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Abstract

The Fundamental matrix is a key concept when working with uncalibrated images
and multiple viewpoints� It contains all the available geometric information and enables
to recover the epipolar geometry from uncalibrated perspective views� This paper ad�
dresses the important problem of its robust determination given a number of image
point correspondences� We �rst de�ne precisely this matrix� and show clearly how it
is related to the epipolar geometry and to the Essential matrix introduced earlier by
Longuet�Higgins� In particular� we show that this matrix� de�ned up to a scale factor�
must be of rank two� Di�erent parametrizations for this matrix are then proposed to
take into account these important constraints and linear and non�linear criteria for its
estimation are also considered� We then clearly show that the linear criterion is unable
to express the rank and normalization constraints� Using the linear criterion leads de�
�nitely to the worst result in the determination of the Fundamental matrix� Several
examples on real images clearly illustrate and validate this important negative result�
To overcome the major weaknesses of the linear criterion� di�erent non�linear crite�
ria are proposed and analyzed in great detail� Extensive experimental work has been
performed in order to compare the di�erent methods using a large number of noisy
synthetic data and real images� In particular� a statistical method based on variation
of camera displacements is used to evaluate the stability and convergence properties of
each method�
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R�esum�e

La matrice fondamentale est un concept�cl�e pour toutes les questions touchant �a
l	emploi d	images non calibr�ees prises de points de vue multiples� Elle contient toute
l	information g�eom�etrique disponible et permet d	obtenir la g�eom�etrie �epipolaire �a par�
tir de deux vues perspectives non calibr�ees� Ce rapport est �a propos du probl�eme im�
portant de sa d�etermination robuste �a partir d	un certain nombre de correspondances
ponctuelles� Nous commen
cons par d�e�nir pr�ecis�ement cette matrice� et par mettre en
�evidence ses relations avec la g�eom�etrie �epipolaire et la matrice essentielle� introduite
pr�ec�edemment par Longuet�Higgins� En particulier� nous montrons que cette matrice�
d�e�nie �a un facteur d	�echelle� doit �etre de rang deux� Les techniques lin�eaires d	estima�
tion de la matrice essentielle admettent une extension naturelle qui permet d	e�ectuer
le calcul direct de la matrice fondamentale �a partir d	appariements de points� au moyen
d	un crit�ere qui est lin�eaire� Nous montrons que cette m�ethode sou�re de deux d�efauts�
li�es �a l	absence de contrainte sur le rang de la matrice recherch�ee� et �a l	absence de
normalisation du crit�ere� qui entra��nent des erreurs importantes dans l	estimation de la
matrice fondamentale et des �epipoles� Cette analyse est valid�ee par plusieurs exemples
r�eels� A�n de surmonter ces di
cult�es� plusieurs nouveaux crit�eres non�lin�eaires� dont
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nous donnons des interpr�etations en termes de distances� sont ensuite propos�es� puis
plusieurs param�etrisations sont introduites pour rendre compte des contraintes aux�
quelles doit satisfaire la matrice fondamentale� Un travail exp�erimental exhaustif est
r�ealis�e �a l	aide de nombreuses donn�ees synth�etiques et d	images r�eelles� En particu�
lier� une m�ethode statistique fond�ee sur la variation des d�eplacements de la cam�era
est utilis�ee pour �evaluer la stabilit�e et les propri�et�es de convergence des di��erentes
m�ethodes�

Mots�cl�e�

Analyse du mouvement� calibration� g�eom�etrie projective
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� Introduction

Inferring three�dimensional information from images taken from di�erent viewpoints is
a central problem in computer vision� However� as the measured data in images are just
pixel coordinates� there are only two approaches that can be used in order to perform
this task�
The �rst one is to establish a model which relates pixel coordinates to �D coor�

dinates� and to compute the parameters of such a model� This is done by camera
calibration ���� ���� which typically computes the projection matrices P� which relates
the image coordinates to a world reference frame� However� it is not always possible to
assume that cameras can be calibrated o��line� particularly when using active vision
systems�
Thus a second approach is emerging� which consists in using projective invariants

