N

N
N

HAL

open science

Upwind stabilization of Navier-Stokes solvers

Francois Beux, Stephane Lanteri, Alain Dervieux, Bernard Larrouturou

» To cite this version:

Frangois Beux, Stephane Lanteri, Alain Dervieux, Bernard Larrouturou. Upwind stabilization of
Navier-Stokes solvers. [Research Report] RR-1885, INRIA. 1993. inria-00074787

HAL Id: inria-00074787
https://inria.hal.science/inria-00074787
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00074787
https://hal.archives-ouvertes.fr

IRIN

UNITE DE RECHERCHE

Institut National
de Recherche
en Informatique
et en Automatique

2004 route des Lucioles
B.P. 93

06902 Sophia-Antipolis
France

Rapports de Recherche

N°1885

Programme 6

Calcul scientifique, Modélisation
et Logiciel numérique

UPWIND STABILIZATION OF
NAVIER-STOKES SOLVERS

Francois BEUX
Stéphane LANTERI
Alain DERVIEUX
Bernard LARROUTUROU

Mars 1993




UPWIND STABILIZATION OF
NAVIER-STOKES SOLVERS

STABILISATION DE SOLVEURS
NAVIER-STOKES PAR DECENTRAGE

Francois BEUX (*)
Stéphane LANTERI (*)

Alain DERVIEUX (*)
Bernard LARROUTUROU (*%)

(*) INRIA Sophia-Antipolis
2004, route des Lucioles
06560 VALBONNE (FRANCE)

(**) CERMICS, INRIA Sophia-Antipolis
2004, route des Lucioles
06560 VALBONNE (FRANCE)



ABSTRACT :

We present a study of the effect of upwinding on stabilisation of both advective
and pressure terms in a family of primitive-variable Navier-Stokes solvers. We con-
sider two MUSCL Schemes, the first one applies to compressible flow, the second one
to incompressible flow. We illustrate the fact that both numerical models suffer os-
cillations if a minimal (but not large) amount of upwinding is not associated with
acoustics, while advection can be stabilized by the physical diffusion terms when the
mesh Reynolds number is small enough.

RESUME :

On présente une étude de 'effet du décentrage sur la stabilisation des termes ad-
vectifs et de pression d’une famille de solveurs de Navier Stokes en variables primitives.
On considere deux schémas MUSCL, 'un s’appliquant a des écoulements compress-
ibles, I’autre & des écoulements incompressibles. On illustre le fait que les deux schémas
présentent des oscillations si une quantité minimale de décentrage n’est pas appliquée
aux termes “acoustiques”, alors que les termes convectifs sont stabilisés pour des
faibles Reynolds de maille par la diffusion physique du modeéle.
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INTRODUCTION

The stabilization of pressure terms in primitive-variables CFD methods is a very old
problem. Clearly, schemes resulting in central-differenced three-point pressure first
derivatives are not spatially stable.

One first way to overcome this difficulty has been to use staggered grids to
emulate the stable two-point second-order Box differentiation, as in the MAC method
[33].

Later on, the powerful theory of mixed finite-element (see e.g. [14]) allowed the
design of stable discretisations over arbitrary meshes. Mixed finite element method
like the Hood-Taylor P, P, approximation (see e.g. [29]) are now very popular and
used for many industrial applications.

More recently, some interest has regained for non-staggered grids or non mixed
finite elements: three families of such “collocated” schemes are studied.

In finite-element studies, the mini-element was introduced (see for example [11]);
this mixed formulation can be reduced to a non-mixed one by eliminating the “extra”
degree of freedom; in [21], it is shown that this introduces some numerical viscosity
in the continuity equation; which may degrade the global accuracy. In the “Least
Square Galerkin methods” [16], it is proposed that this diffusion term be a dis-
cretisation of one of the equations of the system, to be thus small for fine meshes,
avoiding the degradation of accuracy.

Also a set of collocated methods has been generated from fictive staggering; we
refer here to [23].

The third series of non-staggered investigations relies on upwind schemes applied
to some extension of the artificial compressibility approach. We refer to [6] for some
recent work in this direction. Upwind TVD schemes, like van Leer’s and Osher’s can
then be adapted ; first-order versions yield matrices that are essentially diagonally
dominant and that efficiently precondition second-order upwind approximations, as
indicated by theoretical studies [4].

In this work, we are interested by upwind schemes and we present a set of experi-
ments that tend to determine to which extent the different components of the artificial
viscosity involved in the upwind formulation are necessary for spatial stability and ac-
curacy.

In particular, we identify an advective component and an acoustic one in the
numerical viscosity; we show that the advective part is not strictly necessary, but can
be suppressed at low Reynolds numbers, and, in general, can be monitored by the
mesh Reynolds number, as in mixed FEM formulations (see e.g. [1]).

We show that the acoustic numerical viscosity is necessary, especially in steady
calculations; but it can be strongly reduced in many cases, which may result in a
better accuracy.

This numerical study is performed for both incompressible and compressible mod-
els.
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1 UPWIND SCHEMES FOR COMPRESSIBLE FLOWS

We are concerned here with the numerical simulation of two-dimensional viscous com-
pressible flows that are modeled by the full Navier-Stokes equations. We first consider
a simplified scalar model for advection-diffusion problems and introduce a family of
three-parameters schemes based on an upwind discretization of the convective flux
term and a classical centered approximation for the diffusive one. We next describe
the two-dimensional extension of these schemes on unstructured triangular grids with
the use of a mixed finite volume/finite element method for the spatial approxima-
tion of the convective and diffusive fluxes. Finally, results from unsteady and steady
simulations around a NACAQ0012 airfoil are presented.

1.1 One-dimensional analysis

A simplified model that can be used to describe viscous flows is given by the linear
advection-diffusion equation :

Uy + f(u)as = HUzy , (1)

with f(u) = cu, where we assume ¢ > 0 and g > 0. In the present study, numeri-
cal solutions of this equation are obtained via a family of three-parameters schemes
characterized as follows:

e the convective flux term is discretized using a finite volume formulation where
the numerical flux function is of the upwind type, while a linear interpolation
method yields the left and right control volume boundary states;

o the diffusive flux term is computed using a classical three-points centered scheme;

e the temporal term approximation combines a mass-lumped and a consistent
mass matrix formulation.

1.1.1 Spatial approximation

Let z; , ¢ € [0, N] denote the discretization points of the real interval [0, 1] and Az the
constant mesh size. For each discretization point we state u; ~ u(z;) and we define the

. Ti+ it .
control volume C; as the interval [:L‘Z-_; , xi—l—i] where Tl = 2t T2l The advection-
2 2 2

diffusion equation (1) is first discretized in space. For each discretization point z; we
obtain the following ordinary differential equation :

du; du;
(1-a) +ao | Z o /NZ-dew
je{i—1,,4+41} Qp (2)
+ Z <I>6(ufj, ug) = v(u);
jEfim1,i41}

where the N; are P1 canonical basis functions and :
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v(u); = ﬁ(ui_l —2u; + Uip1) - (3)

In (3), ® is a numerical flux function of the upwind type, where the amount of
artificial diffusion is weighted according to the value of the parameter ¢ :

B, ) = S10) + ()] — S u)
(@

U + Uy

d(u,uy) =] (T) [ (= ) -
In the linear case where f(u) = cu the numerical flux function above reduces to :
7w, ur) = S[L+ 6+ (1 - 6)u,] (5)

The left and right control volume boundary states u; and w, that are involved in
equation (2) are computed using piecewise linear interpolation formulas :

Uiyl — U U; — Uj—1
+

B —
u’i,’i-}-l = U —I_(]‘ - ﬁ) 9 9 ?

Uit1 — Uy U2 — Uit
uiﬁ-}—l,i =i —(1- )= 57— P + 5 =,

P = Uiy i1 = U
Wi =w (- - g

Uz U;—2

Wl =i H(1- BT 4

In the above expressions, § appears as an upwinding parameter that controls the
combination of fully upwind and centered slopes. It is easy to verify that porting these
expressions in the discretized equation (2) yields a five-point scheme. We denote:

g(wi= Y O(uhud)= (14 )Buig — 2014+ B +268)uisy
jeli—1,i+1} v
+660u; +2(1 + 5 — 263)uitq (7)
—(1 = 6)Buiys .

