO(1)¢O((n=m)*m)
and parallel time O(n — m)*mlog® sd).

The statements of this theorem and their proofs are contained in the quoted
~ papers [Di-Fi-Gi-Se 91] and [Fi-Ga-Mo 90a,b] or can be easily deduced from
their content. For the same type of complexity result concerning problem (v)
by a somewhat different algorithm we refer to [Ie 89]. A first solution of problems
(1), (i1) and (iv) with slightly weaker bounds is contained in {Ca-Ga-He 89)].

Let us also mention that the complexity bounds of Theorem 1 are at present
the best ones for uniform algorithms solving problems (i)-(v). In particular
Theorem 1 implies that these problems are all in P-space.

Let us observe that the problems (i)-(v) involve all polynomials in their
outputs. The polynomials of the outputs of problems (i)-(iv) may have degree of
order (d"). This is a consequence of the example of Mora, Lazard. Masser and
Philippon mentioned before. The same is true for problem (v) as a consequence
of Bezout’s Theorem. Therefore the outputs of problems (i)-(v) may have
size Q(sd"z) or at least size Q((l"z). This implies that the sequential time
bounds of Theorem 1 are polynomial in the size of the output of problems (1)-
(v) (recall that the output polynomials are given in dense representation). An
improvement of the order of complexity.in Theorem 1 is therefore only possible
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if we change the data structure representing the polynomials we deal with.

In a first attempt to solve this problem one could think on representing
the polynomials sparsely. Although considerable effort has been spent in this
direction (see e.g. [Gri-IXar-Si 89]) no result at present is known which connects
in a satisfactory way sparse representation of polynomials with elimination the-
ory. This may be due to the fact that the sparse representation of a polynomial
may become dense when transforming the variables linearly. However trans-
forming variables is crucial for almost all common techniques of manipulating
polynomials in algebraic geometry and commutative algebra. A different effi-
cient representation of polynomials without this defect is given by straight time
programs (arithmetical circuits). This representation has been used in the past
by several authors implicitely and explicitely (see e.g. [He-Schn 82], [He-Sie 81],
[Ka 88]). It is crucial for the statements and their proofs in the next section.

Let us finally observe that the representation of polynomials by straight
line programs generalizes the sparse one since every sparse polynomial of not
to high degree can be evaluated fast.

2. Sharp upper bounds for algorithmic problems in elimination the-
ory.

In this section we present and comment still unpublished results concerning
upper complexity bounds for our list of problems (i)-(v). Proofs can be found
in the papers [Gi-He 91], [He-Gi-Sa 91] and [Fi-Gi-Smi 92].

Throughout this section we shall suppose d > n > 2.

Let V = {F; =0,...,F, =0} be the closed subvariety of A" defined by
the polynomials F},..., F,, which we think to be given in dense representation
or alternatively by a division free straight line program of length L and depth

£.

Let r := dimV be the dimension of V". Thus n — r 1s the codimension of
V.

We say that the variables X;,..., X, arein Noether position with respect
to V if for each r < 1 < n there exists a polynomial of A{X,.... .. X, X;] which
is monic in X; and vanishes on V.



Our basic results are contained m the following two theorems.

THEOREM 2 ([Gi-He 91], Théoréme 3.5 and Théoreme 3.7.2]). There exists a
random algorithm which computes in sequential time UL gO=r) and
parallel time O((n — )% log® sd + () the following iteis:

(i) the dimension r = dim V' of the algebraic variety defined by Fy.....F, in
A",

(i1) a nonsingular n x n matrix M with entries from k such that the variables
Yi,...,Y, which we obtain transforming X,...... X, by means of A . are in
Noether position with respect to V.

We remark here that the statement of this theorem is not circular. The

algorithm stops spontaneously after s L1 g@tn=r)

sequential and O((n —
r)2log? sd + () parallel steps without knowing in advance what the dimen-
sion r of V is. Of course we have the rough estimates @1 [011gO(n=—1) _
sPM oM and O((n — r)?log? sd + €) = O(n?log® sd). In fact sOM oW
and O(n?log? sd) are the bounds appearing in the corresponding [Gi-He 91],
Théoreme 3.5 and Théoreme 3.7.2. This coarser complexity result is shown in
the mentioned paper with reference to the model of nonuniform algorithms. Our
refinement of the bounds follows by simple inspection of the proofs in [Gi-He
91]. In the same way one obtains a restatement of this nonuniform result in

terms of probabilistic (random) algorithms.

Theorem 2 implies that for 0 < s < n one can test in sequential time
LOMJO(n=3) and parallel time O((n — s)?log? d + () by a random algorithm
whether the polynomials Fi,..., F, form a regular sequence in *[X,,..., X,].
This leads to the following result.

THEOREM 3 ([Fi-Gi-Smi 92], Theorem 4.1 and Remark 3.2.7.). Let 0 < s<n
and suppose that for any mdex n — s < < n the polvnomials Fy...., Fnh_;
form a regular sequence and generate a radical ideal in k[{X,.... . X,]. Let
F be represented by a division free straight line program in k[Xy,....X,] of
length L and depth €.

Then there exists an arithmetic network over » of size L' := L°(deg F)2d0ts)
and depth ' := O(?log(deg F)s" log* d) which decides whether F belongs
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to the ideal (Fy,...,Fy). If this is the case. the network constructs a divi-
sion free straight line program 3 in kFX,...... X, ] of length (L deg F)?d°(®
and depth O(? log(deg F)s’ log4 d) which represents polynomials Py, ..., P, €
k[X,,...,X,] satisfying the following conditions:

- F=PF+---+ P,F

~ max{deg P,,...,deg P,} = (deg F)d°" .
There exists a random algorithm which constructs the arithmetical network
above in sequential time L' and parallel time (.

JFrom d9(®) = d°™) we deduce as before the estimates L' = L%(deg F)2d°(™)
and (' = O(€?log(deg F)n’ log4 d). This is the way how the theorem above is
presented in [Fi-Gi-Smi 92].

JFrom Theorems 2 and 3 and their proofs one infers a series of consequences

which we formulate in subsequent propositions of this section.

