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Une charactérisation d’indépendance pour les
chaines de Markov avec compétition et
applications aux réseaux de Petri stochastiques

Richard J. Boucherie

INRIA Centre Sophia Antipolis,
B.P. 93, 06902 Sophia Antipolis Cedex, France

Résumé

Cet article montre que les formes produits récemment trouvées pour les réseaux
de Petri stochastiques peuvent étre établies comme cas spécial d’un simple processus
d’exclusion pour le processus produit d’une collection de chaines de Markov.



1 Introduction

In the literature on queueing networks in equilibrium product form distributions play
a vital role, and many product form queueing networks have been discovered. For
example Jackson networks (Jackson [5]), and their generalisation to BCMP-networks
(Baskett et al. [1]) play a fundamental role in the queueing network literature. In
contrast, for stochastic Petri nets product form results seem to be less common.
An immediate explanation of the discrepancy between queueing networks and Petri
nets is that resource sharing and competition over resources cannot be modelled
by queueing networks. It are these properties of stochastic Petri nets that destroy
product form equilibrium distributions. An interesting exception are the Petri nets
described in Lazar and Robertazzi [9]. In this reference conditions are given under
which a Petri net has a product form equilibrium distribution. These conditions
basically come down to independence conditions on ‘firing sequences’ in subnets of
the Petri net. As a consequence, also if competition over resources occurs, these
authors obtain a product form distribution. It must be noted here, that the results
obtained in Lazar and Robertazzi [9] are valid for Petri nets containing linear firing
sequences only, and that in each place of the Petri net at most one token is allowed
(safe Petri net).

A second approach to obtain product forms for stochastic Petri nets is given
in Henderson and Taylor [4]. In this reference the product form results obtained for
batch routing queueing networks obtained in Henderson and Taylor [3] are extended
to Petri nets. It is shown that for fairly general state dependent firing probabilities
the equilibrium distribution of a stochastic Petri net has a product form if the output
bag (the tokens released by a transition) is an input bag (the tokens needed to fire a
transition) for some other transition. This is a condition similar to local balance for
queueing networks, but does not immediately characterize independence of subnets.

Donatelli and Sereno [2] discuss the relation between the product form results
obtained by Lazar and Robertazzi [9] and Henderson and Taylor [4]. Since Lazar and
Robertazzi [9] do not consider state dependent firing rates only state independent
firing rates are discussed. As is shown by Donatelli and Sereno [2], the results of
Lazar and Robertazzi [9] can be translated into a net level characterization if so-
called T-invariants (Murata [13], p. 568) are used to describe the firing sequences
used in Lazar and Robertazzi [9]. It is shown that a stochastic Petri net has a
product form equilibrium distribution (where the product form represents a product
of terms, one for each place of the Petri net) if each minimal 7-invariant is closed, that
is each output bag is also an input bag. This immediately establishes the equivalence
between the conditions used in Lazar and Robertazzi [9] and Henderson and Taylor
[4]. Note, however, that the product form results obtained in these two references
are not of the same type. In Henderson and Taylor [4] sufficient conditions are given
for a product form equilibrium distribution of the form found for queueing networks,
whereas in Lazar and Robertazzi [9] a first step is made in the characterization of
independence between Petri nets that compete over resources. Therefore, although
the product forms and the underlying conditions in these references are similar, the
ideas to obtain the product form results are different.



The present paper aims to generalize the results obtained Lazar and Robertazzi
[9] to Petri nets consisting of arbitrary subnets if an ‘independence condition’ similar
to the condition given in Lazar and Robertazzi [9] and Donatelli and Sereno [2] is
satisfied. Emphasis will not be on equilibrium distributions that are a product of
terms, one for each place, but on equilibrium distributions that are a product of
terms, one for each subnet, as this characterizes independence of the subnets. As a
consequence, general state-dependent service and routing is included. Independence
of the places as characterized by the product forms obtained in Lazar and Robertazzi
[9] and Donatelli and Sereno [2] may be obtained as an additional result for special
choices of the subnets. As is shown in several examples, the results obtained here
generalise the results obtained in Lazar and Robertazzi [9] to include Petri nets with
multiple tokens in places, and non-linear firing sequences.

