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Une classe de réseaux de Petri sans
conflit pour le controle des systémes de
production

George HARHALAKIS!, Marios LEVENTOPOULOS?,
Chang-Pin LIN?, Rakesh NAGI', Jean-Marie PROTH?

RESUME

Ce papier traite de I'évaluation du comportement et de la gestion des systemes discrets
non cycliques, et en particulier des systétmes de production. Nous introduisons un type de
réseaux de Petri appelés CFIO (Conflict-Free nets with Input and Output transitions /
Réseaux sans conflit avec transitions d'entrée et de sortie). Nous montrons que les CFIO
sont vivants et que, s'ils sont consistants, ils peuvent étre maintenus bornés et sont
réversibles. Nous développons aussi des régles de réduction qui facilitent le calcul des t-
invariants des CFIO. Nous montrons ensuite comment tirer avantage des propriétés
qualitatives des CFIO pour la planification et l'ordonnancement. Ces approches sont
illustrées par des exemples numériques.
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Planification.

1 Department of Mechanical Engneering and Institute for Systems Research, University
of Maryland, College Park, MD 20742, USA

2 Department of Computer Science and Institute for Systems Research, University of
Maryland, College Park, MD 20742, USA

3 INRIA-Lorraine, Technopodle Metz 2000, 4 rue Marconi, 57070 Metz, FRANCE, and
Institute for Systems Research, University of Maryland, College Park, MD 20742, USA



A Class of Conflict-Free Petri Nets used
for Controlling Manufacturing Systems

G.Harhalakis!, M.Leventopoulosz, C.-P.Linl, R.Nagil, J.-M.Proth3

'Department of Mechanical Engineering and Institute for Systems Research,
University of Maryland, College Park, MD 20742, U.S.A.
Internet: george/nagi/lincp@src.umd.edu

2Department of Computer Science and Institute for Systems Rescarch, Univer-
sity of Maryland, College Park, MD 20742, U.S.A.
Internet: mml@cs.umd.edu, Student member IEEE.

3INRIA, 4 rue Marconi, Technopole Metz 2000, 57070 Metz, FRANCE, and
Institute for Systems Research, University of Maryland, U.S.A.
Internet: proth@ilm.loria.fr, Member IEEE.

Abstract

This paper is devoted to the behavior evaluation and management of non-cyclic discrete
systems, and in particular manufacturing systems. We introduce a special type of Petri
nets called CFIOs (Conflict Free nets with Input and Output transitions). It is shown
that CFIOs are live, and if consistent, they can be kept bounded and are reversible.
We also develop reduction rules which facilitate the computation of the t-invariants of
CFIOs. We then show how to take advantage of the qualitative properiics of CFICs
to perform planning in manufacturing systems. Numerical examples illustrate these
approaches.

Key words: Petri nets, Discrete event systems, Manufacturing systems, Consistency,
Boundedness, Reduction of Petri nets, Conflict-free systems, t-invariants, Planning

1 Introduction

Significant changes have been occurring in industrialized countries during the past three
decades. To name only a few of them: (i) production is moving towards high quality products
and small lot sizes (it is said that the economy of scale has been replaced by the economy of
scope), (ii) competitiveness has become a worldwide phenomenon, and (iii) erratic demands are
progressively replacing steady demands.

A way to face these trends is to introduce highly automated manufacturing systems with high
flexibility and small, or even zero, set-up times. Such systems are highly sophisticated. They
require expensive components, are costly to run and maintain and, at the beginning of their life
cycle, demand a very complex design process.

The first stage of this process is the so called preliminary design [2], which includes the tasks
to be performed in order to specify the manufacturing system, given the parts’ specifications.
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This stage is also known as the “paper study,” and ends when the physical implementation of
the system starts. Among the tasks to be performed at this level are the establishment of the
functional specifications, the modeling and the evaluation of the manufacturing system. Many
tools exist to support these tasks. For instance, queueing theory, state-transition, mathematical
programming and simulation, are used for the performance evaluation of the system, while
entity-relationship approaches and the CIM-OSA! related tools are used for the specification of
the system.

We claim that Petri nets are the only tool which can support specification as well as functional
modeling and performance evaluation (see also [10]). The latter is performed either by using a
Petri net based simulation software, or by using the properties of Petri nets, which are particularly
rich in some applications. Thus Petri nets can be considered as tools that enable a step towards
integration at the preliminary design stage.

Numerous analytical results (see in particular [1], [3], [4], [6], [10] and [11]) are available to
support the preliminary design of cyclic manufacturing systems. The reason is that these kinds
of manufacturing systems can be modeled using strongly connected event graphs, a special class
of Petri nets whose analytical properties are particularly powerful.

However, strongly connected event graphs cannot be employed where non-cyclic manufactur-
ing systems are concerned. The main reasons for this are: (i) we have to be able to introduce and
remove parts from the system (and this process cannot be represented by a strongly connected
net), and (ii) the system is not conflict-free (due to the decision making process).

Non-cyclic manufacturing systems are modeled using basic general Petri nets enhanced by:

Control Places, which make it possible to take into account external decisions.

1. Input transitions, which can deliver tokens to the system, making it possible to model raw
material and semi-finished products coming from outside the manufacturing system.

iti. Output transitions which can remove from the system tokens that represent finished or

semi-finished products leaving the system.

o pede
.

The way control places are employed to take into account external decisions is explained in
{5] and [9] and summarized in section 2.2.