����� whose non�metric nature allows to use uncalibrated cameras� Recent work ��� ���
���� ��� has shown that it is possible to recover the projective structure of a scene from
point correspondences only� without the need for camera calibration� It is even possible
to use these projective invariants to compute the camera calibration ��� ����� These
approaches use only geometric information which relates the di�erent viewpoints� This
information is entirely contained in the Fundamental matrix� thus it is very important
to develop precise techniques to compute it�
In spite of the fact that there has been some confusion between the fundamental

matrix and Longuet�Higgins essential matrix� it is now known that the fundamental
matrix can be computed from pixel coordinates of corresponding points� Line corres�
pondences are not su
cient with two views� Another approach is to use linear �lters
tuned to a range of orientations and scales� Jones and Malik ��� have shown that it is
also possible in this framework to recover the location of epipolar lines� The compu�
tation technique used by most of the authors ��� ���� ���� is just a linear one� which
generalizes the eight�point algorithm of Longuet�Higgins����� After a �rst part where
we clarify the concept of Fundamental matrix� we show that this computation tech�
nique su�ers from two majors intrinsic drawbacks� Analyzing these drawbacks enables
us to introduce a new� non�linear computation technique� based on criteria that have a
nice interpretation in terms of distances� We then show� using both large sets of simu�
lations and real data� that our non�linear computation techniques provide signi�cant
improvement in the accuracy of the Fundamental matrix determination�

� The Fundamental Matrix

��� The projective model

The camera model which is most widely used is the pinhole� the camera is supposed
to perform a perfect perspective transformation of �D space on a retinal plane� In the
general case� we must also account for a change of world coordinates� as well as for
a change of retinal coordinates� so that a generalization of the previous assumption
is that the camera performs a projective linear transformation� rather than a mere
perspective transformation� The pixel coordinates u and v are the only information we
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have if the camera is not calibrated�
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where X � Y � Z are world coordinates� A is a � � � transformation matrix accounting
for camera sampling and optical characteristics and G is a � � � displacement matrix
accounting for camera position and orientation� If the camera is calibrated� then A is
known and it is possible to use normalized coordinatesm � A��q� which have a direct
�D interpretation�

��� The epipolar geometry and the Fundamental matrix

The epipolar geometry is the basic constraint which arises from the existence of two
viewpoints� Let a camera take two images by linear projection from two di�erent lo�
cations� as shown in �gure �� Let C be the optical center of the camera when the
�rst image is obtained� and let C� be the optical center for the second image� The line
hC�C�i projects to a point e in the �rst image R� � and to a point e

�

in the second
image R� � The points e� e

�

are the epipoles� The lines through e in the �rst image and
the lines through e

�

in the second image are the epipolar lines� The epipolar constraint
is well�known in stereovision� for each point m in the �rst retina� its corresponding
point m� lies on its epipolar line l�m�

C’Ce

e’

m’
m

l’m

lm’

R

R’

Π

M

Figure �� The epipolar geometry

Let us now use retinal coordinates� The relationship between a point q and its
corresponding epipolar line l�q is projective linear� because the relations between q and
hC�Mi� and q and hC�Mi and its projection l�q are both projective linear� We call
the � � � matrix F which describes this correspondence the fundamental matrix� The
importance of the fundamental matrix has been neglected in the literature� as almost
all the work on motion has been done under the assumption that intrinsic parameters
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are known� In that case� the fundamental matrix reduces to an essential matrix� But
if one wants to proceed only from image measurements� the fundamental matrix is the
key concept� as it contains the all the geometrical information relating two di�erent
images�

��	 Relation with Longuet�Higgins equation

The Longuet�Higgins equation ����� applies when using normalized coordinates� and
thus calibrated cameras� If the motion between the two positions of the cameras are
given by the rotation matrix R and the translation matrix t� and if m and m� are
corresponding points� then the coplanarity constraint relating Cm�� t� and Cm is
written as�

m� � �t�Rm� �m
�TEm � � ���

The matrix E� which is the product of an orthogonal matrix and an antisymmetric
matrix is called an essential matrix� Because of the depth�speed ambiguity� E depends
on �ve parameters only�
Let us now express the epipolar constraint using the fundamental matrix� in the

case of uncalibrated cameras� For a given point q in the �rst image� the projective
representation l�q of its the epipolar line in the second image is given by

l�q � Fq

Since the point q
�

corresponding to q belongs to the line l�q by de�nition� it follows
that

q
�TFq � � ���

It can be seen that the two equations ��� and ��� are equivalent� and that we have
the relation�

F � A��TEA��

Unlike the essential matrix� which is characterized by the two constraints found by
Huang and Faugeras ��� which are the nullity of the determinant and the equality of
the two non�zero singular values� the only property of the fundamental matrix is that it
is of rank two� As it is also de�ned only up to a scale factor� the number of independent
coe
cients of F is seven�

��� Relation with the epipolar transformation

The epipolar transformation is a homography between the epipolar lines in the �rst
image and the epipolar lines in the second image� de�ned as follows� Let � be any plane
containing hC�C�i� Then � projects to an epipolar line l in the �rst image and to an
epipolar line l

�

in the second image� The correspondences �� l and �� l
�

are homo�
graphies between the two pencils of epipolar lines and the pencil of planes containing
hC�C�i� It follows that the correspondance l� l