The framework used in this paper is that of a collection of Markov chains.
For this collection the product process is introduced: let Sk, g, K = 1,..., K, be
the state spaces resp. transition rates of the Markov chains in the collection, then
S = 51 x---Xx Sk is the state space of the product process, and the transition rates of
the product process in dimension k are given by ¢z. It is assumed in this framework
that in each transition of the product process the state in one dimension changes
only, that is in each transition of the product process one of the underlying Markov
chains changes its state only. Competition over resources can then be modelled as
exclusion of a part of the state space S, say the product process cannot enter A C S.
The independence condition guaranteeing product form roughly states that if the
product process is in state n = (N1, ..., Nk, ..., NK), where n; € S;, and n' € A, where
n' = n except for component ny (i.e. nj, # ng, n;, = ni, © # k) then Markov chain
k cannot change its state. Under this condition the product process has a product
form equilibrium distribution at S\ A given by

K
ﬂ—(ﬁ) =B H Trk(ﬁk)a
k=1
where 7 1s the equilibrium distribution of Markov chain k at state space Si, and B
is a normalising constant determined by the exact form of A.
Section 2 describes the model, and Section 3 gives several examples of exclu-
sion/competition mechanisms that can be modelled in the framework of this paper.

2 Model

Consider a collection of K stable, regular, continuous-time Markov chains, labelled
k =1,...,K, at finite or countable state spaces Sy, k = 1,..., K. Let ny € Si
and denote the transition rates of Markov chain k by ¢x = (qx(nx, n},), 7k, n) € Sk).
Assume that each Markov chain is irreducible at S and possesses a unique equilibrium
distribution 7y = (7x(ng), nr € Sk) at Sk, kK = 1,..., K, that is 7 is the unique
solution to the global balance equations for Markov chain k at Si:

> Amk(an)ge(ng, 1) — 7r(7))qe(Ry, k) } = 0, Rk € Sk
71}, €Sy



We will now impose pair-wise relations on the Markov chains which allow us to model
various types of competition and to formally introduce resources.

Definition 2.1 (Competition) Let I be an index set. For each k, let Ay;, @ € 1,
be a set of mutually exclusive sets such that § # Ay C Sy, and UierAr; = Sk,
k=1
ng € Ag;. Markov chain ki and ky compete over resource v if {ny, ,ng, : ng €
Apjiy gy, € Agyi} = 0. Let Cy; C {1,..., K} be the Markov chains that compete over
resource 1 with Markov chain k.

..., K. Markov chain k uses resource 1, if the Markov chain is in a state

Definition 2.2 (Product process) The Markov chain at state space

K
S =TI S, (1)
k=1

with transition rates

K K
q(n, ') = qr(ig,ny) [ e (i,)L(n, = nl)1(if i : 7, € A,; then k & C,;),
k=1

r=1,r#k

where n = (ny,...,nk), n' = (n},...,n%), is called the product process of the
collection of Markov chains 1,..., K competing over resources I.

Remark 2.3 (Transition rates) The transition rates of the product process are
such that in each transition exactly one nj can change. This is further illustrated in
the example below. The coefficients ¢,(n,), r = 1,..., K, are added for mathemat-
ical generality. They will not appear in the equilibrium distribution of the product
process, and can be seen as an additional competition mechanism. These coefficients
will not be further illustrated in the paper.

Remark 2.4 (Trivial case) Observe that for I = {1} we have Ay, = Si. In this
case the Markov chains are independent. This can immediately be seen from the
definition since either {ng,, ik, : g, € Agj1, gy, € Agy1} = 0 for some pair (kq, k2)
or {figy, Nk, : Mgy € Agy1, gy € Agyi} # 0 for all (ky, k2). In the first case S = 0,
and the product process is not defined; in the second case all Markov chains operate
without influence of the others. a

Example 2.5 (Two processes) To help intuition, consider the product process for
a collection of 2 Markov chains. In this case, let I = {1,2}, S; = A3 U Aa, Sy =
Agp U Agg, and assume that the Markov chains compete over resource 2, that is a
state n = (ny,n2), where ny € Aqa, 1y € Ay cannot occur. The product process has
state space

5251X52,

and transition rates

q(n,n') = qu(n1,n7)1(n2 = ny € An) + ga(n2, 25) (01 = 0} € Ary).



All Al?