PROPOSITION 4 ([Fi-Gi-Smi 92], Théoréme 4.2 and Proposition 4.2. See also
[Gi-He-Se 91)).
(i) There exists an arithmetic network over k of size s9Md?") and depth
O(n? log2 sd) which decides whether the ideal (Fy..... F,) 1s trivial. If this
is the case the network constructs a division free straight line program /3 in
k[X1,...,X,] which represents polvnomials Py..... P, € k[X,...... X',] such
that the following conditions are fulfilled:

— the length of B is sCdO™") and its deptl is O(n? log? sd)

- the polynomials P,,...,P, are of degree d°'"™) and satisfv 1 = PyF) +

oo+ Py Fy.

(i) Increasing the depth in the statement (i) to O(n'?log” sd) an arithmetic

network as above can be constructed by a rancdom algorithm in sequential time
. . C
s9M o) and parallel time O(n'? log” sd).

REMARK 5. From Proposition 4 one deduces by Rabinowitsch’s Trick the follow-
ing fact: suppose that F is given in dense representation. In non-uniform time
L := s°M(max{d.deg F})°" and parallel time ( := O(n? log?(s max{d.deg F}))
one can decide whether F' belongs to the radical of the ideal (Fy,...,Fy). If
this is the case one finds in sequential time L and parallel time a natural number
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N of order d2™ and a division free straight line program 3 in k[X,,...,X,]
of length L and depth ¢ which satisfies the following condition:

B represents polynomials Py,..., P, € MX;.,..... X, ] of degree (deg F)d°™
such that F¥N = Py F) 4+ ... + P,F, holds.

ProposITION 6 ([Gi-He 91], Section 3.4.7 and Lemma 3.6. See also [Fi-Gi-Smi
92], Proposition 1.3). There exists a random algorithm whicli constructs in
sequential time %9 and parallel time O(1% log? sd) the following items:
~ a non zero polynomial Q(Y) € k(Y] represented by its (dense) coefficient
vector

- a non singular matrix M which entries from & which transforms the vari-

ables X,,...,X,, into new ones Y;..... Y,

- polynomials G,,...,G, in the variables Y,.....Y, given by their coef-
ficients in sparse representation, such that the following conditions are
satisfied:

(i) Q(Y') belongs to the ideal (Fy,....F})

(i1) the degree of the polynomials G,..... G, Is bounded by deglV < d"
and they form a reduced Grobner basis of the radical of (F)..... F,) with
respect to the lexicographic monomial ordering Y7 < --- < 13,.

PROPOSITION 7. Let 0 <m < n andlet = : A" — A™ the canonical projection
defined by m(z1.,...,2n) = (T1,.... &) for (&;...... r,) € A". We consider
Fi,...,F, as elements of k[X;,...,X0][X041.....2 Y,]. i.e. as polvnomials in
the variables X,,41,...,Xm with coefficients which themselves are elements
of k[Xy,...,X,,]. We suppose that Fy,... . F, are given with respect to the
variables Xn41,...,X, In dense representation whereas their coefficients. being
polynomials of k[X,...,X,,], are given by a division free straight line program
in k[Xy,...,Xp) of length L and depth (. Then there exists an arithmetic
network over k of size L' := L2s9W 00 =m) and depth O((+(n—m)? log® sd)
which constructs a quantifier free formula ® In the first order language of fields

with constants from k such that the following conditions are satisfied:

— the terms contained in ® are polvnomials of MXy...... X ] of degree
dO(n—=m) represented by a division free straight line programin k[X,...., Xp]

11



of length L' and depth ('.
- & defines the projection set w(1").

The arithmetic network above can be coustructed by a probabilistic Monte

Carlo algorithm in sequential time L' and parallel time (7.

A proof of this proposition in the non-uniform complexity model is im-
plicitely contained in [Gi-He 91].

The next proposition illustrates a general duality existing between the num-

ber of variables n and the number of equations s in problems (1)—(v).

ProPOSITION 8 ([Ar 92]). There exist random algorithms which determine

the dimension dimV of the variety V in sequential time s91)dO(m

Ofs)

and par-
allel time O(n?log? sd) or in sequential time L) (nd)
O(s%log®nd + ¢).

and parallel time

Let us remark that the duality principle expressed in Proposition 8 unifies
in the context of algebraic geometry over algebraically closed fields basic results
of the real case contained in [Gri-Vo 88], [Can 88a]. [He-Ro-So 90], [Ren 92] and
[Bar 91].

Proposition 8 is a straightforward consequence of Theorem 2. One has
simply to observe that s is an upper bound for the codimension n —r of V.
The sequential complexities appearing in Proposition 8 are polynomial in d
but singly exponential in n or in s. This observation may also be made with
respect to Remark 5, Proposition 6 and Proposition 7 which can be restated in
this way. We ask therefore whether the singly exponential dependency of our
sequential complexity bounds on n or on s is intrinsic for problems (1)-(v). We
shall consider this question in the next two sections.

In Proposition 4(i), Remark 5 and Proposition 6 we find sequential time
bounds of order s2MdO™) and parallel time hounds of order O(n?log? sd).
Here all arithmetical operations are considered. If one counts only the essential
multiplications and divisions in the underlying algorithms (i.e. &-linear oper-
ations are free) one obtains a parallel time bhound of O(nlog sd). whereas the
order of the sequential complexity remains unchanged. We call this complexity

measure the nonscalar one. Thus the nonscalar parallel time of our algorithms
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is in general of type O(nlogsd). This observation applies mutatis mutandis
also to Theorem 2 and Propositions 7 and 8.

An algorithm realized by a family of arithmetical networks over & is called
well parallelizable if the parallel complexity is of order log? of the sequential
complexity of the algorithm and if the nonscalar parallel complexity is of order
log of the same quantity.

2. Relative lower bound results.

In this and the next section we ask whether it is possible to obtain poly-
nomial sequential complexity results when we represent the input polynomials
F,,...,F, by straight line programs or when we give them in sparse represen-
tation. (In the precedent two sections Fj,....F, were always supposed to be
given in dense representation).

