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Evaluation de Performance d’Automates Temporisés

Résumé : Nous étudions les automates sur le semianneau (max, 4 ). Ceux-ci recouvrent en parti-
culier les systémes (max, +)-linéaires et une sous-classe de graphes d’événements temporisés sto-
chastiques. On cherche & calculer certaines mesures de performance: dans le pire, le meilleur des
cas, ainsi qu’en moyenne. Le pire des cas se traite par un simple calcul algébrique. Quant aux deux
autres cas, on se ramene a des propriétés de finitude projective des semigroupes de matrices. La
performance dans le cas moyen est donné par 1’équation de Kolmogorov d’un chaine de Markov
dans un espace projectif. Pour le meilleur des cas, une équation de Hamilton-Jacobi-Bellman joue
un role analogue.

Mots-clé : Systemes a Evénements Discrets, Automates, Séries Rationnelles, Exposants de Lya-
punov, Equation de Kolmogorov, Equation de Hamilton-Jacobi-Bellman.
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1 Introduction

Among the algebraic tools previously introduced in the study of discrete events systems, we may
distinguish two separated formalisms:

e automata (or rational languages), in the framework of supervisory control [30].

e (max,+) algebra [10].

The first approach was (at the beginning) purely logic (it did not include time modelization). On
the other hand, (max,+)-systems focus on the time-behavior, at the price of an important loss
of generality by comparison with automata. Quite recently, some extension of supervisory control
to timed discrete event systems has been made [8]. Roughly speaking, this amounts to restricting
the language recognized by an automaton according to some time constraints. Here, we propose a
different generalization, which is better explained by an algebraic argument. Let Y denote a finite
alphabet. A rational language can be identified to its characteristic rational boolean series!

s= @ (shw)w € B(T) (1)

weX*

where B = {¢, e} denotes the boolean semiring. On the other hand, a discrete causal SISO (max, +)
linear system with finite dimension can be represented by a (max, +) rational series

s = @ s X" € Rmax[[)(]] > (2)
neN

where Ry,,y denotes the semiring?. (RU{—o00}, max, +). Since BB is a subsemiring of Rpax, the “least
upper bound” of both formalisms is provided by (max, 4+ )-rational series, which write

s= (P (slw) w € Rmax{(T)) - (3)

wEX*

Equivalently, s is the series recognized by a (max, +) automaton®. Then, two questions naturally
arise: (i) is the class of systems covered by (3) strictly more interesting than the previous ones; (ii)
do rational series of the form (3) enjoy new algebraic properties allowing performance evaluation
of certain discrete event systems? We claim that the answer to both questions is positive. The
study of the power of modelization of (max, +) rational series and the building of a linear system
theory in this context requires a complete treatment, which is beyond the scope of this paper: this
will be done elsewhere. Here, we shall just give some idea of the class of phenomena dealt with,
in order to convince the reader of the relevance of (max, +) automata for modeling discrete event
dynamic systems. We consider here the algebraic problems related with performance evaluation of
timed automata. We give some measures of performance in the worst, mean and optimal cases. We
show that the mean case and optimal case evaluation can be obtained from projective finiteness
properties of semigroups of matrices, leading to a Kolmogorov equation (for the mean case) and
an Hamilton-Jacobi-Bellman equation (for the optimal case). It turns out that not only the mean
case evaluation is interesting in itself, but it also solves the problem of the computation of the
Lyapunov exponents for a subclass of stochastic timed event graphs [2]. Another interesting problem
also can be dealt with using timed automata. We consider (max,+)-linear systems of the form

1(s|w) denotes the coefficient of the word w, equal to the zero “e” if w &€ L and to the unit “e” if w € L. Formal
series will be presented with more details in the following sections.
2precisely defined below.
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(k) = A(k)z(k — 1),2(0) = z¢ where the matrices A(k) can be chosen among a finite set of
matrices in order to minimize some final time, written cz(N). This problem reduces to the optimal
case evaluation of timed automata. Indeed, these two last points can be seen as an algebraic
generalization of a markovian technique due to Olsder [29] (see also [2], chapter 9). We conclude
the paper by giving an algebraic proof of Baccelli’s lower bound for the Lyapunov exponent, using
spectral properties of Hadamard products of matrices in the (max, +) algebra.

2 Timed Automata

2.1 Example

Let us consider a storage with a capacity of two units. The two following events are possible:

a a part is added to the stock
b a part is taken out.

This system is represented by the (conventional) automaton of Figure 1 over the alphabet ¥ =
{a,b}. Node 0 represents the state “0 part in stock”, node 1 “1 part in stock”, etc. First, the
storage is empty. Recall that ¥* denotes the free monoid over ¥ (i.e. the set of words, equipped
with the concatenation product). We interpret each word w = @y...a, € ¥* as a sequence of
events. We consider the situation where the transitions of the automaton take at least some given
times. For instance, we assume that the transition 1 % 2 takes at least 4 unit of time, and we write

1 2% 2. This leads us to the following definitions. A dater is a map

la da
@ A
2 2b 5h

Figure 1: Storage with capacity of two units

z: ¥ —=RU{-0} .

A timed automata over the alphabet ¥ is a directed graph with a set of nodes (or states) @ and
three kind of arcs. (i) internal arcs, labeled with letters of ¥ and valued with durations (ii) input
arcs, valued with durations (but not labeled) (iii) output arcs, dual of input arcs. With each state
¢ € @ is associated a dater z,. z,(w) represents the “completion time of the event w at node ¢”. It
is computed according to the following rule.

(a) Let T} , . denote the valuation (in time units) of the arc ¢ — ¢’ with label « (if such an arc does
not exist, we set 1, , ,» = —00). Then, the earliest behavior is described by the following equations:

zq(wa) = max{zg(w) + Tya,q] (4)

In other other words, the event wa can be completed at node ¢’ if for all possible transitions ¢ = ¢/,

a time of T, , ,» has been spent since the event w was complete at node g.

q7a7q
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(b) Some initial conditions are given by the input arcs. Let o, denote the valuation of the input
arc at node ¢ (o = —oo if there is not input arc at ¢). We set

Vge @, z4(e)=a, . (5)

That is, a represents the date of the “zero” event. For dual reasons (whose importance will appear
soon), we introduce a vector of final durations 3 € (RU {—00})?: 3, is equal to the valuation of
the output arc at node ¢. The “final dater” y is defined by

y(w) = maxld,(w) + 5] (6)

For most applications, y(w) will represent some “global” date of completion of the task w, For the
automaton of Figure 1, we have @ = {0,1,2} and

Tiap=4, Tipa=—00,...

"

aq:{O ifg=0

—oo  otherwise

2 ifqg=0
ﬁq:{ na
— 0

otherwise

2.2 (max,+)-automata

We next show that the earliest behavior y defined here above admits a very familiar algebraic
transcription. Indeed, this is nothing but a specialization of the notion of K-automata [13] or
equivalently, of K-rational series [6] to the (max,+) semiring. It should be noted that (min, +)-
automata (dual of (max, +) automata) have already been used by Simon [32] and Hashiguchi [21]
in connection with some distance and complexity problems. See also Mascle [27] and Krob [24].

Recall that the (max, +) algebra[28, 2, 11, 19, 37] is by definition the set R U {—oc} together
with the laws max (denoted by @) and + (denoted by @). E.g. 2® 1 = 3, 2@ —1 = 2. The

def . def .
element ¢ = —oc satisfies e fr =z and e @z = ¢ (e acts as a zero). The element e = 0 satisfies

e ® z = z (e is the unit). The main discrepancy with conventional algebra is that z &z = z. We

shall denote Rpax def (RU{—00}, B, ®) this structure. Ry,,x is a special instance of dioid (semiring

whose addition is idempotent).