�

is a homography� In the practical case
where epipoles are at �nite distance� the epipolar transformation is characterized by
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the a�ne coordinates of the epipoles e and e� and by the coe
cients of the homography
between the two pencils of epipolar lines� each line being parameterized by its direction�

� �� �
�

�
a�  b

c�  d
���

where

� �
q� � e�
q� � e�

� � �
q

�

� � e
�

�

q
�

� � e
�

�

���

and q� q�� is a pair of corresponding points� It follows that the epipolar transforma�
tion� like the fundamental matrix depends on seven independent parameters�
On identifying the equation ��� with the constraint on epipolar lines obtained by

making the substitutions ��� in ���� expressions are obtained for the coe
cients of F
in terms of the parameters describing the epipoles and the homography�

F�� � be�e
�

� ���

F�� � ae�e
�

�

F�� � �ae�e�� � be�e
�

�

F�� � �de��e�
F�� � �ce��e�
F�� � ce��e�  de��e�

F�� � de��e� � be�e
�

�

F�� � ce��e� � ae�e
�

�

F�� � �ce��e� � de��e�  ae�e
�

�  be�e
�

�

From these relations� it is easy to see that F is de�ned only up to a scale factor� Let
c�� c�� c� be the columns of F� It follows from ��� that e�c�  e�c�  e�c� � �� The
rank of F is thus at most two� The equations ���� yield the epipolar transformation as
a function of the fundamental matrix�

a � F�� ���

b � F��

c � �F��
d � �F��
e� �

F��F�� � F��F��
F��F�� � F��F��

e�

e� �
F��F�� � F��F��
F��F�� � F��F��

e�

e�� �
F��F�� � F��F��
F��F�� � F��F��

e��

e�� �
F��F�� � F��F��
F��F�� � F��F��

e��

The determinant ad � bc of the homography is F��F�� � F��F��� In the case of �nite
epipoles� it is not null� The interpretation of equations ��� is simple� the coordinates
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of e �resp� e�� are the vectors of the kernel of F �resp� FT �� Writing � � as a function
of � from the relation y�

�
Fy� � � which arises from the correspondence of the points

at in�nity y� � ��� �� ��T et y�
�
� ��� � �� ��T � of corresponding lines� we obtain the

homographic relation�

� The linear criterion

	�� The eight point algorithm

Equation ��� can be written�
UT f � � ���

where�

U � �uu�� vu�� u�� uv�� vv�� v�� u� v� ��

f � �F��� F��� F��� F��� F��� F��� F��� F��� F���

Equation ��� is linear and homogeneous in the � unknown coe
cients of matrix F� Thus
we know that if we are given � matches we will be able� in general� to determine a unique
solution for F� de�ned up to a scale factor� This approach� known as the eight point
algorithm� was introduced by Longuet�Higgins ���� and has been extensively studied in
the literature ���� ���� ��� ���� ����� for the computation of the Essential matrix� It has
proven to be very sensitive to noise� Our contribution is to study it in the more general
framework of Fundamental matrix computation� Some recent work has indeed pointed
out that it is also relevant for the purpose of working from uncalibrated cameras �����
��� ���� In this framework� we obtain new results about the accuracy of this criterion�
which will enable us to present a more robust approach�

	�� Implementations

In practice� we are given much more than � matches and we use a least�squares method
to solve�

min
F

X
i

�q
�T
i Fqi�

� ���

which can be rewritten as�
min
f
k !Ufk�

where�

!U �

�
��
UT

�

���
UT

n

�
��

We have tried di�erent implementations� The �rst one �M�C� uses a closed�form solu�
tion via the linear equations� One of the coe
cients of F must be set to �� The second
one solves the classical problem�

min
f
k !Ufk with kfk � � ����

	



The solution is the eigenvector associated to the smallest eigenvalue of !UT !U� which
we compute directly �DIAG�� or using a singular value decomposition �SVD�� The
advantage of this second approach is that all the coe
cients of F play the same role� We
have also tried to normalize the projective coordinates to use the Kanatani N�vectors
representation ���� �DIAG�N��
The advantage of the linear criterion is that it leads to a non�iterative computation

method� however� we have found that it is quite sensitive to noise� even with numerous
data points� The two main reasons for this are�

	 The constraint det�F� � � is not satis�ed� which causes inconsistencies of the
epipolar geometry near the epipoles�

	 The criterion is not normalized� which causes a bias in the localization of the
epipoles�

	�	 The linear criterion cannot express the rank cons�

traint

Let l� be an epipolar line in the second image� computed from a fundamental matrix
F that was obtained by the linear criterion� and from the point m � �u� v� ��T of the
�rst image� We can express m using the epipole in the �rst image� and the horizontal
and vertical distances from this epipole� x and y� A projective representation for l� is�

l� � Fm � F

�
B� e� � x

e� � y

�

	
CA � Fe� F

�
B� x

y

�

	
CA


 �z �
l�

����

If det�F� � �� the epipole e satis�es exactly Fe � �� thus the last expression simpli�es
to l�� It is easy to see that it de�nes an epipolar line which goes through the epipole
e� in the second image� If the determinant is not exactly zero� we see that l� is the
sum of a constant vector r � Fe which should be zero but is not� and of the vector l��
whose norm is bounded by

p
x�  y�kFk� We can conclude that when �x� y� � ��� ��

�m � e�� the epipolar line of m in the second image converges towards a �xed line
represented by r� which is inconsistent with the notion of epipolar geometry� We can
also see that the smaller

p
x�  y� is �ie the closer m is to the epipole�� the bigger will

be the error on its associated epipolar line�
We can make these remarks more precise by introducing an Euclidean distance� If

the coordinates of the point p are �x�� y��� and if l�x  l�y  l� � � is the equation of
the line l� then the distance of the point p to the line l is�

d�p� l� �
jl�x�  l�y�  l�jq

l��  l��

����

The distance of the epipolar line l��m� given by ���� to the epipole e� � �e��� e
�

�� ��
T is

thus�

d�e�� l�� �
jr�e��  r�e

�

�  r� � �F��e��  F��e
�

�  ��x� �F��e��  F��e
�

�  ��yjp
�r� � F��x� F��y��  �r� � F��x� F��y�

����






It is clear that when �x� y�� ��� ��� d�e�� l��� r�e
�

�
�r�e

�

�
�r�p

r�
�
�r�

�

� which is a generally a big

value�
We now give a real example to illustrate these remarks� The images and the matched

points are the ones of �gure �� The values of the residual vectors r � Fe and r� � FTe�

are�

r � ���������� ��������� ���� �����T r� � ���������� ��������� ���� �����T

They seem very low� as krk � �������� however this is to be compared with the
residuals found by the non�linear criterions presented later� whose typical values are
krk � �� ����� The �gure � shows a plot of the error function ����� versus the distances
x and y� Units are pixels� We can see that there is a very sharp peak near the point
�x� y� � �� which represents the epipole e� and that the error decreases and converges
to a small value� We can conclude that if the epipole is in the image� the epipolar

geometry described by the fundamental matrix obtained from the linear criterion will

be inaccurate�
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Figure �� Distances of epipolar lines to the epipole� linear criterion

This problem can be observed directly in the images shown in the experimental part�
in �gure �� for the intersection of epipolar lines� and in �gure ��� for the inconsistency
of epipolar geometry near the epipoles�

	�� The linear criterion su
ers from lack of normaliza�

tion

Let us now give a geometrical interpretation of the criterion ���� Using again �����
the Euclidean distance of the point q� of the second image to the epipolar line l� �

��



�l��� l
�

�� l
�

��
T � Fq of the corresponding point q of the �rst image is�

d�q�� l�� �
jq�T l�jq

�l���
�  �l���

�

����

We note that this expression is always valid as the normalizing term k �
q
�l���

�  �l���
�

is null only in the degenerate cases where the epipolar line is at in�nity� The criterion ���
can be written� X

i

k�i d
��q�i� l

�

i� ����

This interpretation shows that a geometrically signi�cant quantity in the linear cri�
terion is the distance of a point to the epipolar line of its corresponding point� This
quantity is weighted by the coe
cients k� de�ned above�
To see why it can introduce a bias� let us �rst consider the case where the displa�

cement is a pure translation� The fundamental matrix is antisymmetric and has the
form� �

�� � � �y
�� � x

y �x �

�
��

where �x� y� ��T are the coordinates of the epipoles� which are the same in the two
images� If �ui� vi� ��

T are the coordinates of the point qi in the �rst image� then the
normalizing factor is k�i � ����y � vi�

�  �x � ui�
��� where � is a constant� When

minimizing the criterion ����� we will minimize both ki and d��q�i� l
�

i�� But minimizing
ki is the same than privileging the fundamental matrices which yield epipoles near the
image� Experimental results show that it is indeed the case� A �rst example is given
by the images already used� we can see that the epipoles found by the linear criterion�
which are at position�

e � �������� ������� ��T e� � �������� ������� ��T

are nearer than the ones found by the non�linear criterion presented latter� as the
epipolar lines obtained from the non�linear criterion are almost parallel in the images�
as can be seen in �gure �� A second example is given by table ��
In the general case� the normalizing factor is�

ki � �a�y � vi�  b�x� ui��
�  �c�y � vi�  d�x� ui��

�

To see simply its e�ect on the minimization� let suppose that the coe
cients of the
homography are �xed� By computing the partial derivatives �ki