As soon as a decision is applied by means of the control places, some of the transitions
are frozen (i.e. cannot be fired anymore), which turns the Petri net model into a conflict-free
net. This conflict-free net is obtained by removing from the initial Petri net model the frozen
transitions, the related arcs, as well as their input and output places, if they are not connected
to a non-frozen transition. Such a conflict-free subnet of the initial Petni net model is referred
to hereafter as a CFIO net, which stands for Conflict Free with Input and Output transitions.
A sequence of decisions applied to a non-cyclic manufacturing system can thus be viewed as a
sequential activation of conflict-free subnets of the initial Petri net model.

In this paper, we focus on the study of CFIOs. Such a subnet is characterized by input and
output transitions, and by the fact that each place has only one output transition.

To make it possible to control the whole manufacturing system, its net should be decomposable
into manageable CFIOs.

L Computer Integrated Manufacturing — Open System Architecture, ESPRIT program



By manageability we mean that:

i. We are in a position to keep the CFIO net bounded, which means that the work-in-process
of the related manufacturing system can be held below a given level.

ii. Any marking reachable from the initial marking can be reached from any other marking
reachable from the initial marking; this means that the related manufacturmg system can
always reach any of the states it was designed for.

iii. The ratios of the output transition firings can vary to a large extent, which guarantees the
flexibility of the manufacturing system at hand.

The remainder of this paper is organized as follows:

In section 2 we provide the definitions used in the paper. In section 3, wc proposc some
properties of CFIO nets related to manageability. In section 4, we introduce a process to transform
a CFIO N into a reduced CFIO N such that N is consistent if and only if Ny is consistent, and
the t-invariants of N can be derived from the t-invariants of N;. We also propose a powerful
algorithm that derives the reduced net and uses it to compute the t-invariants of the initial net
and decide if it is consistent or not. An example is presented to illustrate this algorithm. In
section 5, we show how to use CFIOs to perform planning in a manufacturing system. The
approach is illustrated by a small example. Section 6 presents our conclusions.

2 Definitions

In this section, we first define generic Petri nets and then provide the definition of CFIO nets
proposed in this paper (for details see [7]).

2.1 Definitions related to Petri Nets

A Petri net can be viewed from two aspects: static and dynamic. The static aspect of a Petni
net is defined by a weighted, bipartite, directed graph which consists of places (represented by
circles), transitions (represented by bars), and arcs (represented by arrows). The dynamic aspect
is provided by the initial and subsequent markings of the net, as enabled transitions are fired.

Definition 1 A Petri-net is a four-tuple N =< P, T, F,W > where :

P = {p1,p2,.--,Pn} is a finite set of places,

e T = {t1,t2,...,tm} is a finite set of transitions,

e« PNT =0;ie. places and transitions are disjoint sets,

e FC(PxT)U(T x P) is a set of arcs (flow relations),

e W :F — Nt is a weight function which assigns a strictly positive value to each arc.

A place p € P is an input (resp. output) place of ¢t € T if there exists a directed arc joining
p to t (resp. t to p). The set of input places of ¢ is denoted by °t, while the set of output places
of t is denoted by t*. Similarly, ¢ € T is an input (resp. output) transition of p € P if there
exists a directed arc joining t to p (resp. p to t). The set of input (resp. output) transitions
of p is denoted by °p (resp. p°®).



We denote by *T (resp. T'*) the set of all the places of the net which are input (resp. output)
places of at least one transition. We also denote by °P (resp. P*®) the set of all the transitions
which are input (resp. output) transitions of at least one place.

In the initial models of this paper we consider only arcs with weights equal to unity.

Definition 2 A Marked Petri net is a Petri net PN =< N, M > where:

» N =< P,T,F,W > is a Petri net as defined above,
* M : P — N is called a marking of PN.

For p € P, M(p) is the number of tokens contained in the place p for marking M. In figure
1, we present a Petri-net where tokens are represented by dots.

Figure 1: A marked Petri net

The marking represented in figure 1 is M=<1,2,0,1,3,0>, which means that M(p;) =
1,M(p;) = 2 and so on.

Definition 3 A pure Petri net (i.e. such that *t Nt* = @, Vt € T) can be represented by an
incidence matrix C = [¢; ],7 = 1,2...,n;7 = 1,2,...,m, where:

+1, if there is an arc from transition j to place i

—1, if there is an arc from place i to transition j
Gy =
0, otherwise

As an example, the following incidence matrix corresponds to the Petri net presented in
figure 1.

10 -1 0 0 0]
00 1 0 0 -1
11 -1 -1 0 0
“=loo 0 1 0o -1
01 0 -1 1 0
00 0 1 -1 0|




In a marked Petri net, a transition t € T is said to be enabled if every p € °t contains at least
one token. Firing an enabled transition consists of removing one token from each of the input
places and adding one token to each output place (i.e. to every place p € t°*).

For instance, in the Petri net given in figure 1, ¢¢ is enabled. Firing ¢¢ consists only of
removing one token from po and p4; because tg = @, no place receives a token.

We can also associate a firing time to each transition. Such a time represents the time
between the beginning and the end of a transition firing. Since transitions model operations in
a manufacturing system, firing times represent manufacturing times. Tokens are reserved in the
input places during the firing process. They are removed from the input places, and the output
places are marked, at the end of the firing process.