The accuracy of these spatial approximations can be assessed using Taylor expan-
sions. Applying this technique to v(u); and g(u); results in the following expression:

Az?
_g(u)z + U(u)z = —cCuz + HUzy ‘|’C(3ﬁ - 1)?”1}1‘1}

(8)

2
+ (g - wcm) ATm%m +0(Az?) .
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1.1.2 Temporal approximation

Looking at equation (2), we see that the temporal part combines a mass lumped term
and a consistent mass matrix term. This yields a modified mass matrix formulation
characterized by the matrix P, defined by :

P,=(1-a)D+aM (9)

where D is the lumped diagonal mass matrix, viz. the identity matrix in this simplified
case, and M is the consistant mass matrix associated with the P1 linear Lagrange

element:
- 4 . .
(v, = SISy, (10)
Equation (2) can be now written in a matrix form :
P U —9¥(U)=0 (11)
with :
S(U)j = —g(u);j + v(u); (12)

Time integration is performed using a three—stage low—storage Runge-Kutta scheme:

U0 =" = U(nAt)

MF(U(’“)) — ¢(Lf(k))
At k=1,2,3
(k) —y© 4 = ppyt-n
U U%v + T kF(L )

U(S) — U(O) n AtF(U(S)) — prtt

which involves the solution of a linear system; this can be achieved via a Jacobi
iterative process.

1.1.3 Choosing the parameters

The accuracy of the complete approximation can be assessed using the Modified Equa-
tion Method (see [32]). For this purpose we use the previous expansion (8) on the spa-
tial approximation. The modified equation of the scheme (1) up to the fourth order
has the following form :

2 3
U+ CUp — YUy = D3 (ﬁa a) ATxuzzz + Dy (O‘, ﬁv a, 67 REAIT) Txurrrr + O(A$4) (14)

where :
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e D3 is the coeflicient of the dispersive derivative term ..

Ds(B,0)=c(3-1+a) (15)

e D, is the coeflicient of the dissipative derivative term ;..

— E (20& — 1) 03) (16)

Dy (U7ﬁ7a767 REAzz) =3 <—3ﬂ‘5 - W - 7

c
Here, 0 = —— is the Courant number and Rea, = is the mesh Reynolds number.

Az

We shall now exhibit a number of optimal numerical schemes characterized by
particular values given to the three parameters a , 8 and § . In doing this, we would
like to reach the following goals :

- for unsteady simulations, it is of particular interest to minimize the dispersive error;
in the following we shall exhibit numerical schemes with zero linear dispersive
error (D3 = 0);

- as we are interested in viscous flow simulations, we should minimize the dissipative
error of the numerical scheme, that is, minimize the coefficient Dy, .

The following schemes can be considered as optimal according to the previous
goals :

1
e a=0,6=1and § = = :third-order biased upwind scheme for the advection

equation (see Desideri, Selmin and Goudjo [3]);

1
ea=0,6=0and g = 3 : third-order biased five—point centered scheme;

e a=1,6=0and 8 =0 : consistent mass-matrix three-point centered scheme,
with the classical Galerkin approximation for the advection equation (which is
fourth-order accurate in space on uniform grids);

1
sa=g, 6 =0or1and 8 = = : modified mass-matrix scheme, Galerkin-

like approximation for the advection-diffusion equation (which is fourth-order
accurate in space on uniform grids).

When a = 0 and for any §, the linear dispersive error term of (14) in equal to zero

when § = E ; in this case we shall minimize the dissipative error by using small values
of the parameter § . Nevertheless, the corresponding numerical scheme may lack of
dissipation and spurious oscillations may appear in the convection-dominated parts of
the flow (the extreme case being obtained when § =0 ).
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1.2 Two-dimensional extension

We now consider the extension of the previous schemes to the two-dimensional Navier-
Stokes equations.

First we recall the mathematical problem to be solved and set some definitions
and notations which are used in the sequel.

1.2.1 Governing equations

Let © C IR? be the flow domain of interest and I' be its boundary. The conservative
law form of the equations describing two-dimensional compressible viscous flows is
given by:

ow - =

- +tV.F(W) =

o V.R(W) (17)

1
Re

where
- 0 T
W = E)Y - (= =
(p7 pu? pv 9 ) 9 V <a$ b ay)

Foy = [ F (W) 30 — R(W)>

7= (aan) - 2= (som)
The functions F(W) and G(W) denote the so-called “convective” or “Euler” fluxes
written as :

pu pv
2
Fowy=| PP qwy= | A
puv pv-+p
u(E + p) v(E + p)

while the functions R(W) and S(W) are the diffusive fluxes :

0 0
_ Tex _ Tz‘y
R(W) = oy , S(W)= o
k8 kd
UTry ‘I’ szzy ‘I’ %i UTz‘y ‘I’ ’UTyy + %ﬁ

—

where p is the density, U = (u, v) is the velocity vector, F is the total energy per unit
of volume; p is the pressure of the fluid, with the equation of state given for a perfect
gas as :

1 -
p=(-DE-5pllU 1)

7 is the ratio of specific heats (7 = 1.4 for air); ¢ denotes the specific internal energy
related to the temperature by :

e=C,T = — -

F _
- U 2
; (MU 17

N | —
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In the expressions for the diffusive fluxes, 7., 7y and 7, are the Cauchy’s stress
tensor components given by :

T R YL L
ez = 3\ %94 0y » Tw T3 dy Ox » ey = oy Ox

Lastly, Re and Pr are respectively the Reynolds and Prandtl numbers.

We are mostly interested in external flows around airfoils; then the domain of
computation € is delimited by the boundary I', which we decompose as I' = 'y U T .
Let 7 be the outward unit normal at any point of the boundary I' .

The flow is assumed to be uniform at the farfield boundary I'y:

=~ _ (cosb 1
Poo = 1 > Loo - (8“10) 5 Poo = fijgo (18)

where 6 is the angle of attack and M., denotes the free-stream Mach number. On the

wall boundary I'y, we assume the no-slip condition together with a Dirichlet condition
on the temperature :

U=0, T=T, (19)
while the density is free of any condition; the total energy per unit of volume and the
pressure on the wall are then given by :

E=pCT, , p=(y-1)E (20)

1.2.2 Spatial discretization

The spatial discretization, which is referred to as MUSCL-FEM in previous papers [9,
25], is a standard Galerkin (continuous, piecewise linear) approximation for diffusion
terms, and a finite volume one for hyperbolic terms, the finite volumes being designed
in order to be compatible with the Galerkin method (see [5]).

We assume that Q is a polygonal bounded domain of IR%. Let 7; be a standard
triangulation of 2 and h the maximal length of the edges of the triangles of 7;,. We
need to introduce the following notations.

For every vertex S;(i = 1,...,ns) of 73, the control volume C; is the union of all
those subtriangles resulting from the subdivision of each triangle by means of the
medians who have §; as a vertex (see Figure 1). The boundary of C; is denoted by
0C; and the unit vector of the outward normal to dC; by v; = (v, v4y). The union of
all these control volumes constitutes a partition of domain £ :

Q= U o
i=1
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Figure 1 : Control volume definition
For every vertex S;, K(7) is the set of neighboring nodes of 5;. We recall that ¥;
is the characteristic function of the control volume C; defined as :

~ 1 if Xec;
V.(X) = ot
(X) { 0 otherwise

We introduce the following discrete spaces (where Pj is the space of polynomials
in two variables of degree 1) :

Vi, = {?)h | VR € CO(Q),vh |T€ P VT € ’EL}

c,=v; = const;i=1,...,ns}

W, = {T)h | vp, € LQ(Q),vh

In the finite element method, any function f belonging to Vy is uniquely determined
by its values f(95;) at each vertex .5; and if we note (N;)7%; the basis set of V;,, we

have :

FX)= 30 f(S)N(X)

i=1,ns

There exists a natural bijection between spaces Vj, and W, defined by :