We first notice that with the dioid notation, (4) now writes

zg(wa) = EB 2q(w) ® Tg0,q
q
In other words, introducing the matrix

def
nla) € Rﬁ{;?, 1(@)gq = Tyay (7)
we get
2(wa) = 2(w) © u(a)

where @ denotes the matrix product in the (max,+) algebra. In the following, we shall as usual
omit the sign @. After a straightforward induction on the length of w, we see that the earliest
internal daters (z,),eq and the earliest final dater y are given by

2(w) = ap(w), y(w) = z(w)s (8)
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where g is the unique morphism %* — RYXE extending (7). That is, if w = a1 ...a,, p(w) =
(01) - ().

Therefore, a (finite?) (max, +) automaton can be equivalently described by a triple (a, u, 3),
with a, 3 € RE,  u:Y* — RYX? and Q finite.

max’ max

2.3 Some applications of (max, +)-rational series

We next recall some very classical notions about formal series (a good reference is [6]). A formal
series over the alphabet ¥ with coeflicients in Ry, .y is a formal sum:

y= D (ylwyw (9)

weEX*

where (y|w) € Rpmax denotes the coefficient of y at the word w. Formal series are equipped with the
componentwise sum and Cauchy product:

(yoylw) € (yu)e (y|w),

def
oylw) = D wlweil) .
The notation Ry,ax((X)) for this dioid is standard. The subdioid of polynomials (such that (y|w) # ¢
for a finite number of w) will be denoted by Rpax(X). We shall denote by ¢ the neutral for sum
((e|lw) et —00,Vw), and by e the unit

(e]w) def { (iozoeﬁmgx if w= . (empty word)
= €g,.. Otherwise.

The scalar product of a series s and a polynomial ¢ is defined by

(slt) = @B (shw)(t|w) (10)

weX*

which accounts for the notation “(s|w)” for the coefficient of the word w. In the following, we shall
identify the dater map y : ¥* — Rpyax, w — y(w) with the formal series

y= P y(w)w

wEL*

(thus, (y|w) = y(w)). We say that a series y is recognizable if there exists a finite automaton
(a, p, ). such that

y= P ap(w)buw . (11)

wEL*

Then, y is the series recognized by the automaton. Observe that sums of the form (11) or (9) are only
formal (no infinite sum of scalars in involved). In the following, we shall need dealing with infinite
sums of formal series also. In the standard theory of formal series over semirings, this is usually
done by introducing the natural ultrametric structure over the formal series [6]. In the dioid’s case,
it is not more complicated and it is more general to define infinite sums as upper bounds with
respect to a canonic order relation. More precisely, we introduce the natural order relation <:

a=<b <<= a®db=">.

*By finite automaton, we mean an automaton with a finite number of states
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In Rpay, this coincides with the usual order, since ¢ < b <= max(a,b) = b. More generally, it is
easily checked that a @ b is equal to the least upper bound of a, b for the order <. This allows us to

def
@w = sup X
zeX

set

for any set X admitting a least upper bound: this coincides with addition in the case of finite sums.
Moreover, it is plain that in Ry (and hence, in Ryax((2))), the infinite distributivity holds, i.e. for
all X admitting a least upper bound:

(@) +(2)- -

zeX zeX z€X zeX
The star of the series y € Ryax((X)) is by definition
v=edydy oy, .. (12)

It is easy to see that this sum converges in Rpma (X)) iff (y|e) < e. A series is rationaliff it is obtained
by a finite number of sums, products, and stars, starting from polynomials. Let us recall that when
Y is finite, the Kleene-Schiitzenberger theorem [6, 13] asserts that a series is recognizable iff it is
rational. Since we are basically interested with systems allowing only a finite number of elementary
events, we shall always assume X finite, and we can say that our object of study indeed concerns
(max, +)-rational series.

2.3.1 Example For the automaton of Figure 1, we have:

[ 2
a_[egs],ﬁ: e |,
| €
e 1 ¢ (¢ & ¢
pla)y=1¢ e 4|, pub)y=12 ¢ ¢
e € ¢ | € 5 ¢

Let us compute (z|w) in a particular case:
(z|ab) = ap(ab) = ap(a)p(b) = [ 3 ¢ ¢ ] ;

(ylab) = (z]ab)3 =5 .

More generally, it is easily shown that the series y admits the following rational expression

2(3a(9ab)"b)*
= 2@ 5ab® Rabab @ 14aabb P . ..

Y

It is important to notice that contrarily to the mainstream of supervisory control literature [30],
(max, +)-automata are no longer required to be deterministict. Indeed, the traditional word “non

*Recall that the automaton (@, «, i, 3) is deterministic if there is a single initial state ¢ (such that oy # €), and
for all (¢,z) € @ x X, #{¢' € Q| u(z)yy # €} <1 (there is a most one internal arc with a given label z outgoing
from node q)
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deterministic” is misleading in the (max, +) case. For instance, consider the (max, +) automaton
over the alphabet ¥ = {a} given in Figure 2. The earliest dater satisfies:

(z1|wa) = max(2 4 (zg|lw), 1 + (zo|w)) . (13)

In other words, the two parallel “non deterministic” edges 0 = 1 amount to starting simultaneously
two tasks from node 0 to node 1: node 1 waits for the completion of both tasks. That is, “non
deterministic edges” represent synchronization phenomena.

Figure 2: Synchronization of nondeterministic edges

Now, we think that it is worth comparing (max +)-automata to more classical models.

(i)

(iii)

(max, +)-linear systems. It is well known [2, 10] that a subclass of DEDS subject to saturation
and synchronization constraints writes linearly in the (max, +)-algebra®:

z(n+1) = z(n)A, =z(0)=0,
y(n) = z(n)c . (14)

It should be clear that (14) is a specialization of (8) when ¥ is reduced to a single letter (set
Y={z},a=0, u(z) = A, 8 = c). It should be noted that the series @,, au(w)sw reduces
to the usual ,, bA™ca™.

Stochastic timed event graphs (see Baccelli [3, 1], Olsder [29] and [2]). These systems write
in the (max, +)-algebra:
(k) =z(0)A(1)...A(k — 1)A(k) (15)

where the A(7) are random n x n-matrices. When the random variables A(7) only take a finite
number of distincts values Ay,..., Ay, (15) writes ap(w), where w is a random word of length
k. More precisely, let ¥ = {A;,...,A,}, set a = z(0), and let g be the unique morphism
¥* — REX" such that Vi=1,...,p, u(A4;) = A;. Then the word w = a; ...a; € X* represents

max

the trajectory “A(1) = a1, A(2) = ag, ..., A(k) = a;”, and ap(w) = z(k)

Automata. Replace the non ¢ entries of «, 1, § by the unit. Then, we get an (o, i’, 5’) repre-
sentation of a series y’ such that

y'= P ow(w)p'weB(T) .
wEL*

Thus, the series recognized by (o', u’, ') can be identified with a rational language.

(min, +)-bilinear systems. We obtain the counterpart of Fliess generating series [14]. Consider

the following systems of equations in the semiring Ry, def (RU {400}, min, +) (isomorphic

t0 Ruayx):

z(0) = b
z(t+1) = z(t)Ac P Pr, a(t)A;ui(t) (16)
y(t) = z(t)c .

“Here, writing systems from left to right is not mere provocation. Otherwise, it should be necessary to give a dual
definition of automata in which words are read from right to left.
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where the u; denote some scalar inputs, y(¢) the scalar output of the system, and A;, b, c are
matrices and vectors of appropriate sizes. The system (16) represents a subclass of Timed
Petri Nets where places of the type Py of Figure 3 are allowed (the counter function z;(t)
denotes the number of firings of the transition labeled z; up to time ¢). For instance, for the
graph of Figure 3, we have

z1(t+1)=2® a2(t), y(t)=a2(1) .