Figure 1: State space for two competing Markov chains

Observe that these transition rates imply that in each transition only one process can
change its state, and that process 1 is stopped when process 2 is using resource 2, and
vice versa. This is indicated in Figure 1, where the lines indicate the direction in which
transitions can occur. An important consequence of this stopping mechanism is that
the product process cannot enter the region Ajs x Ayy of the state space. Therefore,
in the definition of the product process (1) can be replaced by S = S7 x S3\ A12 X Az,
or in general

K K

S=T[ S \IIII II Ax x Aj. (2)
k=1 k=1:€l jeCy;

O

The following theorem gives the equilibrium distribution of the product process. Note
that this equilibrium distribution is defined on S as given in (2). At the other states
of S as defined in (1) we obtain from the exclusion mechanism in the transition rates

that =(n) = 0.

Theorem 2.6 (Product-form distribution) The product process of the collec-
tion of Markov chains 1, ..., K competing over resources I has equilibrium distribu-
tion = at S as defined in (2) given by

K
w(n) = B[] me(nx), ne€S,
k=1
where B is a normalising constant, determined by the exact form of S.

Proof It is sufficient to show that = satisfies the global balance equations at S.
Insertion of 7 into global balance gives:

> {r(n)g(n,n') — = (n')q(n',n)}

n’'eSs



K K
= > {ﬂ'(n) > aw(ng,ny) I e(ne)l(n, =nl)1(ifi:n, € A, then k & C)
n! k=1 r=1,r#k
K K
i) Eqk(ﬁ;,m) I o(r)1(n, =n)1(ifi:n, € A, then k ¢ CM»)}

r=1,r#k

= Z > Ame(n)qr(ng, ny) — wu(ng)gr(ng, ne)}

k=1 nkeSk

x B H ()7 (R )1(if i nl € A, then k & C,y)
r=1,r#k
= O’

where the last equality is obtained from global balance for each Markov chain sepa-
rately. a

The explanation of the above result is that for all n € S for fixed value of n,, r # k,
process k is either allowed to operate as if it was independent of the other processes
(in this case 1(if ¢ : n/. € A,; then k & C,;) = 1), or process k is completely stopped
(in this case 1(if ¢ : n! € A,; then k & C,;) = 0). In both cases process k satisfies
its global balance equations, since this is true when process k operates on its own
(1(-) = 1), and it is trivially true if process k is stopped. As a consequence, the ex-
clusion principle incorporated in the transition rates of the product process basically
comes down to a redefinition of the product process such that the Markov chains in
the collection operate as if they are independent.

Example 2.7 (Two processes, continued) The equilibrium distribution of the
Markov chain at state space indicated in Figure 1 is

m(n) = Br(n1,ny) = Bri(ny)me(n2), n € S.
This can immediately be verified by insertion into global balance:

> {r(n)g(n,n') — = (n)q(n',n)}

n'es

= Y Amu)a(fn, ny) — mi())qu (7], )} w2(ne) it € A x An

7y €S
= Y Am()qa(fg, ny) — ma(Rh)ga(Ry, o)} mi(fn)  if @ € A X A
75 €S2
= > im(u)a(, 7)) — m(Ry)q (R, )} ma(ng)
nj €S
+ Y Ama(n2)qa(ng, 1) — ma(7y)qa(Rh, ) } i) if 1 € Ay X Agy.
715 €S2

In each case global balance is satisfied since the processes in the collection satisfy
global balance at their respective state spaces. a



If Markov chain k satisfies local balance with respect to some subset of transi-
tions the result of Theorem 2.6 can be strengthened to incorporate this form of local
balance. To this end, assume that the transition rates for Markov chain k& can be
separated into Ry parts, labelled r = 1,..., Rg. For ng,n) € Sk, define transition

rates q,(:)(ﬁk,ﬁﬁc), r=1,..., Ry such that

nk7 nk Z Qk nka nk (3)

We say that Markov chain k is locally balanced with respect to the separation (3) if
the equilibrium distribution 7, satisfies

> {m)al (e, ) — me(iy) el (A ) } =0, r=1,..., Ry

7}, €Sk

Observe that this reduces to standard local balance if we consider Jackson networks
(Jackson [5]).