VIEVL » SU(X) = Y Ff(S)¥(X)

i=1,ns

First a general variational approach of equation (17) is derived :

Find W € (Vh)4, Yor € Vi
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oW, - -
// a—thsﬁhda?dy —I-// V.F(Wy)prdzdy
Qh Qh

! V. R(W))ondzd &0
= o [ [ Y RWgndady

Then, a mixed finite volume/Galerkin finite element approximation is obtained by
using different techniques for computing the left and right-hand-side integrals of (21).
Let @y be the shape function N; associated with the node S;. We apply the operator
S to the left-hand-side integral of (21) which results in the following formulation :

// awhda:dy —}—//V ]—" (Wh)dzdy

/ V.R(W},)N;dady
SupN;

(22)

where SupN; = U T . In the next step, the convective term integral of (22) is
T,S;€T

treated using Green’s formula while an integration by parts is applied on the diffusive

one, which leads to :

// ath,rdy + /ﬁ(wh).mda

o0,

— Y / R(Wh).VNTdady (23)
TS eT

+E/R W),).7% Nido

where NI is the restriction of N; to triangle 7. By neglecting the right-hand-side

k3
boundary integral of (23) (see the above remarks on boundary conditions), we obtain

// %d dy + S [ FWi).iydo <1>

JEK(@DaCy,
+ / F(Wy).iiido <2>

oC;NIy B (24)
+ / F(Wy).it;do <3>

oC; ﬂFoo
= —— Y / R(Wh).VNTdady <4 >

TS eT

Specifying the approximation for computing the integrals in (24) completes the
description of the spatial integration scheme.
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In the above formulation, it is important to remark that the computation of
the convective terms (that is the integral involving F) is now performed in a one-
dimensional manner : convective fluxes are computed along the normal direction 7.
For this purpose, the boundary dC; of the control volume C; is split into bi-segments
0C;; which join the middle point of the segment [¢j] to the centroids of the triangle
having §; and S; as common vertices (see Figure 2).

GQ ¥
—
vVa
I;:

SZ [ / L] Sj

—
Vi

G,

Figure 2 : Definition of 9C;;

The computation of the convective term < 1 > in (24) is decomposed between the
adjacent cells to cell C; :

$ /ﬁ(wh).zz-jd.a: $ J?(U)./ 7i;do (25)
JER (i, KD o,

where F (C’) is some approximation of the convective flux computed at the interface
between cells C; and C;. Upwinding is introduced in the computation of this term
through the use of a numerical flux function @ :

1 -
HZ-(j) = o5 (Wi, W), 7;)

where W; = Wj,(5;) and W; = W3(5;). The numerical flux functions used in this
study is a weighted diffusion version of the one proposed by Roe [24]:

F(U,v)+ F(V,V)
2
where d (U, V, V) is the numerical diffusivity term which is defined by :

% (U, V, i) = — K°d(U,V,7) (26)
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) VU
d(U,V,7)=| A(W,7) | (27) Al=T|A|T7Y, A=TAT™  (27)

W is the Roe average of U et V [24], and A the diagonal matrix defined by :
( ,17) — 0.7

Su(.9) = (.9
(W.7) =x(W.7)+17]

Moo= (W) = n (W,5) - |7

1 —Al

(28)

Moreover, K® is a matrix of weighting coefficients for the components of the diffusion
term :

K'=T T (29)

oo O ™
oD OO
o o O O
> O OO

The last term < 4 > of the right-hand side of (24) is computed using the classical
P1 Galerkin finite element method resulting in a centered scheme. For this purpose, we
first remark that the computation of the stress tensor components in the expressions
for R(W) and S(W), result in constant values on each triangle are the values of the

components of VNZ»T.
then the computation of term < 4 > of (24) is simply stated as :

VT VT
> / R(W). NTda:dy— > area(T)(RTm —|—ST01 ) (30)
'S, - oz 0y
eT T,S;eT

where Rt and ST are constant values of R(W') and S(W) on triangle T.

1.2.3 Acoustic damping

We define here a modified version of the numerical flux function of Roe [24] based on
a the distinction of the advective and accoustic parts of the numerical diffusion.

F(U, D) + F(V,7)

% (U,V,7) = 5 — K%d(U,V, D) (31)
where, K¢ is the diagonal matrix :
0000
~5 0000 1
K°=T 00 6 0 T (32)
0 0 0 ¢
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1.2.4 Higher-order approximation

The numerical integration with an upwind scheme as descrided above leads to ap-
proximations which are only first-order accurate. We present a MUSCL (Monotonic
Upwind Scheme for Conservation Laws [31]) extension of scheme (24) in order to get
a second-order accurate solution.

Following the M.U.S.C.L. method, one way to reach the second-order spatial accu-

racy is to evaluate fluxes with extrapolated values W;;, W;; at the interface 9C;N0C];.
This leads to the following modification of the computation of the term A 2-(]-1) :

a? = &r, (W;;, Wi, ;)

|

Wi = Wi (VW) (33)
|

Wi = Wi = (VW)

*

where W* = (p, w, v, p)T and where the approximate nodal gradients (§W)ij,ji

are obtained using a -combination of centered and fully upwind gradients :
(VW)5ig = (VW )iy = (1 = B)(VW )7 g + BV, P45 (34)
where the centered gradient (VT/V)Z-C}SM (obtained for g = 0), is any vector such that :

(VW) ay = Wi — Wi (35)

The fully upwind gradient (obtained for 5 = 1) is computed according to the
definition of the downstream and upstream triangles which can be associated with an

edge [S“SJ] :

(§W)21_ijw = Vwe |,
= Upw _ S1rG (36)

where VW ¢ lr= Z W§§Ng is the P1 Galerkin gradient on triangle 7" and where

keT
T;; and T);; are defined as shown on Figure 3.

Notice that no slope limitation is used here before we use the interpolated values
for the evaluation of the second-order accurate fluxes.

1.2.5 Boundary conditions

The second term < 2 > and the third term < 3 > of the right-hand side of (24)
contain the physical boundary conditions. These are represented by the vector W
which involves quantities that depend on the interior value Wy and quantities that
are determined by the physical boundary conditions.
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Figure 3 : Downstream and upstream triangles 7;; et T’;

Wall boundary : the no-slip condition is taken into account using a strong for-
mulation so that we do not need to compute the corresponding boundary integral in
< 2 >. We make a direct use of the expressions given by (19) and (20).

Inflow and outflow boundaries : at these boundaries, a precise set of compatible
exterior data which depend on the flow regime and the velocity direction, is to be
specified. For this purpose a plus-minus flux splitting is applied between exterior data
and interior values. More precisely, the boundary integral < 3 > is evaluated using a
non-reflective version of the flux-splitting of Steger and Warming [27] :

/ F(Wi).fisdo = AT (Wi, Gioo)- Wi + A= (Wi, o) Wo, (37)
AC; NI s
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2 NUMERICAL RESULTS (COMPRESSIBLE)

2.1 Unsteady simulations

We consider here the numerical simulation of the two-dimensional low Reynolds num-
ber flow past a NACAO0012 airfoil at high angle of attack and at low Mach number.
Such flows have been studied in details by Pulliam [22] for several Reynolds numbers
in the range [800, 2100], for an angle of attack of 20° and a freestream Mach number
of 0.2 . It is shown in [22] that when the Reynolds number increases, the unsteady
flow evolves from a situation where vortices are shed periodically to a chaotic behav-
ior. The flow conditions that we consider here are given by M., = 0.1, 8 = 30° and
Re = 1000. Initially, the free stream conditions are assumed to prevail all over the
flow. The airfoil is impulsively started in uniform flow. For the above flow conditions,
similar situations as those described in [22], have been exhibited by Farhat, Fezoui
and Lanteri in [7]. The computational mesh has 3114 nodes and 6056 elements.