Notations

» By firing a sequence of transitions o, we can reach a marking M from an initial marking
M. We say that M is reachable from My, and that o is a firing sequence starting at My
and leading to M. We denote:

M ER(.M())
and

My - M
* A basic relationship in Petri net theory is that:

M=M,+Ca, (1)

where o, = [a),a?,...,a™] and o} is the number of times transition ¢; is fired in 0. o,
is called the counting vector.

* An elementary circuir is a directed path which starts from a node (place or transition) of
the Petri net and ends at the same node, and is such that no node of the path is included
more than once within itself. For instance, <ps,t4, ps, ts, ps> is an elementary circuit of

the net of figure 1.
A Petri net marking M may be sometimes referred to hereafter as the state of the system,
which reflects the state of the manufacturing system modeled by the net.

In manufacturing systems, tokens can be used for representing parts, resources, or other
information, while places represent buffers, and transitions represent operations.

2.2 Control Places

Krogh et al. [5] were the first to propose an extension of Petri nets taking into account external
decisions which can influence the behavior of the system. This is achieved by introducing control
places in the nets (represented by double concentric circle). A control place p is such that:

1. *p = @: A control place has no input transitions.
2. M(p) < 1: There is at most one token in each control place.



3. The marking of a control place is decided from outside the system. Consequently, if the
output transition of a control place fires, (which means that there is one token in the control
place), then the token is not removed from the control place. The usual firing mechanism
holds for the regular places.

Figure 2 illustrates these rules.

p2 p2
®
pl T pl A

Figure 2: Behavior of a control place

2.3 Definition of a CFIO Net
A CFIO net is a subclass of Petri nets, with the following three properties:
1. Tt is conflict-free:
*tiN %ty =0, Vity, taeT

In other words, each place has only one output transition,
2. Has neither input nor output places (also called source/sink places):

.T — T.
3. Has at least one input and at least one output transiuon:

T—-P*#0
—-*P#£0
The net represented in figure 3 is a CFIO net, where t; and ¢, are the input transitions, and
ts and tg are the output transitions.

|—4<>—4<27 28) ls
S g tg

Figure 3: A CFIO net




3 Properties of CFIO nets

In the following section we consider liveness, boundedness and consistency of CFIOs, and
we will show their relationship to manageability.

Note that a CFIO net is structurally conflict-free. From the definition of CFIOs follows
that they are structurally live. We show that CFIOs are not structurally bounded, but they can
be kept bounded under special conditions. We will see that reversibility is a consequence of
consistency in this particular case, and that the net is reversible for any initial marking such
that every elementary circuit has at least one token. The relationship between boundedness and
consistency is also established.

3.1 Liveness

A petri net is said to be structurally live if there exists at least one marking for which the
marked net is live.

A Petri net is structurally live if there exists a vector z of positive integers such that Cz > 0
(for details on structural properties see [14], [15]).

Result 1: A CFIO net is structurally live.

Proof: A CFIO net has neither input nor output places. Thus for every place p € P,*p # @ and
p* # 0. Also a CFIO is a conflict-free net, thus the set p* has only one element.

Consider C the incidence matrix of a CFIO. Each row has exactly one (—1) element, and at
least one (+1) element. Thus a vector z whose elements are all equal to (+1) is such that Cz > 0

Q.ED.

3.2 Boundedness

A Petri net is said to be structurally bounded if there exists an integer & > 0 such that, for
any initial marking M, and for any M € R(M,), M(p) < k,Vp € P.

A Petri net is structurally bounded if and only if there exists a vector y of positive integers
such that y7C < 0.

Result 2: A CFIO net is not structurally bounded.

Proof: A CFIO net has at least one input transition, thus at least one column of the incidence
matrix contains only non-negative values, and at least one of these values is 1. If [a] is this
column, then Ay > 0 such that yT[a) < 0. Thus, By > 0 such that y7C < 0.

Q.E.D.

Result 3: A CFIO net can be kept bounded by controlling the firings of the transitions belonging
to T — P*® (i.e. the input transitions) if and only if the Petri net obtained by removing those
transitions, is bounded.



Proof:

(a) The condition is sufficient: Let A = [A;Az| be the incidence matrix of the CFIO net where
A; is composed with the columns of T'— P°®. Thus the columns of A; do not contain (-1) values.

Boundedness of the net defined by A; means that :
3K1 = [klakla-' "kI]T ’ kl € N+ S.t. Mo + A2(102 S I(l

for any initial marking M, and for any feasible sequence o, of transition firings related to P°,
as, being the counting vector.

But, for any K = [k,k,.. .,k]T , k > kj, there exists a feasible sequence o, of transition
firings related to transitions T — P*® such that:

Alaal < K- K1
Thus, 3K; and o; such that:

M, + [AlAz] [ Zal

a2

ox
and the CFIO net can be kept bounded for a given o for any initial marking M,.

(b) The condition is necessary: If A, as defined above, is not bounded, then there does not
exist K; > 0 such that:

Mo + A2a,, £ K

for at least one feasible sequence o related to an initial marking Mj.
Also, because Aja,, > 0, there does not exist K > 0 such that:

My + Araq, + Azaq, = My + Aoy < K

and thus the CFIO net cannot be kept bounded.

QED
Note: The Petri net obtained by removing the input transitions in a consistent CFIO net is
bounded, because removing the input transitions limits the number of transition firings and, as
a consequence, the number of tokens in the system.