Observe that the process with transition rates q,(:) is a Markov chain on its own.
This Markov chain will be labelled (k,r). In contrast with the setting of Theorem
2.6, we now have several Markov chains operating on the same state space. We do
not require, however, that each of these Markov chains uses the whole state space
(cf. Example 3.3). Analogous to Definition 2.1 we can now introduce competition
over the resources I between the thus obtained collection consisting of By + ...+ Rg
Markov chains. This competition will be such that Markov chains on the same state
space (e.g. chain q,(c“) and q,(:r‘))) cannot compete over resources. This is natural,
since such a competition would imply that Markov chain & competes with itself over
resources. Therefore it is sufficient to introduce competition between Markov chains
on different state spaces. Analogous to Definition 2.1, for each (k,r), let Ak
be mutually exclusive sets such that A,y ; C Sk, and such that UierAg,y: C Sk
(observe that Markov chain (k,r) is not required to use the whole state space Sy),
and Uf:kl Uier A(gr),i = Sk. Furthermore, let Cy; C {(k,r) : k= 1,...,K, r =
1,..., Rr} be the Markov chains that compete with Markov chain (k,r) over resource
i, that is, if (K',7") € C(gy), then {np € Agpyi, 7w € Ag i} = 0. The following
theorem is a generalisation of Theorem 2.6 to incorporate local balance. Note that
the assumption of local balance is more restrictive than the assumption of global
balance in Theorem 2.6, but that the exclusion mechanism is more general.

Theorem 2.8 (Product process with local balance) Assume that each Markov
chain in the collection k = 1, ..., K satisfies local balance with respect to the sepa-
ration (3). The Markov chain at state space

K I Ry

S = H SINITITIT IT A X Ay

k=11=1r= 1(]7 )GC(kr)z

with transition rates

K K R

Ry,
q(n,n') Z Z qk (Rg,y) H cs(ns)1(ns = 1) H 1(ns € A(sry,i then (k,p) & C(M),i),

k=1 p=1 s=1,s#k r=1



has an equilibrium distribution = at S given by

K

W(ﬁ) =B H ﬂ—k(ﬁk)7

k=1
where B is a normalising constant.

Proof Similar to the proof of Theorem 2.6, it is sufficient to show that = satisfies
global balance at S. Insertion of = into global balance gives

> {r(n)a(n, ') = =(n)q(n’, n)}

n’'es

TL,

k=1 p=1 s=1,s#k r=1
K Ry K

Rs
—r(0) YD a (k) T (@R, = n,) [T (R} € Aoy then (,p) & Clar)

k=1p=1 s=1,s#k r=1
K Ry

= 33 {mln)a (nh ) — mieni)a” (g ) |

k=1 p=1

K
x B H cs(ng)ms(ns)1(ns = n}) H 1(ns € A(s,r,i then (k,p) & C(“)J»)

s=1,s#k r=1

= 0,

where the last equality is obtained from local balance with respect to the separation
(3) for each Markov chain separately. O

Observe that the proof above is very similar to the proof of Theorem 2.6. In fact,
Theorem 2.8 and its proof can immediately be obtained from Theorem 2.6 by the
substitution & — (k,p), r — (s,r) in Theorem 2.6. This is a standard observation
when the relation between global balance and local balance is discussed. Furthermore,
note that Theorem 2.6 is a special case of Theorem 2.8, since we may set Ry = 1 for
all k. Theorem 2.6 is added here because it illustrates the ideas behind the exclusion

mechanism better than Theorem 2.8.

3 Examples

This section discusses several examples of situations in which competition over re-
sources occurs that can be modelled in the framework of Section 2. Emphasis will
be on examples of stochastic Petri nets with a product from equilibrium distribution.
Example 3.1 presents the dining philosophers problem, a classical example often used
to illustrate resource sharing. Example 3.2 presents a model for database locking that
cannot be modelled as a stochastic Petri net. Example 3.3 gives the product form
results obtained by Lazar and Robertazzi [9]. Finally, Example 3.4 presents some
generalisations of product form results for Petri nets.

10
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Figure 2: Petri net for the dining philosophers problem with 5 philosophers

3.1 The dining philosophers problem

The dining philosophers problem, according to the literature due to E.W. Dijkstra,
is introduced as a model for resource sharing in computers. In the basic model it
contains K philosophers who alternatively think and eat. The philosophers are seated
around a round table, and on the right-hand side of each philosopher is one chopstick.
To eat, a philosopher needs two chopsticks. As a consequence, once a philosopher is
eating his two neighbours cannot be eating at the same time.