We present a number of simulation results in the form of density and Mach contours
at time ¢ = 3 for several of the optimal numerical schemes derived in Section 1.1. We

1
first compare the extreme cases obtained for a = 0,6 = 0 or 1 and § = < ; these

two schemes have a small linear dispersive error (of fifth order in 1D) and essentially
differ by their numerical diffusion. Results are shown on Figures 4 and 5. The centered
scheme (6 = 0) has clearly very good accuracy properties in the viscous part of the
flow as it can be seen on the Mach contours; nevertheless, the absence of numerical
diffusion in this scheme leads to the generation of spurious oscillations away from
the body where the flow is convection dominated. As far as we are interested in the
numerical simulation of viscous flows, the results obtained with this centered scheme
can be considered as reference results for the boundary layer resolution. Conversely,
the upwind scheme (6 = 1) is stable but introduces too much numerical diffusion in
the viscous parts of the flow.

There are several ways for decreasing the numerical diffusion introduced by the
upwind scheme without loosing its stabilization properties. A first one consists in de-
creasing the value of the parameter 3 ; nevertheless, if the values of the parameters o
and ¢ are respectively kept equal to 0 and 1 , then the obtained scheme will be disper-
sive. For the present simulation, characterized by a moderate value of the Reynolds
number, the influence of this dispersive error term is not predominant. If we do not
want to alter the dispersive properties of the scheme, then we can keep the value

1
[ = — and decrease the value of the parameter é . Figures 6 and 7 present simulation

1 1 1
results obtained for é = 1 and § = — and for 6§ = — and § = 3 As expected from the

1D analysis no significant differences exist between the obtained simulation results.
Now, the question is: how much can we decrease the value of the parameter &
without degrading the behavior of the flow, that is without introducing spurious os-
cillations. The answer is clearly problem-dependent and can be partially given by
considering several lower values of the parameter § . Figures 8 and 9 present simula-
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1 1 1
tion results obtained for 6 = 2o 3 and § = 3
1
We finally present a simulation result for the modified mass matrix scheme (a = 3

1
6=1and g = 6), for which the third-order dissipative error term does not depend

on the value of the physical viscosity p (there is no dependency on the value of the
mesh Reynolds number in the expression (16)) of D4. The linear systems appearing
in the time integration process (13) are approximately solved with 12 sweeps of the
Jacobi iterative method. Results are shown on Figure 10. No significant improvements
appear and it seems that the chosen value of the parameter a which is based on a
one-dimensional study, is not suited to two-dimensional unstructured grid simulations.
It would however be interesting to perform an accuracy analysis on two-dimensional
structured triangular grid in order to exhibit the correct pattern for the construction
of the modified matrix P, .
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.007

1
a=0,6=1, ﬂ:§: pm = 0.980 |

Figure 4 : Density contours
Ap = 0.0025

par = 1.008
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My =0.19

1
a=0,46=1, ﬁ:§: M,, =0.00 ,

Figure 5 : Mach contours

AM =0.01

My =0.17
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1
a=0,6=1, ﬁ:g: pm = 0.975 | par=1.010

1
a=0, 6=—, ﬁ:§: pm = 0.975 |

Figure 6 : Density contours
Ap = 0.0025

par = 1.008
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1
a=0,6=1, ﬁ:a: M, =0.00 , My =0.18

1
,625: M,, =0.00 , My =0.18

Figure 7 : Mach contours

AM =0.01
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1
a=0, b= B=5: pu=0970, py=1008

Figure 8 : Density contours
Ap = 0.0025
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0.18

1
L B=g Ma=0.00

Figure 9 : Mach contours

AM =0.01

My =0.19
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1
ci=1, f=gr Myp=000, My =018

Figure 10 : Density and Mach contours
Ap=10.0025 , AM =10.01
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2.2 Steady simulations

We now consider the steady simulation characterized by M., = 0.85, § = 0° and
Re = 2000. As the temporal approximation is of less importance in the case of steady
simulations, we shall choose a scheme with good temporal dissipative properties. The
dissipative properties of low storage Runge-Kutta schemes of the form (13) have been
studied (among others) by Lallemand [18] in the case of the Euler equations. We shall
consider here one of the schemes presented in [18] even though no similar study has
been done by taking into account the diffusive fluxes.

It is a four—stage scheme :

U =yU"=U(t =nAtl)

Uk = o ¢ CkAt\IJ(U(k—l))
(38)
k=1,2,3,4

v =0 4 Aw(U®) = gt

with (1 = 0.11 , {3 = 0.2766 , (3 = 0.5 and {4 = 1 . Note that the parameter a is
equal to 0 (purely explicit scheme).

We present a number of simulation results in the form of steady—state density and
Mach contours. The computational mesh used has 12286 nodes and 24224 elements.

1
Figures 11 and 12 give solutions for é = 1 and § = - ; the upper solution was

obtained with the original numerical flux function of Roe [24] while the lower one
corresponds to the modified eigenvalues version (with an acoustic damping defined by
31-28 in Paragraph 1.2.3). Figures 13 and 14 present simulation results obtained for

6:1andﬁ:%andforé:%andﬂ:%.
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1
6=1, ﬁ:§ , Original flux : p, = 0.60, pps = 1.45

1
6=0, = 3 Modified eingenvalues flux : p,, = 0.60, pps = 1.45

Figure 11 : Density contours

Ap =0.05
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1
6=1, /6’:§ , Original flux : M,, =0.00 , My; = 1.15

1
6=0, = 3 Modified eingenvalues flux : M,, = 0.00 , My = 1.15

Figure 12 : Mach contours

AM =0.05
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1
6=1, ﬁ:g , ¢ pm =060, ppr =145

1
o6=—=, ﬁ:§ , ¢ pm =060, ppr =145

Figure 13 : Density contours

Ap = 0.05
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1
b=5 . f=35 . Mp=000, My =115

Figure 14 : Mach contours
AM =0.05

27
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3 AN UPWIND SCHEME FOR INCOMPRESSIBLE
FLOW

We now present and discuss some upwind schemes for the simulation of incompressible
flows. These schemes are based on the artificial compressibility approximation (this
approach is now well-known, we refer to e.g. [6] for recent applications and further
references).

The different hyperbolic system which appear below in the framework of the arti-
ficial compressibility approximation are analysed and discussed in detail in Appendix
1.

3.1 Steady incompressible flow with constant density

Let us first consider now a steady two-dimensional incompressible flow with the density
assumed constant. Then the Navier-Stokes equations can be written in the following
way, u and v denoting the velocity components and p the pressure :

Uy + vy + pr = vAu
uvg + vvy + py = VA, (39)

Uz +v, = 0.

The artificial compressibility approximation consists in subtituting the following equa-
tion p; + k*(uz + v,) = 0, where k is a positive constant, for the incompressibility
condition u, 4+ v, = 0. Thus, we consider the following system :

us + (u2 +p)s + (uv)y = vAu,
v+ (uv)y + (112 +p)y = vAv, (40)

Pt + kQ(uI + 'vy) =0 )

which we write as:

Wy + F(W), + G(W), = R.H.S., (41)

where the right-hand side consists of the viscous terms, and where:

U u? +p uv
W=1|ov |, F(W)= uv , GW)=| v +p | . (42)
Eu k%o

This system is known to be hyperbolic. For any vector 77 = (7, n,), the Jacobian
S i i

can be diagonalized in the form A =
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TAT=!, where T is the matrix of the right eigenvectors of A, and where:

Ao 0 0
A= 0 AO +7 0 ) (43)

0 0 AO - T
with Ao = V.j= neu + myo and 7 = /Ao + &2 || 7 ||2.

We can then define a Q-scheme for the approximation of system (40), as proposed
by Harten, Lax and Van Leer [15]. The numerical scheme for the solution of this
system is then very similar to the scheme used for compressible flows in the previous
section. The numerical flux function for the hyperbolic part writes:

7 7 g Ve
PUDETWD L ppv-vy.
with F(W,n) = 9, F'(W) + n,G(W). Since the fluxes F' and G are quadratic, it
is easy to see that the numerical flux (44) is in fact a Roe scheme for system (40),
because the following property holds for any pair (W, Wg):

(U, v, i) =

whwl

A(————— MW = W) = F(WE, i) = F(WH,7)

3.2 Steady incompressible flow with non constant density

We now the above scheme to a model of incompressible flow where the density p, is
not constant; such a scheme enables us to study a flow for two fluids with different
densities. For a steady flow, the model writes as follows:

upe +vpy =0,

puty + pvuy + pr = vAu ,

puvy + pvvy + py = vAwv

Uz +vy = 0.