Thus, the following corollary can be derived from result 3:

Corollary 1: A Consistent CFIO net can be kept bounded by controlling its input transitions.

3.3 Consistency

A CFIO net is consistent if there exists a marking M, and a transition firing sequence o were
every transition occurs at least once in o, such that My - M.

We know that consistency holds if and only if there exists a vector z of positive integers
such that Cz = 0.



Result 4: If a CFIO net is consistent, then for any initial marking Mp such that each elementary
circuit contains at least one token, and for every M € R(M)), we have My € R(M) (i.e. the
net is reversible for every initial marking Mj such that all elementary circuits are marked).

Proof: The proof consists of three parts:

‘a. Defining a partial order on the set of transitions. We partition the set of transitions into
ordered minimal disjoint sets 1y, T3,...,T, such that:

T, = {tl't < T;}

1<)
These subsets can be obtained by the following algorithm:

1. Initially: £E =0, : =1
Until £ = T do:

a. In case:

o 3Jt €T st *(°t) C E then T; = {t}
» Ft e Tst. *(°t) C E then choose any t ¢ E such that *(*t) U E # 0 and

* Determine the strongly connected subnet S containing ¢
s Ti = {s|*s € S}

b. F = FEUT;
c. 1 =141

Finally, we obtain an ordered sequence of v subsets which also constitutes a partition of T.

b U:’=0 T,' =T

« T;NT; =0,V i# 5
Note that the above algorithm defines an order Og on the set {T},T5,...,Ty}: it is the order
by which the subnets were defined, i.e. T; < Tj if and only if 7 < j. Thus, because some 7;
may contain more than one transition, Op is a partial order on the set T of transitions.

Note also that, if ¢ € T; does not belong to a circuit, then ¢ is the only element of T;.
Otherwise, all the transitions of T; are the transitions of a strongly connected subgraph.

b. Constructing a complete firing sequence. Assume that the CFIO net is consistent. Then
there exists an integer vector z,z > 0,z = [z1,z2,...,Zm]L such that Cz = 0. Let y; be
the vector whose components are the components of z which correspond to the transitions of
T;. Note that if T; is the set of transitions belonging to a strongly connected subgraph, the
components of y; are equal.

We will construct a sequence & as a concatenation of sequences &;, &; being a sequence of
transitions belonging to T; such that the number of times each transition appears in &; corresponds
to the respective component of y;. We denote

5’2&10&20“-0&”



where o denotes the concatenation.

* &) is a sequence which contains only one input transition. Thus &, is firable for any Mj.
* Assume that we have constructed the sequence &) 0 &2 o - - - 0 &;..; Which is firable.

We will show that there exists &; such that the sequence &) 0 G5 0 --- 0 &; is firable.

i. If Ty is a singleton set {t} then &; is a sequence containing y; times the transition ¢
since *(*t) C U;;ll T;.
ii. Otherwise T; is a set of transitions belonging to a strongly connected subset S, in which

each elementary circuit contains at least one token.

Assuming that the firing of ¢ € S is not blocked by M(p),p € *t,p € S, then there
exists a firable sequence o where each t € S occurs the same number of times, such that
Ms -5 Ms, for all markings Ms of S where every elementary circuit in S contains
at least one token.

In our net, for every p € *t,t € S,p & S, we observe that *p C U;;ll T;. Transition ¢ is
not blocked by p because after firing the sequence &3 0620---08;_1, M(p) > y; Thus
for &; = o the sequence &1 0 G2 0 --- 0 &; is firable.

Then & = &3 063 0--- 0 G, is such that M, 2, M, , since My is a marking where every
elementary circuit contains at least one token.

Furthermore, the same result holds when replacing z by any vector kx where k is any positive
integer. As a consequence we can always suppose that az > a4 for any sequence o.

c. Proving that VM € R(M,), M, € R(M)

Let o3¢ be such that My 2% M. o4 is a subsequence of & which may be made by non-
consecutive elements of &. Since in a conflict-free net, firing a transition does not disable other
transitions, it is still possible to fire transitions of & that do not belong in o s, after firing oyy.
Those transitions are fired in their order in 5. Thus, the final marking of the CFIO is M.

QE.D.

The following corollary is derived from result 4:

Corollary 2: For every initial marking My such that all elementary circuits contain at least one
token each, M; € R(Mp) and M; € R(My), then M; € R(M;) and M; € R(M,).

This corollary means that, in a consistent CFIO net, for any initial marking M, with at least
one token in every elementary circuit, any marking reachable from M; can be reached from any
other marking reachable from M. Result 4 shows that the consistency of a CFIO net implies
item (ii) of manageability as described in the introduction.

4 Reduction of CFIO nets

Consistency is a key property of all manageable CFIO nets. Thus, we should be able to
verify this property even for large-scale nets in a reasonable amount of time. We also need to
compute all the minimal t-invariants of the CFIO net as fast as possible. This will allow the
control of the CFIO net according to external criteria. In this subsection, we propose two results

10



which show that it is always possible to transform a CFIO net N, into a reduced CFIO net N!
which is consistent if and only if N is consistent. N! has only input and output transitions
which correspond to the input and output transitions of V.

4.1 Circuit Reduction

Result 5: Let N be a CFIO net.

Case 1: If, for at least one elementary circuit v C N, there exists a place p € ¥ which has
more than one input transition, then N is not consistent.