For the moment let Up,...,U, and Xy be new indeterminates and let
Gi,...,G, be homogeneous polynomials of *[Xp....,X,] of degree at most
d defining a projective variety W of dimension zero. We suppose that the
polynomials Gi,...,G, are given in dense representation. We consider them
as input for the algorithmic result which we are going to explain now.

We denote by (G, ...,G,) the homogeneous ideal generated by Gy,...,G,
in k[Xo,...,X,]. We define the degree deg(G....,G,) of theideal (G,...,G,)
in the usual way by means of the Hilbert polynomial. In our case the Hilbert
polynomial is constant, since W, the projective variety given by Gi,...,G,, 1s
supposed to be zero dimensional. Moreover Bezout's Theorem implies deg(G,,...,G,) <
dr.

Let (Gy,...,Gs,UgXo+---+U,X,) be the homogeneous ideal of k[Uy,...,U,, Xo,.
generated by the forms G,,..., G, .UpXo + -+ U, X,. For 0 < ¢ < n we
denote by ((G1,...,Gs,UpXp + -+ U,X,) : X) the homogeneous ideal of
k[Uo, ceiy Uy X1, .0y }x’n] defined by (Gy..... G, . UpgXg+-- '-{-Un.‘{n) : .X:) =
{G € k[Uo,...,.Un, Xo,...,Xp}; IN € N with GX¥ € (Gy,....G,,UpXo +
-+ UpX,)}. We consider the following homogeneous ideal of k{Uy....,U,]:

k{Uo,-- - Un) 0[] ((Ghyo G UpXg + -+ + U Xp) 0 X7),

0<ikn
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(From [Ca 90], Proposition 1.3 one deduces immediately the well known fact
that this ideal is principal. The (up to scaling by non-zero elements of k)
unique generator of it is called the U —-resultant of (G,,...,Gy).

The U -resultant R of the zero dimensional homogeneousideal (G,...,G,)
has the following properties:

- deg R = deg(G,,...,G,) < d"

- for any point (ug,...,u,) € A™"! the projective variety defined by the
forms Gy,...,Gs,uoXo + - + up X, i1s nonempty iff R(ug,...,u,)=0.

- if s =n then R is the ordinary resultant of the homogeneous polynomials
Gi,....G,,Upg Xy +---+ U, X, with respect to the variables Xg,...,X,.
For more details on U -resultants and ordinary resultants we refer to {vd
Wae 40}, Kapitel 11, §79 and [Jou 90].
The improved complexity bounds in the last section are all based on the

following fundamental result essentially due to D. Lazard:

PROPOSITION 9. The U -resultant of the homogeneous ideal generated by
Gi,...,G, in k[Xy,...,X,] can be evaluated by a division free straight line
program 3 in k[Uy,...,U,] of length sOM GO and depth O(n? log2 sd). The
nonscalar depth of 8 is O(nlogd). The circuit 3 can be constructed from the
input G,,...,G, (which is given in dense representation) in uniform sequential
time s9WdO™) and parallel time O(n? log® sd). The nonscalar parallel time of
the algorithm is O(nlogd). If k is the field of rational numbers @) then the bi-
nary length of the parameters used during the procedure is of order O(ntlogd),

where t denotes the maximal binary length of the coefficients of Gy, ...,G,.

A proof os this proposition is implicitely contained in [La 81], [Ca 88b] and
[Gi-He 91], 3.2.

Let us also observe that Proposition 9 entails a (partial) answer for the
projective version of problem (iv). Let us call this version the projective zero-
dimensional elimination problem.

The algorithm underlying Proposition 9 is well parallelizable. Moreover
if & is the field of rational numbers @ the binary length of the parameters
used during the procedure is of order log of its sequential complexity. We shall
include this condition in our notion of a well parallelizable algorithm when the
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base field is Q. In this sense we have the following relative lower bound result :

PROPOSITION 10. Let G,,...,G, be given by a well parallelizable straight line
program of length L. If there exists an uniform well parallelizable algorithm

which is polynomial in L and n and which constructs a division free straight

line program in k[Uy,...,U,] of the same complexity class for the evaluation
of the U -resultant of the homogeneous ideal generated by G,,....G,, then
P = NP holds.

Proof. Suppose that such an algorithm exists. Let & := @ and s := n. We
consider the zero dimensional homogeneous ideal of Q[ X,,...,X,] generated by
the forms Gy := X? — X1Xo,...,Gn := X2 = X, X. Let R, € QUy,...,U,]
be the U -resultant of this ideal. Since G..... G, can be represented by a
division free straight line program in Q[.Xo,..... X,] of length O(n) and depth
O(1) we conclude from our hypothesis that R, can be evaluated by a division
free and well parallelizable straight line program 3, in Q[ X,...... X',] of length
n2(1) | Our (modified) notion of well parallelizability and the hypothesis of the
uniformity of the algorithm which produces the straight line program 3, from
the input G,,...,G, imply that there exists a polynomial time Turing machine
which for any n and any (n + 1)-tuple « = (uo,...,u,) of integers computes
the value of Rn(u). Hence this Turing machine decides whether the projective
variety W, defined by the forms X2 - X, X,,.... X2 - X, Xo,uoXo+ - +u,Xn

is empty. Let us observe that W, is the projective closure of the affine variety
Vy = {X12 -X; = 0,...,X,21 - Xp=0uwg+u; Xy +---+u, X, =0}.
Therefore we have R(u) = 0 if and only if 1}, # 0 holds.

Thus we obtain a deterministic polynomial time Turing Machine A which

decides for arbitrary natural numbers v,u;....,u, whether for u 1= (—v,uy,...,uy)
the variety V, obtained by intersecting {XZ - X; =0...... X2 - X, =0} with
the equation u1X; + - + u, X, = v is nonempty.
One sees immediately that for « = (—v.u;...., i, ) the variety V, is
nonempty if and only if there exists aset I C {1..... n} such that Z u; = v is
i€l

satisfied. This means that the Turing Machine 1/ solves the knapsack problem
in polynomial time, whence P = NP. 0



The hypothesis of uniformity is unavoidable for the conclusion in the prece-
dent proposition since the non-uniform knapsack problem over the reals is solv-
able in polynomial time ([Me 84]. See also [Mon-Par 92]).