This is clearly of the form (16): More generally, it should be clear that the class of systems
modelizable by (16) consists in an extension of timed event graphs in which some tokens
(corresponding to the inputs u;) can be added at certain times in some given places. Let us

“rsojourn times (time units)

Figure 3: A (min, +)-bilinear system

introduce as in the classical case an alphabet ¥ = {aq,...,a;} (as many letters as controls)
and the rational series:

(s|w) = bu(w)e, with p(a;) = A; .

The evaluation of the word w = a;, ...a;, € ¥F at u is defined by
wly = u;,(0) .. uiy(p— 2)ug (p—1) .

Then it is easily checked that
y(p) = D (slw)wl.
wEXP
(the output is obtained by “evaluating” the rational series s). This suggests that (min, +)-
rational series will play for (min,+)-bilinear systems a role as important as rational generating
series for conventional non-linear systems.

We conclude this introductive part by discussing in detail an example which illustrates the
properties that we shall prove later on.

2.4 Example: workshop with two production regimes

We consider a workshop with two machines processing three types of parts. The workshop admits
two configurations:

(a) a part of type 2 is processed by machine 2 during 5 units of time, another part of type 1 is
processed by machine 1 during 3 units of time, the previous type 2 part is conveyed from
machine 2 to machine 1 (which takes 4 units of time), then, it is instantaneously assembled
to the part produced by machine 1 and exits the system.
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(b) a part of type 3 is processed during 10 units of time on machine 1. Machine 2 remains idle.

We represent a behavior of the system by a word w € {a,b}*. E.g. aaab means “3 working periods
of type (a) followed by a period of type (b)”. Let (z1|w) (resp. (z2|w)) denote the date associated
with the completion of the sequence w on machine 1 (resp. 2). We assume the initial condition
(z|e) = [e, €] = a. We are interested in computing (y|w) = (z1|w) which corresponds to the date at
wich the last part produced by the event sequence w exits the system. It is not difficult to realize
that y is recognized by the following linear representation

u(a)zli 5] u(b)zllf ]

a=]e e],ﬁz[i] :

ie. (ylw) = au(w)p. This automaton is shown on Figure 4. Due to the triangular form of p, we

da

106 eb

€

Figure 4: Workshop with two working regimes
obtain after a straightforward induction for w # e

(ylw) — 3|w|a ® 10|w|b ED @ 4 ® 5|’u|a ® 3|U|a ® 10|’U|b (17)

uav=w

where |z|, denotes the number of occurrences of the letter z in the word z. Observe that, for
instance, 4 ® 5/ual in the dioid algebra is equal to 4 + 5 X |u,| in the usual algebra. The first
coeflicients of y are the following:

(yla) =4, (y|b) = ¢, (y|a?) =9, (y|ab) = 14. ..

Some interesting features appear when considering sub-behaviors of the systems. That is, instead
of computing (y|w) for all w, we assume that w belongs to a language L. Assume for instance a
periodic behavior of the form L; = (a'b)* (that is, 1 period of type (b) occurs every [ periods of
type (a)). Then, it is not too difficult to obtain from (17):

(yl(a'd)) = (2x1—1)+ (3 x 1+ 10) xi . (18)

This formula admits a simple graphical interpretation. It means that a path with label (a'b)’ and
with maximal weight from the input arcs to the output arc of the automaton of Figure 4 has the

following form:

1—1 al i—1
9t g o My

Let us introduce wt
g = (yl(a'b)* N BF)
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(yi represents the duration of the first k£ events). We get from (18) the following periodicity property

Yhte = AQ Yk = ¢ X A+ yg (19)
with e=14+ 1 and 4l 10
X+
A= ———— 20
1 (20)

A can be interpreted as a “cycle time” (inverse of the periodic throughput). One of the purposes
of this paper is to study such measures of performance. In particular, we shall see that periodicity
properties of type (19) proceed from general properties of (max,+) rational series, which allow a
direct computation of such cycle times.

2.5 Performance evaluation of timed automata

In the following, 8 will denote a dater function. The three following criteria of performance are
natural:

Worst case
sup (6]w) = (6]3F) (21)
wenk

where we have identified X* to its characteristic series @Dk w in order to use the scalar product
notation (10). (8|X*) represents the latest date of completion for all the sequences of k events.

Optimal case

inf (6l) (22)

with the obvious dual interpretation.

Mean case

> (Blw) x pi(w) (23)

wenk
where pj is a convenient probability law on X*.

As we already noticed in Example 2.4, we may consider some refinements of these measures by
restricting the evaluation to a language L representing a subset of admissible events. For instance,
we have the following refinement® of (21):

sup (flw) = (8| N TF) (24)
weLnyk

identifying as usual languages and characteristic series.

We shall see that the worst case evaluation can be obtained by simple algebraic arguments.
The optimal and mean case are more difficult and much more interesting. Our approach relies on
a finiteness theorem for projective semigroups of (max, +)-linear maps.

®Indeed, all these criteria can be seen as generalizations of the conventional expectancy. Following Viot [36], we may
define the “cost measure” v : ¥* — Ryax, v(w) = e if w € L and e otherwise. Then, (24) rewrites @wezk(ﬂw)@v('w)

which is the counterpart of [£(#|w) with respect to some probability measure (compare with (23)).
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3 Worst case analysis

3.1 Main result

Let 6 : ¥* — Ryay be the dater recognized by the automaton (a, y, 5). By definition of the scalar
product of series, we have, for all language L

(61L) = P (Blw) -

weL
Then,
o= = P (fluw)
wEXK, €YD
= D an(w) (EB u<x>) 8. (25)
weLk TEY
Let
M =D uz)
TEL
It immediately follows from (25) that
(0)%%) = aM*3 . (26)

It remains to analyze the asymptotic behavior of the sequence M¥. This relies on the (max, +)
spectral theory (analogous to the Perron-Frobenius theory), developed in [31, 18,9, 2, 11, 12, 28].
We first recall the definition and basic properties of the spectral radius.

3.1.1 Lemma Let A € RIS Z. The following quantities are equal:

1. Sllp{’f‘ € Rmax | Ju € R?ﬂax\{g}v Au > Tu}
2. Sllp{’)" € Rmax | du € R?ﬂax\{g}a Au = 'ru}

1 1
3. @gkgn(tTAk)k = @gkgn@il...ik(Ailb . Alkn)k

1
4. lim supy, ||A¥||*.
This common value will be denoted by p(A).

Of course, a¥ in the dioid algebra means 7 in the usual algebra. In the following, it should be

clear from the context whichever algebra is used. However, we shall sometimes write a®% to avoid
ambiguities. It is well known that when M is irreducible, the following cyclicity property holds
[28, 2]:

AN,3e>1,¥n > N, M = (p(M))°M" (27)

where p(M ) denotes the spectral radius of M. The least value of ¢ is called the cyclicity of M.
Recall that the representation («, p, 3) is trim if

Vi, j, 3k, 1, (aM¥); £ e, (M'B); #¢

(i.e. if each state is both accessible and co-accessible).

The following result is an easy consequence of the cyclicity property (27).
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3.1.2 Proposition (i) If M is irreducible with cyclicity ¢, for k large enough, we have
(61544) = p(M)(BIS") |
(ii) If (o, i, B) is trim (but M not necessarily irreducible), we have

p(M) = lim sup(0|2k)% .
k

In the second case, it is of course possible to give much more precise results knowing the whole
structure of M,a and 3. In particular, the sequence (8|X*) is obtained by merging eventually
geometric subsequences (cf. [15], Chapter VI) with maximal rate p(M).