Case 2: Otherwise, if each elementary circuit contains at least one token, then the net N'!
is consistent if and only if N is consistent. N?! is derived from N by replacing
each elementary circuit by a transition ¢, such that any input (resp. output) place
of a transition of 4 which is not included in v becomes an input (resp. output)
place of ¢,.

Proof of Case 1: Assume that, for an elementary circuit v C N, there exists a place p € v
which has more than one input transition. Assume also that NV is consistent.

According to the definition of consistency, there exists a marking My and a transition firing
sequence o where every transition occurs at least once in &, such that My —— Mj.

Since N is conflict-free, Vp € ¥ => p* € . This implies that the total number of tokens in
v cannot be decreased. Now if Ip € « such that ®p — v # @ then firing a transition ¢t € *p — 4
will increase the number of tokens in 4. Since o contains ¢ at least once, firing o will increase
the number of tokens in . Thus My cannot be recovered and N is not consistent.

In Figure 4, we give two examples of such inconsistent CFIO nets.

Figure 4: Two inconsistent CFIO nets
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Proof of Case 2: Let us now assume that each elementary circuit contains at least one token
and that, in any elementary circuit, a place has only one input transition. We want to prove the
reduction rule presented in figure 5.

3 >
/ /

\Opl /’ Q\JO PO \; pl // pé
/—*‘3 - S | -

O Oh i A/> ﬁ p7
S p7 < p2 4@ O

e / -« 7

Figure 5: First reduction rule

In the remainder of the proof, C and C? are the incidence matrices of N and N! respectively.
The proof consists of two parts:

(a) If N is consistent then N! is consistent.
(b) If N is not consistent then N! is not consistent.

(a) Assume first that N is consistent:

According to the definition of the consistency, 3z € N™,z > 0 such that Cz = 0.
Without loss of generality, we can assume that N contains only one elementary circuit
< Piystjys Dias tyas o Piyy ty, >. We assume that the rows (resp. the columns) of €' are ordered
according to the indices of the places (resp. the transitions).

C! is derived from C as follows:
a. We first derive C® from C by setting:

C?={C(2;J) o for]#]l

7 2k=16(i, k) for j =

B. We then derive C® from C® by removing the columns of transitions jo, j3, ..., Js.
~. We finally obtain C! by removing the rows of places i1,12, ...,ts Of C?.
Furthermore, each row ¢ € {;,...15} in C is such that:

—1, for exactly one j € {ji1,...,Js}, S8y j~

cij = { +1, for exactly one j € {j1,.--,Js}, say j;
0, otherwise
and Cz = 0 implies:
m
Zci’jxj =0forz:=1,2,...,n
=1
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=¢; ;- +C,J+-T+—-0
=>c; ;-T;- +¢ +x+—0forz€{11,zz, cyls)

_—_>IJ|— = IJ;{»

This being true for any ¢ € {i1,...5,}, it leads to: zj, = z;, = --- = z;,
Let us now build z! as follows:
G if 5 & {51,752, .--Jsh
z} = z;, if the k*® column of C! has been derived from the j** column of C.

(i) x,l, = x;,, where v is the rank in C! of the column obtained by adding the columns j;, 72, ..., Js
of C.

Based on the process followed to build C! and the definition of z!, Cz = 0, we obtain
C!'z! = 0, and N! is consistent.

QE.D.

(b) Assume that N is not consistent:

If ¥! would be consistent, then:
Izl e N™ 2! > 05t Clzl =0

where m; is the number of transitions of N1.
It would then be possible to expand z! to obtain z € N™ by setting:
1. z; = z}:
if the k-th column in C! is the j-th column in C.
2. =z, = ...=14, = :z:i
if transition ¢ replaces the elementary circuit v C N containing ¢;,,t,,...,1;,.
Using the same arguments as in (a), we can see that z > 0 and Cz =
QED

4.2 Path algorithm

From now on, we assume that the CFIO net at hand does not contain any elementary circuits.

For each transition ¢, we denote by n; the number of times ¢ has been fired. Assuming
that initially there is no token in the CFIO net (i.e. the initial marking is zero), the following
inequalities hold:

ny < Znu, Vp € *t (2)
uE’p

Assume that we apply relation (2) repetitively, starting from an output transition ¢;. We
finally obtain a set of inequalities where only the numbers of input and output transition firings
are involved:
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ny <> Biny, fors=1,2,...,Hjandj € F (3)
kel

where:

* E = {k|t; is an input transition}

* F = {j|t; is an output transition}

* H; refers to the number of different inequalities obtained starting from output transition ¢;.
* [; are positive integers.

Inequalities (3) provide the maximal number of times an output transition can fire, knowing
the number of times the input transitions have been fired, assuming that the initial marking is zero.

Furthermore:

(i) The CFIO net is consistent only if it is possible to remove from the CFIO net all the
tokens which have been introduced by firing the input transitions, assuming that each input
transition has been fired at least once.

According to the process which leads to inequalities (3), a necessary and sufficient condition
for the CFIO net to be consistent is then to find nt, > 0 for every k¥ € E and ny;, > 0 for
every ;7 € F such that inequalities (3) turn into equalities.

Similarly, the CFIO net has a t-invariant if there exists n = [ng,,nk,,...,ng,},n 2 0,
{k1,k2,...,kL} = EUF, such that the inequalities (3) tum into equalities. Note that if a
Petri net is consistent, it has at least one t-invariant, but the converse is not true.