The dining philosophers problem has often appeared in Petri net form (see
Figure 2, where the Petri net is depicted for the case of 5 philosophers), for example
in Peterson [14], chapter 3.4.6 a deterministic version is modelled, and in Zenie [17]
a stochastic version is introduced. Furthermore, the problem is analysed in Lazar
and Robertazzi [9], Wang and Robertazzi [15], where it is shown that the equilib-
rium distribution describing the number of eating philosophers has a product form.
This result is also established in Ycart [16], where the dining philosophers process is
modelled as a nearest particle system.

The dining philosophers problem with exponential thinking and eating times
can immediately be incorporated in the framework of Section 2. To this end, introduce
Markov chain k for philosopher k, k =1,..., K. Let S, = {0,1}, where 0 represents
that the philosopher is thinking and 1 that the philosopher is eating. Let Ay =
{0}, and Az = {1}. Since a philosopher always needs both the chopstick on his
right-hand side and left-hand side to eat we have that Markov chains ¢ and 7 + 1
(K 4+ 1 = 1) compete over resource 1. (Note that in Section 2 we have identified a
part of the state space with a resource. The identification of chopsticks with resources
is mathematically more difficult.) Let Ay, resp. px be the rates of the exponential
thinking resp. eating times for philosopher k, then the state space of the Markov
chain representing the dining philosophers problem is

S={n=(n,....,nx)n; € {0,1},n; + nyy <1},

and the transition rates are for n,n’ € S

q(ﬁ ﬁ/) _ Ky ifn :ﬁ—ek,
’ )\kl(nk_l = Nk4+1 = 0), if ! .

The equilibrium distribution is (also cf. Lazar and Robertazzi [9], Ycart [16])

W(ﬁ):Bﬁ (ﬁ)nk, nes,

k=1 \Hk

11



as can immediately be obtained from Theorem 2.6.

3.2 Concurrent processing and database locking

This section discusses the model for concurrency and database locking that is intro-
duced by Mitra and Weinberger [12] and Mitra [11], and is also discussed in Kelly [7].

Consider a database that consists of NV items. Transactions are associated
with lists of items in the database that are needed for processing. These lists are
partitioned into two sets, with the items in the leading part requiring exclusive locks,
and items in the trailing set requiring non-exclusive locks. To clarify the picture, a
transaction will exclusively lock an item for a write operation, in this case no other
transaction can simultaneously use this item and non-exclusively lock an item for a
read operation, in which case also other transactions can use this item for a read
operation. To avoid complications, we assume that all transactions exclusively lock
at least one item. Requests for transaction processing arrive exogeneously to the
database. On arrival of a request the database lock manager decides to either grant
or refuse the locks required on the following basis. Let Wy and R; be the lists of
exclusively locked and non-exclusively locked items respectively in the database at
the time of arrival. Let W, and R, be the lists of items required by the arriving
request to be exclusively locked and non-exclusively locked. The locks are granted if

(W, N Wy) U (W, N Ry) U (R, NWy) =0,

and denied otherwise. If the locks are denied then the request for processing the
transaction is blocked and cleared, and discarded. If the locks are granted, then the
transaction is accepted for processing and the locks are not released until the entire
processing of the transaction is complete.

There are K types of transactions, labelled £ = 1,..., K. Assume that a
transaction of type k requires items j, C {l,...,N} and py C {l,...,N} to be
exclusively and non-exclusively locked. If transactions of type k arrive at Poisson rate
Ak, and are served at exponential rate uy, then the database lock protocol described
above can be modelled in the framework of Section 2. To this end, introduce Markov
chain k for the transactions of type k. Since an item can be used only once the state
space of Markov chain k is S, = {0, 1}, where 0 represents that there is no transaction
of type k present, and 1 that there is 1 transaction of type k present. Let Ay = {0},
and Ay = {1}. The Markov chains compete over the items in the database. To model
this competition in the framework of Section 2, for Markov chain k, define for each
k' # k, the following set Fyp = (W N Wi ) U (W N R ) U (Re N W) C {1,...,N}.
If Fjy # () then Markov chain & and &’ compete over resource 1. The state space of
the product process can immediately be deduced from this competition mechanism.
The transition rates of the product process are, with n = (nq,...,nk), and ny = 1 if
a transaction of type k is present