3.2 A refinement: worst case evaluation constrained in a sublanguage

We show how the worst case measure of performance restricted to an admissible sublanguage (see
Formula (24)) can be computed along the same lines. We shall assume that L is a rational language.
Let (a/,p, 8") be a representation of L (as in §2.2,(iii)). That is, identifying L to its characteristic
series, we have

L= ED oy (w)f' w .

weEX*

The evaluation of (24) is indeed equivalent to the worst case evaluation of
b0l PBlw)w= @ (Blw)(Llw)w
weL wEL*

(this is the Hadamard product of § and L). Since from a well known theorem of Schiitzenberger
[5], the Hadamard product of two rational series is rational, the techniques introduced here above
can be applied to (24). More precisely, # ©® L is recognized by the “tensor product” of the linear
representations of § and L, that is, by the representation (a”, ", ") with

p'(a) = wla) ®" p'(a), afy) = aal, By = Bib;

where @' denotes the tensor product of matrices”.

3.2.1 Proposition Let M’ = @, cx p(a) @ p'(a). Assume that M' is irreducible with cyclicity c.
Then we have for k large enough:

(0L N B*Fey = p(M")(0|L N BF) .

Proof Immediate from 3.1.2,(i). [

"Recall that the tensor product of the p x p-matrix A by the ¢x g-matrix B is the pg X pg-matrix

(A®" By = AixBji .
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3.2.2 Example This allows computing the cycle times obtained by elementary means in Example
2.4. For instance, let us consider Ly = (a?b)*. Ly admits the following representation

€ €
a’:[esg],u’(a): € e |,
€ €
€ € € e
pby=1¢e¢ ¢ el|,p=1|¢
e ¢ ¢ €

which corresponds to the automaton of Figure 5. We have:

Figure 5: Automaton recognizing (a*b)*

¢ ¢ 3 ¢ ¢ €]
e € 4 5 ¢ ¢
e € 3 ¢
M = t o _ e &€
Quars'w@=| 2 000
10 ¢ ¢ ¢ ¢ ¢
L ¢ e € € ¢ € |

According to Proposition 3.2.1, the cycle time A is equal to p(M') = 13—6 (this value can be obtained
by applying Lemma 3.1.1,3) which accounts for Formula (20) when [ = 2.

4 Projective finiteness of matrix semigroups

4.1 Linear projective maps

nxn
max

nxXn

et by the parallelism relation®:

We define the matrix projective space PR as the quotient of R

a~bs IXNE Ry \{e}, a=2Ab. (28)

We shall denote by p : RPX? — PRIX" the canonical morphism of multiplicative semigroups. For

dERIRE

We say that a subset S C RIX™ is projectively finite if its projective image pS is finite.

max

instance

As an immediate consequence of the cyclicity result (27), we can state: (P) if M € RIX" is
irreducible, then the semigroup generated by M, S = {M,M?* M?3,...}, is projectively finite.

nxn nxXn

8By analogy with the conventional projective spaces, we should define PIRRZXZ as the quotient of R%X2\ {e} by

the relation ~. Here, we allow ¢ to belong to PR X”. This is a minor transgression whose interest is to make PIRX"

become a (multiplicative) semigroup.
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4.2 A first theorem

Since a rational dater writes 8(w) = apu(w)g, it is natural to study the image of ¥* by pu, which is
a finitely generated semigroup of matrices.

We first introduce some notation. Let Aq,..., A, € (Rmax)"*". We shall denote by (A44,...,A4,)
the semigroup generated by these matrices. Let us introduce a set of p letters ¥ = {ay,...,a,}
and the free semigroup Xt over ¥ (that is, the set of non empty words over the alphabet %). Let
g BT — REXE be the only morphism such that Vi, p(a;) = A; (ie. play ...a;) = Aip .. A
Then (Aq,...,A4,) = w(XT). We shall say that ¥ and u are obtained in the canonical way from
the generators Ay, ..., A,. We say that the semigroup S = (Ay,..., A,) is primitive® if there is an

integer N such that for all word w,
Wl > N > Vi p(w)y > e (29)

where |w| denotes the length of the word w. When S admits a unique generator, this reduces to

the notion of primitivity well known in the theory of nonnegative matrices. The following theorem

extends the property §4.1,(P) to semigroups. Recall that Qumax def (QU {—o0}, max, +) and that

def
Tomax = (Z U {—o0}, max, +)

4.2.1 Theorem Let Aq,..., A, € QX% If (Ay,..., A,) is a primilive semigroup, then it is pro-
jectively finite.

Proof Let ¢ be the lem of the denominators of the entries of the matrices. Since z — z? (27 = 2 X ¢
with classical notations) is an automorphism of Qmay which maps all the entries to integers, we

shall assume that Aq,..., A, € Z35%. We associate with the matrix m the following “norms”:
[[m| = sup m; (30)
ij
|m|a = mini mi; (31)
ij

(with inf ) = +oc). The proof relies on the following Lemma.

4.2.2 Lemma Let K € N. The set S of matrices m € ZI'X" such that

max

[[m]]

<K
|m|a
is projectively finite.
Indeed, after normalization, we may assume that Vm € S, |m|n = e. Since there is at most
(K +2)" — 1 matrices m € ZX? such that e = |m|x and ||m|| < K, the Lemma is proven.
Let
a = min( |A1|/\7 gy |Ap|/\ )7
@ = max([[Al,..., [[4[1) -

?We leave it to the reader to check that this notion is independent of the set of generators.
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The primitivity assumption implies that for w € ¥* long enough, we have a factorization w = sur
with |s|, |r| < N and p(s), p(r), u(w) > e (N is the “primitivity index” satisfying (29)). Then

()l = [lu(sur)l| < ()l (a)llln(r)]
< (e® @) pu(u); (32)
for some indices ij belonging to the argmax in ||u(u)|| = sup,; p(u);;. Moreover
plsur)p > p(s)eip(w)ijn(r)j > (ane)*N p(u)i; .

This implies that

ol (e

[(w)la ~ \eNra
It remains to apply Lemma 4.2.2 to conclude. [ |

This theorem does not extend to semigroups of matrices with irrational entries. This toge-
ther with some generalizations relative to the Burnside problem for semigroups of matrices in the
(max, +)-algebra is discussed in another paper [16].

4.2.3 Remark The assumptions of Theorem 4.2.1 are satisfied for a class of stochastic irreducible
timed event graphs. Precisely, we consider the timed event graphs whose dater variables, z(k) (z(k)

is a random vector with values in R} ) are given by equations of the form (cf. [2])

o(k+1) = 2(k)A(k)

where the A(k) are i.i.d. random variables taking only a finite number of values Ay,..., A4, (cf.
§2.2,(ii)) Since dater functions are nondecreasing, we may assume that the A(k) only take values
greater than Id, or equivalently that Ve, A; > Id. Moreover, we assume that all the A; have the
same pattern'® which is irreducible (in other words, the durations are random but the structure
of the graph is fixed and it is strongly connected). Then, it is easily checked that the semigroup
(Aq,...,Ay) is primitive. This indeed reduces to the following well known fact of the classical
Perron-Frobenius theory: a matrix with non zero diagonal entries is irreducible ifl it is primitive.

4.3 Prefix representation of projectively finite semigroups

Here, we use the term representation in the naive sense: given a projectively finite semigroup
S = p(XT), we want to describe the (infinite) multiplication table of S in a finite convenient way.

Recall that a set P is prefiz closed [4] if
weP=>uechk .

Let < denote the prefix order on ¥*. This property is equivalent to P being a lower set (i.e. (u < w
and w € P) = u € P). A set U is a prefiz code if

(wv=wandu,w e UV) =>u=w .

(a prefix code is an antichain for the prefix order). The prefix code associated with P is by definition
C = PX \ P. For semigroups with an unique irreducible generator A, we have seen that the
performance evaluation relies on the cyclicity property A"t = A°A™ (the cycle time is equal to A).
So the question is: what does A"*t¢ = A°A"™ become for semigroups with several generators? The
following proposition provides the answer. Since we may add to the semigroup S an unit, there is
no loss of generality in assuming that S is a monoid.