(ii) It is possible, starting from inequalities (3), to construct a reduced CFIO net with the
following properties:

* input transitions are those of the initial net,
* output transitions are also those of the initial net,
* it does not contain any other transition other than the input and output transitions

The incidence matrix C? of this reduced net is obtained starting from the inequalities derived
from (3), i.e.:

—ny, + Z ﬂ;:ngk =0 (3 — bls)
keE

Each inequality provides one row of C!.
In the row related to relation (3-bis) (i.e. the s'h relation related to t;):

 the element of C! corresponding to output transition ¢; is (-1),
« for every k € E, the element of C! corresponding to input transition t; is Bi»
* the other elements of the row are 0.
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This reduced CFIO net is hereafter denoted by N, while the initial CFIO net is denoted by V.

Like N, N! is consistent if inequalities (3) turn into equalities for strictly positive values.
N1 has a t-invariant if, like N, inequalities (3) turn into equalities for values which are positive
or zero, with at least one of them being positive.

Assume that we know z! (z! > 0 or z! # 0) such that C'z! = 0. Firing the input transitions
of N as many times as indicated in z! for the corresponding input transition of N, and then firing
the enabled transitions until none remains enabled anymore, we produce the following results :

(1) the vector £ whose components represent the number of times each transition fired is such
that Cz = 0
(ii) the components of z and z! corresponding to the input and output transitions are the same.

The following result summarizes the above remarks:

Result 6: Given a CFIO net /V, it is always possible, by repeatedly applying inequalities (2),
to upper bound the number of times each output transition can fire by a set of positive linear
combinations of the number of times each input transition has been fired, assuming that the initial
marking of N is a zero-vector (see inequalities (3)). From these upper bounds, it is possible
to derive a reduced net N! as defined previously. Based on the fact that N and N! are CFIO
nets, N is consistent if and only if N! is consistent.

Furthermore:
(i) A vector z > 0s.t. Cz = 0 is derived in an unique way from a vector z! > 0s.t. Clz! =0,
and vice versa, where C (resp. C1) is the incidence matrix of N (resp. N1).

(ii) A vector z # 0 s.t. Cz = 0 is derived in a unique way from a vector z! 2 0s.t. Clz! =0,
and vice versa. Vector z (resp. z!)is a t-invariant of N (resp. C!).

pd t7

Figure 6: Initial net N
Let us present an example. Consider the CFIO net given in figure 6.
First we apply relation (2) to the output transition {7 and we obtain:

ny S ny (4-1)
n7 < ng + ns + ng (4—-2)
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Considering t4,%5 and tg, we obtain, respectively:

ng < ny +n2 (4-3)
ns < ng +n3 (4 —4)
ng < ng (4 —5)

Combining (4-3) with (4-1), and (4-3) through (4-5) with (4-2), we obtain, respectively:
nr <nj +n9 (5-1)
ny < n; + 2nq + 2n3 (5-12)

Similarly, starting from tg, we obtain:

ng < n3 (5—3)

Inequalities (5-1) to (5-3) comply with the inequalities (3).

t1 1

b
/
~0

Figure 7: Reduced net N'!
The related reduced net N! is given in figure 7.

\.
/
/

In this example:
t1 t2 t3 4 ts te t7 ig
nm{l 1 0 -1 0 0 0 0]
2|0 0 0 1 0 0 -1 0
c_Pm|0 1 1 0 -1 0 0 0
ps |0 0 0 1 1 1 -1 0
ps|0 01 0 0 -1 0 o
pslO 0 0 0 0 1 0 ~—1)
and
tp t2 t3 t7 g
ml1 1 0 -1 0
Cl= p, [1 2 2 -1 0 }
p3 0 0 1 0 -1



N1 is not consistent, because there is no solution of C!z! = 0 such that z! > 0. Thus, N
is not consistent. However, vector z! = (1,0,0, 1, 0] is such that C'z! = 0 : z! is a t-invariant,
which means that if we fire t; once starting from a zero-marking, then we come back to a zero
marking by firing t7.

We see that:

n1 = n7 =1 and ny = n3 = ng = 0 is a solution which turns inequalities (4) into equalities.

We finally can see that, by firing ¢; in N, we can fire ¢4 and ¢7. Thus £ = [1,0,0,1,0,0, 1, 0]
is a t-invariant of N.

Note that:

(i) the number of places in the reduced net is equal to the number of inequalities (3),
(ii) the weight of the arcs is not always 1 in the reduced net; for instance, weights of (¢2, p2)
and (t3,p2) are both equal to 2 in this example.

4.3 Computation of the minimal t-invariants

The minimal t-invariants are those which cannot be expressed as a linear combination of
other t-invariants. From the point of view of linear programming, the t-invariants of C* are the
extremal solutions of C'z! = 0,z # 0. As soon as a minimal t-invariant z! of N! is known,
it is easy to reconstitute the corresponding t-invariant z of N as shown in the previous section.

The minimal t-invariants of N! are obtained by computing all the extremal solutions of
Clz! = 0, using the classical linear programming approaches [12], [13], [14]. This computation
is usually very fast, due to the limited size of C!. If, for each component, there exists at least
one t-invariant in which this component is strictly positive, then N!, and thus N, is consistent.
Furthermore, the minimal t-invariants of N are derived from the t-invariants of N! as shown in
the previous sub-section (i.e. by firing as many transitions as possible starting from the firing of
the input transitions of NV as required by the minimal t-invariants of N1!).