Using again the artificial compressibility approximation, we will consider the fol-
lowing system :
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pe+ (pu)e + (pv)y = 0,
(pu)e + (pu? + p)z + (puv)y = vAu,

(46)

(pv)i+ (puv)e + (pv° + p)y =

Dt + kQ(uzz + 'Uy) =0 )

and introduce the vector form:

Wi+ F(W),+ GW), =RH.S., (47)
where the right-hand side again consists of the viscous terms, and where:
p ,20u pv
W= Z;‘ , F(W) = pupuj: P qw) = p;;“i I
P ku kv

As in the previous case, we obtain here an hyperbolic system. For any vector
oF(W oG(W
7 = (1, 1y), the Jacobian matrix A(W,7) = 1, 3§/V ) 7y 3%1/ ) is diagonalisable;

it can be written on the form A = TAT ™!, with:

M O 0 0
0 Mo 0 0
A= A , 49
0 0 Z24+7 0 )
2
A
0 0 0 70 -7
o Nk?
where Ao =V.j=mnu+nvand 7 = 5 +— 7>
P

Following the same lines as above, we can easily define a Q-scheme for the approx-

imation of system (46), using the expression (44).
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4 NUMERICAL TESTS : SQUARE WALL DRIVEN
CAVITY FLOW

4.1 Geometrical data

We consider an incompressible steady flow in a square cavity, the top wall of which
moves with an uniform velocity. It is a classical model problem for testing and eval-
uating numerical methods. The corresponding geometry is defined in the following
Figure 15.

Yy
u=1, v=0
1
Q
v=20 v=20
0 u=0, v=0 1 x

Figure 15 : Geometry and boundary conditions of the square wall driven cavity flow

4.2 Incompressible flow results

For this test case, we compare the results for Reynolds number equal to 400 and 1000.
We have used here an implicit scheme with a spatial second-order accuracy.

First we are interested on the variation along the centre line z = 0.5 of the horizontal
component of the velocity. In Figure 16, we plot, for a Reynolds number equal to 1000,
the evolution of the solution with the mesh’s refinement. The solutions are converged
at eight orders of magnitude for the 121-nodes and 441-nodes meshes, at seven orders
for the 1681-nodes mesh and at five orders for the 4625-nodes one.

We present in Figure 17 a comparison between our work with our finer mesh (4625
nodes) and different studies for Re=1000: the works of Ghia et al. [13] (1982), FDM
without upwinding and 128 x 128 nodes, Nallasamy et al. [20] (1977), FDM with
upwinding and 50 x 50 nodes, Kondo et al. [17] (1988) with FEM third-order upwinding
and 40 x 40 nodes, Tabata at al. [28] (1988) with FEM third-order upwinding and 24
x 24 nodes. We can observe a good agreement particulary with Ghia et al. which have
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employed the finer mesh.

In the same way, we compare, for Re=400, our results computed with an 1681-nodes
mesh and different works using centered schemes and few nodes (except for Burggraf
[2] who have 40 x 40 nodes) [29]. The comparison is plotted in Figure 18.

We present now a succession of comparison between Tuann and Olson’s results [30]
(1977) and our results with an 1681-nodes mesh on isobaric lines and lines of constant
velocity for Reynold number equal to 400 and 1000. Tuann and Olson use a finite
element mesh with 85 vertices and 132 triangular elements; each element has 18 degrees
of freedom for the streamfunction interpolation.

The solutions are plotted in Figures 19 (Tuann and Olson) and 20 for Re=400, and in
Figures 24 (Tuann and Olson) and 23 for Re=1000. Notice that for the isobaric lines
we have take P = P — P, where P, is the pressure at the centre of the bottom wall
of the cavity in order to can compared with Tuann et al. But we do not have the same
normalisation of the pressure. So only the isoline equal to zero corresponds exactly in
the both cases.

For isovorticity’s lines, we compare with the centered finite element method of Fortin,
Peyret and Temam [10]. We notice that in the presented study we use an uniform
1681-nodes mesh as in [10]. The same values of isovorticity are used for our solution
and the Fortin, Peyret and Temam one (see Figures 21, 22 for Re=400 and 25, 26 for
Re=1000).
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Figure 16 : Re = 1000 : Profile of horizontal velocity along vertical centre line :
Different meshes

Figure 17 : Re = 1000 : Profile of horizontal velocity along vertical centre line :
Comparison with others results
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Figure 18 : Re = 400 : Profile of horizontal velocity along vertical centre line
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Figure 19 : Tuann and Olson : isobaric lines (on the left) and lines of constant velocity
(on the right) for Re = 400

Figure 20 : Isobaric lines (on the left) and lines of constant velocity (on the right) for
Re = 400 (1681-nodes mesh)
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Figure 21 : Fortin, Peyret, Temam : Lines of equivorticity for Re = 400 (41 x 41 nodes
mesh)

Figure 22 : Lines of equivorticity for Re = 400 (41 x 41 nodes mesh)
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Figure 23 : Tuann and Olson : isobaric lines (on the left) and lines of constant velocity

(on the right) for Re = 1000

Figure 24 : Isobaric lines (on the left) and lines of constant velocity (on the right) for

Re = 1000 (1681-nodes mesh)
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Figure 25 : Fortin, Peyret, Temam : Lines of equivorticity for Re = 1000 (41 x 41

nodes mesh)

Figure 26 : Lines of equivorticity for Re = 1000 (41 x 41 nodes mesh)
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4.3 A centered-upwind approach

In order to study the effect of the numerical diffusion on stabilisation of advective and
pressure terms, we deduce from the Harten Van Leer flux function defined in Section
3 a partly-upwind approximation. In this way, we introduce a matrix K, which in
Section 3 and Paragraph 4.2 is the identity operator, and defined by the following
expression :

The flux is then given by :

- . FUH+FWV,H 1
B(U,V, i) = ( '7)2 ( 77)_5

KTIAT™Y(V -U)

® defined previously corresponds in fact to the modified flux function of Roe ég_- de-
fined in the compressible case (see relations (31), (32) in Paragraph “Acoustic damp-
ing” of Section 1.2). We can notice that we have not consider, here, any weight coef-
ficients, i.e. we are in the case § = 1.

The purpose of the two following paragraphs is to numerically investigate whether
this new partly-upwind approximation is a stable one at low mesh Reynolds numbers.
We present comparisons between fully upwind schemes and partly-upwind ones.

The mesh used is an uniform triangular 41 x 41 nodes mesh.

4.3.1 First-order accurate experiments

We use an explicit scheme with a spatial first-order accuracy and with a time integra-
tion performed using a four-stage low-storage Runge Kutta scheme. The Runge-Kutta
coeflicients are given by:

¢1=0.11, ¢ =0.2766, (3 = %,Q: 1

For a Reynolds number equal to 1000, we compare the obtained results with the
partly-upwinding scheme and the initial one.

The different solutions are converged at six orders of magnitude.

We compare the both experiments and first-order results obtained by Tabata et al
[28] in Figure 27 where is plotted the first component of the velocity in function of
y for z = 0.5. We note a great difference with the second-order accuracy results
(see Figures 16 and 17), and in fact, just a slight difference between both first-order
accurate schemes.
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Figure 27 : Re = 1000: Profile of horizontal velocity along vertical centre line (dashed
line for initial scheme and solid line for partly-upwinding one)

4.3.2 Second-order accurate experiments

In order to obtain a spatial second-order accuracy we use an explicit §-scheme and
so we choose the Runge Kutta coefficients in function of § (see the 1-D analysis in
Appendix 2 below) :

(1 =0.166,(,=0307,(3=2,(4=1 for3 =

[}
Wl

(1=0199,(=0312,G=3,G=1forg=

o=

We take a Reynolds number equal to 100 and we search a solution converged at five
orders of magnitude.
We compare the results obtained if we put to zero the eigenvalue corresponding at

the advective part of the numerical diffusion with the original ones, and this for two

1 1
values of f: 6’ 3 We compare too with Tuann and Olson results [30] (see the

previous paragraph 4.2) and isobaric lines and lines of constant velocity are plotted
for all theses different cases.