�x
and �ki

�y
� it is easy to

see that the minimum is obtained for x � ui and y � vi� Thus the previous observations
apply too� We can conclude that the linear criterion shifts epipoles towards the image

center�
We can notice that the situation is particularly bad with the linear criterion� due

to the combination of our two observations� whereas the closer the epipoles are to the
images� the less accurate will be the epipolar geometry� the epipoles tend to be shifted
towards the image center�
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Table �� An example to illustrate the behaviour of the linear criterion when the displacement
is a translation

R � I t � �� ��� ����

image noise �pixel� coordinates of the epipoles

ex ey e�x e�y
� ������ ������� ������ �������

��� ������ ������� ������ �������

��� ������ ������� ������ �������

��� ������ ������ ������ ������

��� ������ ������ ������ ������

� Non�Linear criteria

��� The distance to epipolar lines

We now introduce a �rst non�linear approach� based on the geometric interpretation
of criterion ��� given in ���� The �rst idea is to use a non�linear criterion� minimizing�X

i

d��q�i�Fqi�

However� unlike the case of the linear criterion� the two images do not play a symmetric
role� as the criterion determines only the epipolar lines in the second image� and should
not be used to obtain the epipole in the �rst image� We would have to exchange the
role of qi and q�i to do so� The problem with this approach is the inconsistency of
the epipolar geometry between the two images� To make this more precise� if F is
computed by minimizing

P
i d

��q�i�Fqi� and F
� by minimizing

P
i d

��qi�F�q�i�� there
is no warranty that the points of the epipolar line Fq di�erent from q� correspond
to the points of the epipolar line F�q�� This remark is illustrated by �gure �� The
"corresponding" epipolar lines do not correspond at all except on the last column of
the grid� where they were de�ned�
To obtain a consistent epipolar geometry� it is necessary and su
cient that by

exchanging the two images� the fundamental matrix is changed to its transpose� This
yields the following criterion� which operates simultaneously in the two images�X

i

�d��q�i�Fqi�  d��qi�F
Tq�i��

and can be written� using ���� and the fact that q
�T
i Fqi � qTi F

Tq�i�

X
i



�

�Fqi���  �Fqi�
�
�

 
�

�FTq�i�
�
�  �F

Tq�i�
�
�

�
�q

�T
i Fqi�

� ����

This criterion is also clearly normalized in the sense that it does not depend on the
scale factor used to compute F�
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Figure �� An example of inconsistent epipolar geometry� obtained by independent search in
each image

��� The Gradient criterion

Taking into account uncertainty Pixels are measured with some uncertainty�
When minimizing the expression ���� we have a sum of terms Ci � q

�T
i Fqi which have

di�erent variances� It is natural to weight them so that the contribution of each of these
terms to the total criterion will be inversely proportional to its variance� The variance
of Ci is given as a function of the variance of the points qi et q

�

i by�

��Ci
�
h

�CT

i

�qi

�CT

i

�q�

i

i � �qi �

� �q�

i

� �
�Ci

�qi
�Ci

�q�

i

�
����

where #qi and #q�

i
are the covariance matrices of the points q et q�� respectively� These

points are uncorrelated as they are measured in di�erent images� We make the classical
assumption that their covariance is isotropic and uniform� that is�

#qi � #q�

i
�

�
� �
� �

�

The equation ���� reduces to�
��Ci

� ��krCik�
where rCi denotes the gradient of Ci with respect to the four�dimensional vector
�ui� vi� u

�

i� v
�

i�
T built from the a
ne coordinates of the points qi and q

�

i� Thus�

rCi � ��F
Tq�i��� �F

Tq�i��� �Fqi��� �Fqi���
T

��



We obtain the following criterion� which is also normalized�

X
i

�q
�T
i Fqi�

�

�Fqi�
�
�  �Fqi�

�
�  �F

Tq�i�
�
�  �F

Tq�i�
�
�

����

We can note that there is a great similarity between this criterion and the distance
criterion ����� Each of its terms has the form �

k��k
��
C� whereas the �rst one has terms

� �
k�
 �

k
��
�C�

An interpretation as a distance We can also consider the problem of the com�
puting the fundamental matrix from the de�nition ��� in the general framework of
surface �tting� The surface S is modeled by the implicit equation g�x� f� � �� where f
is the sought parameter vector describing the surface which best �ts the data points
xi� The goal is to minimize a quantity