1%We call pattern of a matrix A the set of positions of the non e entries of A
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4.3.1 Proposition Let S = p(X*) be a finitely generated monoid. Then the following assertions
are equivalent:

1. S is projectively finile
2. there exists a finite preficz closed subset P C ¥.* with associated prefiz code C' and two maps
w:C — P, A:C — Rmax

such that
Yu € C, () = Nwu(w(u)) - (33)

3. same conditions as 2, and moreover, for all u € C', w(u) is a prefiz of u.

We think it is enough to consider the Example 4.3.2 below to understand this result, whose proof
-almost trivial- is left to the reader. We just mention that P is defined as follows

PE{wes | Vo' <w, pu(w)#pu(w')} (34)

(where < denotes the strict prefix order in the case (3) of the Proposition and the strict lexicographic
order in the case (2)). Hence, P is easily built by induction.

It should be noted that the condition 4.3.12 does not define an unique P. E.g, consider ¥ = {a, b}
and assume that p(e) = p(b) = u(a?). Then P = {e,a} and P = {e,b} are valid. However, there
exists a unique minimal P satisfying the stronger condition (3).

4.3.2 Example Let S be the semigroup generated by

0 1 0 2
A_[—l _1] andB_[O O]

S is projectively finite. It is completely determined by the following relations:

01
AA_[_l 0]
1 2
we[ 7]
11
BA_[O 1]
2 2
]3]
1 3
w1 3]
AAA=e® AA
AAB=1® AA
ABA=1® A

ABB =23 A
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BAA=1® AA
BBA=2® A
BBB=2®B

BABA=1® BA
BABB =2® BA

Now take two letters @ and b and p : {a,b}* — S such that u(a) = A, u(b) = B. A prefix set
satisfying the conditions of Proposition 4.3.1,2 is P = {e,a,aa, ab,ba,bab}. The associated prefix
code is equal to

C = {aaa, aab, aba,abb, baa,bba, bbb, baba, babb} .

These two subsets of ¥* admit the literal representation of Figure 6. P corresponds to the ends
of bold arcs. The relations (33) state that any element of (') is proportional to some element of
p(P). This proportionality is represented by the doted arcs on the picture. E.g., we have

w(aaa) = aa,N aca)= e, and

u(aaa) = Aaaa)® p(p(aaa)) = € @ plaa) .

These relations allow computing p(w) without multiplying the matrices. For instance, pu((babb)™) =

Figure 6: Literal representation of P and C

27u((ba)") = 2"1" p(ba) =2 xn+1x (n—1)+ BA=3n—1+ BA.

More generally, computing p(w) for a given word amounts to follow a path in the prefix closed set
P, while performing only scalar multiplications. We now make this idea more precise.

Define recursively the “projection” map ¢ : ¥* — P by

o _ (w)a if o(w)a € P
ple) = e, p(wa) = {§(¢(w)a) if g(w)a €C.

Let w =ay...a, with a1,...,a, € X. We set for 0 < k <mn, wr =ay...a; and

mi = p(wg) - (35)
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The map A given by Proposition 4.3.1 is a priori defined only in C. We extend A (with a slight
change of notation, writing the argument as a subscript) to the whole set PY by setting

€ iftmgC

Vm € PY, Ay = {/\(m) ifmecC.

Then, Formula (33) extends to:
Vw € P,Va € ¥, plwa) = Ayap(p(wa)) .

The following proposition reduces the computation of u(w,) to the computation of y(m,,), modulo
the multiplication by some scalars.

4.3.3 Proposition Let w, = ay...a,, and define my,...,m, as above. We have
pwn) = Aeay @ Amyay @ oo @ Apny_ya @ plmn) (36)

Therefore, p(w,) can be obtained with a bounded number of matrix products (corresponding to
the evaluation of u(m,)).

4.3.4 Example Let w = abab and take P et C' as in 4.3.2. We have

mo = e, my = g(a) = a, my = p(ab) = ab,

my = w(mea) = w(a®) = a, my = p(ab) = ab .

Therefore,

M(w) = AeaAabAabaAabN(7n4) =1® AB .

4.3.5 Remark The A(c¢) given in Proposition 4.3.1,3 admit a simple interpretation. Since in this
case, w(c) is a prefix of ¢, there exists a word u. such that ¢ = w(c¢)u.. Then, it easily checked that

Alc) = p(p(u)) and that
pw(e)u™) = p(p(u))" w(@(c))

L L
In other words, (A(c))™l = p(u(w))™ can now be interpreted as the inverse of the periodic through-
put associated with the infinite word

w = w(c)unuuun . . . (37)

That is, if w, denotes the word composed of the n first letters of w, we have p(w,,) = A(c)p(w,)
for n large enough. More generally, for any sequence of words w,, € X", w, < w,41, it is easily
checked that for all ¢, j such that p(w,);; does not takes the value ¢ when n — oo,

inf A(e)FT < lim inf ((wn)ij)

cE n

limsup(,u(wn)ij)% < sup ,\(c)lul_cl .
n ceC

Of course, the bounds are attained for words of the form (37).
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5 Application to performance evaluation

5.1 Kolmogorov equation of stochastic timed automata
Let pp denote the probability on ¥ such that Vwy € ©F (we write wr = ay ...a; with Vi,a; € ¥),

pr(wr) = pr(ar .. .ax) = plar) X ... X p(ag) (38)
where p(a;) > 0,3, p(a;) = 1. We consider
(k) def

pii = Ep(we)ij = Y p(w)ijpr(w) .
weXk

In order to understand which behavior of pgf)
case of a semigroup with a unique generator A = u(aq) (deterministic case, p(a;) = 1). It follows

from the cyclicity theorem (27) that the following limit exists

we may expect as k — oo, we first consider the simple

. ol .o 1 k
lij = 11,gn(p§j))®k = lim - x Py (39)

with [;; = p(A) (spectral radius), independent of ¢j. If A is not positive but irreducible, some little
(k)

. k
care is needed, for p;;’ can take the ¢ value. Hence, we set

f . k 1
G Jim ()eE (40)

Of course, we have to specify for which values of k pgf) = ¢. Let us recall that a subset L of N is
rational iff it is equal to the union of a finite set and a finite number of arithmetic progressions ([13],
Chapter V, Proposition 1.1), or equivalently, if it is ultimately invariant under some translation,
i.e. iff there exists N € N and ¢ > 1 such that

VE>N, (el < k+cel).

It clearly follows from A"t¢ = p(A)°A™ for n large enough that

def

K;; = {keN| pgf) = ¢} is a rational subset of N, (41)

and this rational subset is easily computable. Thus, the asymptotic behavior of pg?)
determined by (40) together with (41). We next generalize these two properties to semigroups with
several generators. The [;; which measure some “mean asymptotic performance” are particular cases
of the “Lyapunov exponents” studied by Baccelli, so called by analogy with the conventional algebra.
Under some “irreducibility” assumptions'!, the existence of [;; can be obtained by subadditive
ergodic arguments [1, 2], as in the case of products of random matrices in the usual algebra [7].

is properly

Indeed, it is shown that limk(,u(wk)ijﬁ = [;; a.s. and that [;; does not depend of ¢j (but of course,
pgf) does). The exact value of [;; is not known in general. Some bounds are given in [3, 2]. Olsder
has shown that in certain cases, a finite Markov chain can be written. Olsder approach is equivalent

to saying that the random vectors z(0), z(1),... defined by

z(0) =z, x(n)=2z(n—1)A(n)

1Here, the simplest version of these conditions requires that all the matrices p(ai) have non e entries. Of course,
much more precise conditions might be given.
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-where the A(7) are some specific i.i.d. random matrices- only take a finite number of values in
the projective space. Qur approach is an extension of Olsder’s technique. The main novelties by
comparison with Olsder is that: (i) the probabilistic problem (compute [;;) is now reduced to an
algebraic one (decide if a semigroup of projective linear maps is finite); (ii) the exact value at the

k-th step pgf) is obtained; (iii) it is not assumed that the limit z(n) — z(n — 1) exists.