We obtain a good accordance with the references results (Figures 28, 29). With this
low Reynolds number, we can not distinguish between the results obtained with the
partly-upwinding scheme (Figures 30, 32) and the initial one (Figures 31, 33). The

experiments with § = 3 seems to be less perturbed.
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Figure 28 : Tuann and Olson : isobaric lines for Re = 100

Figure 29 : Tuann and Olson : Lines of constant velocity for Re = 100
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Figure 30 : Re = 100 : 8 = £ CFL = 0.55 isobaric lines (on the left) and lines of
constant velocity (on the right)

Figure 31 : Re = 100 : 8 = % CFL = 0.55 with modified eigenvalues isobaric lines
(on the left) and lines of constant velocity (on the right)
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Figure 32 : Re = 100 : 8 = £ CFL = 0.6 isobaric lines (on the left) and lines of
constant velocity (on the right)

Figure 33 : Re = 100 : 8 = % CFL = 0.6 with modified eigenvalues isobaric lines
(on the left) and lines of constant velocity (on the right)
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5 CONCLUSION

In this work, we have put both incompressible and compressible fluid models in a
hyperbolic frame. This allowed to propose a family of upwind schemes relying on
Flux-Difference-Splitting and a FEM /FVM formulation for unstructured meshes. The
resulting MUSCL-FEM schemes are formally second-order accurate for all independent
variables, but both involve yet too much numerical viscosity.

Indeed, in the case of subsonic flows, we have exhibited improved accuracy for
versions that are less upwinded; those versions could be cast in a large family of
schemes that could be third-order or even fourth-order accurate in the one-dimensional
uniform-meshed case.

It should be noted that the same remarks could be done for both incompressible
and compressible cases: in both cases exist two kinds of first-order derivatives, advec-
tion terms and isotropic ones involved in the pressure and continuity-equation ones.
In the case of subsonic flows, it seems that different treatments for these two types
of terms should bring some improvement. In this paper, we have noted that viscous
terms could stabilize (essentially but not completely) advection.

Then our point of view consists of trying to reduce numerical dissipation by re-
ducing the upwinding of advection terms through a modification of the flux-difference
splitting. This point of view was also implemented in a semi-implicit context by Guil-
lard and Fernandez [8] in which the implicit dissipation did not apply to advection for
saving accuracy. In our study, the corresponding artificial viscosity could be switched
off without loss of stability, but the accuracy improvement has been rather disappoint-
ing.

Therefore this study calls sequels: while shocks still need first-order characteritic
upwinding, regular parts of the flow could much better approximated by finding sta-
bilizing terms addressing advection and acoustics separately; from this point of view,
new flux splitting are to be derived. Also, the level of upwinding and the switch to
shock-capturing fluxes have to be cleverly monitored.
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A Appendix 1

We analyse and discuss in this appendix the different hyperbolic systems which arose
in Section 3.1 in the framework of the constant density approximation.

Let us begin with a general remark: the investigation of these hyperbolic systems
is of interest for a better understanding of the upwind numerical methods used in this
work. But it is important to keep in mind that these system are not correct from the
physical point of view, since they are based on the artificial compressibility approach.
As a consequence, their solution will sometimes exhibit some unusual behaviour. As
an example, it will appear that the simplest system (50) below does have solutions
with shock waves propagating at any non zero speed s, but cannot have a solution
with a steady shock wave ! This strange fact is only possible because the artificial
compressibility breaks the galilean invariance of the original system which describes
the flow.

A.1 One-dimensional flow with constant density

We examine here the solution of a Riemann problem for the one-dimensional system:

ut‘|‘(u2‘|‘p)x =0,
{ pt+k2uz’ = 07 (50)

taken from the system (40) obtained by the artificial compressibility approach.

Setting:
[ u _ u? +p
W_(p) , F(IV)-( b2y ) , (51)

and considering two states Wy, and Wg, we consider the Riemann problem:

Wi+ F(W),=0 forcelR, t>0,

W(a,0) = Wy ifz<0, (52)
’ o Wgr ifz>0.
The Jacobian matrix:
20 1
or
AW) = = (53)
k2 0

has two real eigenvalues Ay = u — VK2 + w? and Ay = u + VA% + «?, which are

respectively associated with the two following right eigenvectors:

T = , To = . (54)



A APPENDIX 1 46

The problem is strictly hyperbolic since A; < Ay, and both characteristic fields are
genuinely nonlinear, since :

8/\1 u

VaMirmm=—-—F—=-14 ———=<0

YT T e
oA

V/\g.rgz——Qz—l—L<0.

ou VEZ ¥ u?

Thus, we know from the general theory about hyperbolic problems (see e.g. Lax
[19], Smoller [26]) that the Riemann problem (52) has a unique solution if the two
states W, and Wg are close enough to each other. This solution consists of 3 constants
states: W, W* and Wpg, with either a 1-shock or a 1-rarefaction between Wy and
W*, and either a 2-shock or a 2-rarefaction between W* and Wp.

We will construct this solution below, assuming that the reader has some famil-
iarity with the above references [19, 26].

A.1.1 Rarefaction waves

Let us investigate more precisely the rarefaction waves. In such a wave, W(x,¢) only
x
depends on the ratio o = 7 we write: W(z,t) = V(o). Moreover, since W is conti-

nuously differentiable in a rarefaction wave, we have W; + A(W)W, = 0, from which
we deduce that:

A(V(o)WV'(0) = oV ().

For a 1-rarefaction, this relation implies that V'(o) is colinear with r1 (V (o)) and
that A(V(o)) = o . Differentiating the latter relation with respect to o , we obtain
V1.V (0) =1, whence:

| w(0) . Th

p/(U) ﬁ kQ + u2

A1

This is the equation of the so-called “integral curve” for a 1-rarefaction. Since u'(o)
does not vanish, we can write:

p(u) = — /u Ag(v) dv = — /u(v + Vo2 +k?) dv. (56)

U+\/m)
k

We can evaluate this integral using the change of variable z = log (

(i.e. v = ksinh z). Setting:
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2 , k,? + "2 _I_ k?
o1(u,p) = p+ o+ 5VuR 12 + - log (“— Z) : (57)

we obtain the following result: the state W = (u,p)? can be linked to the state
Wi, = (up,pr)’ by a 1-rarefaction, with Wy, on the left of the rarefaction wave, if and
only if:

o1 (W) =¢1(Wr) and u > uy, . (58)

In other words, ¢ is a 1-Riemann invariant for our system.

In the same way, we easily obtain the following. Setting:

21 k? Vu? + k?
d2(u,p) = p+ % - §uvu2 + k2 — ?log (%) ) (59)

a state W = (u,p)’ can be linked to the state Wr = (ur,pr)’ by a l-rarefaction,
with Wg on the right of the rarefaction wave, if and only if:

G2(W) = ¢2(Wr) and u < up . (60)

A.1.2 Shock waves

After the rarefaction waves, we want now to study the shock waves. Assuming that a
1-shock wave propagating with the speed s separates the states Wy, = (ur,pr)? and
W = (u,p)T, with Wy, on the left of the shock, we can write the Rankine-Hugoniot
relations:
(u? +p) = (uf +pr) = s(u—ug) ,
(61)
k*(u—ug) = s(p-pr) ,

and the entropy inequalities:

uL—\/k2+u%>s>u—\/k2—|—u2, U+ VE2+uZ>s . (62)

We easily see that the first two inequalities in (62) impose that u < uz, and s < 0,
which shows that the last inequality in (62) always holds. Since s # 0, we can deduce
from (61) that:

k2
U+ up =8——,
S
whence:
. 2
Szu—;uL_\/kz_l_(u—l'TuL) . (63)

Now, we see that, if s is given by (63) and if v < wuy, then all inequalities (62) are
fulfilled. Using this value of s in the second relation (61), we obtain that, finally, the
state W must satisfy:

p=pr+(ug — ) {uzu%r\/k%r(uzmy] (64)
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With similar arguments, we can show that a 2-shock wave necessarily propagates
with a positive speed, and that it separates the states W = (u,p)T and Wi =
(ur,pr)T, with Wx on the right of the shock, if and only if:

b= pr+ (un — ) ['u—l—QuR_\/kQ_l_('u—l—uR)Q] (@)

2

A.1.3 Solution of the Riemann problem

Using the above results, we can construct the exact solution of the Riemann problem
(52). For the first characteristic field, we can construct a function pq(u, Wr,) defined
as:

p obtained from (64) for v < u;, (1 — shock),
p1(u, Wr) = (66)
p obtained from (58) for « > uy;, (1 — rarefaction).