4.4 Software Implementation

A software which analyzes a CFIO net is available. It detects whether the net is consistent,
and provides all its minimal t-invariants.

The different steps of the algorithm are summarized as follows:

1. Check and remove the circuits as shown in result 5. If, in at least one of the circuits, a
place has more than one input transition, the net is inconsistent. A message is displayed
and the computation stops.

2. Find inequalities (3) starting from the incidence matrix of the initial net V. This is done by
applying repetitively relations (2) starting from the output transitions.

3. Find all the independent sets of values (positive or null) which turn inequalities (3) into
equalities. This is done by using a classical linear programming approach to find all the
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extremal solutions of Clz! = 0, where C! is the incidence matrix of the reduced net N!
derived from inequalities (3).

4. Decide if N is consistent, by verifying if each of the components of a transition vector has
positive value in at least one minimal t-invariant.

5. Construct the minimal t-invariants of N as shown in section 4.3.

Note that the reduced net appears only through its incidence matrix, which is derived from
inequalities (3).

5 Planning of Manufacturing Systems

Planning of a manufacturing system consists of the determination of the list of operations
to be performed during some consecutive periods of time. In terms of Petri net models, we
have to provide the list of transition firings which occur during these periods. Hereafter, we
show how to use CFIOs in order to cope with the computational burden. As described in the
following section, this trade-off is achieved at the expense of flexibility. Using CFIOs as the
basis to compute the planning guarantees that the qualitative properties which are essential for
managing manufacturing systems are preserved.

5.1 Decomposition of a Petri Net

Let us consider a Petri Net NV with input and output transitions which models the arrival and
the departure of parts from the system.

A subset NC of N is a CFIO of N if:

1. NC is a connected CFIO net.

2. The input (resp. output) transitions of NC are input (resp. output) transitions of V.

3. Every node (place or transition) of NVC is a node of V.

4. For every transition ¢ of NC, the set of input (resp. output) places of ¢t in NC is equal
to the set of input (resp. output) places of ¢ in V.

Definition 4 We call a Petri net NV with input and output transitions, a decomposable Petri
Net, if there exist consistent CFIOs of N, NC;, NC»,...,NC, such that:

N = LrJ j\"C,'
1=1

Result 7: A decomposable Petri Net such that each elementary circuit contains at least one
token:

(i) is consistent
(i) can be kept bounded by controlling its input and output transitions
(iii)is live
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Proof:

(i) Let C be the incidence matrix of the decomposable Petri Nets N and NC,, NCy,...,NC,
a set of consistent CFIOs such that N = J;_, NC;.

The consistency of NC;, ¢ = 1,2,...,r implies that there exists a vector ' € N™such
that Cz*' = 0 and:

c >0, iftpe NC;
Tk = 0, otherwise

Let us consider z* € N™ such that

r
:z:;;=Z:2:}'C fork=1,2,...,m (6)

1=1
then
Cz*=CY =) Cz'=0 (7)
1=1 s=1

Furthermore

zi:Zzi>0fork=l,2,...,m (8)
=1

because every transition tg, k = 1,2,...,m belongs at least to one of the CFIOs, and thus one
of the z}, k =1,2,...,m is strictly positive for at least one ¢ € {1,2,...,7}.
From equations (7) and (8) we conclude that N is consistent.

(ii) Given that NC1,NC,,...,NC, are consistent subnets, we consider a vector = such that:
r .
:z:=Zn,':z:'=[:z:1,:z:2,...,:z:m] (9)
=1

where z* are the vectors introduced in (i) above, and n; are non-negative integers. Then if
transition t; is fired z; times, £ = 1,2,...,m (which is always possible) the resulting marking
is the initial marking.

Thus, NV can be kept bounded if the transitions are fired according to (9).

(iii) Liveness results from the fact that N is the union of CFIO nets.
Q.E.D.

In the following sections, we only consider Petri nets which are decomposable. According
to numerous previous experiences, and the very nature of manufacturing processes, it appears
that the Petri net model of a manufacturing system is decomposable.
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5.2 Manageability of a manufacturing system

As far as manufacturing systems are concerned, the goal is to satisfy a variable demand (i.e.
firing the output transitions a given number of times) while optimizing some secondary criteria,
such as work-in-process, well-balanced utilization of the machines, etc.

We assume that the Petri net model N of the manufacturing system at hand is decomposable.
Let NCy,NCj,...,NC; be some consistent CFIOs such that N = |J]_, NC;. For each NC;,
there exists at least one integer vector z* > 0 as defined in result 7. We select a vector z* whose
elements have a highest common factor equal to 1. Usually z* is not unique, but we decide to
select only one z* for each NC;.

Activating NC; consists in firing the transitions of NC; as many times as required by the
value of the corresponding component in z*. Several firing orders are usually available. In fact,
any enabled transition is firable at any time unless the number of times this transition has already
been fired is equal to the corresponding component of z’.

Note:

(i) Let M € R(M,) such that M is reachable by sequential activation of the CFIOs of N. Then,
if My is such that any elementary circuit contains at least one token, it is possible to reach
M, from M by sequential activations of the same CFIOs. This is because these CFIOs are
reversible for the subset of My corresponding to the CFIOs (see result 4).