N Kk, ifﬁ’:ﬁ—ek, nkzl,
q(n’n ) o )\k, ifn' =n + €k, Nk = O,and U{k'#k:n;:l} Fkk/ = @,

12



and according to Theorem 2.6 the equilibrium distribution is

- K )‘k nk
m(n)=B]] (—)
k=1 \Hk

Note that the database locking mechanism described above can immediately
be generalised to the following situation. Assume that transactions of different type
interfere as before. However, instead of the interference between transactions of the
same type described above now assume that transactions of the same type do not
necessarily interfere, that is a number of transactions of type k can simultaneously
use items of the database, for example as a consequence of a specific order in which
the items of the database are used by these transactions. Let Sy be the state space
of the Markov chain describing transactions of type k, and define Ayy = {0}, and
Agy = Sk \ {0}. Then Markov chain k and k' compete over resource 1 if Fyp # ().

Let 7 be the equilibrium distribution of Markov chain & in isolation, then

K

W(ﬁ) =B H ﬂ—k(nk)7

k=1

where nj, represents the state of Markov chain &.

Furthermore, observe that the exclusion mechanism can immediately be ex-
tended to allow several levels of exclusive/non-exclusive locks. As is apparent from
the above discussion, this only changes the form of the state space.

In addition, note that a model for resource sharing in a communications envi-
ronment is discussed in Kaufman [6]. In the model discussed in this reference arriving
customers compete over K resources. Customers of type k arrive at Poisson rate Ay
and require by units of the resource. Customers are accepted if the required units
of resource are available, and rejected otherwise. This model can be seen as a spe-
cial case of the model discussed above, since the distinction between resources is not
incorporated in Kaufman [6].

Finally, note that both the results of this example and the results of the
previous example (dining philosophers problem) can immediately be obtained from
Kelly [8]. This is immediate since the Markov chains in isolation discussed in these
examples are reversible. As a consequence, the product process is reversible, and the
exclusion/concurrency mechanism comes down to the restriction of the state space
to a particular set for a reversible process.

3.3 Task sequences in a Petri net

Consider the ‘dual processor dual memory system’ as described in Marsan et al. [10]
(in this reference it represents the architecture of TOMP in the case of only two
processors). It basically consists of two processors, Py and Ps, corresponding private
buses, PB;, and PB,, memories, M; and M, local memory busses, LB; and LBs,
and a global memory bus GB. P; (FP;) may attempt transfers to M; (M) through
the local memory bus LBy (LB;). Alternatively, P, (F2) may attempt transfers to
M, (My) through the global memory bus GB, and the local memory bus LB; (LBy).

13
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Figure 3: Dual processor dual memory system

Conflicts arise since only one processor at a time may utilise a bus. The original Petri
net model of this system is due to Marsan et al. [10]. In Lazar and Robertazzi [9] it
is shown that the corresponding Petri net in which P; attempts to write on M, only
when P; is not using GB and LB; and vice versa has a product form equilibrium
distribution for the distribution representing the stage at which a task sequence has
arrived. In this context, a task sequence is a number of successive operations starting
with an active processor, and ending with an active processor. The explanation of
this product form result given in Lazar and Robertazzi [9] is that the transition lattice
can be embedded on a toroidal manifold.

Theorem 2.8 gives a simple explanation of this product form result. The
introduction of additional (dotted) arcs corresponds to the exclusion mechanism in-
troduced in Section 2. As a consequence of the additional dotted arcs a task sequence
can either operate as if it was independent of the rest, or is completely stopped. To
see this, consider the Petri net corresponding to the model of Figure 3. This Petri
net is depicted in Figure 4, where the dotted arcs are introduced in Lazar and Rober-
tazzi [9] to obtain a product form distribution. The interpretation of the dotted arcs
is that a transition can fire only if the indicated bus token (LB;, LBs, or GB) is
available and the bus token is immediately returned after firing of the transition. In
the description of Section 2, the Petri net corresponds to two Markov chains, chain
k for Py, who compete over 0, LBy, GB, and L B,, where 0 is introduced for the part
of the state space at which the processors do not compete over any of the buses LBy,
G B, and LB,. Let the states for the Markov chains be as indicated in Figure 4, i.e.
Markov chain 1 is in state 0 if the token is at “P; active”, etc.. If we consider Markov
chain 1 in isolation, that is LBy, GB, and LB, are always available for Markov chain
1, we obtain that we can separate the transition rates in a part qg) describing the
behaviour at states {0,1,2,3} (Task 1), and a part qf) describing the behaviour at
states {0, —1,—2} (Task 3), such that Markov chain 1 is locally balanced with re-
spect to this separation. This can easily be seen when we consider the global balance
equations for Markov chain 1. We obtain a similar separation for Markov chain 2.
Now define the following subsets of the state spaces (see Figure 5):
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TASK 3