From general results on hyperbolic system (see e.g. [19, 26]), we know that py(u, Wr,)
is a continuously differentiable function of u. In the same way, for the second charac-
teristic field, we define a function py(u, Wg) as follows:

p obtained from (60) for v < up (2 — rarefaction),
pa(u, WR) = (67)
p obtained from (65) for v > ur (2 — shock).

The states Wi, and Wg being given, the intermediate state W* between the two
waves, as well as the nature of these two waves, is determined by solving the equation:

pi(e, WL) = pa(u™, W) (=p7) - (68)

We can easily obtain a numerical evaluation of W* using Newton’s method for the
solution of (68) (we know explicitly the first derivatives of p; and pg). For example,
if we choose Wy = (1,10)T and Wxr = (—1,20)7, we obtain a 1-shock and a 2-
rarefaction with W* = (—2.9728, 11.6615)"; for this particular case, the curves p; and
p2 are shown on Figure 35.
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{
1-shock 2-shock
or or
l1-rarefaction W* 1intermediate state 2-rarefaction
u* , p*
p* = I(U*7 WL) p* = P2 7WR)
WL WR

Figure 34 : The solution of Riemann problem

22 b e o .

20 foe e -

18 |- S .
2-rarefaction :
16 |- . ! B

' 1-shock

Figure 35 : The curves py(u, Wr,), p2(u, Wg) and the intermediate state W*
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Once W™ is determined, the exact solution of the Riemann problem is known. For

instance, if the first wave is a 1-shock of speed s, we have (we are still denoting o = ?)

Wy, foro < s,
W(o) = (69)
Ww=* for o> s,

whereas, in the case of a 1-rarefaction, we have:

Wi, for o < M\ (W),
W(o) =1 (u(o), pi(u(o), Wp))! with u(o) = % (O‘ — %) for \q(Wp) <o < \(WF),
w for o > \(W™) .

(70)
Similar expressions hold for the second wave.
In the general case, it is easy to check the following facts:

o If uy, <0, then py(u,Wy) is a monotone decreasing function of u on IR;

o if uy, > 0, then py(u, W) is a monotone increasing function of u on an interval
| — 00, u1] and monotone decreasing on the interval [uy, oo, with u; < wup.
Moreover, in both cases, it satisfies:

lim pi(w, W) =pr+k*,  lim pi(u, W)= —oc.

U——00

o If up > 0, then py(u, Wg) is a monotone increasing function of v on IR;

o if up < 0, then py(u, Wg) is a monotone increasing function of « on an interval
| — 00, uz] and monotone decreasing on the interval [ug, +oo[, with uy < wup.
Moreover, in both cases, it satisfies:

lim pa(u, Wg) = —co . lim py(u, Wr) = pr + k.

From these observations, it is easy to deduce that the curves pi(u, Wr) and
p2(u, Wg) always intersect. Thus, we can determine, for any pair (Wg, Wg), an exact
solution of the Riemann problem (52) consisting of two waves, the left wave being ei-
ther a 1-rarefaction or an entropic 1-shock, the right wave being either a 2-rarefaction
or an entropic 2-shock. Here, Wy, and Wg no longer need to be close to each other.

We illustrate this result with three examples, where the possible different cases of
waves appear. We set here k = 1.

o Wi, =(1,10), Wr = (—1,20): the waves are a 1-shock and a 2-rarefaction (see
Figure 35 and Figure 36);
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o Wr, =(1,10), Wr = (—1,10): the solution involves two shock waves (see Figure
37);

o Wi, = (—1,5), Wr = (1,5): the three constant states are separated by two
rarefaction waves (see Figure 38).

We compare these exact solutions with the numerical solutions on Figures 36, 37
and 38. The numerical solution is obtained with a first-order accurate explicit scheme
with a CFL number of 0.65 and 101 mesh points. The numerical and analytic solutions
are shown at time ¢ = 0.05.
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A.1.4 Other upwind schemes

Beside the Roe scheme written in Section 3.1 above, the results of the previous sections

allow us to construct two other upwind schemes for the solution of system (50).
First, it is clear that we can use our knowledge of the exact solution of the Rie-

mann problem in order to construct a Godunov scheme for this system. Calling

V(%; Wi, Wg) the exact solution of the Riemann problem (52), then the Godunov

numerical flux function can be expressed by:
YW, Wr) = F (V(0; Wi, Wg)) .

The only comment we add here is that, because of our remarks on the signs of both
the eigenvalues of the Jacobian matrix A and the shock speeds s in the preceding
sections, it is easy to check that the state V(0; Wy, Wg) is always the intermediate
constant state W*.
Also, since we know the Riemann invariants for system (50), we can define an
Osher numerical flux function:
W)+ F(Wgr) 1 Wr

F
q)OSher(WL,VVR) — ( I
2 2 Jw,

|A(W)|dW | (71)

where the integration is made on a path connecting Wy, to Wg in the state space.
This path I' consists of two subpaths I'y and I'y which are respectively parallel to the
first and second eigenvectors ry and r9. The state W at the intersection of I'y and I'y
satisfies:

o(W) = 1 (WL) , ¢2(W) = da(Whr) .

From the definitions (57), (59) of the Riemann invariants ¢; and ¢y, it is easy to see
that W can always be determined, for any pair (Wr, Wg).
Then, the evaluation of the integral in (71) is classical. For instance, we have:

W W
/, |A(W)] dW:/ sign[A(W)] A(W) dW .
ILL WL

Since Aq(W) is always negative we may write:

/j |A(W)| dW = F(WL) — F(W) .

A aw = FWg) - FOR),

In the same way, using the positivity of Ay, we have /
w

and we finally obtain:

(I)OSheT(WL,WR) =F (W(WL,WR)) .
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A.2 Two-dimensional flow with constant density
Let us come back to the following system:

Uy + (u2 ‘|’p)m + (U’U)y =0 )
v+ (uv); + (v2 +p)y =0, (72)

pt+k2(uz+vy) =0 )

which arises in the framework of the artificial compressibility approximation for a
two-dimensional flow. More precisely, we will see how the preceding results about the
one-dimensional system (50) can be useful for the two-dimensional system (72).

We will again denote here:

U u? +p uv
W=1|v |, F(W)= uv , GUW)=| v*+p | . (73)
P ku kv

We already commented the fact that system (72) is not physically correct. But it
is easy to see that this system retains the rotational invariance of the original “in-
compressible” equations. This is the key observation for designing a finite volume
approximation of (72) (see e.g. [19]). Indeed, thanks the rotational invariance, eval-

uating the flux Fn; 4+ Gn, between two neighbor finite volumes C; and C}
8C;UAC,
amounts to solving the one-dimensional Riemann problem:

Wi+ F(W),=0 forcelR, t>0,

[ wy ifz<o,
W(‘”’O)_{WR ifz>0,

but now with the definitions (73) of W and F.

Of course, there is a close relation between this Riemann problem and the simpler
one (52). Since the variable v does not influence two of the three equations in (74), it
is easy to see that the solution of (74) can be deduced from the solution of (52). More
precisely, for any pair (W, Wg), this solution can be constructed in two steps:

o Using the values of (ur,pr) and (ug,pr), construct the solution (u(o),p(c))
of the 2 x 2 Riemann problem (52) (with o = %), call W* = (u*,p*)T the

intermediate state between the two waves;
e Complete the solution of (74) by setting:

vy, for o < u*,
v(o) = (75)

vr for o > u* .