P
i d�xi�S��� where d is a distance� In our case�

the data points are the vectors xi � �ui� vi� u�i� v
�

i�� f is one of the � dimensional pa�
rameterizations introduced in the previous section�� and g is given by ���� The linear
criterion can be considered as a generalization of the Bookstein distance ��� for conic
�tting� The straightforward idea is to approximate the true distance of the point x to
the surface by the number g�x� f�� in order to get a closed�form solution� A more pre�
cise approximation has been introduced by Sampson ����� It is based on the �rst�order
approximation�

g�x� 
 g�x��  �x� x�� � rg�x� � g�x��  kx� x�k krg�x�k cos�x� x��rg�x��

If x� is the point of S which is the nearest from x� we have the two properties g�x�� � �
and cos�x�x��rg�x��� � �� If we make the further �rst�order approximation that the
gradient has the same direction at x and at x�� cos�x�x��rg�x��� 
 cos�x�x��rg�x���
we get�

d�x�S� � kx� x�k 
 g�x�

krg�x�k
Il is now obvious that the criterion ���� can be written�

P
i d�xi�S���

It would be possible to use a second�order approximation such as the one introduced
by Nalwa and Pauchon ����� however the experimental results presented in the next
section show that it would not be very useful practically� We thus prefer to consider�
for theoretical study� the exact distance which is now presented�

��	 The �Euclidean� criterion

Experience with conic �tting shows that when the data points are not well distributed
along the conic on which they lie� the �tting method using the �rst order approximation
of the Euclidean distance of a point to the conic gives results that are somewhat
di�erent of those obtained when using a full �i�e� not approximated� Euclidean distance�
This is� indeed� what happens with the surface �tting scheme de�ned in the previous
paragraph � the data points are ��D vectors xi � �ui� vi� u�i� v

�

i�
T whose components

are image coordinates$ since retinas have a �nite extent and since the hyper�surface

��



S is not bounded �� the measures of the surface points cover only a small part of the
real %underlying" surface� This can also be seen as the following fact � estimating the
fundamental matrix is also estimating the epipoles� so it involves the estimation of
entities �the epipoles� that are very often far from the image space� Therefore� it seems
interesting to develop a criterion based on the Euclidean distance from a ��D point
xi to the surface S in order to check if the results are noticeably di�erent from those
obtained when using the gradient criterion�

Fitting a quadratic hyper�surface The hyper�surface S de�ned by the equa�
tion ��� in the space R��R� �the cyclopean retina� is quadratic� Moreover� all epipolar
lines are on this hyper�surface� Let us note l�ui�vi the epipolar line in R� corresponding
to the point �ui� vi� � R� and lu�

i
�v�

i
the epipolar line in R� corresponding to the point

�u�i� v
�

i� � R��
The computation of the ��D Euclidean distance of a point to S relies on the fact

that �
The ��D lines de�ned by u � ui� v � vi� �u

�� v�� � l�ui�vi and u� � u�i� v
� � v�i� �u� v� �

lu�

i
�v�

i
are subsets of S� Thus S is a ruled surface that can be parametrized by each of

these two family of lines�� This property is nothing more than writing equation ��� but
it gives us these two important parametrizations�
For example� let us parametrize S using the �rst family of lines�
Every point of the surface can be represented by q� � �u�� v�� and a point of the

line l�q� � l�u��v� � so the distance of a point �q�q
�� � �u� v� u�� v�� to the surface is given

by the minimum of �

d��q��q�  d��q�� l�q��

when q� describes the space R��
Thus the estimation of F leads to the following minimization �

min
F

X
i

min
q�
fd��q��qi�  d��q�i� L

�

q��g

As the previous methods� this criterion does no depend on the scale factor applied
to F�

� Parameterizations of the Fundamental Ma�

trix

��� A matrix de�ned up to a scale factor

The most natural idea to take into account the fact that F is de�ned only up to a scale
factor is to �x one of the coe
cients to � �only the linear criterion allows us to use in

�A point �ui� vi� in the �rst retina R� may have its corresponding point that lies at in�nity in the second
retina R�

�From the point of view of this property the best ��D analogy is the hyperboloid of one sheet

��



a simple manner another normalization� namely kFk�� It yields a parameterization of
F by eight values� which are the ratio of the eight other coe
cients to the normalizing
one�
In practice� the choice of the normalizing coe
cient has signi�cant numerical con�

sequences� As we can see from the expressions of the criteria previously introduced ����
and ����� the non�linear criteria take the general form�

Q��F��� F��� F��� F��� F��� F��� F��� F��� F���

Q��F��� F��� F��� F��� F��� F���

where Q� and Q� are quadratic forms which have null values at the origin� A well�known
consequence is that the function Q��Q� is not regular near the origin� As the derivatives
are used in the course of the minimization procedure� this will induce unstability� As a
consequence� we have to choose as normalizing coe
cients one of the six �rst one� as
only these coe
cients appear in the expression of Q�� Fixing the value of one of these
coe
cients to one prevents Q� from getting near the origin�
We have established using covariance analysis that the choices are not equivalent

when the order of magnitude of the di�erent coe
cients of F is di�erent� The best
results are theoretically obtained when normalizing with the biggest coe
cients� We
found in our experiments this observation to be generally true� However� as some cases
of divergence during the minimization process sometimes appear� the best is to try
several normalizations
We note that as the matrices which are used to initialize the non�linear search are

not� in general� singular� we have to compute �rst the closest singular matrix� and then
the parameterization� In that case� we cannot use formulas ���� thus the epipole e is
determined by solving the following classical constrained minimization problem

min
e
kFek� subject to kek� � �

which yields e as the unit norm eigenvector of matrix FTF corresponding to the smallest
eigenvalue� The same processing applies in reverse to the computation of the epipole e��
The epipolar transformation can then be obtained by a linear least�squares procedure�
using equations ��� and ����

��� A singular matrix

As seen in part �� the drawback of the previous method is that we do not take into
account the fact that the rank of F is only two� and that F thus depends on only �
parameters� We have �rst tried to use minimizations under the constraint det�F� � ��
which is a cubic polynomial in the coe
cients of F� The numerical implementations
were not e
cient and accurate at all�
Thanks to a suggestion by Luc Robert� we can express the same constraint with an

unconstrained minimization� the idea is to write matrix F as�

F �

�
B� a� a� a�

a� a	 a�
a�a�  a
a� a�a�  a
a	 a�a�  a
a�

	
CA ����

��



The fact that the third line is a linear combination of the two �rst lines ensures that F
is singular� Chosing such a representation allows us to represent F by the right number
of parameters� once the normalization is done� A non�linear procedure is required� but
it is not a drawback� as the criteria presented in section � are already non�linear�

��	 A fundamental matrix with �nite epipoles

The previous representation takes into account only the fact that F is singular� We
can use the fact it is a fundamental matrix to parameterize it by the values that are
of signi�cance for us� Using the formulas ��� yield�

F �

�
B� b a �ay � bx

�d �c cy  dx

dy� � bx� cy� � ax� �cyy� � dy�x ayx�  bxx�

	
CA ����

The parameters that we use are the a
ne coordinates �x� y� and �x�� y�� of the two
epipoles� and three of the four homography coe
cients� which are the coe
cients of
the submatrix �� � obtained by suppressing the third line and the third column� We
normalize by the biggest of them� The initial parameters are obtained by computing
the epipoles and the epipolar transformation by the approximations introduced in ����

	 An experimental comparison

We have presented an approach to the computation of the fundamental matrix which
involves several parameterizations and several criteria� The goal of this part is to pro�
vide a statistical comparison of the di�erent combinations�


�� The method

An important remark is that if we want to make a precise assessment of the performance
of any method� we have to change not only the image noise� as it is often done� but also
the displacements� Di�erent displacements will give rise to con�gurations with stability
properties that are very di�erent�
We start from �D points that are randomly scattered in a cube� and from a projec�

tion matrix P� All these values are chosen to be realistic� Each trial consists of�

	 Take a random rigid displacement D�

	 Compute the exact fundamental matrix F� from D and P�

	 Compute the projection matrix P� from D and P�

	 Project the �D points in the two ���� ��� retinas using P and P��

	 Add Gaussian noise to the image points�
	 Solve for the fundamental matrix F�
	 Compute the relative distance of the epipoles from F and those from F��

��



We measure the error by the relative distance� for each coordinate of the epipole�

minf jx� x�j
min�jxj� jx�j� � �g

It should be noted that using relative errors on the coe
cients of F� is less appropriate�
as the thing we are interested in is actually the correct position of the epipoles� We
will also see later that using the value of the minimized criterion as a measure of the
error is not appropriate at all� a very coherent epipolar geometry can be observed with
completely misplaced epipoles� As our experimentations have shown that the average
errors on the four coordinates are always coherent� we will take the mean of these four
values as an error measure�


�� The linear criteria

We have compared the di�erent implementations of the linear criterion� in the table ����
Each entry of the table represents the average relative distance of the results obtained
by the two methods represented by the vertical entry and by the horizontal one� The
abbreviations are de�ned in the section on the linear criterion� Conclusions are�

noise relative distances
SVD DIAG M�C DIAG�N

��� pixel EXACT ������ ������ ������ ������
SVD ������ ������ ������
DIAG ������ ������
M�C ������

� pixel EXACT ������ ������ ������ ������
SVD ������ ������ ������
DIAG ������ ������
M�C ������

��� pixel EXACT ������ ������ ������ ������
SVD ������ ������ ������
DIAG ������ ������
M�C ������

Table �� Comparisons of the linear criteria

	 The normalization of projective coordinates leads to the worse results
	 The two methods DIAG andM�C are very similar

	 The di�erence between the �st three criterions is not signi�cant� in comparison
with the absolute errors� which is normal as the theoretical minimum is unique�

�	




�	 Non�linear criteria

We have not studied extensively the Euclidean distance criterion� due to the time
required for its minimization� which is several hours� However� we have found that
it gives results close to� and often more precise than the ones given by the Gradient
criterion� There are two di�erent parameterizations� that were presented in section ��
and two di�erent non�linear criteria� presented in section �� The abbreviations for
the four resulting combinations that we studied are in table �� We have tried several
minimization procedures� including material from Numerical Recipes� and programs
from the NAG library�

Table �� Non
linear methods for the computation of the fundamental matrix

abbrev� criterion parameterization

LIN linear normalization by kFk
DIST�L distance to epipolar lines �� singular matrix ��

DIST�T distance to epipolar lines epipolar transformation ��

GRAD�L weighting by the gradient �� singular matrix

GRAD�T weighting by the gradient epipolar transformation

The comparison we have done is threefold�

�� The stability of the minimum corresponding to the exact solution� When noise is
present� the surface which represents the value of the criterion as a function of
the parameters gets distorted� thus the coordinates of the minimum change� A
measure of this variation is given by the distance between the exact epipole and
the one obtained when starting the minimization with the exact epipole ��gure ���

�� The convergence properties� The question is whether it is possible to obtain a
correct result starting from a plausible initialization� the matrix obtained from the
linear criterion� We thus measure the distance between the exact epipole and the
one obtained when starting the minimization with the linear solution ��gure ���
and the distance between the epipole obtained when starting the minimization
with the exact epipole and the one obtained when starting the minimization with
the linear solution ��gure �� �

�� The stability of the criterion� When the surface which represents the value of the
criterion as a function of the parameters gets distorted� the values of the criterion
at local minima corresponding to inexact solutions can become weaker than the
value of the criterion at the correct minimum ��gure ���

The conclusions are�

	 The non�linear criteria are always better than the linear criterion� When starting
a non�linear computation with the result of the linear computation� we always im�
prove the precision of the result� even if the noise is not important� The di�erence
increases with the noise�
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	 The di�erence due to the choice of the criterion �DIST or GRAD� is much less
signi�cant than the one due to the choice of the parameterization �L or T��

	 The parameterization T yields more stable minima than the parameterization L�
as seen in �gure ��

	 However� the criterion obtained with parameterization T has worse convergence
and stability properties than the parameterization L � as seen in �gures � and �

	 As a consequence� when starting from the results of the linear criterion� the results
of the four non�linear combinations are roughly equivalent� the results obtained
with the parameterization L and the criterion DIST being slightly better� as seen
in �gure ��

	 The computation is quite sensitive to pixel noise� a Gaussian noise of variance �
pixel yields a relative error which is about ��&�


�� Real data

We now illustrate the remarks made in section � with a pair of images� It can be seen in
�gure � that the pencils of epipolar lines obtained with the linear criterion� and those
obtained with the non�linear criterion are very di�erent� The epipoles obtained with
the non�linear criterion are much further away� It seems at �rst that if one considers a
point that was used in the computation� its epipolar line lies very close to its corres�
ponding point� However� the zoom of �gure � shows that the �t is signi�cantly better
with the non�linear criterion� Figure �� shows a set of epipolar lines obtained from the
linear criterion� we can see that they don	t meet exactly at a point� whereas they do
by construction for the non�linear criterion� A consequence is illustrated in �gure ���
which shows some more epipolar lines� drawn from points that were not used in the
computation of the fundamental matrix� It can be seen that for the points on the wall�
which are quite far from the epipole� the corresponding epipolar lines seem approxi�
mately correct� while for the points chosen on the table� the corresponding epipolar
lines are obviously very incorrect� in the sense they are very far from the corresponding
points� This situation does not occur with the non�linear criterion� as it can be seen in
the bottom of this �gure�


 Conclusion

In this paper� we focused on the problem of determining in a robust way the Funda�
mental matrix from a given number of image point correspondences� Its properties and
relations to the well�known Essential matrix have been made very clear� Di�erent pa�
rametrizations for this matrix have been proposed and a large number of criteria have
been considered and analyzed in great detail to tackle e
ciently this problem� The
classical linear criterion has been shown to be unable to express the rank and norma�
lization constraints� and di�erent non�linear criteria have been proposed to overcome
its major weaknesses� It has been shown that the use of non�linear criteria leads to
the best results and an extensive experimental work on noisy synthetic data and real
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Figure 	� Epipolar lines obtained from the linear criterion �top�� and from the non
linear
criterion �bottom�
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Figure 
� Zoom showing the �t with the linear criterion �left� and the non
linear criterion
�right�

images has been carried out to evaluate stability and convergence properties of each
method�
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Figure ��� Intersection of epipolar lines obtained from the linear criterion
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Figure ��� Additional epipolar lines obtained with the linear criterion �top�� and with the
non
linear criterion �bottom�
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