REMARK 11. From Proposition 10 one deduces immediately that if P # NP
holds, there exists no uniform well parallelizable algorithm which for inputs
F,...,F, € k[X;,...,X,] given by a well parallelizable division free straight
line program of length L solves the affine zero dimensional elimination problem
(problem (iv)) in sequential time (Ln)®'!) and produces the following output:
a polynomial Q(Y) of degree degV belonging to the ideal (Fy....,Fs) which
is given by a division free well parallelizable straight line program in k[Y] of

length (Ln)°M).

Let 8=(Q1,...,Qm) with Q,,...,Q,, € F[Xy,..... Y, ] be a straight line
program in k[X,...,X,]. The polynomials Q....,Q,, are the intermediate
results of B and for 1 < p < m each Q, satisfies one of the following conditions:

(1) Q, € kU{X,,...,X,}
(i1) there exist 1 < pj,p2 < p such that @, = Q,, * Q,, holds with
*€{+,—,-,/}

We call the straight line program £ monotone if for each step of type (ii) in
B with * € {+,—} the condition degQ, = max{degQ,, ,degQ,,} is satisfied.

Let Xy be a new variable and let Q € k[X,....,X,] be a polynomial of de-

— X Xy . :
gree 6. Then Q := X§Q(T‘, ey F) is a form of degree ¢ of k[Xo,...,X,].
Xo 0

We call Q the homogeneization of Q by the variable X,. Let us observe that

Q(1,X,,...,Xn) = Q(X1,...,X,) holds.

We need the following technical result:

LEMMA 12. Let Q € k[X1,...,X,] be a polvnomial represented by a division
free monotone straight line program £ in FX,.... .. X,] of length L and depth
¢. Then B can be transformed in sequential time O(L?) in a division free
straight line program B in k[Xo....,X,] of length O(L?) and depth O(€)

which evaluates Q.

Proof. Let 8 = (Q1,...,Qn) with Q,.,.... Qm € k[X,...... \,]. For 1 <
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p<m let d, := deg ), and observe that d, < 20 < 2L and Q,, = Q holds.
Without loss of generality we may suppose that every Q;..... Q. 1s different
from zero. Thus we have d, > 0 for 1 < p < m. In sequential time O(L?) and
parallel time O(€) we precompute for any pair of indices 1 < p;,p2 < m with
d,, > d,, the monomial X;*' ™ "*? using only multiplications in k[Xo....,X,].
Observe that between this monomials appear all Xg .1 < p < m. Now we
construct by recursion in 1 < p < m from (.\’:)"" 1< prop2p <m, d, >

'.) as follows:

Let 1<p<m.If Q, € kU{Xy,....X,} weput Q, :=Q,. If Q, is of the
form Q, = Q,, * Q,, with 1 < p;, p2 < p we consider the following cases:
(a) x€ {+,—} and d,, =0 or d,, =0.
If d,, =0 we put Q, :=Q,, -X:” + @, and
if dp, =0 we put Q),:=Q, +Qp, .\':”‘ .
(b) x€ {+,~} and d,, >0, d,, > 0.

Without loss of;i genfra.lity we may suppose d, = max{d,,,d,,}. We put
~%p1 T oo ]

oy
Qp N 1 + A P2’

(c) »€{-}. Weput Q,:=Q, +Q), .
Since by hypothesis the straight line program 3 1s monotone one veri-
ges imrEEediately by induction in 1 < p < m that Q) = Q,,...,Q",
Qm = Q holds. (The only subtle point is the verification of Q, = @,
in case (b). Here we use the hypothesis of monotony which implies d, =

d,,) a division free straight line program ' = (Q1.....

Ol

max{d,,,dp,}). Moreover ' is a division free straight line program in
k[Xo,...,X,] of length O(L) and depth O(() which computes the poly-
nomial @ from the inputs X;,....X, and .Y:"‘ ~42 here 1 < p1,p2 <
m and d,, > d,,. Joining at B’ the precomputation of the monomi-
als X{f 2172 ahove we obtain a division free straight line program 3 in
k[Xo,...,X,] of length O(L?) and depth O(() which computes Q, as
desired. a

Let Z;; with 1 <:,; < n be new indeterminates.

PROPOSITION 13. Let &k := Q(Zi;;1 < +.j < n) and let the polynomials
F,....F, € k[X,,...,X,] be given by a division free straight line program in
k[X1,...,Xn] of length L. Suppose that there exists an arithmetic network of
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size (Ln)°™") which uses only parameters from € and which solves the affine
zero dimensional elimination problem (problemn (iv)) for any input Fy,...,F,
in the following way:

if the algebraic variety defined by F,....F, is zero-dimensional the network
produces a monotone division free straight line program f in k[Y] of length
(Ln)°M) which represents the (unique) monic polvnomial Q(Y) of minimal
degree which belongs to (Fy,...,Fy).

Then the n x n-permanent over ) can be evaluated by an arithmetic circuit
o(1)

of length n
Proof. Let X;; with 1 < ¢, < n be new indeterminates over k. These
indeterminates and Y will serve as the variables of the algorithmic problem we
are going to consider. The input of this problem will be given by the following
polynomials of k[X;;,Y:;1 <1,5 < nj:

X?j —Xij for 1 <¢,5<n

—1+ Z X for1<i<nm

1<i<n
y— [ Y x5z,
1<i<n 1<j<n

We consider the affine subvariety 17 of A" *! defined by these polynomials
and observe that V is reduced and zero-dimensional. Let 7 : A" +! — A! the
projection map defined by 7((£i;)1<ij<n.y) =y for ((Eijhicij<n ) € A™ T,
Let Q € k[Y] be the monic polynomial of minimal degree which belongs to the
ideal generated by our input polynomials in A[.X;;.Y:1 < /,; < n]. Observe
that Q is also the monic polynomial of minimal degree which defines the zero
dimensional variety w(V) (i.e. Q(Y) is the minimal polynomial of n(V)).
Therefore (Q can be written as

(1) Q: H (l'_Zlﬂ(l)"-Z:la(n))-

o€ Sym(n)

where Sym(n) denotes the symmetric group of permutations of n elements.
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Let P be the permanent over @) of the n x n matrix (Zi;)1<i j<n - Obvi-
ously P is a polynomial which belongs to Q[Z;;:1 <¢,j < n] and therefore it
is an element of k.