We next show that the mean case performance p(¥) and its asymptotic mean [ can be exactly
computed from the Kolmogorov equation of an associated Markov chain over the prefix closed
subset P. The idea of writing a Kolmogorov equation originated from a discussion with Jean-Pierre
Quadrat, to whom the author is indebted.

Induced Markov Chain We assume that p(¥*) is projectively finite. Thus, we have a finite
prefix closed subset P C ¥* with associated prefix code C' and A, @ maps as in (33),

We consider a sequence {w} of random variables with values in ¥* such that wi = ay...a;
where the a; are i.i.d. random variables with values in ¥ and probability law p (the same as in (38)).
{p(wg)}r is thus a “matrix random walk”. Let my = @(wg). It is clear that {my}; is a Markov
chain with states P and transition matrix:

M M = Z p(a)
a€X, (ma)=m'

with the convention ) ,cgp(a) = 0. This Markov chain can easily be visualized on Figure 6 by
identifying the elements of C' with some elements of P according to the backward arrows.

We think it is not superfluous to rewrite now Formula (36) with standard notation:

(wn) = Aeay + Amgay + oo+ Ay _ya, + p(mn) (42)
where for a scalar s and a matrix m, s + m denotes the matrix:
(s 4 m);; Lt mij . (43)

From (42), we see that E(u(wy)) is the sum of two quantities.

(i) E(p(my)), which is bounded (for my € P)

(ii) A sum of transition costs of the Markov chain.

Let us introduce
0¥ (2) = Fldmgay + Amyag + - -+ Amy_yay|mo = 2]
Then, we get from (42)
B(p(wr)) = B(u(mi)) + o*(e) . (44)
It remains to define

e(m) = Amap(a) -

a€EX

5.1.1 Theorem If (%) is a projectively finite semigroup, then we have with the above notation
p B = E(u(wy)) = v5(e) + 3 (MP)  p(m) (45)

meP em

k

where v* is given by the Kolmogorov equation

vh = c—}—./\/l'vk_l,vo =0 .
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The Kolmogorov equation implies that
oF = (Id + ...+ M*1)e | (46)

Let P be the spectral projector of M for the eigenvalue 1. The ergodic theorem for Markov chains
implies that

ok

hin = Pe . (47)
Let

Kjj={keN| Ime P, M5 #0 and p(m);; = ¢}
Since the sum at the right hand of (45)

> (M), mm)y
meP ’
is obviously bounded for k € N\ K;;, we have
(k)
. Pij
| = e -
k&]&"ij%—wo k (Pe)
Moreover, it is standard Perron-Frobenius theory that for all m € P,

def

Ly = {k e N| Mg, =0}

is a rational subset!? of N, hence K;; = UnmeP,u(m)ij=<
Since the two properties (40) and (41) are satisfied, we have characterized the asymptotic mean

case performance. In summary:

L., is rational (finite union of rational subsets).

5.1.2 Corollary Under the same assumplion as in 5.1.1, the “Lyapunov exponent” (;; defined by
(40) exists and is equal to
li; = (Pc)e .

Thus, the projective finiteness condition implies that the Lyapunov exponent is independent of ;.
This could also be checked by elementary means (if two Lyapunov exponents were distinct, then
the “projective width” of the semigroup would be infinite).

5.1.3 Example We take again the semigroup S of Example 4.3.2, with probabilities p(a) =
w,p(b) = v (such that u + v = 1). We obtain the following Markov matrix

e a b a* ab ba b* bab
e [0 0« » 0 0 0 0 0 ]
a 0 00 o » 0 O 0
b 0 00 0 0 u v 0
a2 {000 1 0 0 0 0
M = ab O 1 0 0 0 0 O 0 (48)
ba |0 0 0O w 0 0 O v
b? 0O o » 0 0 0 O 0
bab (O 0 0O 0 0 1 0 0 |

12The proof is as follows. Obviously, the dioid of subsets of IN is isomorphic to B[[X]] (dioid of formal series in a
single indeterminate with boolean coefficients), the isomorphism being the map L +— EBkGL X*. Consider the boolean

matrix M : My, =€ if M, 4 # 0 and M, , = € otherwise. Set a, = b, (Kronecker’s §, i.e. b p e fp=ebep=c¢
otherwise) and B4 = 84m. Then CL,. = {k| ME, # €} is clearly recognized by the linear representation (o, M, 8).
Hence, its complementary L., is also rational.
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with
e a b a? ab ba b® bab
c= |0 0 0 v wu+2v uwu 2 u+ 2@]

(for instance, the value c,2 is obtained as ¢,2 = u X 04+ 1 X v = v). The unique invariant measure is

L { 1 sim=a?
Z. Zm = .
0 otherwise.

Therefore, the spectral projector is P = 1z, where 1 denotes the constant vector with entries 1.
Finally, the (max, +) Lyapunov exponent is equal to

[=(Pc)e=zc=cp2=v .

5.1.4 Remark It is sometimes possible to compute the Lyapunov exponent in the case of a non
primitive semigroup of matrices. Consider the factorization

Y =(e®...p N H(Z)" .

Then, we claim that the computation of the Lyapunov exponent(s) of p : ¥* — RIX" reduces to

the computation of the Lyapunov exponents of the induced morphism ,u(c) D (X)) — REXE (such
that u(9(w) = p(w) for all w € (X°)*). We shall not discuss this here in full generality, but we
just give a sketch of procedure for computing these exponents under some coarse assumptions and
illustrate it with a simple example. 1/ We assume that the matric M = @, ¢y, u(a) is irreducible.
Let ¢ be the cyclicity of M. Then by a well known fact of the Perron-Frobenius theory, M€ is
bloc diagonal. Hence, the morphism u° is the direct product of some morphisms, that is, there
exists a partition n = ny + ...+ n. and ¢ morphisms: g; : (X°)* — RZx™ (1 < ¢ < ¢) such that
1 (w) = diag(p (w),. .., p(w)). 2/ We shall assume that all the morphisms u; have primitive
images (we always assume that the entries of p;(w) are rational). Then, the Lyapunov exponent
associated with each p; can be computed by Theorem 5.1.2. For instance, consider the matrices

efoe] el

with probabilities p(A) = p,p(B) = q. We are reduced to computing the Lyapunov exponents of
the following morphism:

(ORI

13 {aa, ab, ba, bb}* — R2X2

max

with probabilities p(aa) = p?, p(ab) = p(ba) = pq, p(b?) = ¢*. We have

€

plaa) = 1d, p(ab) = [ L ] ,

p(ba) = [2 1] p(b?) = 11d .
The Lyapunov exponent of the first diagonal bloc is
Lh=p'x0+1xpg+0xpg+1xg¢g*i=gq.
The Lyapunov exponent of the second diagonal bloc [ is computed in an analogous way and is

equal to [1. Hence, the “maximal lyapunov exponent” defined by

def H%

<t B ) (19)

is well defined and equal to ([1)% = 1/2 x ¢ (there is a factor of normalization 1/2 due to the fact
that words of length k in the alphabet {aa, ab, ba,bb} are of length 2k in the alphabet ¥ = {a,b}).
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5.1.5 Remark We have adopted here a presentation which focuses on the induced semigroup in
the projective space: hence, the “prefix representation” does not depend on the initial condition a.
It should be noted that if a specific value of « is given, it is less expensive to compute the finite set
papu(X*) (the finite orbit of pa under the action of the semigroup pu(2*)). In particular, since the
projective finiteness condition implies that [ = limk(EHa,u(wk)H)% does not depend of the initial
condition a (as soon as a; # €, V1), if we only consider the computation of [, it is enough to compute
the finite set papu(X*) for such an arbitrary a. For instance, with a = [e, e], we obtain the finite

set shown on Figure 7. We have written on the picture au(b) 1% & on the picture to express that

2

eaq’

Figure 7: Orbit of a = [e, €]

aB ® A =1® a. This implies that the asymptotic mean case analysis of au(w) can be performed
by reasoning on a Markov chain similar to (48) but with only with 3 states. In this case, we are
reduced to the original approach of Olsder (see [2], Chapter 9).