(ii) If the CFIOs corresponding to N are all the CFIOs built from the minimal t-invariants, then
N is reversible for any marking My, such that each elementary circuit contains at least one
token.

According to result 7, it is clear that, if we control the system by sequential activation of the
CFIO nets of the Petri Net model, we are sure that the system will retain its expected qualitative
properties, namely boundedness, reversibility and liveness.

However, we have to emphasize that choosing only one z' vector for each NC; reduces
the number of possible ways NC; can be activated, and thus the number of possible ways the
whole system can be controlled. In fact, this approach is a trade-off between the flexibility of the
control and the computational burden. A maximal flexibility of the control would be obtained by
using the minimal CFIOs of the Petri Net model, i.e., those CFIOs whose transitions correspond
to the minimal t-invariants.

The number of times each CFIO has to be activated to satisfy the demand may also depend
on the secondary criteria introduced previously, since there are usually several ways to meet
the demand.

Finally, note that the number of times each CFIO has to be activated provides the number
of times each transition has to be fired to meet the demand in a way which retains the expected
qualitative properties. The result of this step is the production plan. Defining the order is the
scheduling activity. The order of these firings may depend on other constraints, like resource
constraints. A planning activity based on CFIOs is illustrated in the following example.
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5.3 Example

We consider two product types whose manufacturing processes are represented in figure 8.
In each box we show the machines on which the corresponding operation can be performed.
The manufacturing times are given in parentheses.

M,(2) M,(2); M;(4)
M,(3); M,(1) M,(4)
a. Product type B b. Product type B

Figure 8: Two manufacturing processes

The Petri net model of these processes are given in figure 9.

12(3)

10
t ( ) p t4i2)

t5(0)

p3 —>|——> 7(2)

t8(4)

Figure 9: Petri net model

The unique token in places Q;, Q2, Q3 are used to ensure that one machine cannot be used
to manufacture more than one product at the same time.
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In this example, we construct the following consistent CFIOs: (we do not consider the
self-loops)

NC, =< ty,p1,t2, 02,84 >
NCy =<t1,p1,t3,pP2,t4 >
NC;3 =< ts,p3,te,ps,t7 >
NCy =< ts,pa,t5,ps,ts >

and the corresponding t-invariants are:
H, =<1,1,0,1,0,0,0,0 >
H; =<1,0,1,1,0,0,0,0 >

H; =<10,0,0,0,1,1,1,0 >
Hy =<0,0,0,0,1,1,0,1 >

Assume that the demand is given for 4 consecutive periods as shown in table 1. The costs
are presented in table 2.

Table 1 : Demand

Period 1 2 3 4
Product
1 15 7 3
2 6 1 17
Table 2 : Costs
Product Backlogging Cost Inventory Cost
1 20 4
2 30 2

Assume that the length of an clementary period is 40. We denote by a; x the number of times
the :** CFIO has to be activated during the k*! period.

The capacity constraints are as follows:

day k + daz;p + 4dag;p < 40
azk + 2a3; < 40 (10)
2(11,}: + 2(12';; + 4(14,k S 40

The left hand side of each inequality represents the utilization time of the related machine.
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For this example the criterion consists in minimizing the sum of the inventory and the
backlogging costs. The criterion to be minimized can be written:

4 r + r +
F= 2{4[2(01,1; +agk - d}:)] +20 [Z(di Tk T az’k)] +

r=1 k=1 k=1
T + T +
+2 [Z(as,k +a4 — di)] + 30 [Z(di —agk — a4,k)] }
k=1 k=1 i
where dj is the demand for product i during period k.
By setting

r
yr 2 ) (a1 +azs —d})
k=1

r
> (d} —ayk = azg)
k=1 .

ot

-

(11)

[N

.,
y; 2 ) (age +aqs — df)
k=1

r
> (df — a3k — agp)
k=1

i

The problem to solve becomes:

4
Minimize : ) (4y} + 20z} + 27 + 3027)
r=1
subject to (10), (11) and
| ek >0 i=1,2,3,4; k=1,23,4
Yy 20,220 r=1,23,4; s=1,2
The result is the number of times each transition has to be fired during each elementary
period. (See table 3)

Table 3 : Planning Results: transition firings

Transition tl t2 3 4 tS t6 t7 t8
Period
1 2 2 0 2 6 6 6 0
2 15 10 5 15 2 2 2 0
3 7 0 7 10 10 10 0
4 0 3 10 10 10 0
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From table 3 we derive the production during each elementary period. (See table 4)

Table 4 : Production quantities
Product P1 P2
Periods
1 2
2 15 2
3 7 10
4 3 10

The subsequent step would be to define the starting time of each transition firing: this
constitutes the scheduling problem, which is NP-hard. This problem is beyond the scope of this
paper. Nevertheless, it must be noted that the results of planning cannot always be implemented
in a schedule. In that case, the solution is to recompute a new planning with more stringent
capacity constraints.

6 Conclusion

In this paper, we introduced the conflict-free nets with input and output transitions, called
CFIO nets. It has been shown that CFIOs, if manageable, exhibit qualitative properties which
are essential for manufacturing systems planning. Furthermore, CFIOs facilitate the trade-off
between computational burden and decision choices. In this approach, the qualitative properties
are built in. Thus, the decision-making system, which is in charge of making optimal decisions,
can ignore the qualitative aspects of the system behavior. The next step of our research is to
study further the Petri Net model structure to develop new scheduling approaches.
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