Developing the product (1) in ¥ we see that () has the form
(2) Q =Y™ - PY™) 4 terms of lower degree in Y

The input polynomials of our problem contain n? + 1 variables and can be
represented by a division free straight line program in A[X,;, 151 < 72,5 <
n] of length O(n?). Thus by hypothesis Q can be evaluated by a division
O Let T be a new

indeterminate and let Q € k[T, Y] be the homogenization of Q by the variable

free monotone arithmetic circuit 3 in A{}’] of length n

T. By Lemma 12 Q can be represented by a division free straight line program
B in k[T,Y] of length n®M), From (2) we deduce that Q has the following
form:

(3) 6 =Y™ 4+ PTY™"! + terms of lower degree in Y

iFrom [Ba-Stra 82| (see also [Mo 84]) we deduce that we can evaluate the

polynomial —02 by a division free straight line program 5’ in *[T.Y] of length

ar =
nOM) | The representation (3) implies that %;g — PY ™! is divisible by the
indeterminate T. Therefore we have %%(0, 1) = P. Since the straight line

program [’ is division free we can in /3’ specialize the variables T to 0 and
Y to 1. Thus we obtain a circuit 8" in & = Q(Z;;;1 < i{.j < n) which
uses possibly parameters from &k and which computes the permanent P. We
want to convert 8" into a straight line program in Q(Z;;:1 < /.j < n) which
uses only parameters from Q. The circuit 3" was obtained by transforming
successively the initial straight line program 3 which evaluates Q of k[Y].
This transformation was done by means of an arithmetical network which uses
only parameters from Q. By hypothesis 3 itself is produced by an arithmetical

network having the same property.

0O(1)

Both networks are of size n Therefore there exists an arithmetic

network over k of size n%11) which realizes the circuit 3" and which uses only
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parameters from @). Thus the parameters of 3” which are elements of & but

not of @ must be given by a straight line program in € Z;;;1 <i,j < n) of size

nC) | Hence joining this straight line program at 4" we obtain an arithmetical

O(1)

circuit 8* over Q) of size n which computes all intermediate results of 3"

in Q(Zi;;1 <4, < n). Between these results one finds the n x n permanent

P 0Q(0,1) .

noM in Q(Zi;;1 <1,5 <n). 0

Thus P can be evaluated by a straight line program of size

3. An elimination polynomial which is difficult to evaluate.

In this section we consider the zero dimensional elimination problem in a
semialgebraic context. We shall give an absolute lower bound of subexponential

type for a particular instance of the counterpart of problem (iv) for real closed
fields.

For this purpose we need some preparations concerning lower bound tech-
niques for the evaluation complexity of polynomials. We first develop a method
for showing lower bounds for the complexity of univariate polynomials which

are given by their roots. This method is analogous to the technique used in
[He-Sie 80].

3.1. A geometric model for straight line programs.

In this section let d and L be given natural numbers different from one.
Let k:= C and Y an indeterminante over C. To any point F = (f,,..., fa) of
A? = A4(C) there corresponds a monic polynomial Y+ £iY94+... 4 f; € ([Y]
of degree d which we denote also by F'. In this way we identify the set of the
monic polynomials of C[Y] of degree d with the affine space A?. Let £
be the nonscalar (Ostrowski) complexity measure for division free circuits in
C[Y]. We say that a polynomial F' of C[Y] has nonscalar complexity L if
L = min{L(B); B is a division free circuit in €'[}] which computes F } is
satisfied. We write L(F) := L if this is the case (see [Stra 72], [Sto 89] or [He
89] for details). We denote by W(d, L) the Zariski closure in A of the set
of monic polynomials of degree d of €[Y] which can be evaluated by division
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free circuits in €[Y] of nonscalar length at most L. Let m := (L 4 2)* and let
Ti,...,T,, be new indeterminates over (.

LEMMA 14 ([Schn 78]). There exist polynomials Q... .. Qi € Z[T..... T
with the following properties:
(i) deg@Q; <2(d—j)L for 1<) <d
(ii) Let &4 : A™ — A be the morphism of affine spaces given by
(Q1,-..,Q4). The morphism &, satisfies the following condition: if
a monic polynomial F of (Y] of degree d has nonscalar complexity
at most L, then the point F' of A belongs to the image of ®4.1 .

(iii) The variety W (d, L) is the Zariski closure of the immage &4 .

From Lemma 14 one deduces easily the following result.

LEMMA 15 ([He-Sie 80]). W (d.L) is a closed irreducible subvariety of A¢
which is definable over Q and which satisfies the following conditions:

(i) dimW(d,L) < (L +2)?
(i) degW(d,L) < (2dL)\L+2*

Let Py,...,P; and Yi,...,Y; be new indeterminates (corresponding to

the coefficients and the roots of the monic polyuomials in Y of degree d). Let

o1,...,04 the polynomials of ZZ[Y7,....Y}] satisfring the equality
(4) Yito ¥+ o= J] 0710,
1<)<d

Up to sign the polynomials o;,...,04 are the elementary symmetric functions
in Y7,...,Y;. Let us identify the variables P;...., P Y., .., Yy with the co-
ordinate functions of the affine space A2/, We consider the closed subvariety

V(d,L) of A%® given by

V(d,L) == (W(d.L)yx AYyn{P, -5, =0..... Py —o04=0}.