M request

LB request

P, active

G B request

L B> request

M> request

TASK 1

LB free

LB,

LBy free

V2
1 G B free
_ -7 LBy free

28

2 LB free
3
LB free
GB free

GB
. GB free «

/// -7 LBj free

LB fre TASK 4

M> request
LB,
LBj free LBy  request
RN P, active
LB free™ < R
RN
GB free
G B request

LB freé ~ _
N

LB free LB request
M request
LB free TASK 2

GB free

Figure 4: Petri net for the dual processor dual memory system

A(1,2),3

A(1,2)1

S K N

A1,1)1

Aanz2  Aa)a
— Aena
— A2
A2,1)1
2 3
A(2,2),1
— A@2)a

Figure 5: State space and transitions for the dual processor dual memory system
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A2

Figure 6: Petri net with partial exclusion

Apya = {0, 1}, Ay = {0,1}, use resource 0,

Aan,z =12}, Agnz =12}, use resource GB,

Ay = {3}, A@z),s = {3}, use resource GB, LB,, resp. GB, LBy,
Apa = {0, -1}, A = {0,—1}, use resource 0,

Aqzys = {2}, Aps = {2}, use resource LBy, resp. LB,.

Observe that Markov chain (1,1) competes with Markov chain (2,1) over GB, Markov
chain (1,1) competes with Markov chain (2,2) over LBy, Markov chain (1,2) competes
with Markov chain (2,1) over LBy, and Markov chains (1,2) and (2,2) do not compete
over any resources. From Theorem 2.8 we now obtain that the Markov chain describ-
ing the modified dual processor dual memory system has a product form equilibrium
distribution at state space indicated in Figure 5. The generalisation from Theorem
2.6 to Theorem 2.8 lies in the fact that for example the state A 2)3 X A2 is
contained in the state space.

3.4 Petri nets: more general examples

The previous example initiated the model of Section 2. In this section we give some
additional examples of Petri nets with product form distribution. These Petri nets
will have a more general structure, and cannot be incorporated in the framework
of Lazar and Robertazzi [9]. In contrast, these Petri nets are designed to fit the
assumptions, that is these Petri nets are not based on actual systems. Furthermore,
the Petri nets are taken as simple as possible to illustrate the exclusion/competition
mechanisms. In particular, we consider Petri nets consisting of 2 subnets only, and
for simplicity in Examples 3.4.1 and 3.4.2 subnet 1 will be a linear chain.

3.4.1 Partial exclusion

Consider the Petri net depicted in Figure 6. Let the transition rates be as indicated.
The left Petri net is net 1, the right Petri net is net 2. The state space of the
Markov chain for both nets is {0,1}, and the Markov chains are in state 0 if the
token is at the place indicated in Figure 6. The Markov chains corresponding to
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A2

Figure 7: Petri net with partial exclusion: product form modification

the Petri nets of Figure 6 do not compete over any resources since all states in
S = S1xS; ={(0,0),(1,0),(0,1),(1,1)} are admissible. The equilibrium distribution

of the product process is rather complex:

7(0,0)/B = (p1 + p2) (A2 + p1 + p1) + Adrpin
7(1,0)/B = {(pm1 + p2)(p1 + A2) + pada + g}
7(0,1)/B = p{p+ p1 + A + Ao}

7(1,1)/B = tp{p + g1+ p2 + M+ Ao}

Observe that these probabilities vaguely resemble a product form structure. This is
M

reflected in the terms = and p appearing when n; = 1, ny = 1 respectively.