5.1.6 (Extension to Markovian probabilities) For a projectively finite semigroup 5 = p(%1),

it is also possible to compute the Lyapunov exponent when the probability measure p is Markovian

[20], that is

{ play...ax) = pla1)P(ar,az)...Plag_1ak) (50)
pla) = Ypex a(b)M(b, a)

for some stochastic vector a (i.e. }_, a(a) = 1) and Markov matrix P. In other words, we consider
a Markov chain in the free monoid, wy,ws ..., (with w; € Ei) such that p(w;41 = a1 ...ai41|w; =
ay...a;) = P(a;,a;41). Let us define the map k: ¥* — ¥: k(ay ...a;) = a; (k retains only the last
letter of the word). Then, it is easily seen that (pu(w;), k(w;))i=1,2... is a Markov chain with finite
state, for which the above discussion can be easily extended.

5.2 Hamilton-Jacobi equation for the optimal behavior

The word w € Y™ is now seen as a control. Let us introduce the minimal completion time of the n
first events:

wlélg;n f(w) .

Since f(w) = ap(w)p and a, § are constants, we shall only consider

= inf p(w); (51)

together with the associated mean optimal performance
()
i

() n
1jFe

ri; = lim

n—00, T
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Induced decision process Let w = a;...a, be an optimal word (such that the minimum is at-
tained in (51)), and let us introduce the prefixes wq, w1, . .. w, and their projections mg, mq, ..., my
as in (35). We pass from wy to wi41 by choosing a letter in an optimal way. Equivalently, we pass
from my to myyq1. This “decision process” with finite state (since my € P) appears as the (min, +)
analogous of a finite Markov chain (this is a particular case of Markov chains over the (min, +)
algebra introduced by Viot [36]). Looking at (42), minimizing #(w) amounts to minimizing a sum
of transition costs of the “decision process” plus a final cost. Therefore, we introduce
oF(z) = B D T AT

where for each subsequence of [ letters aq,...,a;, we have set m; = ¢(ay...a;). vF satisfies the
following Hamilton-Jacobi-Bellman (HJB) equation

k — : k-1
v ($) - veP, a€1£fp(ya):z[v (y) + /\Lp(y)a]v (52)

T]0($):{0 ifz=c¢e¢

400 otherwise

There is a simpler matrix expression for (52). Introduce the dioid Ry, def (RU{—00,+00}, min, +)

(where addition and product are denoted by @' and ®' together with the convention (—o0) @’
(+00) = +00) and define the matrix A € RPXP by

min

!/

At = inf Ap(m)a = EB Ap(m)a

a€X,p(ma)=m/ 1€, o(ma)=m/
(with the convention inf ) = +00). Then, (52) rewrites linearly
oF =Pl R AL

This linear HJB equation plays a role analogous to the Kolmogorov equation for the above intro-
duced Markov chain.
5.2.1 Theorem If pu(X*) is projectively finite, then we have with the above notation

!

P8 = inf [ (m) + p(m)] = @ (A%*) @ p(m) .
m meP o

We shall denote by pmin,+(A) the spectral radius of A in the (min, 4) algebra (that is the dual of
the spectral radius given in 3.1.1). We obtain as an immediate corollary of Theorem 5.2.1:

5.2.2 Corollary Under the same assumption as in 5.2.1, we have

k

7‘.4
e 1i (k)®%_ Li Mo in A) .
T] f Tl(lg)l E(rlj ) X Tl(lg)l . k Pm 7‘|‘( )

v Ty v Mag

Therefore, the projective finiteness condition implies that the limit r;; is independent of the indices

ij. Of course, the set {k € N | 7‘2(-]]?) = ¢} is an easily computable rational subset of N, by an
argument analogous to that given for the mean case analysis.
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5.2.3 Example For the semigroup of the example 4.3.2, we have

e a b a®> ab ba b> bab

e [e e e ¢ e e ¢ &
a E € € € e € € ¢
b e € € € € € € ¢
A= a’> |e ¢ ¢ e ¢ € ¢ ¢
ab e 1 ¢ ¢ e ¢ ¢ €
ba |¢ ¢ ¢ 1 ¢ ¢ ¢ e
B e 2 2 ¢ & ¢ e ¢

bab (¢ ¢ ¢ ¢ ¢ 1 & ¢ |

p(A) = e (indeed, a®> — a? is the unique “critical circuit”® | i.e. A2, = (Aa2a2)% is the unique

term attaining the bound in 3.1.1,(3). For ¢ = j = 1, the unique optimal word of length & is w = a*

for which p(w);; = e.

It should be noted that an analogous “Markovian” optimization problem has previously been solved
by Olsder in a more particular setting (see [2], Chapter 9).

()
i
the projective finiteness assumption, we obtain the “linear” asymptotic behavior 'rz(»;b) ~ (C Xn
with C' = pmin,+(A). Without this projective finiteness assumption, the behavior of the “optimal”

performance (™ can be very different. Simon [33, 34, 35] has exhibited a family of automata for

5.2.4 Remark Assume for simplicity that r;.” does not takes ¢ values for large n. Then, from

which 'rz(»;b) is of the order ¥/n (p can be an arbitary integer).

6 Approximation of the Lyapunov exponent

6.1 About Baccelli’s lower bound of the Lyapunov exponent

It has been noted that even when dealing with a projectively finite semigroup of matrices, the size
of this semigroup may be too important to allow the exact computation of the Lyapunov exponent.
An alternate approach consists in giving simple computable bounds for this exponent. We refer the
reader to Bacelli [1] [2]. Baccelli’s lower bound is based on stochastic ordering result [2]. Here, our
purpose is to give another proof of Baccelli’s bound, purely algebraic.

Here above, we have shown deduced the existence of the Lyapunov exponents from projective
finiteness properties of semigroups. More generally, we can always define the mazimal Lyapunov

exponent of a product of i.i.d. random matrices in R}<? by definition
[d:efliinEHA(l)...A(k)H% :i%fEHA(U...A(k)H% . (53)
This quantity is well defined (perhaps equal to ¢ = —o0) as soon as Vi,j, A;; & e is integrable.

The fact the limit exists and is equal to the infimum results from standard subadditive arguments
[23, 2]. Baccelli obtains the following lower bound.

p(EA]) <1 . (54)

13See [9, 2] for the graphical interpretation of p. The reader interested by the effective computation of the spectral
radius is referred to Karp [22]
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Here, we only consider the case where A(7) belongs to a finite set, and give an algebraic proof based
on Hadamard products of matrices in the (max, 4 )-algebra.

We shall use the notation of §5.1: w; = @y .. .ay denotes a random word on X* with probability
law p(wg) = p(a1)...p(ak).

6.1.1 Proposition We have for all k > 1,

p(E(p(w1))) < (p(Ep(wy))* <1 . (55)

Moreover, if the projective width A(u) is finite, then

=

lim (p(Eu(we))F =1 .

k

Of course, the interest of (p(E,u(wk))% by comparison with p(E(pu(w)) is only theoretical since the
complexity of computing E(,u(wk)%) is exponential in k. We shall prove this result in the remaining
part of this section. Before, we think it is worthwile making a short digression towards the usual
theory of products of random matrices. The reader will certainly have noticed that the blueprint
of this paper consists in translating some classical results of the theory of nonnegative matrices to
the (max, 4 )-case. Conversely, we may wonder if some (max, +) theorems furnish some new results
when translated to the usual algebra. Here is a modest example a such a transfer: Baccelli’s bound
(54) also holds in the conventional algebra, but with the reverse inequality !