We denote by =,...,mq and n;,....94 the coordinate functions of V(d, L)
induced by Py,...,P;y and Yi,....Yy. Let 7 : V(d.L) — W (d,L) be the
morphism of affine varieties defined by = = (7,.....74).
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With these notations we have the following technical result:

LEMMA 16. Suppose that L > 2logd holds. Then V(d,L) is a closed
equidimensional subvariety of A*? whicli is definable over ). The morphism
7 :V(d,L) —» W(d, L) is finite and surjective. The n—fiber of any point F of
W(d, L) (which represents a monic polvuomial of degree d of C|Y]) has car-

dinality ————— where ( is the number of distinct roots of the polynomial
Q... p

F and a,,...,a¢ are the multiplicities of these roots. The dimension and the

degree of V(d, L) satisfy
(i) dimV(d,L) =dimW(d.L)
(ii) degV(d,L) =d'degW(d.L).

Proof. One sees immediately from the definition that V' (d, L) is a closed sub-
variety of A?¢. By Lemma 15 the variety 117(d. L) is definable over €. Hence
this property is also shared by 17(d. L). From (4) and the definition of V(d, L)
one deduces that for any 1 < j < d the equality

d-1

nf+mni T+ 7 =0

holds in the coordinate ring of V' (d.L). This implies that = is finite.
Let F = (p1,...,pa) with py...., pa € € be an element of W (d,L). The

point F' represents a monic polynomial of C[}7] of degree d which we denote
also by F. In this sense we have F = Y/ 4+ p;Y 7Y + ...+ ps. Let ¢ be
the number of distinct roots of F'. Denote these roots by yy..... ye and let

ay,...,ap € IN be their multiplicities.

Thus we have F = (Y — y;)°' .. (Y — y)* with 1 < ( € d. From
the definition of V(d,L) and = one deduces immediately that the w-fiber of
F coincides with the Sym(d )-orbit of the point (F.(z.....24)) where z; :=

Yiseoos Zay = Y1y Zay41 = Y2508 Tagtas T Y2a0 0, :Ol+...+O¢_1+1 =Yy,

Zay+..4ar := Ye. (Here Sym(d) denotes the symmetric group of permutations

o : . d!
of d elements.) Therefore the cardinality of the 7-fiber of F is —— - In
Qy....0¢.
particular the m—fiber of F is not empty. Therefore the finite morphism 7 is

surjective. Thus the dimensions of V' (d. L) and 11 (d. L) are equal, whence (1).
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Let C be an irreducible component of V(d,L). Since V(d,L) is ob-
tained by intersecting the irreducible variety W(d.L) x AY by d equations
one concludes that dimC > dim W(d, L) holds. On the other hand (i) implies
dimC < dimW(d,L). Thus we have dimC = dimW(d.L) = dimV(d,L),
whence the equidimensionality of V(d. L).

iFrom the definition of V(d,L) and the Bezout Inequality (see e.g. [He
83], Theorem 1) one deduces

degV(d,L) < d'degW(d.L).

Let F be the polynomial F := Y% 4 1. F is separable and Can be evaluated
by a straight line program # in C[Y] which executes at most 2logd multipli-
cations and one addition. Therefore 3 is division free and has nonscalar length
bounded by L. This implies that the point (0...., 0.1) of A? which repre-
sents the polynomial F belongs to W(d.L). Therefore the constructible subset
of W(d, L) of points representing separable monic polynomials of degree d of
C[Y] which can be evaluated by a division free straight line program of non-
scalar length at most L is not empty. Since by Lemma 15 the variety W(d, L)
is irreducible this constructible set is Zariski dense in W (d.L). We denote it
by U and observe that U contains a non-empty open subset of W(d,L).

Let r := dimW(d,L) and D :=deg11’(d,L). By [He 83], Remark 2, there
exist r affine hyperplanes of A given by affine linear polynomials H;,...,Hy €
C[Py,...,P4] which intersect W(d,L) in exactly D points which belong all
to the set U. Let Fy,...,Fp these points. They represent separable monic
polynomials of degree d of C[Y] which we denote also by Fi,....Fp.

Let 1 < j < D. Since the polynomial Fj is separable, all its zeroes
are distinct and therefore the m-fiber of F; has cardinality d!. This im-

plies that the preimage V of the set {F1,..., Fp} by = is of cardinality
d'D = d'degW(d,L). On the other hand we have V" = V(d.L)Nn {H, =
0,...,Hq = 0}(here we interprete H,..... H, as affine linear polynomials

of C{Py,...,Ps,Y1,...,Yq]). jFrom the Bezout Inequality we deduce now
degV < degV(d,L). Since V is finite, this means that 1’ contains at most
deg V(d, L) points. Thus we obtain d'deg 11 (d. L) < degV'(d.L).

Since we have already shown the reverse inequality. we conclude that (ii)

holds. o



Let y = (y1,.-.,yq4) be a point of A?. We call F, = Y44 U,(y)Y"'l +
.-+ + 04(y) its associated polynomial. Thus F, belongs to €[}’] and is monic
of degree d. We identify F, with the point (o) (y)..... aa(y)) of A% which we
denote also by F,. We say that the pomt y is separable if F} is, i.e. if all
Y1,-.-,ya are distinct.

Let G be the automorphism group of €. i.e. the Galois group G :=
Gal(C : Q) of € which has Q as fixed field. The action of G on € can
be extended componentwise to A?. Let 7 bhe an element of G. We write
Tey:=(7(x1),-..,7(ya)). For a monic polynomial F = Y44 p, Y471 4... 4 p,
of degree d which belongs to (Y] we write 7« F := Y47 (p))Y " 4. .4 7(pq).
The same notation is used for the action of 7 on the point of A¢ representing
this polynomial.

The symmetric group Sym(d) acts in a natural way on A¢ and so does
the product group G* := G x Sym(d). Let v = (r,w) with 7 € G and
w € Sym(d) an element of G*. We denote by vy the action of v on vy, i.e.
Yoy : = (T(Yw1))s- - - » T(Yw(a)))- Let us write G* -y for the G*-orbit of y, i.e.
G*ey:={7v-y;7 € G} = {("(Wwm))r-- - TWwi@)): T € G, w € Sym(d)}.

The group G* acts also on A% = A x A? in the following way: let
p=(p1,.--,pd) € Al y= (Y1,---,yd) € AT and v = (1.w) € G* with 7 € G,
w € Sym(d). Then v+ (p,y) is defined by

Y- (p, y) = (T(_pl)v tey T(Z)d)? T(yuv(l))s veey T(yw(d)) .