To obtain a true product form the Petri net is modified to the Petri net given
in Figure 7. The transition with rate p is separated into two transitions with rate
ap, and Su. If a = p1/(p1 + p2), and = pa/(p1 + p2) the total rate is unchanged
and in isolation the behaviour of Petri net 2 would be unchanged. To model the Petri
net of Figure 7 in the formalism of Section 2, define Markov chain 21 as the Markov
chain at Sy for the process with rates oy, gy and Markov chain 22 as the Markov
chain at S5 for the process with rates Su, p1. Then Markov chain 1 competes with
Markov chain 21 over resource 1, and Markov chain 1 does not compete with Markov
chain 22 over any resources. It can easily be seen that Markov chain 2 satisfies local
balance with respect to the separation in chain 21 and 22. Therefore, from Theorem
2.8 we now obtain that the Markov chain describing the Petri net of Figure 7 has a

product form equilibrium distribution at S = {(0,0), (1,0),(0,1),(1,1)} given by

w(n) = mi(n1)wa(n2),

)\ ni n
7T1(n1) = DB ()\—1) > 7r2(n2) = DB, (ﬂ -/If,u ) .
2 1 2

Observe that the Markov chains are statistically independent since also the normal-
ising constant separates.

where

Note that this example discusses an extremely simple stochastic Petri net that
can also be solved explicitly without the formalism of Section 2 (even the model of
Figure 6), but that it can immediately be generalised to more complicated situations,
which in general will not be easy to solve without some theoretical tools.
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Figure 8: Resources with multiple tokens

3.4.2 Resources with multiple tokens

Consider the Petri net depicted in Figure 8. In the resource position 4 tokens are
present, Petri net 1 is a simple cycle, whereas Petri net 2 is a cycle with 2 tokens
present. Note that for a complete cycle of both tokens of Petri net 2 all 4 tokens
in the resource position are needed. Therefore competition between the Petri nets
occurs.

Let the transition rates be as indicated in Figure 8. The Markov chain for
Petri net 1 in isolation has equilibrium distribution

M)
7'('1(711) = B1 ()\—1) 5 ny € Sl = {0,1}
2

The Markov chain for Petri net 2 in isolation has equilibrium distribution

canr == (1 (1) (2

at Sy = {(a1,as,a3)lar + az + a5 = 2, a; € {0,1,2}, ¢« = 1,2,3}, where a; represents
the number of tokens at position :. Observe that Markov chain 2 satisfies local balance
with respect to the separation

1

of) 2, 5) = galia, 7). i,y € {(2,0,0),(1,1,0), (1,0, 1)},
¢ (g, 1) = galig, 1y), if fg, 1y € {(0,2,0),(0,1,1),(1,1,0)},
qéS)(ﬁ%ﬁg) = qQ(ﬁ%ﬁ/Q)v if ﬁ27ﬁ/2 € {(07072)7(17071)7(07171)}

Markov chain 2: corresponds to a cycle of one token when the other token remains
at place 1.
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— e e » « Markov chain 23

PR == == Markov chain 22

Markov chain 21

200 110 101 020 011 002

Figure 9: State space and transitions for the product process

Figure 10: Petri nets with branching

The product process for the competing Markov chains cannot reach state n =
(n1,n2) = (1,(0,0,2)). Therefore, the state space is as depicted in Figure 9. For
the product process to have a product form equilibrium distribution the dotted arc
is added in Figure 8. This guarantees that only the transitions indicated in Figure
9 remain possible for the product process. Observe that Markov chain 1 competes
only with Markov chain 23. Therefore, from Theorem 2.8 we obtain that the product
process has a product form equilibrium distribution at S = S; x 53\ {(1,(0,0,2))}
given by

7(n) = Bri(ng)m(ns).

3.4.3 Branching

The previous examples all describe Petri nets in which each subnet is a state machine.
Observe that this is not required for the general results of Section 2. As a simple
illustration, consider the Petri net depicted in Figure 10. The Petri net consists of
2 identical subnets that share one token. Observe that the token is used at different
positions in the Petri nets (solid arcs) to illustrate the exclusion mechanism when
branching is involved. In Petri net 2 the dotted arcs are added to obtain a product
form equilibrium distribution. Note that dotted arcs need to be added only in Petri
net 2.

Let 71, w3 be the equilibrium distribution of the Markov chain for Petri net 1, 2
resp., then the product process at state space S, that can immediately be determined
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from the exclusion mechanism, has equilibrium distribution

ﬂ'(ﬁ) = Bﬂ'l(ﬁl)ﬂ-Q(ﬁQ)7

as can immediately be seen from Theorem 2.6.
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