6.1.2 Proposition Let p be a morphism ©* — (R1)™" (equipped with the conventional matriz

product), and let [ = limy EH,u(wk)H% Then, we havel*

(< p(E(u(wr))) = p(Y_ w(a)p(a)) .

a€EX

This is nothing but the observation that the exact evaluation of the worst case performance in the
(max, +)-case yield inequalities for the probabilistic case. Therefore, we just mimic the proof of
Proposition 3.1.2.

Proof of Proposition 6.1.2. We have

=
=

(Jensen inequality)

1

( > u(w)ijp(w))

wenk

E(p(wr)f) < (E[p(wg)iy)])

a€EX

[((Z u(a)p(a))’“) ] (56)

(morphism property of p and p).

Let M =3~ ,cx pi(a)p(a). The property follows from lim supk(ﬂlg)% < p(M). [

Mhere, p(B) denotes the conventional Perron-Frobenius eigenvalue of B.



26 Stéphane GAUBERT

Indeed, in the usual algebra (but unfortunately, not in the dioid’s case), the scope of bounds
of type 6.1.2 is not limited to the i.i.d. case. A similar bound also holds for a rational probability
measure [20] on the free monoid. We assume that p admits a linear representation (o, u’, 5'):

plw) = o p'(w)p’ (57)

(W' : B* — (RT)PXPF for some p, o/ € (RT)1XPS" € (RT)PXL, for p = 1, we recover the i.i.d case).

6.1.3 Proposition Let u be a morphism ¥* — (RT)"*" and p be the rational probability measure
with representation (57). Then

(< p(D_ w(a) @' p'(a)) (58)

a€EX

where @' denotes the tensor product.

The bound (58) admits a particularly simple form for Markovian probability measures. Assume that
play...ar) = p(a1)P(a1,az)...P(ag—1,ax) and that p(a) = > ez a'(b)P(b, a) for some probability
vector @’ and Markov matrix P. Then, the morphism g’ is as follows

Nl LY (R-}—)EXE’ Nl(a)bc — {P(b,c) if c = a
0 otherwise

(take 8; =1, Va € ¥ to obtain a linear representation (57)). Then, the matrix M = Y,y pu(a) ®'
p'(a) is given in bloc form by

Mgy = P(a,b)u(b) .

For instance, in the case of an alphabet reduced to two letters, we obtain

Proof of 6.1.3: We have

S ww)gp(w) = Y Y al(p(w) @ p'(w))is0%

weLk weLk s
IiZM(Q:M@@MWW) By -
ls a€X il js
We conclude by arguing as in the proof of 6.1.2. |

6.2 Preparation for Proposition 6.1.1
We first give some inequalities related with (max, +) spectral radii and Hadamard products.

The Hadamard product (or Schur product) A ® B is by definition the componentwise product of A
and B, that is
(A© B)ij = AijBij .

Consequently, for € R, we shall denote by A® the z-th Hadamard power of A, that is

(A9%);; = (Aij)* = A x @ .



Performance Fuvaluation of Timed Automata 27

6.2.1 Lemma For all A, B,C,D € RI:" and z € R, we have
1. (AOB)®(CoD)<(AC)o(B®D)
2. p(A® B) < p(A)p(B)

3. p(A%) = (p(A))".
Proof (1) We have

(A0 B)®(CO D) = @ AwBinCirDy;
k

- (gnn) (@)

= [(ApC)o (B D); -

(2): From (1), we have for all k& > 1, tr((A @ B)*)r < tr(AF © BF)E < (t2(A%))k (tx(BF))r <
p(A)p(B). Applying Lemma 3.1.1,3, we are done. Another interesting proof based on tensor pro-
ducts is given in note's.

We shall also need the following Lemma, which is almost obvious.
6.2.2 Lemma For all A € R " and k > 1:
p(AF) = (p(4))" . (59)

Proof p(AF) < (p(A))* follows immediately from Lemma 3.1.1,3 (this can be rephrased in terms
of graphs, any circuit of length / of A* can be identified with a circuit of length kI of A). The
converse inequality follows from 3.1.1,2. For if Au = ru, then A*u = r*u, hence p(A*) > (p(A))".
|

6.3 Proof of the Proposition

6.3.1 Lemma We have
Elp(wit1)] = Elp(wy)] © Ep(w)] (60)

Proof The expectancy writes in (max, 4+ ) notations:

©
Hu(wpe)] =TT w(w)®r)
wEEk+l
©

S OO
ueLk yent

®
H Iu(u)@p(uv) ®
(uw)

EXkxE

v

15Recall that the tensor product A @' B of two n x n-matrices is the n° x n’-matrix (A ®* B)(i])(kl) = A B .
We claim that p(A®° B) = p(A)p(B). Indeed, since an arbitrary circuit of A ®° B writes Ai;i, Bjyjs - - - Airiy Bii
(Aiyig - Aiviy)(Byyjs - - Bypjy ), we have by 3.1.1,3 that p(A®° B) < p(A)p(B). The other inequality results from
the fact that Au = ru and Bv = sv = (A ®* B)(u ® v) = (Au) ®* (Bv) = rsu ®" v which is a general property of
tensor products. Since A ® B is a principal submatrix of A ®" B, we have p(A ® B) < p(A @' B) = p(A) @ p(B).
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O]
®( H M(,v)(-)p(uv))
(u,v)

exkxxl
(by 6.2.1,1)
= (Elp(wg)]) ® (Elp(w)])

since for all u,

®
TT s ™) = p(u)2=e P = puppt)

UEEZ

6.3.2 Lemma We have for all k > 1,
p(El(n)]) < Ep(p(wn)

In other words, the (max, +)-spectral radius is a convex map.

Proof We have:

®
p(Ep(wp)]) = p( J] w(w)®r)

wenk

X plp(w))"™) = Ep(p(wy))

wenk
(by Lemma 6.2.1,2,3). [ ]

IN

6.3.3 Lemma For all k,q > 1, we have
p(E(wixq)]) > (p(Eu(wy)]))*
Proof Via Lemma 6.3.1 and 6.2.2,
PUE((wrxq ) > p((Elp(wy)))F) = (p(Elu(w,)])* .

By Lemma 6.3.3, we have

p(Elp(w,)])* P(E[p(whxq)])
IE{(wrxq )]l

El|u(wixq)ll -

VAN VAN VAN

Since the sequence (EHM(wk)H)% admits the limit [, we have

1
[

1 .
Jim By [P = lim (BluCwn) )T =1

Together with Lemma 6.3.3 (set ¢ = 1), this proves the first half of Theorem 6.1.1. It remains to
show that the limit is attained. We have

< B p(wr )]
(from (53))
A(WE |p(w)| A
A(p) [Elp(w)] A
A(p)p(Ep(wr)])

VAN VAN VAN
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Hence, for all £ > 1, ) )
(P(Elp(we)]))F < 1< (A(p)p(Ep(we)]))F
We are done. [ |

Concluding remarks

In this paper, we have introduced the notion of Timed Automata as a natural extension of deter-
ministic timed event graphs. We have provided some characterizations of the worst case, optimal
case and mean case performance. We have the feeling that from the practical point of view, the
most useful result is the simplest mathematically, i.e. Proposition 3.1.2 which provides an O(n?)
algorithm for the worst case analysis. The remaining part of the paper seems to us far more in-
teresting from the algebraic point of view, and its practical relevance is clear, but it suffers of a
greater complexity. There are some special cases in which certain further algebraic developments
allow computing more quickly the Lyapunov exponents [16].
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