Again we denote G* « (p,y) := {7 *(p,y): v € G*} for the G*~orbit of (p,y). If
y is given as before and p is the point of A¢ which represents the polynomial
F, the following is true:

- G™y is finite iff the coordinates of y are algebraic and in this case we have
#(G* - (p,y)) = #(G" - y).

- for v = (r,w) € G* with 7 € G and w € Sym(d) we have v-:(p,y) =
(t-p,7+y) and the point 7.p represents the polynomial F,, = Fr .
From Lemma 16 we know that the algebraic variety 17(d, L) is definable
over (). From this and the definition of V(d. L) one sec inmediately that
V(d, L) remains invariant under the action of the group G*.

With these notations and observations we have the following result which
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is inspired in [He-Sie 80], Theorem 1.

PROPOSITION 17. Let y = (y1,...,y4) be a separable point of A¢ with (dis-
tinct) algebraic coordinates yy,...,yq andlet Q... .. Q~ be syvmmetric poly-
nomials of QY1,...,Yy] of degree at most ¢. where ¢ is a given natural number
different from one.

We suppose that y is an isolated point of the algebraic varietyv {Q; =
0,...,Q~n = 0} contained in A*. Let F := F, = H (Y —yj). Then the

1<j<d
nonscalar complexity of F satisfies

#(G*-y)\
L(F) > -3—( -2
2+510g(lq

Proof. Let L := L(F) and V := V(d,L). Observe that F is a separable monic

polynomial of degree d of C[Y] satisfyving F = H (Y —y;). The polynomial
1<i<d

F is represented by a point of AY which we denote also by F. Since the

nonscalar complexity of F' is L the point (F,y) belongs to V.

Let » := dim V. Observe that Lemma 15(i1) and Lemma 16(1) imply r <

(L +2)%. Let us choose a generic 7 x N matrix M := (u;¢) 1<j<» of rational
1<iEN
numbers. We consider the polynomials Q..... Q. of Q[Y]....,Y,] defined by

Q) = Z 1ieQc .

1<<N

where 1 < j < r. These polynomials are synunetric and their degree is bounded
by ¢. Moreover the point (F,y) belongs to V' := VN(A' x {Q| =0....,Q. =
0}).

Recall that y was assumed to be an isolated point of {@Q; =0,...,Qn =
0}. Thus from the generic choice of the matrix 1/ we conclude that (F,y) is
an isolated point of V'. Since the polynomials Q},....Q’ are symmetric and
belong to Q[Y1,...,Yy] the variety A= {Q| =0..... Q). = 0} is G*-invariant.
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As we have seen before the same is true for ¥'. This implies the G*-invariance
of V'. Thus (F,y) € V' implies G*-(F.y) C V'. Since (F,y) is an isolated
point of V' all elements of the (finite) orbit G* - (F,y) have the same property.
This implies

(5) #(G* - y) = #(G* - (F.y)) < deg V'

On the other hand the Bezout Inequality, Lemma 15(i1) and Lemma 16(ii) imply
the following estimates:

deg V' < ¢"degV < dl¢'LtD " deg W (d. L) < dlg' LD (2dL) L+D*
Thus we have
(6) degV' < (l!(I(L’Uz)Q(?dL)(L“U“))2
iFrom (5) and (6) we deduce

#(G* -y 2)? . 2
(7) .__g__(_i_'__) < q(L+-) (2(1[,)([‘+ )? )
The algorithm [Pa-Stoc 73], 3.2 implies L < 2/d. Taking logarithms in
(7) we obtain therefore

#(G* -y)
d!

3
log < (L+2)}(1+logdqL) < (L+2)2(’2+310gdq)

and finally

., 1/2
log #(G* -y)

L(Fy=L> — -2, o
3
2+ slog(lq

As an application of Proposition 17 we obtain the theorem below.

Let j € Z with j > 0. If 7 > 1 we denote by /] the positive square root
of j. For j =0 let /j:=0.



THEOREM 18. Let (Fy)aew be the family of monic polvnomials Fq € IR[Y)
of degree d defined as follows:

Fy:= H ()’—\/.7).

0<j<d

=
logd/ "
Thus the family (Fy)aew is hard to compute in the sense of [He 89).

Then L(Fy) = Q(

Proof. Let (y'?)4en be the family of points y'¥ = (ygl”....,yfid)) of A"
defined by y;d) i=Vj—1for 1 <j <d. Thus we have Fy = Fy ).

Fix for the moment d > 2 and let y:=y'V. y = (y1.....yq). F:i=F4 =
Fy

Let P(Y) = H (Y2 — j) and observe that P(Y) = (=1)*F(Y)F(-Y)
0<j<d
holds. Thus for 1 < 7 < d we have P(y;) = 0. The polynomial P belongs to
Q[Y] and is monic of degree 2d. 5
Let Q) := o1(P(Y1),...,P(Y4)),...,Qq := a4(P(Y})..... P(Yy)), where
01,...,04 are the symmetric polynomials defined by the equality (4) in the
proof of Lemma 15. Observe that the polynomials Q,,....Qq are symmetric in
Y1,...,Ys and belong to QY7,...,Yy]. Their degrees are bounded by ¢ := 2d?.
Moreover Q,...,Qq satisfy the identity

(8) YOrQuv* 4+ Qa= ] (Y - P(Y)).
1<y<d
JFrom (8) we infer immediately that a point = = (z....,24) of A? be-
longs to the variety {Q; = 0,...,Qq = 0} if and only if P(z;) = 0 holds for
any 1 < j < d. Therefore the algebraic variety {Q; = O0..... Qq = 0} is zero
dimensional and contains the point y. Since Q,....,Qq are svmumetric polyno-

mials of Q[Y;,...,Yy] of degree at most ¢ = 2d? we conclude from Proposition
17 that

(9) L(F) >



holds.

"%

Now we are going to estimate the quantity ————7—1'——‘/- from below.
a.