In particular, we can easily define a Godunov and an Osher scheme for system (72).
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2.A.3 One-dimensional flow with non constant density

Lastly, let us examine the system:

pi+ (pu)z = 0,
(pu)e + (pu + p)e = 0, (76)
i+ ku, = 0,

taken from system (46) with a variable density, but in a one-dimensional geometry.
Although we again have here a 3 x 3 system, the analysis below will show surprising
differences with the previous problem (72).
Let us now set:

4 pu
W=\ pu |, PFIW)=| pi*+p | . (77)
P Eu
The Jacobian matrix:
0 1 0
oOF —u? 2u 1
AW) = — = 78
(W)= o (7%)
2 2
ELE
P P

has three real eigenvalues (assuming p > 0):

u k? u U k?
M= ——4/(2)24+— ., A= Ao = — Iy M
1 (2) ‘I’p ) 2 u, 3 2"’ (2) ‘I’p

associated respectively with the three following right eigenvectors:

1 1 1
™ = A , T2 = U , T3 = Az
AZ 0 A2

Thus, the system is strictly hyperbolic. Moreover, a straightforward calculation,
which we omit here, shows that all three characteristic field are linearly degenerate,
i.e. that:

VA =0,

for ¢« = 1, 2 or 3. Therefore, at least when the states Wy, and Wg are close enough
to each other, there exists a solution to the Riemann problem for system (76), which
consists of four constant states Wy, Wy, W3 and Wpg, separated by three contact
discontinuities (a rather unusual situation).
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A.2.1 Contact discontinuities

Let us investigate more precisely these discontinuities. This will be done by using both
the Riemann invariants and the Rankine-Hugoniot relations.

We begin with the first characteristic field. A function ¢(W) is a 1-Riemann in-
variant if it satisfies the following relation (we set m = pu):
99 028l
dp om dp

We already know that Ay is a 1-Riemann invariant. Moreover, it is easy to check
4

that p + Nz is also a 1-Riemann invariant.

0.

1
From these observations, we deduce that:

k* k*
N _ , 79
PP TR T (i i
Since we also have k%(uz — ur,) = A(W)(p2 — pr) from the Rankine-Hugoniot
relations, we get:
A (W
uy = ur, + %(m -pL) (80)
which together with (79), yields:
B (L -
Uy =UL+ —~ | ——— 1 .
2 L /\1(WL) PL P2

Similar results hold for the third contact discontinuity. We get here the two rela-
tions:

A3(W
us = uR + %(m — PR) (82)
+ K < ! ! ) (83)
U3 = u _— = — .
? R /\3(WR) PR P3

Lastly, the case of the second contact discontinuity is even simpler. Indeed, since
p clearly appears to be a 2-Riemann invariant, we have:

U = Uz, P2 =Pp3 - (84)

A.2.2 The solution of the Riemann problem

Using (80), (82) and (84), the pressure and the velocity of the two intermediate states
can be expressed in terms of Wz and Wg. Denoting now uy = ug = u*, py = ps = p~,
we have:
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b k*(ur, — ur) + prA3(WR) — pr2i(Wi)
As(Wr) — Mi(Wr) ’

o F*(Aa(Wr)ur, — M(Wr)ur) + M(Wr)As(Wr)(pr — pL)
o E2(A3(Wgr) — M(Wp) ’

Finally the density values are obtained from (81) , (83):

_ [L MWL)k (ur, — ur) + M(WL)*A3(WR)(pr — PL)] -
P2 = PL k4(/\3(WR) - /\I(WL)) ’

o [ L 2e(Wa) K (ur — un) + M (W) Ao(Wr)(pr - m] o

PR k4 (A3(WR) — M(WL))

The Riemann problem has an admissible solution if and only if p; > 0 and p3 > 0,
which means that some conditions on W, and Wg have to be satisfied. In such a case,
the solution is defined by:

143 for o< MWL),
P2

W, = pau* for A (W) <o <u*,
P*

W(o) = (86)

P3

Wi = pau* for u* <o < A3(Wg),
P*

Wr for  A3(Wgp) < o.

This result allows us to construct a Godunov scheme for system (76) (for this
system, the Osher scheme exactly reduces to the Godunov scheme). Also, as in section
2.A.2 above, these results can be extended to the two-dimensional system (46) using
the rotational invariance.
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Figure 39 : The Riemann problem solution
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B Appendix 2: Stability analysis in 1-D
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We are interested in the solution of the convection equation u; + cu, = 0 where ¢ >

0.

Using the following spatial discretization of |0, 1] :

1
Aac:N , z;=jAx for j=0,---,N

we get the semi—discretized system of equations :

d
Suj(t) = Wi(u(t)) for j=1,, N~ 1

where u;(t) = u(z;,t) and where ¥;(u(t)) is an approximation of
—c[u(acj_l_%,t) - u(acj_;_,t)] .
Using Von Neumann analysis method, we insert a harmonic data

kr

@’ = ape’™  with 6, = ¥ k=0,---,+£N
and we obtain : i
U ~
W = /\gkuz .

More precisely we give for four particular spatial schemes the expression of W¥;(u)

followed by the expression of Ag.

The three-points centered scheme , which is second-order accurate in space:

C
Vj(u) = —m(uy‘ﬂ —uj_1)

(51)

Ay = —éi sin 6

The totaly upwind first-order scheme :

Wj(u) = =50 = um)
(52) .

Ag =
b Az

{(1 = cos@)+ isin b}
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The partly-upwind second-order scheme |, which we obtain when § = 1 in (7);
we can notice that for 3 = 0 we get the scheme (57) above, and that we obtain a

third-order accurate scheme when 3 = 3 :
c
Vj(u) = — 55 (Bujz = (14 38)ujr + 30u; + (1 = 36)uj41)
(53) .
Ag = _K{Bﬂ — 4B cosf + Bcos26) +i(2(1 + §)sin b — Bsin26)}
x

The five-points second-order accurate centered scheme which we obtain
when ¢ = 1 in (7); as previously, we get the three-points centered scheme (S7) when

1
0 is equal to zero, and we get a fourth-order accurate scheme when g = 3"

V;(u) = —ﬁ(ﬁ%’ﬁ =2(B4 Duj1 + 28+ ujy1 — Bujy2)
(54)

c . . .
Mg = _4A$Z{4(1 + () sinf — Bsin 26)}

For the time discretization we use a Runge-Kutta fourth-order accurate method
in which we obtain u"*! = u;(t"*!) starting from u"™ = u;(¢") in the following way:

u® =y

u® =4 4 oy At \I!(u(k_l)) k=1,---,4
urtl = 4 (4)
The coefficients ajp have to verify :

o O<ar<1

e a4 = 1 to obtain the consistence of the scheme,

1, .
¢ a3=3 if we choose to have a second-order time accuracy.

The stability domain of this method can be written as :

D={zeC / g(z)| <1}

where the amplificator factor ¢g(z) can be expressed as :

1
g(z) =1+ 2+ 5(2’2 + a2 + ay a124) .
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So D depends only of the two coeflicients a1 and a, .
For each particular spatial approximation, we can determine the maximal Courant

number
. ( At )
f— C —_—
maxr Ax o

which ensures the stability, i.e. such that Ag At is in the stability domain D4, o)
for all 8 in [—m,7].

We now search a couple of coefficients (a1, az) that give the biggest possible 0,4, -
For the scheme (53), we obtain the following coefficients:

o for = a; = 0.199 ay; =0.312 and 0,4, = 2.62 ,

o for = : a; = 0.166 a3 = 0.307 and o0 = 2.20 .

Their stability domains are represented respectively on Figure 40 and 41.
For the five-points centered scheme (54) with § = 3 we obtain the following values

(see Dy, ap) on Figure 43) :

1 1
° a; = 1 g = 3 and 0,4 = 2.06.

Lastly, for the upwind first-order scheme (53) we find :
. a; =0.14 ay; =0.32 and 0,4, = 2.14.

The stability domain is given on Figure 42 .
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Figure 41 : Stability domain (S3) 6= 3
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Figure 42 : Stability domain : upwind first-order accuracy
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