Let K' := Q(y1,...,y4) = Q(/7;0 < j < d) and observe that K' is a
Galois extension of ©. We denote by G’ := Gal(L' : @) the Galois group
of K'. Let 7 be an automorphism of L', i.e. an element of G'. Since for
1 < j < d the equality y; = /7 — 1 holds we have 7(y;) = +y;.

Thus 7 can be described by its sign vector given by the d-tuple (7y,...,74) €
{0,1}¢ which satisfies the condition 7(y;) = (=1)%y; for 1 < j < d.

Let w be a permutation of Sym(d) and let v := (r,w).

We interprete v as an element of G*. Thus vy = (T(yuw)) -+ - » T(Yw(a))) =

(D) Yuw(1)s- - - (1) Yw()) = (1) Vw(1) — 1....,(=1)"/w(d) — 1). This

implies that G' and Sym(d) act independently on y. Therefore we have
(10) #(G* -y) = d'#G' .

Consider the primes p;,...,pm between 2and d—1. Let K" := @ /pe; 1 <
¢ <m) and G” := Gal(K" : Q). Thus L' is a subfield of A’ and G" is a
homomorphic image of G'. From the proof of [vzGa-Stra 80|, Application 2 we
conclude that #G” = 2™ holds. Therefore we have

(11) #GI Z #GH — .2171

From the Prime Number Theorem (or even from Chebyshev’s Theorem,
see [Cha 68]) we conclude that there exists a constant ¢ > 0 such that for
d sufficiently large the number m of primes between 2 and d — 1 is at least

“logd "
Therefore (11) implies

(12) #GI > Qc(d/log(l)

for d sufficiently large.
Thus from (9), (10) and (11) we infer that

cd 1/2
L(F) > 5
( )— ((4+51()g(l)1()g(]>
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holds for d sufficiently large.
This implies £(Fy) = Q(@) :

Open Problem.

. PR Y (Y -1 ... (Y —d+ 1)
-d . - :
For d € IN let Y<:= II (Y —j) and ((l) = T i
0<;<d

-~ )'
Obviously we have d! <}1> = Y% The expression ( ]> is called the d-th
d ‘

Pochhammer polynomial in Y. We have (12)4 = (—=1)/Fy(Y")Fy(=Y"). where
Fy is the polynomial of IR[Y] considered in Proposition 17.

The question which we are still unable to answer is the following: are the

Y
families of polynomials (¥'4)sen and (( l)) hard to compute?
¢
deIN

3.2. A difficult zero dimensional elimination problem

For n € IN we consider the following semialgebraic subset of R :

Vi = {Xf ~X=0,...,X2-X, =012~ ) 27'x;=0, YV > 0}
1<ikn

Let 7, : R"t! — IR be the projection map defined by #,(zy,...,¢n,y) = ¥y

for (zy,...,xn,y) € R""!,

Let y?") = (ygz"),.“’vyéi")) be the point of A2" defined by yﬁ-zn) =

V=1 for 1 < j < 2" Observe that #15, = #x(1,,) = 2" and n(V,) =
{yg2 ),-..,y;i )} = {v7:0 < j < 2"} holds.
Let Qn := Fyon) = H (Y — \/7) Thus ), is a monic polynomial of
0<j<2n
degree 2" of R[Y] which defines 7,(1’,) as a subset of A! = A(C):

7"n(Vn) = {Qn = 0} .

Va is a zero dimensional semialgebraic subset of R"*T' and (2, 1is a possible
solution of the semialgebraic counterpart of the zero-dimensional elimination
problem (problem (iv)).

29



However one restriction has to be made: the coefficients of (), are not
rational but real algebraic numbers. Thus @, would be never the output of a
quantifier elimination procedure applied to the obvious elementary formula of
ordered fields defining the semialgebraic set 15,. On the other hand @, is the
(unique) monic polynomial of minimal degree of IR[}] which defines the set
(V).

In this sense Q, represents a natural output of an elimination procedure
applied to the polynomials X? — X;,..... X2 - Y, Y2 - Z 271X, Y and

1<i<n
involving computations with algebraic numbers.

Note that these polynomials may be represented by a division free straight
line program in QX,...,X,,Y] of length O(n) and depth O(1). By Theorem
18 we know that the family of polynomials (), ), cix 1s hard to compute. More

9on /2
precisely we have £(Qn) = Q( ) for n € IN. Since deg @, = 2" holds the

depth of any arithmetic circuit representing Q, is Q(n) (see [vzGa 86]). We
state this conclusion in the following way:

THEOREM 19. Let Fy := .\’12 - X5..... F, = _\",?; - X,. Fhp1 = Y? -
Y 27X, Fapa:=Y and Vo := {F, = 0..... Fo=0.Fop1 = 0,Fp4s >
1<i<n

0}.

We consider the family ({Fy,...,Fy42})neix of sets of polvnomials Fy, ... . Fpio
dX,,...,X. Y] and the family (V,),en of semialgebraic subsets 15, of R,
Let m, := R"*! — IR the projection map defined by 7,(r1.....: th,Y) =V,
where (zy,...,%,,y) € R,

Denote by Q, the unique monic polynomial of IR[Y'] of minimal degree which
defines mp(Vy,).

Then the polynomials Fy, ..., Fhy2 can be represented by a division free straight
line program in Q[X,...,X,.Y] of length O(n) and depth O(1).

However anyv algorithm which produces a division free straight line program

gn /2
= and

in IR[Y] evaluating the polyvnomial @, needs scquential time Q( ~

parallel time Q(n) for the representation of the output.

It is insatisfactory that we have to insist in the formulation of the example
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v

of Theorem 19 that the output is given exactly by the polynomial @, of minimal
degree. The usual output of a quantifier elimination procedure applied to the
obvious formula defining V,, would be the quantifier formula #, in the first
order language of ordered fields given by

(YHE =0AY >0) .

In view of this observation we make the following final remark:

Suppose that the family of polynomials (Y¢)¢en is hard to evaluate. Then
either the zero-dimensional elimination problem (problem (iv)) is hard to solve
for k = @ and k = C when inputs and outputs are given by division free
straight line programs or greatest common divisor computations of univariate
polynomials given in the same way are difficult.
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